
18
GDToolkit

Giuseppe Di Battista
University “Roma Tre”

Walter Didimo
University of Perugia

18.1 Introduction . 571
18.2 Key Features of GDToolkit . 572
18.3 Graph-classes and their Hierarchy . 573

Topology level • Shape Level • Metrics Level

18.4 Constructors . 583
18.5 Management of Constraints. 585

Topology Constraints • Shape Constraints • Metrics
Constraints

18.6 Examples of Applications . 589
Internet Analysis • Web Searching • Database Analysis

Acknowledgements . 594
References . 595

18.1 Introduction

GDToolkit (available at http://www.dia.uniroma3.it/∼gdt) is an object-oriented graph draw-
ing library, written in the C++ programming language. It provides many facilities that sup-
port users to develop specific graph visualization interfaces that can be used in real-world
domains.

The computation of a drawing is typically decomposed into a sequence of logical steps,
and several algorithms can be chosen for each step, which offer different compromises in
terms of efficiency and effectiveness. Developers can tune the ratio between the performance
of their applications and the quality of the computed drawings, by combining the different
algorithms available for each step. Generic drawing algorithms and drawing conventions
can be customized and tailored for a specific application context by means of different types
of constraints that the developer can apply on the drawings.

The design of GDToolkit started in 1996, as a part of the ALCOM-IT European Project.
For the use of basic data-structures like vectors, lists, maps, and sets, GDToolkit was
originally strongly based on the LEDA library [MN95, MN00]. After several years, the
current version of GDToolkit is now completely LEDA free, since the basic data-structures
have been totally re-implemented. GDToolkit is now under a commercial license; detailed
information about license terms and conditions can be found at the official web page of the
project.

This chapter describes the main functionalities and architectural aspects of GDToolkit
and it is structured as follows. The key features and the design principles of GDToolkit are
first described (Section 18.2). Specific architectural aspects concerned with the design and
the use of class constructors are then examined (Section 18.4). The constraint management

571

572 CHAPTER 18. GDTOOLKIT

system of the library is discussed in Section 18.5. Finally, some examples of real-world
applications developed using GDToolkit are illustrated (Section 18.6).

18.2 Key Features of GDToolkit

Several key features have been taken into account in the design of GDToolkit. They are
listed and discussed below:

A specific class for each type of graph. In GDToolkit each type of graph is mod-
eled as a specific class, called a graph-class. Graph-classes are organized into a
hierarchy that reflects different levels of abstraction, ranging from graph topology
to graph geometry (see Section 18.3 for a detailed description of the hierarchy).
A similar architecture has been previously proposed in other projects of graph
drawing libraries [BBDL91, DGST90]. There are basic graph-classes to model
graphs with different topological properties, like general multi-graphs, directed
graphs, planar graphs, flow networks, trees. In addition, there are graph-classes
for representing graphs with associated some drawing information. For example,
there exist intermediate graph-classes that model orthogonal drawings and up-
ward drawings only in terms of drawing “shape” (see, e.g., [DETT99]), and there
are graph-classes that model drawings of graphs in terms of vertex and edge-bend
coordinates.
All the graph algorithms implemented in GDToolkit are encapsulated as meth-
ods of the topmost graph-class in which they are safely applicable. Derived
graph-classes inherit methods from the ancestor ones, optionally refining or hid-
ing them when unsafe. Inheritance and encapsulation effectively help the appli-
cation developer in dealing with the intrinsic complexity of graph algorithms and
data-structures.

A graph drawing algorithm is viewed as a sequence of steps. Each step maps
an object of a graph-class to an object of another graph-class. A drawing is typ-
ically the result of a sequence of constructors; each time a constructor is applied
to a graph-object g, a new graph-object g′ is created and equipped with addi-
tional drawing features with respect to g. For example, the code in Figure 18.1
shows how to create an orthogonal drawing of a graph as a simple sequence of
constructors.

/* creates a graph ug, loading it from file "my-graph" */

undi_graph ug;

ug.read ("my-graph");

/* computes a planar embedding for ug, with possible crossing nodes */

plan_undi_graph pug (ug);

/* computes an orthogonal shape for the planar embedded graph */

orth_plan_undi_graph opug (pug);

/* compacts the orthogonal shape to create the final drawing */

draw_undi_graph dug (opug);

Figure 18.1 A fragment of code that computes an orthogonal drawing of the graph
described by the graph-object ug. The graph is loaded from a file and the drawing is
computed according to the topology-shape-metrics approach [Tam87]. Each computation
step is performed by a different constructor.

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 573

Efficient object constructors. Suppose that B is a graph-class that inherits from
A. Invoking a constructor of B that takes in input a graph-object g of A has the
effect of creating a new graph-object g′ of B that contains additional drawing
information (attributes) with respect to g. Typically, in the construction process,
all the structures of g are first copied in the state of g′, and then the state of g′ is
enriched with additional data computed by some algorithms. Sometimes however,
once g′ has been created, g is no longer needed in the program. In these cases one
may wish to “promote” g to become an object of class B, avoiding to duplicate
data for the structures of g. Such a promoting mechanism makes it possible to
save computational time and space resources, especially when g describes a large
graph. The graph-classes of GDToolkit are designed to allow that. Details about
the promoting mechanisms of GDToolkit are given in Section 18.4.

Management of Constraints. As many other graph drawing libraries, GDToolkit
is not devoted to a specific application field. It is mainly thought as a general
purpose graph drawing collection of objects and algorithms, which can be used
in several real-world contexts. However, different application domains may need
to deal with different variants of a generic graph drawing convention, depending
on the specificity of the domain itself. These variants often reflect into a set of
drawing constraints, and therefore it is crucial that the drawing algorithm is able
to deal with these constraints. For example, some applications might require
that a subset of edges is not allowed to cross, or that some vertices should have
a prescribed dimension.
GDToolkit makes it possible to customize its drawing conventions and its drawing
algorithms by means of an effective constraint management system. The graph-
objects of GDToolkit can be equipped with constraints that can be viewed as
additional properties for vertices, edges, or faces. Constraints can be added or
removed at each time of the life-cycle of a graph-object. If a constraint is added
to a graph-object, this constraint remains consistent even if the object is updated.
Also, GDToolkit constructors automatically preserve (and in case enforce) the
constraints when a new graph-object is created as a refinement or as a copy of
an existing graph-object. The constraint management system of GDToolkit is
described in detail in Section 18.5

Extensibility. In order to make the extensibility of the library easy, the definition of
new classes, constructors, and constraints is done according to specific patterns,
which should be taken into account by programmers that wish to extend the
library. The principles of these patterns are described in Sections 18.3, 18.4,
and 18.5.

In the next section the architecture of GDToolkit is described, focusing on the key fea-
tures discussed above. Several code and drawing examples are provided in order to better
illustrate the use of the library.

18.3 Graph-classes and their Hierarchy

The graph-classes of GDToolkit are structured into a hierarchy, and provide objects for
each specific type of graph. The design of the hierarchy is mainly driven by the well-known
topology-shape-metrics approach [DETT99, Tam87] for orthogonal drawings. According to
this approach, a drawing is computed into three phases:

574 CHAPTER 18. GDTOOLKIT

Topology: A planar embedding of the input graph is computed, by possibly adding
dummy vertices to replace crossings if the graph is not planar; the planar em-
bedding is described by the circular lists of edges incident to each vertex, or
equivalently by the set of faces.

Shape: An orthogonal shape is computed within the planar embedding found in the
previous phase, where one of the faces is chosen as the external face; the shape
describes the sequence of left and right bends along the edges, and the angles
formed by two consecutive edges incident to the same vertex in a circular order.

Metrics: The final position of the vertices and bends is computed, while preserving
the shape determined in the previous phase. Then, dummy vertices are removed.

GDToolkit applies and extends this approach to other drawing conventions. Indeed, more
in general, a drawing is described (and constructed) at three different levels of abstractions,
where each level adds drawing information to the parent level. The first level describes the
topology (embedding) of the drawing, the second level its “shape”, and the third level the
final geometry of the drawing in terms of vertex and edge-bend coordinates. The shape of
a drawing can be regarded as a partial description of the drawing that typically determines
the relative position of vertices and edges, without deciding their final placement. For some
drawing conventions the concept of shape does not make sense, and in this case it is possible
to skip an abstraction level in the construction of the drawing. The hierarchy of the main
graph-classes of GDToolkit is depicted in Figure 18.2.

draw_undi_graph

orth_plan_undi_graph upwa_plan_undi_graph

flow_dire_graph SPQR_tree

treeplan_undi_graph dire_graph

undi_graph

layered_undi_graph

Topology

Metrics

Shape

Figure 18.2 The hierarchy of the main graph-classes of GDToolkit.

18.3.1 Topology level

The root of the graph classes hierarchy is the undi graph class, whose objects represent
generic graphs that can be connected or not, and that can have multiple edges and self-
loops. Also, any edge of an undi graph object can be optionally oriented, i.e, an undi graph
can have both undirected and directed edges at the same time.

Each node and each edge of an undi graph object is associated with a non-negative integer
identifier. No duplication of identifiers is allowed in the same class of elements. Methods for
automatically generating identifiers are provided by the library, but identifiers can also be

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 575

manually set or changed by the programmer. When a graph object is copied into another
graph object, nodes and edges are duplicated while preserving their identifiers. Therefore,
identifiers can be used to keep a one-to-one correspondence between the set of nodes and
edges of the two graphs.

An undi graph stores information about its embedding, i.e., the circular ordering of the
edges incident to every node. This embedding is preserved during any copy operation of the
graph. Also, class undi graph contains a large set of basic methods to access and update the
topology of the graph, and advanced methods to deal with its embedding, orientation, and
connectivity. For example, there are methods that test the existence of planar embeddings
for the graph, or of planar bimodal embeddings in the case the graph has only directed edges.
We recall that a bimodal embedding for a planar digraph is such that, for each vertex, all
the incoming edges (as well as all the outgoing edges) are consecutive around the vertex.
There are methods to compute st-orientations, methods to connect the graph by adding a
minimal set of extra edges, and methods to perform different kinds of traversal of the graph.
Figure 18.3 shows a fragment of code that creates a new undi graph object ug reading the
structure of the graph from a file, executes two copies ug1 and ug2 of ug, and updates (if
possible) the embedding of ug1 into a planar one, and the embedding of ug2 into a planar
bimodal one, after an orientation for ug2 is found. Note that, if ug2 is biconnected, the
program computes an st-orientation for it.

/* creates an object ug, loading it from file "my_graph",

* and makes two copies of ug */

undi_graph ug;

ug.read("my_graph");

undi_graph ug1 (ug);

undi_graph ug2 (ug);

/* makes the embedding of ug1 planar, if possible*/

if (!ug1.make_embedding_planar ())

cout << "\nThe graph is not planar" << flush;

/* if graph ug2 is biconnected, makes it st-oriented,

* else makes it randomly oriented*/

if (ug2.is_biconnected())

ug2.make_directed(ug2.first_node(),ug2.last_node());

else ug2.make_directed(true);

/* makes the embedding of ug2 planar bimodal, if possible */

if (!ug2.make_embedding_cand_planar())

cout << "\nThe oriented graph is not planar bimodal" << flush;

Figure 18.3 A fragment of code that illustrates how to use some methods of the
undi graph class.

Most graph algorithms implemented as methods of an undi graph object runs in linear
time. For example, an st-orientation of a graph with 200,000 vertices and 600,000 edges is
executed in about 14 seconds under Linux on a typical machine with i5-540M Intel processor
and 4 GB RAM.

576 CHAPTER 18. GDTOOLKIT

Embedded planar graphs are modeled by the class plan undi graph, which enriches the
basic topological structure of an undi graph with the description of a set of faces. Following
the philosophy of the library, a plan undi graph object can be created using a construc-
tor that takes as a constant parameter an undi graph object. This constructor applies a
planarity testing algorithm and, if the graph is not planar, a planarization algorithm that
replaces crossings with “dummy” nodes, called crossing nodes.

The planarity testing algorithm implemented in GDToolkit is the one described by Boyer
et al. [BCPD04]; it has been shown to be faster than the one implemented in the LEDA
library [MN95, MN00]. The planarization algorithm is based on a technique that inserts an
edge per time by following a shortest path in the dual graph of the planar embedded graph
computed so far [DETT99]. While planarizing sparse graphs is rather fast, executing the
planarization algorithm on dense graphs might require a significant computational effort,
due to the high number of crossings. For example, a graph with 500 vertices and 750 edges
is planarized in about 13 seconds under Linux on a computer with i5-540M Intel processor
and 4 GB RAM. A much smaller but much denser graph consisting of 100 vertices and 500
edges is planarized in about 42 seconds.

Class tree offers methods to perform standard operations on ordered rooted trees, like
visits in different orders, re-rooting, and so on. The SPQR tree class inherits from class
tree, and models the data structure introduced by Di Battista and Tamassia [DT96] to
represent the triconnected components and the different embeddings of a biconnected graph.
It is possible to use SPQR-tree objects to enumerate and change the embeddings of a
graph, although the current implementation of SPQR-trees in GDToolkit only deals with
planar graphs. In GDToolkit, SPQR-trees are extensively used to implement branch-and-
bound algorithms that compute drawing with the minimum number of bends in the variable
embedding setting [BDD00, BDD02].

Class dire graph defines specialized methods performing on directed graphs. A special
subclass of dire graph is the flow dire graph class, which represents flow networks [AMO93]
with capacities, costs, and flow values for the arcs. Every node of a flow network may also
have a certain balance value that can be either negative or positive, depending on the fact
that the node demands or supplies flow (by default, the balance value of a node is zero,
which means that its total entering flow equals its total leaving flow). The class provides
methods to compute feasible flows in a given network while optimizing some function, like
for example the total cost. Several drawing algorithms in the library extensively use a
flow dire graph object to compute a feasible flow with prescribed value and minimum cost.
The flow is computed in a network that is typically constructed from the topology of the
graph to be drawn.

18.3.2 Shape Level

At the shape level, GDToolkit offers three classes: orth plan undi graph, which models or-
thogonal representations; upwa plan undi graph, which models upward and quasi-upward
representations, and layered undi graph, which models layered graphs. In the following we
give some details about orthogonal, upward, and quasi-upward representations in GDToolkit,
by also recalling some basic concepts related to these drawing conventions.

Orthogonal representations in GDToolkit are modeled according to the simple-podevsnef
drawing convention[BDD00], a simplified and pretty robust version of the podevsnef conven-
tion (also called Kandinsky) defined in [FK96]. Vertices are represented as small rectangles,
all having the same size, and any vertex can have any number of incident edges.

The library offers different algorithmic choices to compute orthogonal representations,
with different compromises between efficiency and effectiveness. Figure 18.4 shows two

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 577

0

1

2

3 45

6

7

8

9

10

11 12

13

14

15

16 17

18 19

12

21

24

10

4

0

16

2

1

28

5

8 157

11

26 20

13

17

19

22

27

23

29

6

14

3

9

18

25

0

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

1617

1819

6

12

21

24

10

4

0

16

2

1

28

5

8

9

25

11

26

20

13

17

19

22

27

23

2914

3

15

18

7

(a) (b)

Figure 18.4 Two orthogonal representations of the same planar graph computed by
GDToolkit. (a) An orthogonal representation with the minimum number of bends for a
given planar embedding; (b) An orthogonal representation with the minimum number of
bends over all possible planar embeddings of the graph. Node and edge identifiers are shown
in the drawing.

0

1

23

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75 76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

7

62

144

45

9

76

167

32

46

6

111

27

12

149

107

175

118

22

179 55

24

109

25

30

91

75

129

43

154

136

77

113

35

108

127

128

94

74

100

122

172

90

84

63

56

145

59

174

65

168

155

67

158

68

71

170

150

78

157

126

162

79

92

146

86

96 137

99

151

104

156

102

141

103

165

105

110

166

178

159

173

161

177

044125

23

39

3

8

64

160

119

116

831485

49

21
13

15

31 47

81

53

20 139

14861

93

52

164

89

26

28

138

95

112

69

40 1

153

123

169

114

70

124

13334

140

176

135

132

98

36

4 106

5

41

57 17

37

58

54

60

82130

72

131

180

142

29

171

143

42

80

121

163

38

87

11

66

19

88

147

117

152

51

101

2

16

10

50

18

120

73

115

48

33

97134

Figure 18.5 An orthogonal representation of a graph with 100 vertices.

examples of orthogonal representations of a planar graph G, one having the minimum num-
ber of bends within the given planar embedding of G, and the other having the minimum
number of bends over all planar embeddings of G. The representation in (a) has been com-
puted with an O(n2 log n)-time algorithm based on a flow technique that extends the one
described in [Tam87]. The representation in (b) has been computed with an exponential-
time algorithm based on a branch-and-bound technique, which enumerates and explores the
embeddings of the graph using SPQR-trees. Both the polynomial-time algorithm and the
exponential-time algorithm are described in [BDD00].Figure 18.5 shows an orthogonal rep-
resentation of a graph with 100 vertices. The computation of a minimum-bend orthogonal
drawing for an embedded planar graph with 100 vertices and 200 edges takes about 0.2 sec-
onds under Linux on a machine with i5-540M Intel processor and 4 GB RAM. Computing a
bend-minimum orthogonal drawing over all planar embeddings for a graph with 30 vertices
and 50 edges takes about 10 seconds.

578 CHAPTER 18. GDTOOLKIT

0

1

2

3

4

5

6

7

8

9

10

12

13

14

1516

17

18

19

20

21

2223

24

25

26

27

28

29

11

9

42

113331

41

4 19

7 22

0

1

2

8

39

3

6

23

14

27

12

43

36
24

35

32

20

25

13

30

16
17

21

34

38

28 26

37

40

15

18
10

5

29

(a)

0

1

2

3

4

5

6

7

8

9

10

12

13

14 15

16

17

18

19

20

2122

23

24

25 26

27

28

29

11

9

42

11

33 31

41

419

7

22

0

1 2

8

39

3

5

29

6

23

14

27

12

43

36
24

35
32

2025

13
30

16
17

21

34

38

28

26

37

40

15

18
10

(b)

Figure 18.6 Two quasi-upward planar representations of the same digraph, computed by
GDToolkit. (a) A representation with two bends on edge 5 and two bends on edge 29; (b)
A representation with no bend, i.e., it is an upward planar representation.

Concerning upward representations, GDToolkit adopts the quasi-upward drawing conven-
tion defined by Bertolazzi et al. [BDD02]. We recall that an upward drawing of a directed
graph is a drawing such that each vertex is represented as a distinct point of the plane and
each edge is drawn as a simple curve monotonically increasing in the upward direction (i.e.,
from bottom to top), according to its orientation. An upward planar drawing is a drawing
that is planar and upward a the same time. An upward planar drawing can exist only if the
digraph is acyclic and admits a bimodal embedding. An upward planar representation is a
partial description of an upward planar drawing, which defines the two linear lists of out-
going and incoming edges for each vertex, without fixing the final positions of the vertices.
Unfortunately, acyclicity and bimodality are not sufficient conditions for the existence of
an upward planar drawing, and in practice most digraphs do not admit such a layout. A
quasi-upward drawing is a generalization of an upward drawing, which allows bends along
the edges. A bend is a point in which the edge inverts its vertical direction, switching
from upward to downward or vice-versa (if the edge is drawn as a smoothed curve, a bend
along the edge is a point with horizontal tangent for the edge). The only requirement of a
quasi-upward drawing is that for each directed edge (u, v), the edge enters v from below and
leaves u from above. This implies that each edge has an even number of bends (possibly

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 579

zero bends). Every digraph admits a quasi-upward drawing (even if it is acyclic) and a
planar digraph admits a quasi-upward planar drawing if and only if it admits a bimodal
embedding. Note that, an upward drawing can be regarded as a quasi-upward drawing with
no bends along the edges. A quasi-upward planar representation is a partial description of a
quasi-upward planar drawing; it defines the two linear lists of incoming and outgoing edges
for each vertex and the sequence of bends along the edges.

As for orthogonal representations, GDToolkit provides different methods to compute a
quasi-upward planar representation of a digraph. Figure 18.6 shows two examples of quasi-
upward planar representations of the same digraph; the first representation is computed by
using a flow-based O(n2 log n)-time algorithm that minimizes the number of bends within
a given planar bimodal embedding; the second one is computed with a branch-and-bound
exponential-time algorithm that minimizes the number of bends over all planar bimodal
embeddings of the digraph. The algorithms for computing quasi-upward representations are
those described in [BDD02]. In practice, the computation of a quasi-planar representation
is very fast and takes less time then computing orthogonal drawings. For example, a
quasi-planar representation of a bimodal planar digraph with 200 vertices and 240 edges is
computed in about 0.05 seconds under Linux on a computer with i5-540M Intel processor
and 4 GB RAM.

/* creates a graph ug, loading it from file "my-graph" */

undi_graph ug;

ug.read("my_graph");

/* computes a planar embedding for ug, with possible crossing nodes */

plan_undi_graph pug (ug);

/* computes an orthogonal shape for the planar embedded graph,

* specifying the external face and the desired algorithm */

orth_plan_undi_graph opug (pug,pug.last_face(),PLAN_ORTH_OPTIMAL);

Figure 18.7 A fragment of code that creates an orthogonal shape of a graph.

GDToolkit also offers the possibility of orienting an undirected embedded planar graph
in such a way that the number of its sources and sinks is minimized and it has an upward
planar representation. As described in [DP03], this helps in the implementation of drawing
algorithms for visibility representations in case the graph is not biconnected. Observe that,
for a biconnected graph an upward orientation with the minimum number of sources and
sinks always coincides with an st-orientation of the graph.

Objects of classes orth plan undi graph and upwa plan undi graph are usually constructed
from plan undi graph objects, by specifying the wanted layout algorithm. It is also possible
to specify an external face if the selected algorithm preserves the planar embedding. To give
an example, consider the simple code in Figure 18.7. It constructs an orth plan undi graph
object opug by the plan undi graph object pug. When opug’s constructor is invoked, a face
of pug is chosen to be the external face; if such a face is not specified, it is chosen as the first
in the list of faces of pug. The algorithm PLAN ORTH OPTIMAL selected to construct opug

corresponds to the algorithm that computes an orthogonal representation of the graph in
the simple-podevsnef model, with the minimum number of bends within the given planar
embedding.

580 CHAPTER 18. GDTOOLKIT

18.3.3 Metrics Level

At the bottom level of the hierarchy GDToolkit provides the draw undi graph class, which
is very easy to use. Indeed, an object of this class is an undi graph object with additional
basic geometric information, like vertex-coordinates and bend-coordinates; draw undi graph
objects are also equipped with some attributes to define colors and labels for vertices and
edges.

The basic philosophy of the draw undi graph class is to provide one or more constructors
from each other graph-class of the library. Often, GDToolkit provides different algorithms
to compute a drawing in a specific convention; each algorithm has a different trade-off
between drawing aesthetics and time performance. For instance, an orthogonal drawing
can be computed from an orth plan undi graph object by selecting an algorithm in a wide
set of compaction algorithms, obtained by combining different alternatives like:

• Decomposing the faces of the orthogonal representation into rectangles [Tam87]
or into regular faces [BBD+00].

• Computing the coordinates of vertices and bends with a linear-time algorithm
based on topological numbering or with an O(n2 log n)-time algorithm based on
flow-techniques [DETT99].

• Applying or not a one-dimensional compaction post-processing to further reduce
the area and the total edge length of the drawing, if possible.

The code in Figure 18.8 computes two different orthogonal drawings with the same shape.
The first drawing, dug1, is computed by applying the fastest compaction algorithm in
the library, while the second one, dug2, is constructed by using the slowest compaction
algorithm. The resulting drawings, dug1 and dug2, are depicted in Figure 18.9; observe
that dug2 is much more compact in terms of area and total edge length.

/* creates a graph ug, loading it from file "my-graph" */

undi_graph ug;

ug.read("my_graph");

/* computes a planar embedding for ug, with possible crossing nodes */

plan_undi_graph pug (ug);

/* computes an orthogonal shape for the embedded graph */

orth_plan_undi_graph opug (pug);

/* computes two drawings of the orthogonal shape,

* using different compaction algorithms */

draw_undi_graph dug1 (opug, FAST_COMPACTION);

draw_undi_graph dug2 (opug, SLOW_REGULAR_COMPACTION_2_REFINED);

Figure 18.8 A fragment of code that computes two different orthogonal drawings with
the same shape.

As another example, visibility and polyline drawings can be directly computed from an
object pug of class plan undi graph, by choosing between a linear-time compaction algorithm
or a polynomial-time compaction algorithm based on flow techniques [Did00]. Indeed, for
these kind of drawing conventions the concept of shape is not defined. Figure 18.10 shows
two visibility drawings and two polyline drawings of the same embedded planar graph. The

18.3. GRAPH-CLASSES AND THEIR HIERARCHY 581

(a) (b)

Figure 18.9 (a) Drawing dug1 and (b) drawing dug2, computed with the code of Fig-
ure 18.8. The two drawings have the same shape but different geometry. The drawing in
(b) is much more compact, both in terms of area and in terms of total edge length.

drawings in Figures 18.10 (a)-(b) are obtained by executing a linear-time drawing algorithm,
while the drawings in Figures 18.10 (c)-(d) are obtained by applying an O(n2 log n)-time
compaction algorithm that reduces the total edge length.

(a) (b) (c) (d)

Figure 18.10 Two visibility drawings and two polyline drawings of the same embedded
planar graph. The total edge length of the drawings (c) and (d) is smaller than the one of
the drawing (a) and (b).

It is also interesting to observe that, since a quasi-upward drawing can be computed by
using a visibility representation as intermediate step, the same compaction algorithms ap-
plied above can be used for computing a quasi-upward drawing of a quasi-upward represen-

582 CHAPTER 18. GDTOOLKIT

tation. For example, Figure 18.11 shows two different drawings of the same quasi-upward
planar representation, computed with different compaction algorithms. The drawing in
Figure 18.11 (b) has smaller total edge length. GDToolkit also implements a recent algo-
rithm [Did05, Did06] for compacting upward planar representations, which is based on the
concept of switch-regular faces, introduced in [DL98]. According to this strategy, the aug-
mentation of the upward planar representation to an including st-digraph is not performed
by using the face decomposition described in [BDLM94], but it is done by first decompos-
ing the faces into switch-regular ones. This avoids the insertion of useless extra edges and
typically leads to drawings that have better aspect ratio (see Figure 18.12).

(a) (b)

Figure 18.11 Two different quasi-upward drawings of the same quasi-upward represen-
tation. The total edge length of the drawing in (b) is smaller that the total edge length of
the drawing in (a).

0

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17 1819 20

21

22

23

24

25

26

27

28 29

0

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16 17 18

19 20

21

22

23

24

25

26

27

28

29

(a) (b)

Figure 18.12 Two upward drawings of the same upward representation. (a) The drawing
has been computed using the standard augmentation technique described in [BDLM94]. (b)
The drawing has been computed with the new algorithm described in [Did05].

18.4. CONSTRUCTORS 583

18.4 Constructors

As observed in the previous sections, a drawing algorithm in GDToolkit typically reflects in
a path of constructors. For this reason, constructors play a crucial role in the library and
they are written following a common pattern, which is depicted in Figure 18.13.

Suppose that a graph-class B inherits a graph-class A. According to the pattern of
Figure 18.13, a constructor of B first invokes a constructor or a copy operator of A to
transfer the inherited information; then, the constructor of B invokes a private method,
local new, that allocates memory for the local structures that are needed to store additional
information, and finally it calls another private method, loca init, that computes and
stores the data in the new local structures.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

use a copy operator of the parent class

allocate memory for the local structures

initialize data for the local structures

Figure 18.13 A schematic illustration of the design pattern of GDToolkit constructors.

As a concrete example, imagine that a plan undi graph object pug is created from an
undi graph object ug. Object pug must have the same nodes and edges as ug and, ad-
ditionally, it defines a set of faces and possible extra nodes that replace crossings. The
construction of the planar embedding of pug is done by applying a planarization algorithm
on the topology of ug, possibly subject to some planarization constraints (see Section 18.5).
Figure 18.14 shows the code of a constructor of class plan undi graph. Parameter po spec-
ifies if the new graph object must have the same embedding as ug or not. Parameter
err mess enables/disables an error-handler in the case some planarization constraints can
not be satisfied. Method local new allocates memory for the list of faces, while method
local init executes the planarization algorithm.

plan_undi_graph::

plan_undi_graph (const undi_graph& ug, planarize_options po, bool err_mess)

{

/* copies the basic structure of the graph (nodes and edges) */

undi_graph::operator=(ug);

/* creates the additional data structures required by

* a plan_undi_graph object */

local_new();

/* executes a planarization algorithm to computes faces

* and related objects */

local_init(po,err_mess);

}

Figure 18.14 A constructor of class plan undi graph. The code reflects the pattern illus-
trated in Figure 18.13.

584 CHAPTER 18. GDTOOLKIT

As mentioned in Section 18.2, another key aspect of GDToolkit is the possibility of
constructing a new graph-object by means of a promoting mechanism. Suppose for example
that a is an undi graph object and suppose we want to construct a plan undi graph object b
with the same set of vertices and edges as a. As explained above, b enriches the information
stored in a with a set of faces, which defines a planar embedding for a. Suppose also that a
is no longer needed in the program after the construction of b; indeed, b contains a super-set
of information of a. In this situation it could be useful to get b as the result of a promoting
procedure applied to a that avoids duplication of data, so saving computational time and
memory space. The graph-classes of GDToolkit support such a promoting mechanism by
means of a public method, called steal from. Referring to the example above, method
steal from invoked on b “steals” the data-structures of a and then constructs a set of new
data-structures to store the additional information of b (in the specific example a set of
faces). To make this idea efficient, the instance variables in the graph-classes of GDToolkit
are just references (pointers) to the data-structures that contain the data. This implies
that b can steal the data of a by simply copying in constant time the internal references
of a. After this operation, both a and b link the same data-structures, and therefore update
collisions may happen. To avoid this drawback, method steal from automatically cleans
the references of a, which becomes as an “empty” object. Figure 18.15 shows a schematic
description of the promoting mechanism. Figure 18.16 gives an example of use of method
steal from.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

b

aa

b

Figure 18.15 A schematic description of the promoting mechanism. Object b is the result
of the promoting, and object a is made useless after the promoting process.

/* creats an undi_graph object (*ug), loading it from file "my-graph" */

undi_graph *ug = new undi_graph();

(*ug).read ("my-graph");

/* computes an empty planar embedded graph */

plan_undi_graph pug();

/* initializes pug with the nodes and edges of (*ug);

* object (*ug) will be useless from now on */

pug.steal_from(*ug);

/* (*ug) is deallocated from the main memory */

delete(ug);

Figure 18.16 A plan undi graph object is constructed promoting an undi graph object.

18.5. MANAGEMENT OF CONSTRAINTS 585

18.5 Management of Constraints

GDToolkit is equipped with a flexible architecture for managing constraints. Different types
of constraint can be concurrently applied on the graph, which are taken into account by
the involved layout algorithms. A constraint type is a reference to an object as well as
types node and edge, and each constraint still has a unique identifier. The undi graph class
provides a set of methods for adding, removing, and copying constraints.

Constraints in GDToolkit have a special “intelligent” management system, which is ex-
plained in the following points.

• Each constraint is described by a specific set of parameters that depends on the
type of the constraint itself. For example, a constraint that makes an edge e not
crossable is described by the only parameter e; a constraint that forces a vertex
v to have height h and width w is described by the triple (v, h, w). In addition,
each constraint has an internal read-only parameter that specifies the type of
constraint. This type can be accessed by means of a public method.

• A graph G′ that is obtained as a copy or by inheritance of a graph G, also
inherits all constraints of G. Furthermore, constraints react according to their
type to all the relevant events occurring on their node and edge parameters.
More precisely, each type of constraint is represented by a specific class that
encapsulates its behavior with respect to changes of the nodes and edges involved
in the constraint. An abstract class provides the set of virtual reaction methods
common to all the derived constraint classes, and each derived constraint class
provides its own implementation for each reaction method.

• The main events with a potential impact on a constraint applied on a given
node/edge are the deletion, the split, and the merge of that node/edge. For
each of these events, each constraint class defines a reacting method. For ex-
ample, if an edge e is split into two edges e1 and e2, a reaction method called
update after edge split() is automatically invoked on all the constraints ap-
plied on e, so that each constraint executes its specific implementation of this
method.

• Theoretically, any number of constraints can be set on a graph at any time.
However, each algorithm decides its own policy about each kind of constraint.
This means that the programmer can decide to implement an algorithm that
takes into account or not a specific type of constraint. Also, some constraints
could be not compatible to each other; in this case, an algorithm that takes them
into account, typically causes an error.

GDToolkit currently offers several types of predefined constraints involving both topol-
ogy, shape, and metrics. The use of constraints in the topology-shape-metrics framework
have been addressed in several papers, including [BDLN05, CGM+10, DDLP10, EFK00,
GKM08, Tam98]. GDToolkit implements some of the constraints described in the literature
or their variants. However, any programmer can define a new constraint by extending the
base abstract class and by providing an implementation for each reaction method. In the
following the main predefined constraints of GDToolkit are described.

18.5.1 Topology Constraints

Concerning the topology of a graph, GDToolkit provides three different types of constraints;
all of them are taken into account by the planarization algorithm.

586 CHAPTER 18. GDTOOLKIT

The first type of constraint imposes that an edge e is not allowed to cross any other edge.
If edge e is split into two edges e1 and e2, the constraint is propagated on both e1 and e2.
Symmetrically, if an edge e is obtained by merging two edges e1, e2, and at least one of
them is not crossable, then e will become not crossable too. If the planarization algorithm
encounters an edge e that is not crossable, it omits to insert its dual edge in the dual graph
of the planar embedded graph computed so far. This implies that a shortest path in the
dual graph never intersects e.

The second type of constraint imposes that a specified set of vertices {v1, v2, . . . vk} be-
longs to the same face. In order to maintain this property, the planarization algorithm
temporarily adds to the graph a star gadget, consisting of a dummy vertex u and dummy
edges (u, v1), (u, v2), . . . , (u, vk), where the dummy edges of the star are made not crossable,
applying on them the previous type of constraint. The star gadget is removed at the end of
the planarization process. Figure 18.17 shows an example of application of this constraint.

v2

v
3

v
1

v2

v
3

v
1

v2

v
3

v
1

f

(a) (b) (c)

Figure 18.17 Illustration of the star gadget used to force a set of vertices to stay in the
same face. In this example, the vertices are v1, v2, v3. (a) A star gadget is added; it consists
of the square black vertex and of the bold edges. (b) A planar embedding of the enhanced
graph is computed; (c) The final planar embedding for the input graph. At the end of the
planarization process, v1, v2, v3 belong to the same face f .

The third type of topological constraint is a variant of the previous one. It imposes that
a certain set of vertices {v1, v2, . . . , vk} belongs to the same face f and that these vertices
circularly occur on the boundary of f in the specified order. To satisfy this constraint,
the planarization algorithm uses the star gadget shown above, with the additional property
that the circular sequence of edges incident to the dummy vertex of the star gadget is fixed.

Figure 18.18 shows two orthogonal drawings: The drawing in (a) has been obtained
without any topological constraint. The drawing in (b) has been computed imposing that
vertices 7, 12, 1, 0 belong to the same face (the face is highlighted). In order to satisfy this
constraint, the planarization algorithm introduced some edge-crossings.

18.5.2 Shape Constraints

At the shape level, GDToolkit provides several predefined constraints that are taken into
account by the flow-based algorithms that compute orthogonal and quasi-upward represen-
tations. These constraints are listed and discussed below.

• Number of bends per edge. This constraint can be applied on an edge e, in order
to establish a certain policy in bending e. Two different policies can be applied:

18.5. MANAGEMENT OF CONSTRAINTS 587

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

1

2

34

5

6

7

89 10

11

12 13

14

(a) (b)

Figure 18.18 Two orthogonal drawings of the same graph. (a) The drawing has been
computed with no constraint. (b) The drawing has been computed forcing vertices 7, 12, 1, 0
to stay in the same face.

– Edge e must have zero bends, i.e., it must be a straight-line edge.

– Edge e can have any number of bends. This means that the algorithm will
assign a zero cost to each bend of e, and therefore e will turn any time this
avoids to bend other edges.

Each of the two policies is translated into a suitable constraint in the flow network
associated with the orthogonal or quasi-upward representation. We recall that in
such a flow network (see also [BDD02, DETT99, Tam87]) there is a node vf for
each face f of the graph and there is a pair of directed arcs efg = (vf , vg), egf =
(vg, vf) for each edge e shared by two (possibly coincident) faces f and g. The
flow along the arcs efg, egf determines the right bends and the left bends along
e in the final representation. In order to guarantee that e has no bend in the
representation, it is sufficient to set an infinite cost (or zero upper capacity) on
efg, egf . Conversely, in order to assign the highest turn priority to e, one can
assign cost zero and infinite upper capacity to both efg and egf .

• Turn direction. This constraint forces an edge e = (u, v) to turn only in a specified
direction. This means that e can be forced to have only right bends or only left
bends, while moving on it either from u or from v. To implement this constraint,
we just remove in the flow network one of the two arcs efg, egf , where f and g
are the two (possibly coincident) faces shared by e.

• Angle type. This last constraint allows the programmer to decide the value that a
specified angle must have in an orthogonal representation. Possible angle values
in degrees are {0, 90, 180, 270, 360}. The constraint is specified by a triple (e, v, a),
where e is an edge incident to v, and a is the value of the angle formed at v between
edge e and its successive edge in clockwise order around v. This type of constraint
is still translated into a suitable constraint in the flow network associated with
the orthogonal representation. More precisely, it is sufficient to fix the value of
the flow along the arc of the network that connects v to the face in which the

588 CHAPTER 18. GDTOOLKIT

angle lies; indeed, this flow value defines the value of the angle in the orthogonal
representation.

Figure 18.19 shows an example of use of shape constraints.

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

0

1

2

3

4

5

6

7

8 910

11

12

13

14

180

(a) (b)

Figure 18.19 (a) The orthogonal drawing has been computed from the graph of Fig-
ure 18.18, with the constraint that edges (5, 2), (4, 7) cannot bend (the edges are in bold),
while edge (5, 2) can have any number of bends (the edge is dashed). (b) An orthogonal
drawing computed by adding the further constraint that the angle at vertex 4 to the right
of edge (4, 7) is a 180 degrees angle.

18.5.3 Metrics Constraints

Concerning the metrics of a drawing, GDToolkit currently offers two predefined constraints
for orthogonal drawings.

The first constraint allows the programmer to customize the size of each vertex, indepen-
dently to each other. More in details, every vertex v can be drawn has a rectangle having a
predefined width w and a predefined height h in terms of units of an integer coordinate grid.
In absence of constraints, v will be drawn as a small rectangle that occupies only a grid
unit, that is, v will have width and height equal to zero. The constraint on the dimension
of the nodes is handled in the compaction step of the topology-shape-metrics approach, by
using the flow-based technique described in [DDPP99]. Figure 18.20 shows two orthogonal
drawings of the same embedded planar graph. In the drawing of Figure 18.20 (a) all ver-
tices have dimensions zero, while in the drawing of Figure 18.20 (b) some vertices have been
expanded imposing constraint dimensions. Observe that the shape of the two drawings is
the same.

The second constraint makes it possible to specify the points where an edge will be
incident to a side of a vertex. More precisely, assume that an edge e is incident to a vertex
v. An orthogonal representation fixes the side s of v on which e will be incident. If on v a

18.6. EXAMPLES OF APPLICATIONS 589

0

1 2 3

4

5

67

8 9

10

11

12

13 14

15

16

17

18

19

20

21

22

23 24

2526

27 28

29

30 31

0

1 2 3

4

5

67

8 9

10

11

12

13 14

15

16

17

18

19

20

21

22

23 24

25

26

27 28

29

30 31

(a) (b)

Figure 18.20 Two orthogonal drawings with the same shape: (a) The drawing has no
constraint; (b) The dimensions of some vertices have been preassigned.

dimension constraint has been fixed so that s has length l, the programmer can impose any
distance d ≤ l between the incidence point of e on s and a corner of s (see Figure 18.21).

l d

e

v

Figure 18.21 Illustration of the constraint that makes it possible to fix the incidence
point of an edge on the side of a vertex in an orthogonal drawing.

18.6 Examples of Applications

The GDToolkit library has been effectively used to develop several applications in different
real-world domains, which is a proof of its flexibility. In the following we briefly discuss
some of these applications.

18.6.1 Internet Analysis

At a high level of abstraction, the Internet can be seen as a network of so called Autonomous
Systems. An Autonomous System (AS in the following) is a group of sub-networks under
the same administrative authority, and is identified by a unique integer number. In this
sense, an AS can be seen as a portion of the Internet, and the Internet can be seen as the

590 CHAPTER 18. GDTOOLKIT

totality of the ASes. To maintain the reachability of any portion of the Internet, each AS
exchanges routing information with a subset of other ASes, mainly selected on the basis of
economic and social policies. To exchange information, the ASes adopt a routing protocol
called BGP (Border Gateway Protocol). This protocol is based on a distributed architecture
where border routers that belong to distinct ASes exchange information about the routes
they know. Two border routers that directly communicate are said to perform a peering
session, and the ASes they belong to are said to be adjacent. The ASes graph is the graph
having a vertex for each AS and one edge between each pair of adjacent ASes. The ASes
graph consists of more than 10, 000 vertices and then it is not reasonable to visualize it
completely on a computer screen.

Internet Service Providers are often interested in visualizing and analyzing the structure
of the ASes graph and the related connection policies, in order to extract valuable infor-
mation on the position of their partners and competitors, capture recurrent patterns in
the Internet traffic, and detect routing instabilities. Several tools have been designed for
this purpose (see, e.g., [DK01] for references). The system Hermes [CDD+02] is based on
the GDToolkit facilities, and allows users to incrementally explore the Internet topology
by means of automatically computed maps. The basic graph drawing convention used to
represent the maps is the Kandinsky model for orthogonal drawings. However, since the
handled graphs often have many vertices of degree one connected to the same vertex, the
Kandinsky model is enriched with new features for effectively representing such vertices.

Figure 18.22 A map showing the ASes adjacent to AS10474, NETACTIVE, Tiscali South
Africa. (Figure taken from [DL07].)

The graphical user interface of Hermes offers several exploration facilities. The user can
search for a specific AS and can start the exploration of the Internet from that AS. At
each successive step, the user can display information about the routing policies of the
ASes contained in the current map, or she can expand the map by exploring one of these
ASes. For example, Figure 18.22 shows a snapshot of the system where the AS10474
(NETACTIVE, Tiscali South Africa) is searched and selected by the user for exploration;
a first map that consists of the ASes adjacent to AS10474 is then automatically computed

18.6. EXAMPLES OF APPLICATIONS 591

(a) (b)

Figure 18.23 (a) A new map obtained from the previous map by exploring AS11845. (b)
A more complex map obtained by performing several exploration steps. (Figure taken from
[DL07].)

and displayed by the system. Figure 18.23 shows how the map is expanded when the user
decides to explore other ASes.

18.6.2 Web Searching

The output of a classical Web search engine consists of an ordered list of links (URLs) that
are selected and ranked according to the user’s query, the documents content, and (in some
cases, like Google) the popularity of the links in the World Wide Web. The returned list
can however consist of several hundreds of URLs and users may omit to check some URLs
that might be relevant for them just because these links do not appear in the first positions
of the list.

A Web meta-search clustering engine is a system conceived to support the user in retriev-
ing data from the Web by overcoming some of the limitations of traditional search engines.
A Web meta-search clustering engine provides a visual interface to the user who submits
a query; it forwards the query to (one or more) traditional search engines, and returns a
set of clusters, also called categories, which are typically organized into a hierarchy. Each
category contains URLs of documents that are semantically related to each other and is
labeled with a string that describes its content. As a consequence, the user of a meta-search
clustering engine has a global view of the different semantic areas involved by her query and
can more easily retrieve the Web data relative to those topics in which she is interested.

Although an effective representation of the categories and of their semantic relationships is
essential for efficiently retrieving the wanted information, most Web meta-search clustering
engines (see, e.g., Vivı́simo, iBoogie1, SnakeT2 [FG04, FG05]) have a GUI in which the
hierarchy of clusters is displayed as a tree. However, this type of representation may not

1http://www.iboogie.com/
2http://snaket.di.unipi.it/

592 CHAPTER 18. GDTOOLKIT

Louis Biography Lance

Armstrong

.... Louis Biography Lance

Armstrong

....

(a) (b)

Figure 18.24 (a) A portion of a tree of categories for the query “Armstrong”. (b) The
tree is equipped with an edge that highlights cluster relationships.

be fully satisfactory for a complex analysis of the returned Web data. Suppose for example
that the user’s query is “Armstrong” and that the clusters hierarchy returned by a Web
meta-search clustering engine is the tree depicted in Figure 18.24 (a). Is the category
“Biography” related to “Louis” or to “Lance” or to both (or to no one of them but to the
astronaut Neil Armstrong?). If instead of a tree, the systems returned a graph as the one in
Figure 18.24 (b), the user would be facilitated in deciding whether the category “Biography”
is of her interest.

WhatsOnWeb [DDGL05, DDGL06, DDGL07] is a meta-search clustering engine that makes
it possible to retrieve data from the Web by using drawings of graphs. The nodes represent
categories of semantically coherent URLs and the edges describe relationships between pairs
of categories. The graphical environment of WhatsOnWeb consists of two frames (see, e.g.,
Figure 18.25). In the left hand side frame the hierarchy of categories is represented as a
classical directories tree. In the right hand side frame the user interacts with the drawing
of a clustered graph[FCE95], where each cluster coincides with a semantic category.

The drawing is computed using the orthogonal drawing algorithms of GDToolkit. The
user can expand/contract clusters in the graph and the drawing changes accordingly. Using
the constraint dimensions described in Section 18.5.3, each cluster is drawn as a box having
the minimum size required to host just its label (if the cluster is contracted) or a drawing of
its sub-clusters (if the cluster is expanded). The map in Figure 18.25 (a) shows a snapshot of
the interface, where the results for the query “Armstrong” are presented; in the figure, the
category “Louis Armstrong” has been expanded by the user. In order to preserve the user
mental map during the browsing, WhatsOnWeb preserves the orthogonal shape of the drawing
during after every expansion or contraction operation. For example, Figure 18.25 (b) shows
the map obtained by expanding the categories “Jazz”, “School”, and “Louis Armstrong
Stamp” in the first map.

18.6.3 Database Analysis

The third example of real-world application based on GDToolkit is focused on the analysis
of a relational database. The logical schema of a relational database (also called relational
schema) describes the database as a set of tables, where each table consists of a set of
attributes. Links between tables might be present. A link between two tables A and B
represents either an integrity constraint or a join between an attribute of A and an attribute
of B; these two attributes are called the attributes of the link.

18.6. EXAMPLES OF APPLICATIONS 593

(a)

(b)

Figure 18.25 Snapshots of the user interface of WhatsOnWeb. (a) A map for the query
“Armstrong”; in the map the user performed the expansion of the category “Louis Arm-
strong”. (b) A subsequent map obtained by expanding the categories “Jazz”, “School”, and
“Louis Armstrong Stamp”; this last category contains two URLs, described by reporting
their titles. (Figure taken from [DL07].)

594 CHAPTER 18. GDTOOLKIT

Figure 18.26 A database relational schema automatically drawn by DBDraw.

DBDraw [DDPP03, DDPP02] is a system that inspects a relational database and automat-
ically computes a drawing of its relational schema (see, e.g., Figure 18.26). The drawing is
represented within the orthogonal drawing convention subject to several constraints:

• Each table must be large enough to display inside it all its attributes.

• Each link connecting two tables A and B must be incident to A and on B in
correspondence of the attributes of the link.

• Links cannot be incident to a table from north or from south.

The three constraints above are enforced by using the topology constraints and the metrics
constraints described in Section 18.5.1 and Section 18.5.3.

Acknowledgements

Many people contributed to the development of GDToolkit, other than the authors of this
chapter. We wish to warmly tank some of them whose contribution has been crucial for
the success of the project. In alphabetic order, thanks to: Pier Francesco Cortese, Antonio
Leonforte, Alessandro Marcandalli, Francesco Matera, Maurizio Patrignani, and Maurizio
Pizzonia.

REFERENCES 595

References

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[BBD+00] S.S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and
L. Vismara. Turn-regularity and optimal area drawings of orthogonal repre-
sentations. Computational Geometry: Theory and Applications, 16:53–93,
2000.

[BBDL91] M. Beccaria, P. Bertolazzi, G. Di Battista, and G. Liotta. A tailorable and
extensible automatic layout facility. In Proc. IEEE Workshop on Visual
Languages (VL ’91), pages 68–73, 1991.

[BCPD04] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding
your P’s and Q’s: Implementing a fast and simple dfs-based planarity
testing and embedding algorithm. In Proc. 11th Symposium on Graph
Drawing, LNCS, volume 2912, pages 25–36, 2004.

[BDD00] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal
drawings with the minimum number of bends. IEEE Trans. on Computers,
49(8):826–840, 2000.

[BDD02] P. Bertolazzi, G. Di Battista, and W. Didimo. Quasi-upward planarity.
Algorithmica, 32(3):474–506, 2002.

[BDLM94] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 6:476–497, 1994.

[BDLN05] Carla Binucci, Walter Didimo, Giuseppe Liotta, and Maddalena Nonato.
Orthogonal drawings of graphs with vertex and edge labels. Comput.
Geom., 32(2):71–114, 2005.

[CDD+02] A. Carmignani, G. Di Battista, W. Didimo, F. Matera, and M. Pizzo-
nia. Visualization of the high level structure of the internet with Hermes.
Journal of Graph Algorithms and Applications, 6(3):281–311, 2002.

[CGM+10] Markus Chimani, Carsten Gutwenger, Petra Mutzel, Miro Spönemann,
and Hoi-Ming Wong. Crossing minimization and layouts of directed hyper-
graphs with port constraints. In Graph Drawing, volume 6502 of Lecture
Notes in Computer Science, pages 141–152, 2010.

[DDGL05] E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. A topology-driven
approach to the design of web meta-search clustering engines. In Theory
and Practice of Computer Science (SOFSEM ’05), volume 3381 of Lecture
Notes in Computer Science, pages 106–116, 2005.

[DDGL06] E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. Using graph drawing
to search the web. In 13th International Symposium on Graph Drawing,
GD 2005, volume 3843 of Lecture Notes in Computer Science, pages 480–
491, 2006.

[DDGL07] Emilio Di Giacomo, Walter Didimo, Luca Grilli, and Giuseppe Liotta.
Graph visualization techniques for web clustering engines. IEEE Trans.
Vis. Comput. Graph., 13(2):294–304, 2007.

[DDLP10] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Pietro Palladino.
Visual analysis of one-to-many matched graphs. J. Graph Algorithms Appl.,
14(1):97–119, 2010.

596 CHAPTER 18. GDTOOLKIT

[DDPP99] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Orthogonal
and quasi-upward drawings with vertices of prescribed size. In Symposium
on Graph Drawing (GD’99), volume 1731 of LNCS, pages 297–310, 1999.

[DDPP02] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. Drawing
database schemas. Software - Practice and Experience, (32):1065–1098,
2002.

[DDPP03] G. Di Battista, W. Didimo, M. Patrignani, and M. Pizzonia. DBDraw - au-
tomatic layout of relational database schemas. In M. Jünger and P. Mutzel,
editors, Graph Drawing Software, pages 237–256. Springer-Verlag, 2003.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DGST90] G. Di Battista, A. Giammarco, G. Santucci, and R. Tamassia. The archi-
tecture of Diagram Server. In Proc. IEEE Workshop on Visual Languages
(VL ’90), pages 60–65, 1990.

[Did00] W. Didimo. Flow Techniques and Optimal Drawing of Graphs. PhD the-
sis, Dipartimento di Informatica e Sistemistica, Univeristà di Roma“La
Sapienza”, 2000.

[Did05] W. Didimo. Computing upward planar drawings using switch-regularity
heuristics. In Theory and Practice of Computer Science (SOFSEM ’05),
volume 3381 of LNCS, pages 117–126, 2005.

[Did06] Walter Didimo. Upward planar drawings and switch-regularity heuristics.
J. Graph Algorithms Appl., 10(2):259–285, 2006.

[DK01] M. Dodge and R. Kitchin. Atlas of Cyberspace. Addison Wesley, 2001.

[DL98] G. Di Battista and G. Liotta. Upward planarity checking: “faces are more
than polygons”. In Symposium on Graph Drawing (GD’98), volume 1547
of LNCS, pages 72–86, 1998.

[DL07] W. Didimo and G. Liotta. Mining Graph Data, chapter Graph Visualiza-
tion and Data Mining, pages 35–64. Wiley, 2007.

[DP03] W. Didimo and M. Pizzonia. Upward embeddings and orientations of
undirected planar graphs. Journal of Graph Algorithms and Applications,
7(2):221–241, 2003.

[DT96] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal
on Computing, 25:956–997, 1996.

[EFK00] Markus Eiglsperger, Ulrich Fößmeier, and Michael Kaufmann. Orthogonal
graph drawing with constraints. In SODA, pages 3–11, 2000.

[FCE95] Q. Feng, R. F. Choen, and P. Eades. How to draw a planar clustered graph.
In COCOON’95, volume 959 of LNCS, pages 21–31, 1995.

[FG04] P. Ferragina and A. Gulĺı. The anatomy of a hierarchical clustering en-
gine for web-page, news and book snippets. In Fourth IEEE International
Conference on Data Mining (ICDM’04), pages 395–398, 2004.

[FG05] P. Ferragina and A. Gulĺı. A personalized search engine based on web-
snippet hierarchical clustering. In 14th international conference on World
Wide Web, pages 801–8106, 2005.

[FK96] U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low
bend numbers. In Symposium on Graph Drawing (GD’95), volume 1027 of
LNCS, pages 254–266, 1996.

REFERENCES 597

[GKM08] Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing
and optimal edge insertion with embedding constraints. J. Graph Algo-
rithms Appl., 12(1):73–95, 2008.

[MN95] K. Mehlhorn and S. Näher. LEDA: A platform for combinatorial and
geometric computing. Commun. ACM, 38(1):96–102, 1995.

[MN00] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, UK, 2000.

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421–444, 1987.

[Tam98] Roberto Tamassia. Constraints in graph drawing algorithms. Constraints,
3(1):87–120, 1998.

