
24
Graph Drawing in Education

Stina Bridgeman
Hobart and William Smith

Colleges

24.1 Introduction . 737
24.2 Applications . 738

Algorithm Animation • Algorithm Simulation • Exercise
Systems • Exploration Systems • Program Visualization •

Software Visualization

24.3 Graph Drawing for Algorithm Animation 744
A Unified Approach to Drawing Data Structures •

Special-Purpose Layouts

24.4 Graph Drawing for Program Visualization 747
Complex Node Structures • Taking Structure into Account
• Drawing Execution Environments • Drawing Sequence
Diagrams

24.5 Graph Drawing for Software Visualization 750
Drawing UML Class Diagrams

24.6 Sequences of Drawings . 752
Trees • Force-Directed Layout • Sugiyama-Style Hierarchical
Layout • Offline Dynamic Graph Drawing • Smooth
Animation

References . 757

24.1 Introduction

Illustrations are a powerful explanatory tool, so one might expect a long history of the use
of graph drawing in education. This history can be traced back to at least the Middle Ages,
where squares of opposition (Figure 24.1) were used as pedagogical tools in logic and other
fields [KMBW02]. Murdoch [Mur84] provides examples of both basic squares and more
complex structures.

In mathematics, drawings of abstract graphs began to appear as illustrations in the late
18th century, 150 years after Euler’s famous paper on the Königsberg bridges launched
the field of graph theory [KMBW02]. Now commonplace, hand-drawn pictures of small
graphs are often used as illustrations in math and computer science textbooks to describe
a graph-related concept or to explain a graph algorithm—any graph theory, discrete math,
or data structures text will contain many such pictures. Drawings of graphs are also used
to illustrate graph-structured information, such as the topology of a computer network or
a flow chart showing a program’s execution.

The introduction of computers into the classroom has led to new applications of graph
drawing, including algorithm animation, algorithm simulation, exercise systems, exploration
systems, program visualization, and software visualization. Section 24.2 surveys these ap-
plications, with emphasis on tools specifically developed for or used in the classroom. Many

737

738 CHAPTER 24. GRAPH DRAWING IN EDUCATION

Figure 24.1 An Aristotelian square of opposition showing the relationships between the
four logical forms (drawn using the circo algorithm from the Graphviz package [BCE+]).

of these applications place special requirements on the graph drawing algorithms used.
Sections 24.3–24.6 address relevant graph drawing techniques.

24.2 Applications

24.2.1 Algorithm Animation

Algorithm animation deals with graphically illustrating the conceptual behavior of an al-
gorithm or data structure.

Algorithm animation has been used in educational settings for many years. An early
and well-known example is Baecker’s 1981 video “Sorting Out Sorting” [Bae81], which
animates and explains nine sorting techniques. The video illustrates how each of the sorting
algorithms works by showing how bars of varying heights are gradually rearranged into
increasing order, then makes an effective point about running time by showing a “race”
between all of the algorithms.

In the classroom, instructor-prepared animations can be used as demonstrations during
class to help explain a new concept—an animated version of the explanatory illustration.
Animations used in class can be made available for students to pause, step, and replay so
they can absorb the material at their own pace. Algorithm animation can also be used to
engage students in the learning process—creating their own animations can deepen students’
understanding of concepts, and incorporating the creation of animations into assignments
can add interest to what might otherwise be a dry algorithm implementation task.

Animations of graph algorithms naturally make use of a drawing of a graph, using an-
notations, changing colors, or other visual effects to show the progression of the algorithm.
Animations of data structure manipulations, such as inserting or removing elements from
a binary tree, may also utilize a drawing of a graph or a tree. Support for automatic graph
drawing frees the animation designer from having to specify the details of how the graph is
drawn in each step, allowing her to focus on expressing the concept being illustrated.

24.2. APPLICATIONS 739

Example Systems

Balsa BALSA [BS84, BS85] is one of the classic algorithm animation systems. It is
a general-purpose system, designed for animating any kind of algorithm. BALSA introduced
the idea of “interesting events,” key points in the program where the visualization must be
updated. Animations are created by implementing one or more graphical views and then
augmenting the program code with calls to update those views when interesting events
occur. Views are often created from scratch, though it is possible to create a reusable library
of standard views. Graph layout algorithms are not provided, but can be implemented as
part of a view. BALSA has been used to illustrate concepts in both mathematics and
computer science courses, and for research in algorithm design and analysis.

Tango Tango [Sta90a, Sta90b] is another classic general-purpose algorithm ani-
mation system. Tango also utilizes the idea of interesting events, but provides a framework
to aid in defining views. Four kinds of elements are provided as building blocks for ani-
mation scenes: basic graphical objects (shapes and text), locations of objects, transitions
(movement, size, and color changes, etc.), and paths specifying how the transitions occur.
Creating an animation involves three steps: defining a series of “animation scenes” (which
may be a static view or an animated step), annotating the program with interesting events,
and specifying the mapping of interesting events to animation scenes. Of note is Tango’s
support for (and emphasis on) smooth transitions between view states—many algorithm
animation systems simply present a series of snapshots.

Samba Samba [Sta97] was designed to make it as easy as possible for students
to create their own algorithm animations. Samba is a front-end for Polka [SK93], the
successor to Tango; it reads in a command script and generates the animation from that
script. Samba commands are deliberately kept simple; basic commands allow the creation
of graphical objects (such as circles and lines) and the modification of existing objects (such
as by moving them or changing their color). Animations are created by augmenting the
program to be animated with instructions to output the Samba script. An advantage of
Samba is that it does not require the animator to implement separate graphical views and
link them to the code.

JAWAA JAWAA [PR98] is a web-based system for animating data structures.
Animations are specified by writing a script in JAWAA’s command language—unlike many
algorithm animation systems, the algorithm being animated does not need to be imple-
mented. Graphs and trees can be drawn using user-specified node positions, or can be
drawn automatically using one of three built-in layout algorithms (circular layout, Tunke-
lang’s force-directed layout [Tun94], and tree layout).

Swan Swan [SHY96] was designed specifically for visualizing graph algorithms and
their related data structures. Animations are created by augmenting a C/C++ program
with commands to build a graph representing the data structure to be visualized, specify
visual parameters such as the shape and color of the node, and draw the graph. This means
that the visualizations created are not tied to the physical representation of data structures
in the program and can instead represent a conceptual view. Swan includes special “layout
components” which perform automatic layout for specific types of data structures such as
linked lists, arrays, trees, and general graphs. Layout components for general graphs include
circular layout, Kamada and Kawai’s force-directed layout [KK89], and a Sugiyama-style
hierarchical layout.

740 CHAPTER 24. GRAPH DRAWING IN EDUCATION

24.2.2 Algorithm Simulation

Animations can only be viewed; in an algorithm simulation, a student experimenting with
data structures or an instructor providing on-the-fly demonstrations in class can modify the
data structure being animated or even carry out the algorithm’s steps by hand.

Example Systems

Matrix Matrix [KM02] provides both algorithm animation and algorithm simu-
lation. It can also be used to create visualizations of students’ own implementations of data
structures, and to perform visual testing. Multiple levels of abstraction are supported; for
example, when carrying out an algorithm involving inserting an element into a balanced
binary search tree, the student can perform the entire operation manually, allow the system
to insert the element into the underlying binary tree but then perform rebalancing steps her-
self, or allow the system to do the entire insertion. Matrix provides supports several types
of data structures and includes automatic tree layout. MatrixPro [KKMS04a, KKMS04b]
utilizes the Matrix platform and provides a GUI tailored for instructor use in the classroom.

24.2.3 Exercise Systems

Exercise systems present students with exercises to solve and provide feedback on the stu-
dents’ answers. Such systems can be used for learning and practice—students can test their
knowledge of an algorithm by trying exercises, and gain further understanding as the sys-
tem provides feedback about their mistakes—or for assessment and grading. Key features
of exercise systems include automatic generation of problem instances and automatic feed-
back and assessment, allowing students to practice on as many or as few problems as they
wish without burdening a faculty member or teaching assistant with excessive problem-
set creation or grading duties. The problem-generation feature can also be used to create
individualized problem sets to help thwart cheating.

Intelligent tutoring systems also build up a model of the student’s knowledge and under-
standing, and tailor the problems generated to address each student’s individual weaknesses.

Incorporating automatic graph drawing into an exercise system is important if the system
is to support graph- or tree-based problems, because each problem is randomly generated
as needed.

Example Systems

PILOT PILOT [BGKT00] is a Web-based exercise system supporting trace-the-
algorithm exercises. It supports automatic generation of exercise instances, feedback at each
step of the tracing process, solution grading, and algorithm animation. PILOT’s feedback
and assessment mechanism is based on whether each step is consistent with correct execution
of the algorithm at that point rather than simply checking if some final answer matches
the correct solution. This allows PILOT to easily accommodate cases with multiple correct
solutions and to provide meaningful feedback and reasonable partial credit when a single
mistake is made early in the process. Several graph-based problems including minimum
spanning tree, breadth-first and depth-first search, and shortest path algorithms have been
implemented. Force-directed and hierarchical drawing algorithms provided by the Graph
Drawing Server [BGT99] are used for graph layout.

TRAKLA2 TRAKLA2 [MKK+04] is a Web-based exercise system built on the
Matrix [KM02] algorithm animation and simulation framework. Like PILOT, TRAKLA2
supports trace-the-algorithm exercises and includes automatic generation of exercise in-

24.2. APPLICATIONS 741

stances, solution grading, and animation of model solutions. Evaluation of a student’s
answer is limited to comparing the student’s solution to a model solution, and the stu-
dent only receives notice of how many steps were correct. However, TRAKLA2 contains
a number of features making it useful for coursework including storage of students’ grades
and submitted answers, deadlines for exercises, and the ability to control whether the same
instance of an exercise may be repeatedly submitted for feedback (a practice exercise) or
if it must be reset with new input data each time (a graded assignment). Exercises in-
volving a variety of data structures and algorithms, including graph algorithms, have been
implemented.

AnimalSense AnimalSense [RMS11] takes a different approach. Instead of pro-
viding an environment where students manually trace the execution of an algorithm, Ani-
malSense supports questions that provide evidence of successful algorithm-tracing such as
“Give the sorted order” or “Give your third chosen edge.” This approach allows greater lat-
itude in the types of exercises that can be supported — it can also accommodate questions
like “Provide an array which uses 4 pivots to be sorted,” which go beyond simply tracing
and which require deeper thinking about the functioning of an algorithm. Algorithm ani-
mation is provided to aid in solving the problem and to help reveal the cause of a mistake.
Exercises involving graph algorithms, searching algorithms, and sorting algorithms have
been implemented.

24.2.4 Exploration Systems

Exploration systems support experimentation with graph structures and graph theory con-
cepts. In the classroom, exploration systems can be used in a professor-led discussion to
illustrate or animate examples or algorithms, or for student exploration or experimentation.

Support for automatic graph drawing frees the experimenter from having to find a rea-
sonable layout, and can be important in revealing the structure of the graph being studied.

Example Systems

LINK LINK [BDG+00] is designed for education and research in discrete mathe-
matics. It consists of a library of templated C++ classes for graphs and other data structures
coupled with an interactive front-end for animation and visualization. The library also con-
tains a collection of graph algorithms commonly used as building blocks and which are often
covered in their own right in graph theory and computer science courses. To aid in visu-
alization, LINK includes several simple graph layout algorithms (place vertices randomly,
on a circle, or on a grid), a spring embedder, and several algorithms suited for particular
applications (e.g., illustrating the results of a depth-first search, drawing the graph as a
bipartite graph, and laying out each biconnected component of the graph separately to
emphasize the components) [Ber].

GraphPack GraphPack [KOD+96] is a tool designed for experimenting with
graphs and graph algorithms. It supports several 3D and 2D graph layout algorithms,
contains a graph viewer, and can integrate functionality from other packages such as Math-
ematica, Maple, and Matlab. A novel feature is its ability to extract the graph structure
from a black-and-white bitmap image of a drawing.

24.2.5 Program Visualization

Program visualization deals with visualizing a program’s actual execution rather than a
high-level conceptual view of an algorithm. Aspects of the program being visualized can

742 CHAPTER 24. GRAPH DRAWING IN EDUCATION

include source code, data structures, and runtime behavior. Program visualization can
be used to illustrate the functioning of an algorithm or data structure (as in algorithm
animation), to gain an understanding of how the program works, to aid in debugging, and
to evaluate and improve program performance.

In the classroom, program visualization can help students learn to program and debug by
revealing what their programs are actually doing. This is more effective than systems which
attempt to explain a bug (because explanations require understanding the underlying con-
cept in the first place), try to guide the student to a particular way of solving the problem
(ignoring other valid solutions), or are limited to a small set of toy problems [EPD92]. For
more advanced students, visualizations can help explain the underlying semantics of the pro-
gramming language, design patterns, and the workings of multithreaded programs [GJ05].
As with algorithm animation, instructors can also use program visualization to spice up an
implementation assignment.

Automatic graph drawing is an essential component for program visualization systems
which display graph-structured information because the particular graph depends on the
runtime state of the program.

Example Systems

A simple form of program visualization—and one that is also suitable for algorithm
animation—is to display graphical snapshots of the key data structures whenever the state
of the structure changes.

GraphTree/GraphHeap Owen’s GraphTree and GraphHeap subrou-
tines [Owe86] were designed as a low-overhead animation system for illustrating binary
tree and heap operations. The subroutines take the data structure to be visualized as a
parameter, and are called when the animator wants to produce a graphical snapshot of
the current state of the tree or heap. A simple layout algorithm is used: parent nodes are
centered above their two children, with empty spaces for missing child nodes.

VisualGraph VisualGraph [LNR03] is a Java graph class which provides typical
graph querying and manipulation operations, as well as visualization operations (highlight-
ing and changing the color of edges and vertices) and related utility routines (random
graph generation, graph layout using the force-directed method of Kamada [Kam89], and
file I/O). Simple visualizations are created by augmenting the program code with calls to
“print graph” whenever a picture of the current state of the graph is desired. VisualGraph is
implemented as a front-end to an algorithm animation system—animation operations pro-
duce output in the AnimalScript language [RF01], which can then be read and displayed
by a system such as JHAVÉ [NEN00].

Visualiser Naps’ Visualiser class [Nap98] supports multiple data structures, in-
cluding trees and graphs. It parses a string representation of the data structure to be
visualized rather than working directly with particular Java objects, so it can be extended
to new implementations of data structures by providing a new “to string” routine. New data
structures or visualization styles can be supported by adding new Visualiser subclasses.

JDSL Visualizer The JDSL Visualizer [BBG+99] does not require users to mod-
ify their code to generate visualizations of data structures, as snapshots are automatically
generated before and after data structure operations. However, data structures must be
implemented to a particular API. Several linear and binary-tree-based structures are sup-
ported.

LJV The Lightweight Java Visualizer (LJV) [Ham04] uses Java’s reflection mech-
anism to determine the structure of a Java object and is thus suitable for use with any
Java program. Visualizing an object requires only adding calls to a “display object” rou-

24.2. APPLICATIONS 743

tine when an object is to be visualized. The resulting graph structure is drawn using
GraphViz [BCE+]. More advanced users or instructors setting up the tool for a course can
customize the appearance of particular classes, such as to hide the internal representation
of the String class. Of note is that because the structure is derived directly from the object
itself, both correct data structures and students’ incorrect ones can be visualized. The tool
is also effective for demonstrating aspects of the Java language which often cause confusion,
such as the pervasive but hidden use of references and the meaning of static fields.

Other systems provide visualization of data structures without requiring the program to
be modified.

UWPI The University of Washington illustrating compiler (UWPI) [HWF90] an-
alyzes program source code (written in a subset of Pascal) and automatically constructs a
visualization of the data structures used in the program. UWPI attempts to infer the ab-
stract data type of each variable from its concrete data type and usage patterns in order
to determine an appropriate visualization. Supported ADTs are numbers, arrays, and di-
graphs; graphs are converted to directed acyclic graphs and drawn using the methods of
Sugiyama, Tagawa, and Toda [STT81] and Rowe et al. [RDM+87].

jGRASP jGRASP [HCIB04] is a Java development environment combining a de-
bugger and visualization tools. Data structures to be visualized are extracted automatically
from the program; “external viewers” specify how to render a visual representation of an
object of that type. This architecture allows multiple views of a single data structure to be
displayed simultaneously. New external viewers can be added, so the system can be used
for creating animations as well for debugging. More recent versions of jGRASP include a
“Data Structure Identifier” which automatically identifies the data structure being visual-
ized and suggests appropriate viewers [CIHJB07]. jGRASP uses FLGL, a graph drawing
library based on VCJ [MB98], to produce layouts of data structures. VCJ includes Walker’s
algorithm [Wal90] for drawing rooted trees, Kamada and Kawai’s spring embedder [KK89]
for undirected graphs, and clan-based graph drawing [MCS98] for directed graphs.

Program visualization can include visualization of more than just data structures.

Jeliot 3 Jeliot 3 [MMSBA04] is the fourth system in a series of program visual-
ization systems designed for beginning programmers. Jeliot displays both object structures
and control flow, providing a fine-grained animations of every step of the program’s execu-
tion, including the evaluation of expressions. One drawback is that Jeliot does not support
the full Java language.

JIVE JIVE [GJ05] is designed for the visualization of object-oriented programs
(specifically, Java) and shows objects not just as data structures but also as execution envi-
ronments. JIVE’s views show an object’s fields and its methods, structural links between
objects, and the history of the method calls made as the program runs. This approach re-
veals much more of how Java actually works than data structure visualization approaches,
and helps the viewer more thoroughly understand what is really going on when the program
is run. Streib and Soma [SS10] discuss experiences using JIVE and the contour diagrams
used by JIVE in introductory programming courses.

24.2.6 Software Visualization

The field of software visualization encompasses the visualization of all aspects of a software
system, including its structure, execution, and evolution over time. Graph drawing plays
an important role in software visualization as many aspects of a software system can be rep-

744 CHAPTER 24. GRAPH DRAWING IN EDUCATION

resented using graphs, including control-flow graphs, program call graphs, class diagrams,
and dependency graphs.

While there has been a great deal of work in the field of software visualization, many
of the software visualization tools designed for use in the classroom focus on algorithm
animation or program visualization. BlueJ, described below, is one exception.

Example Systems

BlueJ BlueJ [KQPR03] is an integrated development environment (IDE) devel-
oped for the teaching of Java programming. BlueJ emphasizes class structure and design
through UML class diagrams—a class diagram is displayed in the main window when a
project is opened, and it is through the diagram that students can edit, compile, and create
instances of classes.

24.3 Graph Drawing for Algorithm Animation

In algorithm animation (and in many program visualization applications), an abstract view
of the data structure is both sufficient and desired. In many cases, standard graph drawing
algorithms are suitable for this task. The most important criteria for drawings are follow-
ing familiar conventions (such as placing the root of a tree at the top or directing edges
downward) and readability, properties which are easily achieved by many standard algo-
rithms. Examples of suitable algorithms include Walker’s algorithm [Wal90] for rooted trees,
Sugiyama-style layout [STT81, GKNV93] for directed graphs, and force-directed methods
(e.g., Kamada-Kawai [KK89] and Tunkelang [Tun94]) for general graphs.

24.3.1 A Unified Approach to Drawing Data Structures

One drawback to using standard algorithms is that different algorithms must be chosen
for linked lists, trees, directed graphs, and general graphs. For applications such as visual
debuggers, which need to be able to visualize any data structure (including buggy or ill-
formed ones) and where the type of data structure is not known in advance, a unified
approach is needed.

Since data structure graphs are directed graphs and convention often places the root of
the structure at the top, a hierarchical layout is a natural layout style for drawings of data
structures. The classic Sugiyama algorithm [STT81] for producing a hierarchical layout of
a directed graph consists of five phases:

• Cycle removal: If the graph to be drawn is not acyclic, one or more edges must
be reversed in order to remove all directed cycles.

• Layer assignment: Nodes are assigned to layers, where all nodes on the same
layer will have the same y-coordinate in the final drawing. Dummy nodes are
inserted as needed so that edges only connect nodes on adjacent layers.

• Crossing reduction: The nodes in each layer are rearranged so as to reduce edge
crossings between layers, typically through repeated passes in which the ordering
of one layer is held fixed while the nodes in an adjacent layer are rearranged. One
strategy for rearranging nodes is to sort them according to the average position
of the adjacent nodes in the other layer (barycenter method).

• Coordinate assignment: The nodes in each layer are assigned x-coordinates, pre-
serving the left-to-right ordering of each layer.

24.3. GRAPH DRAWING FOR ALGORITHM ANIMATION 745

• Edge routing: Edges are commonly drawn as polylines, with bends introduced
by the placement of dummy nodes. However, other routing strategies (such as
splines [GKNV93] and edge bundling [PNK11]) have been introduced.

Constraints can then be added to respect specialized conventions for drawing particular
kinds of data structures. Waddle [Wad01] identifies three types of constraints as the most
important for data structures: “same-level” constraints defining nodes which must appear
on the same level, left-to-right ordering constraints between nodes or paths, and edge-
orientation constraints which preference edges for reversal during cycle removal. Adapting
the Sugiyama algorithm to accommodate these constraints will be discussed below.

Same-Level Constraints

Same-level constraints may result in edges connecting nodes in the same level. Tradi-
tional layer assignment prevents same-level edges, and furthermore same-level edges cannot
be handled by the traditional compute-barycenters-and-sort crossing reduction method.
(Sorting requires a fixed barycenter for the duration of the sort, but the barycenter of
a node with same-level neighbors will change as the neighbors are rearranged during the
sorting process.)

Waddle’s solution is a two-tier layer assignment and crossing reduction strategy. First,
same-level constraints are used to define equivalence classes of nodes that must appear on
the same level and layer assignment is performed using a single proxy node in place of each
equivalence class. “Virtual layers” are then created within each layer and layer assignment is
repeated for each equivalence class using the virtual layers. This results in nodes involved in
same-level constraints being assigned to different virtual layers. During crossing reduction,
a layer containing virtual layers is sorted by applying the usual crossing reduction procedure
to the virtual layers.

Finally, all nodes within a layer (regardless of virtual layer) are assigned the same y-
coordinate and same-level edges are routed around intervening nodes as needed. Böhrigner
and Paulisch [BN90] add an additional constraint that same-level edges must connect con-
secutive nodes in order to avoid the need for edge routing.

Node Ordering Constraints

Node ordering constraints specify the left-to-right ordering of pairs of nodes in the
same level. (After layer assignment, path ordering constraints can be converted to node
ordering constraints involving pairs of nodes and dummy nodes along the extent of the
paths.) Node ordering constraints are implemented in the crossing reduction phase.

A simple strategy for respecting node ordering constraints is to proceed with sorting
nodes by their barycenters, but to disallow any swaps which would violate the ordering
constraints.

Waddle [Wad01] uses a different strategy: the ordering constraints are checked after the
barycenters have been computed and, if a constraint is violated, a new barycenter is assigned
which places the node just to the right of the rightmost node which must precede it according
to the constraints. The nodes are then sorted according to their revised barycenters.

Both of these approaches are fast and result in an ordering which satisfies the constraints,
but may result in a large number of avoidable crossings.

A third strategy is the “penalty graph” approach [Fin01], which produces fewer crossings
at the expense of a more complex algorithm and a higher running time. In this approach,
the penalty graph contains the nodes of the layer to be reordered. A directed edge (u,v)
indicates that placing u to the left of v results in fewer crossings than placing v to left of u.
The weight of the edge (u,v) indicates by how much the number of crossings is improved.

746 CHAPTER 24. GRAPH DRAWING IN EDUCATION

An ordering constraint requiring u to be to the left of v can be imposed by assigning the
edge (u,v) an infinite weight. The ordering of the layer is determined by applying a heuristic
to find the minimum-weight set of arcs whose removal makes the penalty graph acyclic (the
minimum weighted feedback arc set problem), and then performing a topological sort of the
resulting acyclic penalty graph.

Forster [For04] gives a heuristic which combines the efficiency and simplicity of the
barycenter approach with the quality of the penalty graph method. First, barycenters
are computed for each node. Then, for each violated constraint, the nodes involved are re-
placed by a single proxy node and a new barycenter is computed for the proxy node based
on the combined neighbors of the original nodes. Once all of the constraints have been ac-
commodated, the nodes and proxy nodes are sorted by their barycenters. The final sorted
layer is obtained by replacing each proxy node with the ordered collection of individual
nodes that were grouped together.

Constraints must be considered in the correct order when creating proxy nodes or else it
can become impossible to satisfy all of the constraints. The constraints to be satisfied can be
represented by a constraint graph, which contains a directed edge (u,v) for each constraint
of the form “u must be placed to the left of v.” The next constraint to consider can be
found by performing a topological sort of the constraint graph; as each node is visited, its
incoming constraints are considered in reverse traversal order. The first violated constraint
encountered is the next one to collapse into a proxy node. The constraint graph must be
updated and the traversal restarted after each proxy node is created.

Forster’s heuristic is based on the assumption that if the barycenter ordering causes vertex
v to be placed to the left of u in violation of an ordering constraint, no vertices would be
placed between u and v in the optimal solution with the correct ordering (u left of v).
Though counterexamples can be easily found, the heuristic gives results that are nearly as
good as the penalty graph approach in much less time.

Edge-Orientation Constraints

Since layer assignment requires an acyclic graph, the cycle removal phase reverses the
direction of one or more edges in order to remove directed cycles. For some data structures,
such as doubly-linked lists or trees where each node has both “child” and “parent” pointers,
arbitrarily selecting edges for reversal may result in drawings that violate standard drawing
conventions or have inconsistent edge orientations.

Waddle [Wad01] addresses the problem by tagging edges which may be reversed during
cycle-breaking in the layer assignment phase. These edges will be reversed first, before
untagged edges.

24.3.2 Special-Purpose Layouts

Space is a powerful visual variable, and an animation designer may choose to devise a custom
layout algorithm which makes more effective use of space than a general-purpose algorithm.
For example, Brown and Sedgewick [BS85] discuss the design of an animation involving
binary search trees: noting that the simple recursive strategy of devoting half of the width
of the current region to each of the left and right subtrees quickly leads to crowding even
in trees of the size typically used in examples, they instead base the x coordinate of a node
on the node’s position in an in-order traversal of the tree. This ensures that each subtree
has a width proportional to the number of nodes in that subtree, and also helps reinforce
the organizational structure of the tree.

24.4. GRAPH DRAWING FOR PROGRAM VISUALIZATION 747

24.4 Graph Drawing for Program Visualization

Many program visualization applications focus on visualizing the objects in memory. These
objects, along with their references to other objects, naturally form directed graphs.

Standard drawing algorithms for directed graphs can be used to produce layouts for object
graphs. However, program visualization applications may have requirements that are not
well-served by standard drawing algorithms. The rest of this section addresses specialized
drawing techniques relevant for program visualization.

24.4.1 Complex Node Structures

Objects in programs are complex structures with multiple fields. Seeing this internal struc-
ture can be important for understanding the program’s behavior, particularly in debugging
applications.

The convention when drawing object structures is to show pointers or references as edges
which end at distinct points inside the node. This can pose problems for standard drawing
algorithms. For example, traditional crossing-reduction strategies used by Sugiyama-style
layout algorithms assume that edges connect node centers and thus crossings can only occur
between edges connecting different pairs of nodes. With complex nodes, edges may originate
and terminate at any point within a node, and crossings can occur even when two edges
are incident on the same node.

Waddle [Wad01] uses a Sugiyama-style approach for drawing object graphs, and accom-
modates complex nodes by using the coordinate of the edge’s actual endpoint within the
node instead of the node’s center when computing barycenters for crossing reduction. Prob-
lems can still arise if a node contains several edges whose endpoints are vertically aligned
because the adjacent nodes may end up with the same barycenter—and improper ordering
of those nodes can result in edge crossings. This is addressed by assigning a secondary sort
key (or “secondary barycenter”) based on the vertical ordering of the endpoints. Figure 24.2
shows two ways to assign secondary barycenters.

(a) (b)

Figure 24.2 Two strategies for assigning secondary barycenters. The value of the sec-
ondary barycenters are shown below the nodes (d > 0). (a) Drawing with edge-node
overlaps. (b) Drawing that avoids edge-node overlaps but involves additional edge routing.

748 CHAPTER 24. GRAPH DRAWING IN EDUCATION

24.4.2 Taking Structure into Account

Not all of the nodes in the object graph serve the same purpose — some are part of a data
structure, such as a binary tree, while others are data fields. With this in mind, Gestwicki
et al. [GJG04] identify two important aesthetic criteria for drawing object graphs:

• Leaf objects, which have exactly one incoming reference and no outgoing ref-
erences, should be grouped with the objects (called aggregators) that reference
them.

• Recursive structures should be clustered.

Figure 24.3 illustrates the benefits of this approach.

(a)

(b)

Figure 24.3 (a) Object graph for a simple expression parser drawn using a traditional
Sugiyama-style layout algorithm. (b) Drawing taking the class structure into account.
Example from [GJG04].

24.4. GRAPH DRAWING FOR PROGRAM VISUALIZATION 749

Gestwicki et al. [GJG04] use the program’s class diagram to identify the important struc-
tures. A leaf class is a class with no outgoing associations—all of its fields, including
inherited fields, are either primitive types or immutable wrappers around primitive types.
A recursive type is defined by a directed cycle along generalization and aggregation rela-
tionships in the class diagram—all of the classes along the cycle are part of the recursive
type. The simplest case is a single class containing a field of its own type.

The leaf classes and recursive types identified in the class diagram can then be used to
identify interesting structures in the object graph. A leaf cluster consists of an aggregator
node and its leaf-class children. (Note that an aggregator node may have other children in
the object graph that are not part of the leaf cluster.) A recursive cluster is a connected
subgraph containing objects belonging to a single recursive type and their leaf-class children,
and with at most one node with incoming edges from outside the cluster.

Once the leaf and recursive clusters have been identified, the graph is drawn in three
steps:

• Draw the leaf clusters.

• Replace the leaf clusters by single nodes, and draw the recursive clusters.

• Replace the recursive clusters by single nodes, and draw the remaining structure.

In order to avoid needlessly complicating the drawing with unnecessary detail, only nodes
whose type is included in the class diagram are drawn. A variety of algorithms can be used
in each stage, though the drawing algorithms chosen for the last two steps must be able
to take into account the area needed to draw the collapsed cluster nodes. Using different
layout techniques for each cluster, such as a radial layout for leaf clusters and a hierarchical
layout for recursive clusters, emphasizes the distinct nature of each type of cluster.

The advantage of deriving leaf and recursive clusters from structures in the class diagram
instead of basing them solely on the object graph is that the final drawing will reflect
the correct semantics of the program—it will not be dependent on the current state in the
program’s execution. Consider, for example, the definition of a leaf cluster—it distinguishes
between nodes in the object graph which currently have no outgoing edges and those which
will never have any outgoing edges.

24.4.3 Drawing Execution Environments

Many program visualization systems show objects only as containers for data, but
JIVE [GJ05] aims to give a more comprehensive view of the execution of object-oriented
programs by showing objects both as containers for data and as environments for execu-
tion. In the most detailed view, objects are shown with both fields and methods; each active
method is shown with its parameters and local variables. This structure may be multiple
levels deep as contained objects may themselves contain fields and active methods. Inher-
itance relationships are also shown so each object’s scope is clear. JIVE’s object graphs
present a challenge for graph drawing, as the graphs have large nodes containing complex
internal structures, nested structures, multiple types of nodes and edges, and edges which
connect to internal points within nodes.

The nested structure of objects-within-objects can be represented as a tree, and the object
can be drawn by creating an HV-inclusion drawing of the nesting tree. In this drawing style,
child nodes are drawn as rectangles within the rectangle devoted to the parent and are either
arranged in a row or stacked vertically. Garg et al. [GGJ06] give a dynamic programming
algorithm for computing minimum-area HV-inclusion drawings.

750 CHAPTER 24. GRAPH DRAWING IN EDUCATION

The rest of the graph structure in the object graph can be drawn using an algorithm for
layered drawings of weighted multigraphs [GJ05].

24.4.4 Drawing Sequence Diagrams

In addition to displaying object graphs, JIVE [GJ05] uses a sequence diagram to show the
program’s execution history. In a sequence diagram, each method activation is represented
by a vertical bar and all of the method activation bars belonging to a single object are
drawn along the same vertical line. Method calls and returns are represented by arrows
drawn from one activation bar to another.

Drawing sequence diagrams can be formulated as a graph drawing problem. A sequence
graph contains a node for each method activation bar and a directed edge for each method
call and return; the task is to find a left-to-right ordering for the object lines which minimizes
edge length, the number of edges crossing activation bars, and the number of method-call
edges directed to the left. Clustering constraints may also be applied to ensure that object
lines for related objects are close together.

Garg et al. [GGJ06] give a simulated annealing algorithm for finding a left-to-right order-
ing of object lines which respects the desired clustering and optimizes an objective function
incorporating the aesthetic criteria. Each object line is assigned a unique integer value;
lines belonging to the same cluster receive consecutive labels. Two object lines are selected
randomly and, with a probability related to the potential improvement in the objective
function and the temperature of the system, the integer labels of either the lines (if the ob-
ject lines belong to the same cluster) or the clusters (if the object lines belong to different
clusters) are swapped.

24.5 Graph Drawing for Software Visualization

24.5.1 Drawing UML Class Diagrams

One challenge in drawing UML class diagrams is handling the multiple types of edges—
generalizations and associations—because generalizations are hierarchical and associations
are not. In addition, Purchase et al. [PAC01] have identified several aesthetic criteria that
are important for UML class diagrams, including orthogonality, a consistent orientation for
the edges, and joined inheritance arcs instead of separate edges. The traditional aesthetic
criteria of few crossings and bends are also important.

Two-Pass Approach

Seemann [See97] prioritizes showing the different types of relationships over the other
aesthetic criteria. A two-pass strategy is used: first the inheritance hierarchies are drawn
using a variation of the Sugiyama algorithm, and then the association edges are drawn with
an orthogonal style.

In the first phase of the algorithm, a modified Sugiyama layout is applied to just the
generalization edges and their incident vertices. The initial layer assignment is adjusted
to reduce the span of association edges: if a node has an association with a node in a
lower layer, and moving the node to the lower layer does not violate the desired direction
of any generalization edges, the node is moved. In addition, the crossing reduction stage is
modified to attempt to place nodes with association edges between them next to each other
in the layer.

24.5. GRAPH DRAWING FOR SOFTWARE VISUALIZATION 751

Next, the remaining nodes are placed into levels. New nodes are added incrementally; in
each pass, nodes which have not yet been placed but which are adjacent to nodes which have
been placed are added. Let v be an already-placed node and S be the set of to-be-placed
nodes adjacent to v. If |S| ≤ 2 and the already-placed nodes to either side of v are not
adjacent to v, the nodes of S can be placed to the right and left of v in v’s layer. If there
is not enough room to place the nodes of S next to v—either because S is too large, or v is
already connected to the nodes next to it—the nodes of S are placed on a sublayer above
or below v’s layer. Once all of the nodes have been placed, the sublayers are used to further
reduce crossings and bends due to assocation edges connecting non-consecutive nodes on a
layer.

Finally, node sizes are computed, edges are routed, and x coordinates are calculated. Node
sizes are based on the information that must be displayed inside the node. Generalization
edges are drawn as straight lines, with connection ports evenly spaced along the bottom
or top of a node. Association edges are drawn with an orthogonal style; to route edges
connecting nodes in different layers, dummy nodes representing bends in the edge are added
on one side of the nodes being connected. These dummy nodes are constrained to stay
vertically aligned when x coordinates are assigned. Connection ports for association edges
are evenly spaced along the left or right side of a node.

Integrated Approach

Gutwenger et al. [GJK+03] give a more complex drawing algorithm which respects all
of the aesthetic criteria identified by Purchase et al. [PAC01] and additionally ensures that
all generalization edges within the same class hierarchy are oriented in the same direction,
generalization edges in different hierarchies do not cross, and hierarchies do not contain
each other. The algorithm follows the topology-shape-metrics approach [DETT99]: first
the graph is planarized, then the bends and angles are fixed, and finally edge lengths are
computed.

Because the convention that inheritance arcs are drawn joined can result in additional
crossings (Figure 24.4), the planarization phase begins with a preprocessing step which
adds a new vertex for each join point. Consistency of direction of edges within a hierarchy
is achieved by computing an upward planar representation for each class hierarchy, and
separation of different hierarchies is achieved by treating each hierarchy as a cluster and
applying a cluster planarization algorithm.

(a) (b)

Figure 24.4 (a) A planar embedding. (b) With the same embedding, joining the gener-
alization edges results in a crossing.

752 CHAPTER 24. GRAPH DRAWING IN EDUCATION

In the shape phase, vertices with degree greater than four are replaced by a “cage”
containing a cycle of degree-3 vertices prior to computing an orthogonal representation.

Finally, two compaction steps are used in the metrics phase. After the first compaction
step, the cages are replaced by the original high-degree vertices. Because the cages may
be larger than the vertices they contain, additional bends may be needed in order to route
edges within the cage. The second compaction step addresses this problem and removes
unnecesssary bends.

24.6 Sequences of Drawings

Both algorithm animation and program visualization often involve graphs whose structure
changes over the course of the visualization. In these cases, it is important to preserve the
user’s mental map [ELMS91]—that is, to maintain a degree of layout stability so the viewer
can focus on what is really going on in the algorithm or program without being distracted by
the side-effects of the layout algorithm. However, many standard layout algorithms assume
complete freedom over the placement of nodes.

There are many models for the user’s mental map. The most rigid is the “no change”
model, where existing portions of the drawing are preserved exactly (e.g. [MHT93, PT98]).
Böhringer and Paulisch [BN90] limit change to nodes within a certain graph distance of
those directly affected by an update. Other strategies seek to preserve absolute vertex
position, but allow some movement (e.g. [LMR98]). Misue et al. [MELS95] seek more
generally to preserve the shape of the drawing and give several models for the mental map
based on orthogonal ordering (the relative up/down/left/right relationships between nodes),
proximity (nodes near each other should stay near each other), and topology (specifically,
the dual graph). Specific metrics for measuring mental map preservation are given by Lyons
et al. [LMR98], Bridgeman and Tamassia [BT98], and Brandes and Wagner [BW98]. Time
can also be a factor, with the idea that it is more costly to the user’s mental map when
long-stable portions of the drawing are changed instead of relatively new sections [BW97].

Preserving the mental map typically leads to a tradeoff with drawing quality. Algorithms
which more rigidly preserve the original layout result in drawings which are less good ac-
cording to traditional aesthetic criteria such as drawing area, crossing minimization, and
bend minimization. Some dynamic graph drawing algorithms allow user control over the
relative weight given to each goal.

An overview of dynamic graph drawing and its application in several drawing paradigms
is given by Branke [Bra01]. This section will address some strategies for maintaining lay-
out stability within the drawing paradigms most useful for data structure and program
visualization.

24.6.1 Trees

A “no change” algorithm for binary trees is simple: recursively draw the left subtree in
the left half of the available space and the right subtree in the right half of the available
space, and center parent nodes above the drawings of their subtrees. GraphTree and Graph-
Heap [Owe86] use this approach. The drawback is an overly-wide drawing and wasted space
if the tree is not complete or nearly complete.

Moen [Moe90] gives an algorithm for general trees which makes better use of space and
does not change the drawings of subtrees not affected by updates. In addition, the algorithm
can accommodate nodes with any polygonal shape—an advantage for data structures with
complex nodes. The algorithm is based on computing a contour around each subtree,

24.6. SEQUENCES OF DRAWINGS 753

which is then used to pack subtrees together as closely as possible. Contours are computed
recursively. Making changes to the tree structure requires recomputing contours (only) for
the subtrees containing the affected nodes.

A similar approach is used by Workman et al. [WBP04], with the drawing convention
that trees are laid out horizontally (children next to parents instead of below) and parents
are placed on the same level as the first child.

24.6.2 Force-Directed Layout

In the force-directed model, layout stability is most commonly achieved by incorporating
additional forces into the model. Varying the strength of the stability forces provides a
convenient way to balance layout stability and drawing quality.

Absolute vertex positions can be maintained by adding forces that attract nodes to their
former positions [LMR98, BW97].

Relative distances between nodes can be maintained by adding springs whose natural
length is the desired distance [BW97]. Stiffening the springs makes the distances more
rigid. Stiffening entire subgraphs can help maintain the shape of the drawing.

Clustering can be maintained by adding attractive forces toward the center of the cluster
and repulsive forces between clusters [Tam98].

It is also possible to incorporate some hard constraints. For example, Tamassia [Tam98]
mentions truncating a node’s movement each time forces are applied in order to keep it
within the desired region. In addition, the shape of a subgraph can be preserved exactly
(up to translation and rotation) by treating it as a single rigid body when computing forces.

24.6.3 Sugiyama-Style Hierarchical Layout

Within the Sugiyama framework, several basic approaches can be used: incremental tech-
niques, in which the existing drawing is modified to accommodate the changes; constraint-
based techniques, in which a new layout is computed subject to constraints meant to pre-
serve the user’s mental map; and cost-based techniques, in which stability is encouraged by
assigning a cost to changes that affect the user’s mental map.

Incremental Techniques

North [Nor96] describes an incremental heuristic for maintaining both geometric (po-
sition) and topological (ordering) stability in Sugiyama-style layouts. It is assumed that
changes are made to the graph one at a time, so the algorithm only needs to accommodate
the addition or removal of a single node or edge.

A new node is assigned to the highest possible level consistent with maintaining a down-
ward orientation for edges, and existing nodes are shifted to lower levels as needed. New
level assignments are determined by depth-first search. Nodes are moved downward one
level at a time. At each step, the node is shifted into its correct horizontal position in the
level according to the median of its neighbors’ positions. Finally, a linear program is used
to assign horizontal coordinates to the nodes. An additional cost is introduced to penalize
moving nodes to new positions.

Constraint-Based Techniques

Böhringer and Paulisch [BN90] maintain layout stability by adding constraints to
maintain the level assignment of nodes and the ordering of nodes within a level. When a
node or edge is added or removed, constraints are weakened (more likely to be deactivated

754 CHAPTER 24. GRAPH DRAWING IN EDUCATION

in the case of contradictory constraints) or removed in the vicinity of the changes. They
define “vicinity” in terms of graph distance, but other notions (such as Euclidean distance
in the drawing) could be used.

Waddle’s algorithm for drawing data structures [Wad01] also handles layout stability by
adding constraints. He focuses on maintaining the relative ordering of subgraphs rather
than fixing the layer assignment, adding

• node-ordering constraints between root nodes in the top level,

• edge-ordering constraints between edges incident on root nodes, and

• edge-ordering constraints between downward edges.

New elements added to the graph are initially unconstrained; constraints which are rendered
invalid by the removal of elements are updated or deleted. Böhringer and Paulisch’s [BN90]
scheme of weakening constraints in the vicinity of changes could also be applied.

Section 24.3.1 outlines how the basic Sugiyama algorithm can be modified to accommo-
date these constraints.

Cost-Based Techniques

North and Woodhull [NW02] reduce the layer assignment and coordinate assignment
phases to integer linear programs. Layout stability can be incorporated by adding terms
to the objective functions to penalize movement to a different layer (layer assignment) or
a different position (coordinate assignment). An advantage of this approach is that the
tradeoff between drawing quality and layout stability can be managed by adjusting the cost
of movement.

In the crossing reduction phase, median sort and transposition sort are used to reduce
crossings. Only new or modified nodes and edges and edges incident on new or modified
nodes are considered to be movable during sorting.

24.6.4 Offline Dynamic Graph Drawing

In “canned” animations, both the graph and the sequence of changes being made to the
graph are known in advance. In this situation, an offline drawing algorithm—which takes
into account future graph states when producing a layout—can be used to increase layout
stability.

Force-Directed Layout

Erten et al. [EHK+04] combine the individual snapshot graphs into a single aggregrate
graph, adding edges between corresponding vertices in different snapshots. At a minimum,
between-snapshot edges should be added between corresponding vertices in consecutive
snapshots. Global layout stability can be increased by adding edges between more distant
snapshots.

The aggregate graph is drawn using the Kamada-Kawai algorithm [KK89], modified so
that there are no repulsive forces between vertices in different snapshots. The balance
between layout stability and readability can be controlled by adding weights to the between-
snapshot edges. To accommodate weights, the Kamada-Kawai forces are modified to use
the ideal distance between vertices (based on the weights of edges between them) instead
of the graph distance between them.

24.6. SEQUENCES OF DRAWINGS 755

Foresighted Layout

Diehl, Görg, and Kerren [DGK01] give a more general strategy which they call “fore-
sighted layout.” In the simplest case, the individual snapshot graphs are combined to create
a supergraph containing every node and every edge present in at least one individual graph.
A layout is then computed for the supergraph, and each individual graph is drawn using
the subset of the supergraph layout information.

A drawback to this approach is that the supergraph can be quite large if the graph
structure changes significantly over the course of the animation, leading to wasted space in
the individual layouts. To save space, a reduced version of the supergraph in which nodes
and edges with disjoint “live times” are grouped together is used instead. (Since elements
with disjoint live times do not occur in the same snapshot graph, they can occupy the same
position in different snapshots.)

As a final step, layout adjustment strategies can be used to improve the quality of each
snapshot layout at the expense of layout stability [DG02].

24.6.5 Smooth Animation

When viewing a series of drawings, animation can be used to help the viewer see and
understand what has changed from one drawing to the next.

A simple scheme is to move each vertex along a straight line between its starting and
ending positions. However, this can lead to very poor animations which confuse rather than
reveal the structure of the changes, particularly in cases where part or all of the drawing
has been rotated or flipped.

With this problem in mind, Friedrich and Eades [FE02] identify several properties of a
good animation:

• Uniform motion—groups of vertices with similar relative positions at the begin-
ning and the end should move together.

• Separation—vertices with different motion paths should not be too close together.

• Rigid motion—movements should be consistent with 2D projections of the motion
of 3D rigid objects, to exploit human perceptual strengths.

• No misleading layouts—unfortunate overlaps, such as a vertex lying on an edge,
can lead to incorrect conclusions about the graph’s structure.

• Short motion paths—vertices should travel as short a route as possible, to make
the motion easier to follow.

They give a four-step algorithm for animation designed to satisfy these properties:

• fade out vertices and edges not present in the end drawing,

• apply a rigid transformation (composed of translation, rotation, scaling, flipping,
and/or shearing) to the entire graph to move the elements of the graph as close
as possible to their positions in the end drawing,

• complete the movement of vertices to their final positions, and

• fade in vertices and edges not present in the beginning drawing.

The transformation is chosen to minimize the sum of the squared distances between the
transformed nodes and their positions in the end drawing. To reduce the effect of outliers,
a (weighted) centroid can be included in the node set, or several random subsets of nodes
can be chosen and the best transformation used. Once the transformation has been found,
smooth animation paths for the nodes can be computed by extracting the rotational part

756 CHAPTER 24. GRAPH DRAWING IN EDUCATION

of the transformation using polar matrix decomposition, then simultaneously interpolating
the angle of rotation and the entries of the non-rotational part of the transformation matrix.
Rotation around the center of the drawing can be achieved by incorporating a translation
to the origin and back into the transformation matrix before the decomposition is done.

Simple linear interpolation can be used to move the transformed nodes to their final
positions, but a more pleasing result can be obtained with a force-directed approach where
nodes repel each other but are attracted to their final positions instead of their neighbors.

If the drawings contain subgraphs which move in different ways, the animation can be
improved by applying the middle steps separately to each distinct subgraph. Friedrich
and Houle [FH02] suggest two strategies for clustering nodes into groups with common
transformations—k-means and eliminating edges in the Delaunay triangulation to merge
triangles with sufficiently similar transformations—and note that both strategies can pro-
duce good results though they also have limitations.

REFERENCES 757

References

[Bae81] R. M. Baecker. Sorting out sorting, 1981. 30 minute color sound film, Dy-
namic Graphics Project, University of Toronto, excerpted and reprinted
in SIGGRAPH Video Review 7, 1983.

[BBG+99] Ryan S. Baker, Michael Boilen, Michael T. Goodrich, Roberto Tamassia,
and B. Aaron Stibel. Testers and visualizers for teaching data structures.
In Proceedings of the 30th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’99, pages 261–265, New York, NY, USA,
1999. ACM.

[BCE+] A. Bilgin, D. Caldwell, J. Ellson, E. Gansner, Y. Hu, and S. North.
GraphViz. http://www.graphviz.org/.

[BDG+00] J. Berry, N. Dean, M. K. Goldberg, G. E. Shannon, and S. Skiena. LINK:
a system for graph computation. Software: Practice and Experience,
30(11):1285–1302, 2000.

[Ber] J. Berry. LINK online manual. http://dimacs.rutgers.edu/ berryj/manual/.

[BGKT00] S. Bridgeman, M. T. Goodrich, S. G. Kobourov, and R. Tamassia. PI-
LOT: an interactive tool for learning and grading. In SIGCSE 2000,
pages 139–143, March 2000.

[BGT99] Stina Bridgeman, Ashim Garg, and Roberto Tamassia. A graph drawing
and translation service on the World Wide Web. Internat. J. Comput.
Geom. Appl., 9(4–5):419–446, 1999.

[BN90] K. Bohringer and F. Newbery Paulisch. Using constraints to achieve
stability in automatic graph layout algorithms. In Proc. ACM Conf. on
Human Factors in Computing Systems, pages 43–51, 1990.

[Bra01] Jürgen Branke. Dynamic graph drawing. In Michael Kaufmann and
Dorothea Wagner, editors, Drawing Graphs, volume 2025 of Lecture Notes
in Computer Science, pages 228–246. Springer Berlin / Heidelberg, 2001.

[BS84] Marc H. Brown and Robert Sedgewick. A system for algorithm animation.
SIGGRAPH Comput. Graph., 18:177–186, January 1984.

[BS85] M. H. Brown and R. Sedgewick. Techniques for algorithm animation.
IEEE Softw., 2(1):28–39, January 1985.

[BT98] Stina Bridgeman and Roberto Tamassia. Difference metrics for interac-
tive orthogonal graph drawing algorithms. In Journal of Graph Algo-
rithms and Applications, pages 57–71. Springer-Verlag, 1998.

[BW97] Ulrik Brandes and Dorothea Wagner. A bayesian paradigm for dynamic
graph layout. In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),
volume 1353 of Lecture Notes Comput. Sci., pages 236–247. Springer-
Verlag, 1997.

[BW98] Ulrik Brandes and Dorothea Wagner. Dynamic grid embedding with few
bends and changes. In Proceedings of the 9th International Symposium on
Algorithms and Computation, ISAAC ’98, pages 89–98. Springer-Verlag,
1998.

[CIHJB07] James H. Cross II, T. Dean Hendrix, Jhilmil Jain, and Larry A. Barowski.
Dynamic object viewers for data structures. In Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE
’07, pages 4–8, New York, NY, USA, 2007. ACM.

758 CHAPTER 24. GRAPH DRAWING IN EDUCATION

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[DG02] Stephan Diehl and Carsten Görg. Graphs, they are changing. In Revised
Papers from the 10th International Symposium on Graph Drawing, GD
’02, pages 23–30. Springer-Verlag, 2002.

[DGK01] Stephan Diehl, Carsten Görg, and Andreas Kerren. Preserving the mental
map using foresighted layout. In In Proceedings of Joint Eurographics
IEEE TCVG Symposium on Visualization VisSym’01, pages 175–184.
Springer Verlag, 2001.

[EHK+04] Cesim Erten, Philip Harding, Stephen Kobourov, Kevin Wampler, and
Gary Yee. GraphAEL: Graph animations with evolving layouts. In
Giuseppe Liotta, editor, Graph Drawing, volume 2912 of Lecture Notes
in Computer Science, pages 98–110. Springer Berlin / Heidelberg, 2004.

[ELMS91] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Preserving the mental
map of a diagram. In Proceedings of Compugraphics 91, pages 24–33,
1991.

[EPD92] Marc Eisenstadt, Blaine A. Price, and John Domingue. Software visual-
ization as a pedagogical tool. Instructional Science, 21:335–364, 1992.

[FE02] Carsten Friedrich and Peter Eades. Graph drawing in motion. Journal
of Graph Algorithms and Applications, 6:2002, 2002.

[FH02] Carsten Friedrich and Michael Houle. Graph drawing in motion II. In
Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph
Drawing, volume 2265 of Lecture Notes in Computer Science, pages 122–
125. Springer Berlin / Heidelberg, 2002.

[Fin01] I. Finocchi. Layered drawings of graphs with crossing constraints. In
COCOON ’01, pages 357–367, 2001.

[For04] M. Forster. A fast and simple heuristic for constrained two-level crossing
reduction. In GD ’04, pages 206–216, 2004.

[GGJ06] Ashim Garg, Paul V. Gestwicki, and Bharat Jayaraman. Interactive pro-
gram visualization and graph drawing. In M. Sethumadhavan, editor,
Discrete Mathematics and Its Applications, pages 36–52. Narosa Pub-
lishing House Pvt. Ltd., 2006.

[GJ05] Paul Gestwicki and Bharat Jayaraman. Methodology and architecture of
JIVE. In Proceedings of the 2005 ACM Symposium on Software Visual-
ization, SoftVis ’05, pages 95–104, New York, NY, USA, 2005. ACM.

[GJG04] P. V. Gestwicki, B. Jayaraman, and A. Garg. From class diagrams to
object diagrams: A systematic approach. Technical Report 2004-21, Uni-
versity at Buffalo, State University of New York, December 2004.

[GJK+03] Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke, Se-
bastian Leipert, and Petra Mutzel. A new approach for visualizing UML
class diagrams. In Proceedings of the 2003 ACM Symposium on Software
Visualization, SoftVis ’03, pages 179–188, New York, NY, USA, 2003.
ACM.

[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for
drawing directed graphs. IEEE Trans. Softw. Eng., 19:214–230, 1993.

REFERENCES 759

[Ham04] J. Hamer. Visualising Java data structures as graphs. In CRPIT ’30:
Proceedings of the 6th Conference on Australian Computing Education,
pages 125–129. Australian Computer Society, Inc., 2004.

[HCIB04] T. Dean Hendrix, James H. Cross II, and Larry A. Barowski. An exten-
sible framework for providing dynamic data structure visualizations in
a lightweight IDE. In Proceedings of the 35th SIGCSE Technical Sym-
posium on Computer Science Education, pages 387–391, New York, NY,
USA, 2004. ACM.

[HWF90] Robert R. Henry, Kenneth M. Whaley, and Bruce Forstall. The Uni-
versity of Washington illustrating compiler. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 223–233, New York, NY, USA, 1990. ACM.

[Kam89] T. Kamada. Visualizing Abstract Objects and Relations. World Scientific
Series in Computer Science, 1989.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31:7–15, 1989.

[KKMS04a] V. Karavirta, A. Korhonen, L. Malmi, and K. Stalnacke. MatrixPro—a
tool for demonstrating data structures and algorithms ex tempore. In
Proc. IEEE Int. Conf. on Advanced Learning Technologies, pages 892–
893, 2004.

[KKMS04b] Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo Stlnacke. Ma-
trixPro – a tool for on-the-fly demonstration of data structures and al-
gorithms. In Proceedings of the Third Program Visualization Workshop,
pages 26–33. Department of Computer Science, University of Warwick,
UK, July 2004.

[KM02] Ari Korhonen and Lauri Malmi. Matrix: concept animation and algo-
rithm simulation system. In Proceedings of the Working Conference on
Advanced Visual Interfaces, AVI, pages 109–114, New York, NY, USA,
2002. ACM.

[KMBW02] E. Kruja, J. Marks, A. Blair, and R. C. Waters. A short note on the
history of graph drawing. In GD ’01, pages 272–286. Springer-Verlag,
2002.

[KOD+96] M. S. Krishnamoorthy, F. Oxaal, U. Dogrusoz, D. Pape, A. Robayo,
R. Koyanagi, Y. Hsu, D. Hollinger, and A. Hashimi. GraphPack: Design
and features. In P. Eades and K. Zhang, editors, Software visualization,
pages 83–99. World Scientific, 1996.

[KQPR03] Michael Kolling, Bruce Quig, Andrew Patterson, and John Rosenberg.
The BlueJ system and its pedagogy. Journal of Computer Science
Education, Special issue on Learning and Teaching Object Technology,
13(4):249–268, December 2003.

[LMR98] Kelly A. Lyons, Henk Meijer, and David Rappaport. Algorithms for
cluster busting in anchored graph drawing. J. Graph Algorithms Appl.,
2(1):1–24, 1998.

[LNR03] J. Lucas, T. L. Naps, and G. Rößling. VisualGraph—a graph class de-
signed for both undergraduate students and educators. In SIGCSE 2003,
pages 167–171, February 2003.

760 CHAPTER 24. GRAPH DRAWING IN EDUCATION

[MB98] Carolyn McCreary and Larry Barowski. VGJ: Visualizing graphs through
java. In Sue Whitesides, editor, Graph Drawing, volume 1547 of Lecture
Notes in Computer Science, pages 454–455. Springer, 1998.

[MCS98] Carolyn McCreary, Richard Chapman, and Fwu-Shan Shieh. Using graph
parsing for automatic graph drawing. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, pages 545–561, 1998.

[MELS95] K. Misue, Peter Eades, W. Lai, and K. Sugiyama. Layout adjustment
and the mental map. J. Visual Lang. Comput., 6(2):183–210, 1995.

[MHT93] K. Miriyala, S. W. Hornick, and R. Tamassia. An incremental approach
to aesthetic graph layout. In Proc. Internat. Workshop on Computer-
Aided Software Engineering, 1993.

[MKK+04] Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto Seppl,
and Panu Silvasti. Visual algorithm simulation exercise system with au-
tomatic assessment: TRAKLA2. In Informatics in Education, page 048,
2004.

[MMSBA04] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. Vi-
sualizing programs with Jeliot 3. In Proceedings of the Working Confer-
ence on Advanced Visual Interfaces, AVI ’04, pages 373–376, New York,
NY, USA, 2004. ACM.

[Moe90] S. Moen. Drawing dynamic trees. IEEE Softw., 7:21–28, 1990.

[Mur84] J. E. Murdoch. Album of Science: Antiquity and the Middle Ages. Charles
Scribner’s Sons, New York, 1984.

[Nap98] Thomas L. Naps. A Java visualiser class: incorporating algorithm vi-
sualisations into students’ programs. In Proceedings of the 6th Annual
Conference on the Teaching of Computing and the 3rd Annual Conference
on Integrating Technology into Computer Science Education: Changing
the Delivery of Computer Science Education, ITiCSE ’98, pages 181–184,
New York, NY, USA, 1998. ACM.

[NEN00] T. L. Naps, J. R. Eagan, and L. L. Norton. JHAVÉ: An environment
to actively engage students in web-based algorithm visualizations. In
SIGCSE ’00: Proceedings of the 31st SIGCSE Technical Symposium on
Computer Science Education, page 109–113, Austin, Texas, 2000. ACM
Press.

[Nor96] S. North. Incremental layout in DynaDAG. In F. J. Brandenburg, editor,
Graph Drawing (Proc. GD ’95), volume 1027 of Lecture Notes Comput.
Sci., pages 409–418. Springer-Verlag, 1996.

[NW02] Stephen C. North and Gordon Woodhull. Online hierarchical graph draw-
ing. In Revised Papers from the 9th International Symposium on Graph
Drawing, GD ’01, pages 232–246. Springer-Verlag, 2002.

[Owe86] G. S. Owen. Teaching of tree data structures using microcomputer graph-
ics. In SIGCSE ’86: Proceedings of the 17th SIGCSE Technical Sympo-
sium on Computer Science Education, pages 67–72. ACM Press, 1986.

[PAC01] Helen C. Purchase, Jo-Anne Allder, and David A. Carrington. User
preference of graph layout aesthetics: A UML study. In Proceedings of
the 8th International Symposium on Graph Drawing, GD ’00, pages 5–18.
Springer-Verlag, 2001.

REFERENCES 761

[PNK11] Sergey Pupyrev, Lev Nachmanson, and Michael Kaufmann. Improv-
ing layered graph layouts with edge bundling. In Proceedings of the
18th International Conference on Graph Drawing, GD’10, pages 329–340.
Springer-Verlag, 2011.

[PR98] W. C. Pierson and S. H. Rodger. Web-based animation of data structures
using JAWAA. In SIGCSE ’98, pages 267–271, 1998.

[PT98] A. Papakostas and I. G. Tollis. Interactive orthogonal graph drawing.
IEEE Trans. Comput., C-47(11):1297–1309, 1998.

[RDM+87] L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan.
A browser for directed graphs. Softw. – Pract. Exp., 17(1):61–76, 1987.

[RF01] G. Rößling and B. Freisleben. Program visualization using AnimalScript.
In Proceedings of the First Program Visualization Workshop, PVW’00,
page 41–52, Porvoo, Finland, 2001. University of Joensuu Press, Univer-
sity of Joensuu Press.

[RMS11] Guido Rößling, Mihail Mihaylov, and Jerome Saltmarsh. AnimalSense:
combining automated exercise evaluations with algorithm animations.
In Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’11, page 298–302,
New York, NY, USA, 2011. ACM.

[See97] Jochen Seemann. Extending the sugiyama algorithm for drawing UML
class diagrams: Towards automatic layout of object-oriented software
diagrams. In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),
volume 1353 of Lecture Notes Comput. Sci., pages 415–424. Springer-
Verlag, 1997.

[SHY96] C. A. Shaffer, L. S. Heath, and J. Yang. Using the Swan data structure
visualization system for computer science eduction. In SIGCSE ’96, pages
140–144, February 1996.

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building
application-specific visualizations of parallel programs. J. Parallel Dis-
trib. Comput., 18:258–264, June 1993.

[SS10] James T. Streib and Takako Soma. Using contour diagrams and JIVE to
illustrate object-oriented semantics in the Java programming language.
In Proceedings of the 41st ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’10, pages 510–514, New York, NY, USA, 2010.
ACM.

[Sta90a] J. T. Stasko. Simplifying algorithm animation with tango. In Proc. IEEE
Workshop on Visual Languages, pages 1–6, 1990.

[Sta90b] J. T. Stasko. Tango: a framework and system for algorithm animation.
IEEE Computer, 23(9):27–39, 1990.

[Sta97] John T. Stasko. Using student-built algorithm animations as learning
aids. In Proceedings of the 28th SIGCSE Technical Symposium on Com-
puter Science Education, SIGCSE ’97, pages 25–29, New York, NY, USA,
1997. ACM.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–
125, 1981.

762 CHAPTER 24. GRAPH DRAWING IN EDUCATION

[Tam98] R. Tamassia. Constraints in graph drawing algorithms. Constraints,
3(1):89–122, 1998.

[Tun94] D. Tunkelang. A practical approach to drawing undirected graphs. Tech-
nical Report CMU-CS-94-161, School Comput. Sci., Carnegie Mellon Uni-
versity, June 1994.

[Wad01] V. E. Waddle. Graph layout for displaying data structures. In GD ’00:
Proceedings of the 8th International Symposium on Graph Drawing, pages
241–252. Springer-Verlag, 2001.

[Wal90] J. Q. Walker II. A node-positioning algorithm for general trees. Softw. –
Pract. Exp., 20(7):685–705, 1990.

[WBP04] David Workman, Margaret Bernard, and Steven Pothoven. An incremen-
tal editor for dynamic hierarchical drawing of trees. In Marian Bubak,
Geert Dick van Albada, Peter M. A. Sloot, and Jack J. Dongarra, edi-
tors, Computational Science—ICCS 2004, volume 3038 of Lecture Notes
in Computer Science, pages 986–995. Springer-Verlag, 2004.

