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23.1 Introduction

Graph drawing and cartography come together when networks whose elements have geo-
graphic locations, that is, geometric networks, have to be visualized. Examples of such
networks are street, subway, river, or cable networks. Often it helps to visualize the un-
derlying network for analyzing certain network parameters. For example, traffic on a road
network can be visualized by drawing each road as a rectangle whose width is proportional
to the amount of traffic going through that road.

One of the main problems in map production is a process called generalization. Given
cartographic data that has been collected at large scale, this data must be simplified in order
to produce maps at small scale. In order to obtain readable maps, detail must be reduced
and spacing must be enlarged. Traditionally this has been done manually by cartographers,
but increasingly semi-automated and even automated methods are in use, particularly in
conjunction with geographic information systems (GIS) [Ass96]. Cartographers have iden-
tified a number of generalization operators such as displacement, size exaggeration, size
reduction, and deletion in order to cope with the many constraints that govern the gener-
alization process. The main difficulty in automating generalization is the interdependency
of these operators.

Saalfeld [Saa95], both geodetic and computer scientist, pointed out (in one of the first
editions of the graph drawing conference) that map generalization can be seen as a graph
drawing problem—if one accepts that a cartographic map is but a straight-line drawing of a
graph in the plane. Then the process of redrawing a map at smaller scale can be interpreted
as a sequence of modifications of both the graph and its drawing. Graph elements must be

697
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contracted or removed, and the drawing must be modified to reflect the graph reductions.
Moreover, the drawing must be modified in that “old” graph elements must be moved, for
example, due to distance constraints. Saalfeld is an early advocate of continuous gener-
alization: his ultimate goal is a map with a slider bar for scale. (For a rather restricted
continuous generalization problem, see Section 23.2.2.) Saalfeld points to the key issue:
address the “big picture”—take feature interaction into account. He challenges the graph
drawing community to “design and implement an efficient and effective automated map
generalization system for the line network of a digital map.”

Note that general graph-drawing algorithms cannot be used ad hoc for drawing geometric
networks since they do not respect the geometry that comes with the vertices and edges.
A good drawing of a geometric network must reflect geometry since a user typically has an
intuitive notion of the underlying geometry, in other words, a mental map [ELMS91]. For
example, the user of a metro system expects stations in the north to appear on the top
of maps that depict the metro system. Thus the “art” of drawing geometric networks is
to find a good compromise between distorting geometry and maximizing aesthetics. This
will be the leitmotif of this chapter, which also explains why we will not touch point-set
embeddability problems. Recall that, in a point-set embeddability problem, one is given
not just a graph but also a set of points in the plane (or on a line) and the aim is to
find a mapping between vertices and points such that the edges can be drawn under some
drawing convention. For example, Gritzmann et al. [GMPP91] showed that any n-vertex
outerplanar graph can be embedded on any set of n points in the plane (in general position)
such that edges are represented by straight-line segments connecting the respective points
and no two edge representations cross. In the type of problem we are interested here, in
contrast, the mapping between vertices and points is part of the input and, in many cases,
we may move the points to some extent.

We focus on node-link representations of geometric networks, that is, we insist on repre-
senting vertices by points or small icons such as disks or squares and edges by some linear
features (Jordan curves, in general). This excludes contact or intersection representations
(such as rectangular cartograms) where edges are represented implicitly; by the contact or
intersection behavior of the “large” geometric objects that represent the vertices. For such
representations, see Chapter 10 on rectangular drawings and Chapter 11 on simultaneous
drawings.

Note, however, that additional requirements come into play in a geographic context. For
example, the relative position or the relative sizes of the geometric objects representing the
vertices are often prescribed by the user. As an example for this additional difficulty, take
Koebe’s beautiful theorem [Koe36] that says that every planar graph can be represented
as a coin graph, that is, as a set of interior-disjoint disks, two of which touch if and only
if the corresponding vertices are adjacent in the given graph. If one now introduces geo-
metric constraints by prescribing a set of “anchor” points and a bijection between points
and vertices (and, hence, disks), and by insisting that each disk contains its point, then
realizability of a given planar graph as a cover contact graph becomes NP-hard [AdCC+12].

In this chapter, we give an overview of the main types of geometric networks that are
being visualized in an automated fashion, using node-link diagrams. For each network
type, we consider the application-dependent aesthetic constraints. We group the network
types according to the graph class to which they belong: paths (simplified, schematized and
generalized in Section 23.2), matchings (used in boundary labeling in Section 23.3), trees
(as in flow maps; see Section 23.4), (near-) plane graphs (such as street or metro maps; see
Section 23.5), and other graphs (such as timetable graphs, the Internet multicast backbone,
or social networks; see Section 23.6). Note that we use the term plane to stress that the
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graphs are given with a planar embedding. For example, a self-intersecting polygonal line
can be considered a path and hence a planar graph, but it is not a plane graph.

23.2 Paths

When drawing paths nicely, the main problem is data reduction: which points can be
dropped while maintaining the important features of a polygonal line? Due to its many ap-
plications, polygonal line simplification has been identified as an important problem both
in cartography and in computational geometry. Since Douglas and Peucker [DP73] pre-
sented a simple and frequently used algorithm, cartographers have devised solutions of
higher cartographic quality [VW93, Saa99, LL99], while geometers have given a more ef-
ficient implementation of the Douglas-Peucker algorithm [HS94] and have designed new
algorithms for specialized error criteria [AV00, BCC+06] or for a restricted number of ori-
entations [Ney99, MG07, DHM08]. Still, finding a near-linear time solution for polygonal
line simplification is listed as problem 24 in the Open Problems Project [MO01].

23.2.1 Simplifying and Schematizing Polygonal Paths

The path-drawing problem that Agrawala and Stolte [AS01] considered has more of a graph-
drawing flavour. Their route maps help car drivers to get from A to B. While most route
planners draw routes using a fixed-scale map as background, Agrawala and Stolte suggested
to draw edges of the path (that is, roads between turns) as straight-line segments which are
usually not to scale. Instead, their system LineDrive exaggerates the length of short road
segments in order to label them properly with street name and real length, see Figure 23.1.

(a) map generated with LineDrives (b) constant-scale map (for comparison)

Figure 23.1 LineDrives generates driving directions. Sketches taken from [AS01].
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In the resulting drawings, angles at turns are mostly kept, except at very sharp turns.
Roads that are close to being vertical or horizontal are usually made vertical or horizonatal,
respectively. The LineDrive system, which is based on simulated annealing, was publicly
available for some period of time and received very positive response from most users.

Later on, the path-drawing problem of Agrawala and Stolte [AS01] inspired research
in the graph-drawing community. Brandes and Pampel [BP13] showed, by reduction from
Monotone3Sat, that the rectilinear (orthogonal) case is NP-hard; more precisely, it is NP-
hard to decide whether a given polygonal path has a simplification that consists exclusively
of horizontal and vertical segments and preserves the orthogonal order (that is, horizontal
and vertical order) of the vertices along the path. The ordering constraint is meant to help
the user maintain his mental map.

On the positive side, Delling et al. [DGNP10] showed that, given an polygonal path and
a set C of directions, they can efficiently compute a simplification such that (a) all edge
directions are in C and (b) the orthogonal order of the vertices is preserved—if the input
path is x-monotone. Their algorithm finds a simplification of minimum cost, which they
define to be the sum over the costs of all edges. The cost of an edge, in turn, is defined to
be the angle between the edge in the output and the direction in C that is closest to the
direction of the edge in the input. The algorithm is based on a clever characterization of
optimum solutions and on dynamic programming. When the number of directions, |C|, is
considered a constant, their algorithm runs in O(n2) time and uses O(n) space, where n
is the number of vertices of the input path. Using a linear-programming formulation (of
linear size), Delling et al. can even find, among all simplifications with a fixed direction for
each edge, one of minimum total length. In addition, they present a heuristic for dealing
with the non-monotone case.

A natural generalization of the rectilinear case considered by Brandes and Pampel [BP13]
is the d-regular case, where the set of directions consists of multiples of 90◦/d. Delling et
al. [DGNP10] established their positive result for x-monotone paths for any set of direc-
tions (actually, any set containing the multiples of 90◦); in particular, their result holds
for the d-regular case for any d ≥ 1. Gemsa et al. [GNPR11] generalized the negative
result of Brandes and Pampel from d = 1 to any d ≥ 1, using a different reduction (from
MonotonePlanar3Sat). On the other hand, they presented a mixed-integer linear pro-
gramming (MIP) formulation for d-regular path simplification (for any d ≥ 1) and evaluated
it on real-world instances (quickest routes between random destinations in the German road
network). They concluded that the MIP runs fast enough if the road geometry is prepro-
cessed with a conventional path simplification method (such as Douglas-Peucker [DP73]).
They suggested that d = 3 is a good compromise between accuracy and abstraction.

23.2.2 Continuous Generalization for Polygonal Lines

A path simplification problem of a rather different flavor was investigated by Merrick et
al. [MNWB08]. They assumed that both a detailed and a less detailed drawing of a path
are given; they are interested in how to get from one to the other in a continuous fashion.
In computer graphics, such a transition is called a morph. From a cartographic point of
view, their problem is a continuous generalization problem: given two linear objects (such
as streets or rivers) on maps of different scale, deform one representation continuously into
the other such that intermediate representations are valid generalizations for their scale.

The problem naturally decomposes into two subproblems: first, find a correspondence
between parts of one path and parts of the other path; second, define a movement that
moves the parts of one path onto the corresponding parts of the other path. Merrick et
al. focused on the first subproblem and solve the second subproblem by simply moving the
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vertices of one path on linear trajectories to their counterparts. The first subproblem can
again be subdivided into two tasks: first, find characteristic points on both paths; second,
find a good correspondence between the subpaths defined by consecutive corresponding
points. The idea behind the characteristic points is not only data reduction, but detecting
such points and treating them with special care makes it more probable that the viewers of
the resulting morph keep their mental map during the animation.

For the first task, Merrick et al. incrementally fitted cubic Bézier curves to a growing
part of the given polygonal path. When the distance between the current subpath and the
curve surpasses a pre-specified error bound ε > 0, Merrick et al. viewed the point added last
as a characteristic point, and repeat the fitting process with the subpath starting at that
point. The distance between subpath and curve is approximated by sampling both with
a relatively large number of points, measuring the distances only between corresponding
points and taking the maximum over these point-to-point distances.

Figure 23.2 shows a mountain road in the French Alps and the characteristic points that
were detected using the Bézier-fitting method of Merrick et al. for two different values of
the error bound ε; 1 and 25. Subfigure (c) shows the same road with manually selected
characteristic points. The automatically detected set of characteristic points for ε = 25 and
the manually detected set are quite similar.

For the second task, Merrick et al. presented a dynamic program that computes a cor-
respondence between the two paths, in O(nm) time, where n and m are the numbers of
subpaths of the first and second path, respectively. The correspondence is optimal with re-
spect to the distance function defined by the user; the authors make a number of suggestions
for such functions.

Figure 23.3 shows snapshots morphs between two representations of the road in Fig-
ure 23.2. The more detailed representation is from a BD(R) Carto map at scale 1:50,000;
the less detailed, generalized representation of the same road at scale 1:100,000 is from an
IGN Carto2001 TOP100 map. The example road was chosen because it is represented by
three serpentines on the detailed scale but only by two serpentines in the less detailed scale.
Each morph is based on a different choice of characteristic points; linear interpolation (vari-
ant (c)) is a simple ad-hoc method that matches each point on one polyline to the point
at the same relative distance from the start on the other polyline. The middle snapshot
produced by this method shows its weakness, especially in the part of the polyline labeled
“Region A.” While the two other morphs (in subfigures (a) and (b)) keep the “amplitude” of
the serpentines while merging the first two, linear interpolation first reduces the amplitude
and then increases it again.

(a) ε = 1 (72 points) (b) ε = 25 (28 points) (c) manual (26 points)

Figure 23.2 Selection of characteristic points according to Merrick et al. [MNWB08].
The polyline is a mountain road from the French Alps; it consists of 155 vertices.
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Region A

(a) ε = 25 (b) manual (c) linear interpolation

Figure 23.3 Morphs generated by Merrick et al. [MNWB08] depending on the method for
selecting characteristic points. In each snapshot, previous frames are shown in increasingly
light shades of gray to assist perception of the animation.
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For this road, which has 190 and 155 vertices on the 1:50K and the 1:100K maps, re-
spectively, it took less than 0.01 seconds to compute the characteristic points, 1.39 seconds
to compute the optimal correspondence for ε = 1, and 0.59 seconds for ε = 25. The road
is part of a map sheet with 382 roads consisting of 13345 and 10869 vertices on the two
maps, which were reduced (for ε = 25) to 2742 and 2387 characteristic points, respectively.
For the whole 1:50K map sheet, this reduction took 0.69 seconds; computing the corre-
spondence then took 13.17 seconds. The experiments were performed on an AMD Athlon
XP 2600+ PC with 1.5 GB main memory running under SuSE Linux 10.1. These run-
ning times are acceptable since tasks can be considered pre-processing. Only the resulting
simple linear morph needs to be executed in real time. In order to solve the continuous
generalization problem for complete street or river networks across large scale intervals, the
line-simplification algorithm sketched here must be combined with a topology-simplification
algorithm, which yet has to be devised.

23.3 Matchings

Matchings do not appear to be an exciting graph class for graph drawing, but they have
an interesting application that brings cartography and graph drawing together: so-called
boundary labeling. In boundary labeling, one is given a set of point sites on a rectangular
map and, for each site, a rectangular label that contains, for example, textual information
about the site. Other than in normal point labeling, labels are not placed next to the
site they label, either because the point set is too dense with respect to the label sizes or
because the map background must not be covered by the labels. Instead, labels are placed
outside the map such that they touch the map boundary with one side. In order to visualize
the mapping between sites and labels, each site is connected to its label with a polygonal
line, the so-called leader. For three real-world examples with different leader types, see
Figure 23.4.

The boundary labeling problem was introduced by Bekos et al. [BKSW07]. For a given
rectangle R (for example, a cartographic map), a set P of point sites in R and, for each
site s in S, a rectangular label Ls, Bekos et al. define a feasible leader-label placement to be a
placement of the labels and a drawing of the leaders that fulfills the following requirements:

(a) parts of a hamburger (b) parts of a pair of scissors (c) districts of Würzburg

Figure 23.4 Examples of boundary labeling.
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(B1) Labels are disjoint.

(B2) Labels lie outside (the interior of) R such that, for each label, one of its edges is
contained in one of the edges of R.

(B3) Each point is connected to its unique label by a leader.

(B4) Leaders may not intersect other leaders, points or labels.

(B5) The point where a leader touches a label is called port ; ports may be fixed (for
example, to the centers of the label edges) or sliding (that is, arbitrary).

(B6) Labels either have fixed positions or can slide along an edge of R.

(B7) Labels can be attached to one, two or all four edges of R. The resulting problems
are called one-side, two-side and four-side leader-label placements.

In addition to feasible leader-label placements, mainly the following objective functions
have been considered:

(O1) small ink consumption (minimize total leader length),

(O2) straightness (minimize number of bends).

These are typical graph drawing objectives; they help to keep the visual complexity of the
resulting drawing low.

Several types of leaders have been considered; until now all of them are polygonal with
up to two bends. Generally, a leader type is denoted by a word from the set {s, {p, o, d}∗};
the letters refer to the direction of the line segments that form the leader, starting at the
point to be labeled and ending at the port that lies on some edge e of R. The leader type s
refers to straight-line leaders; their direction is arbitrary. Leader segments labeled p are
parallel with e, segments labeled o are orthogonal to e, and segments labeled d are diagonal,
that is, they form an angle of 45◦ or −45◦ degrees with e.

Two-sided boundary labeling with labels of non-uniform height is NP-hard; the reduction
from Partition is obvious. Therefore, most references focus on uniform labels, that is, all
labels are unit-height rectangles. In Table 23.1, we summarize the running times of the
best known algorithms (in big-Oh-Notation) for various versions of the boundary labeling
problem.

The following variants and extensions of the boundary labeling problem have been con-
sidered:

• boundary labeling with octilinear leaders, that is, leaders whose segments are
horizontal, vertical, or diagonal at ±45◦ [BKNS10],

• multi-criteria boundary labeling [BHKN09],

• boundary labeling for area features [BKPS10],

• boundary labeling under rotations [NPS10],

• text annotation [LWY09],

• multi-stack boundary labeling [BKPS06],

• many-to-one boundary labeling [Lin10, LKY08],

• one-and-a-half-side boundary labeling [LPT+11],

• boundary labeling combined with traditional map labeling [BKPS11], and

• boundary labeling for panorama images [GHN11].

In order to give the reader at least a flavor of this variety of results, we review some of the
early algorithms for type-s and type-po leaders. In the case of one- and two-side problems,
we attach labels to the right edge and both vertical edges of R, respectively.
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reference

s 1 n log n N/A n2+ε n3 [BKSW07]
s 4 n log n N/A n2+ε n3 [BKSW07]

po 1 n3 n log n n log n [BHKN09]
po 2 n2 n2 [BKSW07]
po 2 n8 [BHKN09]

opo 1 [n log n] [n2] n log n [n2] [BKSW07]
opo 2 open n2 [nH2]? n2 [BKSW07]

opo 4 n log n open n2 log3 n n3 [BKSW07]

do 1 n5 n2 n2 [BHKN09]
do 2 n14 [BHKN09]

{do, pd} 1 open n3 [—]? n3 [BKNS10]
{od, pd} 1 n log n open n3 n3 [BKNS10]
{do, pd} 2 open n3 n3 [BKNS10]
{od, pd} 2 n log n open n3 n3 [BKNS10]
{od, pd} 4 n log n open n3 n3 [BKNS10]

Table 23.1 Running times of the best known algorithms (in big-Oh-Notation) for various
versions of boundary labeling, where ε is an arbitrarily small positive constant and n is the
number of sites. The time bounds in square parentheses refer to the case of non-uniform
labels. The problems marked by ? are NP-hard. The pseudo-polynomial algorithm for
2-sided opo-type leader-label placement assumes that label heights and the height H of
the bounding rectangle are integers. N/A stands for non-applicable. Entries in column
“Feasible solution” are filled only if there is a feasible solution that is asymptotically faster
than a bend- or length-optimal solution.

23.3.1 Boundary Labeling with Type-s Leaders

In the case of fixed ports and fixed labels, a type-s label-leader placement or total length L
corresponds to a Euclidean perfect bipartite matching of cost L. For the case of sliding
ports (and fixed labels), the problem can also be reduced to a matching problem, albeit at
a somewhat higher computational cost.

Theorem 23.1 [[BKSW07]] Given a set S of n point sites, a one-side type-s leader-label
placement of minimum total leader length for fixed labels can be computed in O(n2+ε) time
for any ε > 0 in the case of fixed ports and in O(n3) time in the case of sliding ports.

Proof: In the case of fixed ports, we have a set P of n ports. Then a Euclidean minimum-
cost perfect bipartite matching in the set S ∪ P yields a feasible leader-label placement of
minimum total leader length. Feasibility follows from two properties of the Euclidean plane;
the triangle inequality and the fact that the distances from the endpoints of a line segment
to a point on the segment add up to the length of the segment. Indeed, suppose that
two leaders would intersect then swapping the matching locally would decrease its cost;
see Figure 23.5. (For the same reason, any solution to the Euclidean traveling salesperson
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Figure 23.6 Feasible type-s leader layout
via dynamic convex-hull.

problem forms a simple polygon unless all points lie on a line.) A Euclidean minimum-cost
perfect bipartite matching can be computed O(n2+ε) time for any ε > 0 [AES99].

For the case of sliding ports, the time complexity increases since we now need a general
minimum-cost perfect bipartite matching in the complete bipartite graph on the set S of
n points and the set L of the n label positions; the weight of an edge (s, `) ∈ S × L is the
Euclidean distance of s to its closest point on `. Since we assume that labels are attached
to the right edge e of R, the point on ` closest to s is either the top or bottom point of `
or the orthogonal projection of s on e. A general minimum-cost perfect bipartite matching
can be computed in O(n3) time [Law76]. 2

If we content ourselves with a feasible leader-label placement, we can, in the case of fixed
labels with fixed ports, speed up the computation.

Theorem 23.2 [[BKSW07]] Given a set S of n point sites, a feasible one-side type-s
leader-label placement for fixed labels with fixed ports can be computed in O(n log n) time.

Proof: We assume that the set of ports, P = {p1, . . . , pn}, is sorted according to increas-
ing y-coordinate. Let H be the convex hull of the set S ∪ P . Consider the edge of H that
connects the bottommost point p1 in P to a site. Call this site s1 and make the line segment
s1p1 a leader; see Figure 23.6. Remove s1 from S and p1 from P . Repeat until each site is
matched to a port. Since no two ports have the same y-coordinate, in each step, the convex
hull of the diminished set S ∪ P is disjoint from the line segment connecting the site and
the port that were removed last. Hence, the resulting leader-label placement is feasible.

To make our algorithm run in O(n log n) time, we just need a semi-dynamic convex-hull
data structure that preprocesses a set of n points in O(n log n) time to allow for neighbor
queries and point deletions in O(log n) time. Hershberger and Suri [HS92] provided such a
data structure. 2

23.3.2 Boundary Labeling with Type-po Leaders

We start with the simplest possible variant of the problem; the algorithm for this variant
is illustrated in Figure 23.7. The idea behind the algorithm will turn out to be useful for
two generalizations.

Theorem 23.3 [[BKSW07]] Given a set S of n point sites, a feasible one-side type-po
leader-label placement for fixed labels with fixed ports can be computed in O(n2) time.
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Figure 23.7 Rerouting type-po leaders.

Proof: We first sort sites and ports such that s1, . . . , sn and p1, . . . , pn are indexed in
order of non-decreasing y-coordinates. For i = 1, . . . , n, we connect si to pi by a po-leader ci
that consists of a (possibly zero-length) vertical line segment incident to si and a horizontal
line segment incident to pi. We assume that the previously placed leaders c1, . . . , ci−1 are
pairwise disjoint, and we show that we can add ci such that this assumption continues to
hold.

In the following, we treat the case that si lies above pi; the other case can be analyzed
analogously. If ci does not intersect any of the (pairwise disjoint) leaders c1, . . . , ci−1, we
are done. Otherwise, let sj be the rightmost site with j < i whose leader intersects ci; see
Figure 23.7(a). We reroute the leaders such that sj is connected to pi and si to pj ; see
Figure 23.7(b).

After the rerouting, the new leader cj does not intersect any other leader since (i) its
vertical segment is shorter than before and (ii) its horizontal segment used to belong to ci,
which—due to the choice of sj—did not intersect any other leader to the right of sj . Hence,
in this process, we remove the intersections of other leaders with the horizontal segment
of ci one by one, even if new intersections occur, as in the step from Figure 23.7(a) to
Figure 23.7(b).

It remains to observe that the growing vertical segment of ci never intersects other lead-
ers. This is true since, initially, ci goes to the top-most port pi and, after each rerouting
operation, ci is prolonged by a vertical sub-segment that used to “belong” to a leader to the
right of ci; the sub-segments move within the gray horizontal strips in Figure 23.7. Thus, if
a leader was to intersect the new vertical sub-segment of ci, it would have earlier intersected
one of the other leaders, contradicting our above assumption. 2

As it turns out, the feasible leader layout that the algorithm in the proof of Theorem 23.6
computes is already length-minimal.

Theorem 23.4 [[BKSW07]] Given a set S of n point sites, a minimum-length one-side
type-po leader-label placement for fixed labels with fixed ports can be computed in O(n2)
time.

Proof: Consider the site–port correspondence that we used in proof of Theorem 23.6:
going through sites and ports from bottom to top, we connected the i-th site si to the
i-th port pi. We claim that the type-po leader layout induced by this correspondence
has minimum total length among all type-po leader layouts (including the layouts with
crossings). Combining this claim with the simple observation that rerouting does not change
the total length of the leaders (see Figure 23.7), yields the theorem.
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In order to prove the claim, we observe that, in all type-po leader-label placements, the
total length of the horizontal leader segments is the same. We convert our type-po instance
to a type-s instance by moving the sites to the right so that they all lie on a vertical
line infinitesimally close to the right side of the boundary rectangle R. Then the vertical
segments of a given type-po leader layout become (nearly) type-s leaders. Note that the
above site–port correspondence is the only one that induces a plane type-s leader layout.
Every other correspondence induces a layout with at least one pair of crossing leaders. If
we untangle such a pair, the total leader length does not increase. (The only case where it
remains the “same” is in the degenerate case that one of the two leaders is horizontal.) We
used basically the same observation in the proof of Theorem 23.1. 2

The same result holds if labels are attached to two (opposite) sides of the bounding
rectangle R.

Theorem 23.5 [[BKSW07]] Given a set S of n point sites, a minimum-length two-side
type-po leader-label placement for fixed labels with fixed ports can be computed in O(n2)
time.

Proof: As in the proofs of Theorems 23.3 and 23.4, we first compute a minimum-length
layout without caring about crossings. For the one-side case, this was trivial; for the two-
side case, we employ a simple dynamic program. Specifically, we use a two-dimensional
table; table entry (l, r) contains the minimum total leader length for the l + r lowest sites
under the condition that l are connected to labels at the left side of R and the remaining r
to labels at the right side. Since each entry in the table can be filled in constant time, the
dynamic program runs in O(n2) total time.

Again, as in the proofs of the two preceding theorems, we then apply our rerouting scheme
in order to remove all crossings. Recall that this does not change the total leader length. It
remains to observe that leaders going to different sides of R never cross in this process; if
they did cross, rerouting them would decrease the total leader length. This, in turn, would
contradict the minimality of the total leader length of the original layout. 2

For the one-sided case, Benkert et al. [BHKN09] have observed that a length-minimal
leader layout has a structure that can be exploited in order to speed-up its computation.
The rectangular map R can be partitioned in horizontal strips such that all sites within
a strip have horizontal leaders, have upward-going leaders (as in Figure 23.7(c)), or have
downward-going leaders. Strips of upward- or downward-going leaders are always separated
by strips with horizontal leaders, which can be detected easily. (In the case of fixed ports,
“horizontal” means here that, as in the case of sliding ports, the site lies in the vertical
range of the label.) Benkert et al. determine these strips in a first pass through the instance.
Then, in a second pass, they determine the leader layout for the sites within a strip using a
sweep-line algorithm. In total, their algorithm takes O(n log n) time. They show that this
running time is worst-case optimal; sorting reduces to length-minimal leader layout. All in
all, Benkert et al. have the following result.

Theorem 23.6 [[BHKN09]] Given a set S of n point sites, a minimum-length one-side
type-po leader-label placement for fixed labels with fixed or sliding ports can be computed in
Θ(n log n) time.
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23.4 Trees

In economy and social sciences, a common problem is to visualize the flow of goods or
people from or into a specific destination. It makes sense to require that the flow between
two nodes of the underlying network is depicted by curves whose width is proportional to
the amount of flow. Usually these curves are drawn on the background of a regular map.
For visualization purposes, the network is drawn as a tree—although, in general, the actual
flow network is a rooted directed acyclic graph. The drawing of such a network is called a
flow map.

Henry Drury Harness [Har38] is being cited [Rob55, FD01] for having created the first
flow maps; in an atlas accompanying a report of the Railway Commissioners concerning
population and movement of goods in Ireland in 1837. A few years later, Charles Joseph
Minard, a French civil engineer, made flow maps mostly on economic topics, depicting, for
example, the amount of wine export from France, but also, in 1869, the location and size
of Napoleon’s army during its 1812/13 Russian campaign; see Figure 23.8. Tufte [Tuf01,
p. 40] says that this map “may well be the best statistical graphic ever drawn.”

Drawing flow maps automatically was first studied by Tobler [Tob87] who used straight-
line arrows of appropriate width. The restriction to straight-line edges causes a lot of visual
clutter; see Figure 23.9(a).

Nearly twenty years later, Phan et al. [PXY+05] set out to improve on Tobler’s result by
taking advantage of clustering and curved edges. Given the positions of the network nodes,
they first compute an agglomerative hierarchical clustering—independent of the position of
the root. The binary tree that corresponds to the clustering captures the spacial distribution
of the input. Then, they transform this unrooted binary tree into a tree rooted at the given
root node. In this process, the root can get several children. The layout of the flow tree
follows this tree recursively. A tree edge connecting a node to its child is routed from the
position of the node to the closest corner of the bounding box of the cluster that corresponds
to the child. The routing detours boxes containing sibling clusters. To make the final
layout of the flow map more aesthetically pleasing, the polygonal paths that represent the
edges are drawn as Catmull–Rom splines, that is, as special cubic curves that go through
the given points. For the resulting layout, see Figure 23.9(b). Under the (rather strong)

Figure 23.8 Minard’s map of Napoleon’s Russian campaign of 1812/13 [Min69].
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(a) Tobler [Tob87]

(c) Verbeek et al. [VBS11] (b) Phan et al. [PXY+05]

(d) Cui et al. [CZQ+08] (e) Holten and van Wijk [HVW09]

Figure 23.9 Flow maps showing migration leaving California in the years 1995–2000.

assumption that the boxes of child clusters are pairwise disjoint, the (polyline) tree layout
is crossing-free. The complete (non-optimized) algorithm runs in quadratic worst-case time;
the authors report that the examples they computed took their Java implementation a few
seconds on a 1.4-GHz laptop.

Recently, Verbeek et al. [VBS11] presented a method for drawing flow maps that is based
on so-called (approximate) spiral trees. Given a set of points (one being labeled as root)
and an angle, a spiral tree is a directed angle-restricted Steiner tree of minimum length.
A directed angle-restricted Steiner tree for an angle α is a tree where each edge is drawn
as a curve with the property that, in every point p on the curve, the angle between the
vector from p to the root and the tangent in p (pointing backward) is bounded by α; see
Figure 23.10(a). The same set of authors [BSV11] showed that it is NP-hard to compute
spiral trees but that 2-approximations (in terms of length) can be computed, even in the
presence of obstacles, in O(n log n) time. Edges of (approximate) spiral trees are logarithmic
spirals.

Starting from such an approximate spiral tree for the given point set (with all leaves
being obstacles; see Figure 23.10(b)) and a user-chosen value of α (roughly in the range
between 15◦ and 35◦), Verbeek et al. compute a tree layout with edges of prescribed thickness
by subdividing the original edges (see Figure 23.10(c)) and then improving a set of aesthetic
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(a) (b) (c) (d)

p
root α

Figure 23.10 From spiral tree to tree map [VBS11]: (a) defining a directed angle-
restricted Steiner tree. Workflow: (b) (approximate) spiral tree, (c) thickening and subdi-
viding edges, (d) optimizing aesthetic criteria using the method of deepest descent.

parameters in order to smooth and straighten the tree, to avoid obstacles, to balance and to
maintain its original angles (see Figure 23.10(d)). The authors model these parameters by
defining cost functions; they apply the method of deepest descent in order to minimize the
global cost function, which is the weighted sum of the individual cost functions. In order to
ensure that no crossings are introduced in the optimization process, the algorithm checks for
intersections before each move. In case an intersection would occur, the movement vector
is repeatedly divided by 2 until the movement is safe. The edges are drawn as a new type
of cubic Hermite splines that approximates logarithmic spirals well.

For an example output of the method of Verbeek et al., see Figure 23.9(c). For compar-
ison, the results of two other, more general methods (by Cui et al. [CZQ+08] and Holten
and van Wijk [HVW09]) are also depicted; see Figures 23.9(d) and (e). The input to these
methods is a graph (with vertex positions) rather than a tree; in the output, the curved
edges are bundled in order to better reflect the structure of the graph. Concerning run-
ning time, Verbeek et al. report that their algorithm drew most flow maps in less than a
minute on a (dual-core) Pentium-D 3-GHz processor with 1 GB of RAM, whereas world
maps required a few minutes.

23.5 Plane and Near-Plane Graphs

There are a number of applications where plane or near-plane graphs have to be drawn.
We differentiate between four different types of applications. In all four types, the original
embedding can be made planar by introducing few extra nodes where roads or tracks cross,
for example, at bridges. The topology of the original embedding must be preserved and
edges are drawn as polygonal lines. In most cases it is desirable to keep vertices roughly in
the same place as in the original embedding or to at least preserve the relative position of
vertices (for example, left/right, above/below). This helps the user to keep his mental map.

The application types that we consider in this section are as follows.

Schematic road maps are used for road or transportation networks. They try to
keep vertices (that is, cities or junctions) at or close to their original location.
Edges (that is, roads or tracks) can have diagonal segments.

Metro maps also use diagonals, but other than schematic maps they use very differ-
ent scales for downtown versus suburban areas. Relative position is important.
Another special feature of metro maps is that they usually have many degree-2
nodes.

Street maps with focus regions do not restrict edge directions but allow the user
to select a region that is displayed at larger scale. This is different from the
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usual zoom operation where the user sees only a fraction of the original map
and, hence, loses overview. The difficulty lies in squeezing the remaining part of
the map such that distortion is acceptable.

Cable plans are used for documenting the layout of communication networks. They
are drawn orthogonally and try to preserve the angles, but not the distances of
the original embedding.

Compared to the orthogonal drawing of (embedded) graphs [Tam87], the introduction of
diagonals yields drawings that are more similar to the original embedding. In addition, the
maximum node degree increases from 4 to 8. In a sense, however, the problem becomes
more difficult as Bodlaender and Tel [BT04] point out. They define a planar graph to be
d-linear if it can be embedded such that all angles are multiples of 2π/d. The angular
resolution of a plane straight-line drawing is the minimum angle between edges incident to
a common vertex, over all vertices. Bodlaender and Tel show that, for d = 4, an angular
resolution of 2π/d implies d-linearity and that this is not true for any d > 4.

In what follows, we refer to the set of directions that are given by the two coordinate
axes and their two bisectors as the octilinear directions.

23.5.1 Schematic Road Maps

Schematic maps usually try to preserve the position of vertices as much as possible while
simplifying the polygonal lines that represent edges without changing the topology of the
original drawing. Edges are drawn as x- and y-monotone paths that consist of usually no
more than three horizontal (H), diagonal (D), and vertical (V) line segments. Cabello et
al. [CdBvD+01] have given an algorithm that decides in O(n log n) time whether a node-
embedded graph can be drawn such that each edge follows one of a given set of allowed
segment sequences (such as {HVH,VDV}, for example). If an edge embedding of the
required type exists, the algorithm finds it.

While Avelar and Müller [AM00] also try to make edges octilinear, they use a very
different method that moves vertices based on local decisions. They guarantee that the
topology of the original network is kept, but they do not guarantee that every edge in the
final layout is actually octilinear. They first use a polygonal line simplification method to
simplify all edges (that is, polygonal lines) of the original embedding. In order to preserve
topology, a more involved method like Saalfeld’s [Saa99] must be used instead of the classical
method of Douglas and Peucker [DP73] mentioned above.

After the simplification, each street junction and each bend of a street is considered a
vertex. Hence, edges are straight-line segments. Avelar and Müller iteratively go through
all vertices and compute new destinations based on the current (imperfect) directions of the
incident edges. They do this as follows. For each vertex v and each vertex w incident to v,
they compute an offset for v that would make the edge vw confirm to one of the allowed
directions. The arithmetic mean of these offsets yields a tentative new position for v. Before
actually moving a vertex, Avelar and Müller check the topology of the resulting embedding.
If topology would change, they restrict the vertex movement accordingly. They continue to
change vertex positions until all edges follow one of the desired four directions or until the
number of iterations has reached a fixed threshold.

23.5.2 Metro Maps

The problem of drawing maps of subways and other means of public transportation is an
interesting compromise between schematic maps where vertex positions are (mostly) fixed
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and “conventional” graph drawing where vertices can go anywhere. The first approach
maximizes (user) orientation, the second aesthetics.

We now define the problem in graph-drawing terms. Let G = (V,E) be the input graph.
We assume that G is plane, that is, G comes with a planar embedding. We actually assume
that we know the geographic location Π(v) of each vertex v ∈ V in the plane and that the
straight-line embedding induced by the vertex locations is plane. In case some edges cross
others, we simply introduce dummy vertices that represent the crossings. Let L be a line
cover of G, that is, a set of paths of G such that each edge of G belongs to at least one
element of L. An element L ∈ L is called a line and corresponds to a metro line of the
underlying transport network. We refer to the pair (G,L) as the metro graph. The task is
now to find a drawing Γ of (G,L) according to a set of rules (which we will discuss later).

In the last few years, a number of methods for automating the drawing of metro maps
have been suggested. The author [Wol07] surveyed the area earlier, with an emphasis on
experimental comparison. Our treatment here is more compact, but adds some recent
development. Before we go into the methods, let us quickly turn to the origins of the
problem.

History. While metro networks were small in size, it made perfect sense to draw
them geographically. This was easy for the graphic designers and gave map users a sense
of distance, for example, between stations that are close to each other in the above-ground
street network but far in the underground metro network: sometimes it is indeed faster
to walk a little more than to reach the metro stop closest to one’s destination. Electrical
draftsman Henry Beck was the first to draw a metro network in a schematic way. His
rationale was that connection information and the number of stops on a line are more
important information for the network user than geographic distances. His design was so
revolutionary that the London Transport Authority, in 1931, rejected his first proposal and
only in 1933 dared to print and sell Beck’s map. Therefore, Berlin got the honor of having
the first printed schematic metro map (in 1931). While the Nazis in Berlin soon moved
back to a geographic layout [Pol06], Beck’s tube map was an instant success and became
the basis of all subsequent official maps of the London Underground. In 2006, his original
map was elected, right after the supersonic airplane Concorde, the second-most popular
British design icon of the twentieth century [Wik12]; it has an interesting history in its
own right [Gar94]. In the meantime, graphic designers have invented different layout styles
all over the world (see the book of Ovenden [Ove03]), but the use of the octilinear set of
directions for drawing is still prevailing.

Complexity. Using eight edge directions seems to be a good compromise between
an unrestricted drawing and the restriction to the four orthogonal (or rectilinear) edge direc-
tions predominant in circuit diagrams, VLSI layout, and—traditionally—in graph drawing.
As it turns out, the additional freedom that an octilinear layout gives the designer com-
pared to a rectilinear layout comes at a price. Nöllenburg [Nöl05b] proved, by means of a
visually very appealing reduction from Planar3Sat, that it is NP-hard to decide whether
a plane graph has an octilinear drawing. This is in sharp contrast to the rectilinear case, for
which Tamassia [Tam87] showed that the same question can in fact be answered efficiently.
In his seminal paper, the theoretical foundation of orthogonal graph drawing, Tamassia
reduced the problem to a network flow problem, which yields an orthogonal drawing with
the minimum number of bends and small area.

Curve evolution. The first attempt to automate the drawing of metro maps was
made by Barkowsky et al. [BLR00]. They use an algorithm for polygonal line simplification,
which they call discrete curve evolution [LL99], to treat the lines of the Hamburg subway
system. Their algorithm, however, neither restricts edge directions nor does it increase
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station distances in the crowded downtown area. Stations are labeled but no effort is made
to avoid label overlap.

Force-directed layout. Hong et al. [HMdN06] give five methods for the metro-
map layout problem. The most refined of these methods modifies PrEd [Ber99], a topology-
preserving spring embedder, such that edge weights are taken into account and such that
additional magnetic forces draw edges toward the closest octilinear direction. Edges are
drawn as straight-line segments connecting the corresponding vertices. Relative position is
only taken into account implicitly by using the original embedding as initial layout.

In a preprocessing step, Hong et al. simplify the metro graph by contracting each edge
that is incident to a degree-2 vertices. After performing all contractions, the weight of each
remaining edge is set to the number of original edges it replaces. After the final layout
has been computed, all degree-2 vertices are re-inserted into the corresponding edges in an
equidistant manner. Due to this preprocessing the numbers of vertices and edges decrease
by a factor of 3 to 8, and all networks (with 22 to 92 vertices and 32 to 317 edges after
contraction) were solved within 0.2 to 22 seconds. Station labels are placed in one out of
eight directions using the interactive LabelHints system [dNE03]. While label–label overlaps
are avoided, diagonally placed labels sometimes intersect network edges.

The results of Hong et al. [HMdN06] are clearly superior to those of Barkowsky et al.
[BLR00]. However, they are still not very similar to commercial maps drawn by graphic
designers. The main deficiency is that most edges in the final layouts are close to, but not
quite octilinear. This seems to be due to the fact that the magnetic forces that determine
the layout are the sum of many conflicting terms.

Local optimization. Stott et al. [SRMW11] draw metro maps using multicriteria
optimization based on hill climbing. For a given layout they define metrics for evaluating the
octilinearity and the length of edges, the angular resolution at vertices and the straightness
of metro lines. The quality of a layout is the sum over these four metrics. Their optimization
process is iterative. They start with a layout on the integer grid that is obtained from the
original embedding. In each iteration they go through all vertices. For each vertex they
consider alternative grid positions within a certain radius that shrinks with each iteration.
For each of these grid positions they compute the quality of the modified layout. If any of
the positions improves the quality of the layout, they move the current vertex to the position
with the largest improvement among those positions where the topology of the layout does
not change. After implementing their algorithm they observed a typical problem of local
optimization: overlong edges are often not shortened since this would need moving several
vertices at the same time. For a bridge, that is, an edge whose removal disconnects the
graph, this can easily be fixed by moving all nodes of the smaller component closer to the
larger component. They run this fix after each iteration for all bridges.

Stott et al. have experimented with enforcing relative position, but report that the results
were disappointing as there were many situations where a better layout could only be found
by violating the relative position of some vertices. They can label stations, but do not
check for overlaps other than with the edges incident to the current station. They use the
same contraction method as Hong et al. [HMdN06] to preprocess the input graph. Even
with this preprocessing their algorithm is much slower. For example, an earlier version of
their algorithm [SR05] drew the simplified Sydney CityRail network in about 4 minutes
and the unsimplified network in 28 minutes; the new algorithm (in Java 1.6 on a 1.4-GHz
Celeron M machine with 1.5 GB RAM under Windows XP) needs about two hours for
the labeled network. This compares with the 7.6 seconds that Hong et al. need for the
simplified, but labeled network. The drastic increase in running time, however, is worth
it—in the resulting maps nearly all edges are octilinear, which makes the maps more legible.



23.5. PLANE AND NEAR-PLANE GRAPHS 715

Global optimization. Nöllenburg and Wolff [NW11] draw metro maps using the
toolbox of mathematical programming. They approach the problem by setting up the
following list of design rules which are based on the design of real-world metro maps.

(R1) Restrict the drawing of edges to the octilinear directions.

(R2) Do not change the geographical network topology. This is crucial to support the
mental map of the passengers.

(R3) Avoid bends along individual metro lines, especially in interchange stations, to
keep them easy to follow for map readers. If bends cannot be avoided, obtuse
angles are preferred over acute angles.

(R4) Preserve the relative position between stations to avoid confusion with the mental
map. For example, a station being north of some other station in reality should
not be placed south of it in the metro map.

(R5) Keep edge lengths between adjacent stations as uniform as possible with a strict
minimum length. This usually implies enlarging the city center at the expense
of the periphery.

(R6) Stations must be labeled and station names should not obscure other labels or
parts of the network. Horizontal labels are preferred and labels along the track
between two interchanges should use the same side of the corresponding path if
possible.

(R7) Use distinctive colors to denote the different metro lines. This means that edges
used by multiple lines are drawn thicker and use colored copies for each line.

A subset of these rules has also been listed by Hong et al. [HMdN06].
Nöllenburg and Wolff divide their rules into strict requirements, also called hard con-

straints, and into aesthetic optimization criteria, also called soft constraints. Their hard
constraints are:

(H1) Octilinearity: For each edge e, the line segment Γ(e) in the output drawing must
be octilinear.

(H2) Topology preservation: For each vertex v, the circular order of its neighbors must
agree in Γ and the input embedding.

(H3) Minimum length: For each edge e, the line segment Γ(e) must have length at
least `e.

(H4) Minimum distance: Each edge e must have distance at least dmin > 0 from each
non-incident edge in Γ.

Constraint (H1) models the octilinearity requirement (R1). It is this constraint that makes
the problem NP-hard [Nöl05a], see the discussion in the paragraph on complexity above.
Constraint (H2) models the topology requirement (R2), (H3) models the minimum edge
length in (R5), and (H4) avoids introducing additional edge crossings and thus also models
a part of (R2). This is because two intersecting edges would have distance 0 < dmin.

The soft constraints should hold as tightly as possible. They determine the quality of Γ
and are as follows:

(S1) Straightness: The lines in L should have few bends in Γ, and the bend angles
(< 180°) should be as large as possible.

(S2) Geographic accuracy: For each pair of adjacent vertices (u, v), their relative po-
sition should be preserved, that is, the angle ∠(Γ(u),Γ(v)) should be similar to
the angle ∠(Π(u),Π(v)), where ∠(a, b) is the angle between the x-axis and the
line through a and b.
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(S3) Size: The total edge length of Γ should be small.

Clearly, constraint (S1) models minimizing the number and “strength” of the bends (R3)
and (S2) models preserving the relative position (R4). The uniform edge length rule (R5)
is realized by the combination of a strict lower bound of unit length (H3) and a soft upper
bound (S3) for the edge lengths. Rule (R4) for the relative position can be interpreted as
both a soft and a hard constraint, for example, by restricting the angular deviation to at
most 90° as a hard constraint and charging costs for smaller deviations as a soft constraint.

Nöllenburg and Wolff then show that the existence of a drawing that fulfills the hard con-
straints (H2)–(H4) and optimizes a weighted sum of the soft constraints can be formulated
as a mixed-integer linear program (MIP). The basic idea behind their formulation is as fol-
lows. Each edge has a number of binary variables that correspond to its feasible octilinear
directions. Exactly one of these variables must be 1. All other constraints regarding an
edge, such as its minimum length and minimum distance from other edges, are expressed
for each feasible direction. The constraints are designed such that they are trivially fulfilled
if the edge has a different direction. Angles are “measured” in multiples of 45°, for example,
in soft constraint (S 1), an angle is punished proportionally to its degree of acuteness: the
bend of the edges uv and vw incident to a vertex v can be of size 180°, 135°, 90°, or 45°. The
bend cost of this bend is 0, 1, 2, or 3, respectively. Expressing this with linear constraints
is somewhat tricky, but it can be done using the directions of the edges uv and vw and two
new binary variables per bend.

In general it is NP-hard to solve a MIP, but highly optimized commercial solvers such as
Cplex or Gurobi can solve relatively large MIPs relatively quickly. Consider a medium-sized
metro system such as the CityRail network of Sydney with 10 lines and 174 stations. For
this network, the MIP of Nöllenburg and Wolff as sketched above consists of roughly 38,000
variables and 150,000 constraints—assuming that one applies the obvious data reduction
trick of replacing each path of k degree-2 vertices by a single edge of length at least k ·dmin.
Actually, Nöllenburg and Wolff proposed to keep up to two vertices between each pair of
neighboring interchange stations so as to have some flexibility for making bends; this helps
to be more accurate in terms of relative position (geographic accuracy). Solving such a MIP
to optimality can take days.

Therefore, Nöllenburg and Wolff described a number of ways in order to further reduce
the size of the MIP. Their fastest approach is based on the so-called callback function of the
Cplex solver. It allows them to set up the MIP without any planarity constraints accord-
ing to hard constraint (H4), check any intermediate feasible solution for crossings and then
add constraints needed to forbid the specific crossings at hand. For the reduced Sydney
example, this yields a MIP with roughly 4800 variables and 3500 constraints; constraints
for just three edge pairs were added during optimization. Still, computing the layout in Fig-
ure 23.11(c) from the geographic input depicted in Figure 23.11(a) took about 23 minutes.
For a comparison with the work of a professional graphic designer, see Figure 23.11(b).

Things get worse when drawing maps with station labels that can change sides with
respect to metro lines. Even when aggregating all labels between two interchanges into
one big label (that is then modeled as a dummy metro line) and taking advantage of
the callback functionality, the MIP ends up having nearly 93,000 variables and 22,000
constraints. Computing the layout in Figure 23.11(d) took 10.5 hours; in both cases an
optimality gap of about 16% remained, that is, the solver knows that the unknown objective
value of an optimal solution is at most 16% less than that of the layouts in Figures 23.11(c)
and 23.11(d).

Least squares. Wang and Chi [WC11] presented a system for octilinear on-
demand focus-and-context metro maps that highlight routes returned by a route planning
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(a) geographic layout (by John Shadbolt) (b) corresponding clipping of the official
map [Syd08]
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Figure 23.11 The Sydney CityRail network.
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system while showing the rest of the network as less important context information. It can
also be used to draw non-focused metro maps. They deform the given geographic map by
the conjugate gradient method [HS52] in a least-squares sense, minimizing a set of energy
terms that model the aesthetic constraints. Labeling is performed independently. Their
method is both fast and creates good layouts, e.g., for mobile devices.

Metaphor. Sandvad et al. [SGSK01] and Nesbitt [Nes04] use the metro-map
metaphor as a way to visualize abstract information. A particularily nice example is the
map that shows the O’Reilly open source product lines [O’R03], see Figure 23.12.

Research of the metro-map layout problem triggered the investigation of a new subprob-
lem, metro-map line crossing minimization. In that problem, one assumes that the layout of
the underlying metro graph is known; the aim is to order the metro lines on each edge such
that the number of line crossings is minimized [BNUW07]. We do not treat the problem
here since its nature is purely combinatorial, not geometric.

Beyond Henry Beck Recently, a completely different style for drawing metro
maps has attracted considerable attention: the curvilinear style. Roberts et al. [RNL+11]
did user studies to compare (hand-drawn) schematized maps to (hand-drawn) maps where
the Metro lines are represented by Beziér curves. Surprisingly, users were up to 50 % faster
in completing certain planning tasks with the new and unfamiliar Beziér maps rather than
with schematized maps. Still, being used to schematized maps, they liked them better.

These findings prompted Fink et al. [FHN+13] to investigate ways to automate the process
of drawing metro maps with Bézier curves; see Figure 23.13. They use a force-directed
approach. Starting with a straight-line or octilinear input drawing (see Figure 23.13(a)),
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(a) octilinear input drawing, (b) drawing without virtual vertices

(c) drawing with virtual degree-2 vertices (d) additionally, with virtual degree-4 vertices

Figure 23.13 Metro network of Vienna drawn using Bézier curves [FHN+13].

the authors go through each metro line and replace each line segment by a nearly-straight
cubic Bézier curve that shares tangents with its predecessor and successor. Then they apply
attracting and repulsive forces to vertices, but also to tangents. The aim is to merge as
many consecutive Bézier curves on each metro line as possible in order to reduce the visual
complexity; compare Figures 23.13(b), (c), and (d). Vertices that are incident to merged
edges only are called virtual ; forces can no longer be applied to them. In all but the last
iteration, merges happen only at degree-2 vertices. In the final iteration, degree-4 vertices
are handled, too.

Whereas the results are quite nice for small networks (such as Montreal or Vienna), long
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metro lines in complex networks (such as London) remain too wiggly. A number of Bézier
curves could not be merged due to contradicting constraints. The Java implementation of
Fink et al. drew the London Underground (20 metro lines with 200 stations, 150 of which
are degree-2 vertices) in 224 seconds on a 3-GHz dual-core computer with 4 GB RAM.

23.5.3 Street Maps with Focus Regions

Metro maps quite heavily distort distances in order to show more details in crowded down-
town areas, independently of the style used for drawing the edges. The same idea is used
in city maps, for example, by the German map maker Falk-Verlag who, in 1945, published
its first map of Hamburg with a very mild kind of fisheye view with scale varying from
1:16.000 in the downtown area to 1:18.500 in the suburbs. Interestingly enough, the idea to
use a non-uniform scale was due to the fact that the post-war military government allotted
only paper of size 60 cm × 40 cm to the newly founded four-man company [Hol95]. That
size would not have been enough to cover the intended part of the city and display the
downtown in enough detail.

A major difference between metro maps and Falk-style city maps (that is, fisheye-based
map representations) is the fact that in a schematic metro map not just scale, but also
the change in scale is (highly) non-uniform. Jenny [Jen06] has analyzed and visualized
distortion in metro maps, arguing that less distorted maps are to be preferred.

An idea more similar to the metro-map approach has been used by Haunert and Sering
[HS11] in order to draw street networks with focus regions. Their aim is to redraw a street
map within the same view frame as the original map, but such that a region specified by the
user is enlarged by a given factor. Haunert and Sering model their problem as a quadratic
program (QP), that is, a mathematical program consisting of real-valued variables, a set
of quadratic constraints, and a quadratic objective function. Their QP has the additional
property that both the objective function and the feasible region, that is, the set of variable
vectors that fulfill all constraints, are convex. Such a convex QP can be solved efficiently.

Since the core of their QP formulation is quite simple, we present it here. We assume that
we are given a plane graph G = (V,E) with an input drawing that is completely determined
by the positions of the vertices, that is, for each vertex v ∈ V , we know its coordinates Xv

and Yv. Moreover, we are given a subset V ′ ⊆ V representing the focus region that is to be
scaled up by a zoom factor Z > 1. Now, for each node u ∈ V , we introduce three variables:
the unknown coordinates xu, yu ∈ R of u in the output drawing and an unknown scale
factor su ∈ R+. We now impose constraints on these variables.

First, we define a constraint to ensure that the output drawing remains within the bound-
ing box of the input drawing.

min
v∈V
{Xv} ≤ xu ≤ max

v∈V
{Xv}

min
v∈V
{Yv} ≤ yu ≤ max

v∈V
{Yv}

for each u ∈ V (23.1)

Second, we fix the scale factor for each node in the focus region:

su = Z for each u ∈ F (23.2)
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For a node u 6∈ F , we don’t know its scale factor su; we will determine it through the
optimization, together with the coordinates of u in the output map. It remains to ensure
that the scale factor su is valid for the neighborhood of u.

Suppose that we would express the idea of a locally valid scale factor with the constraint

su(Xv −Xu) = (xv − xu)
su(Yv − Yu) = (yv − yu)

for each u ∈ V, v ∈ Adj(u), (23.3)

where Adj(u) is the set of neighbors of u in G. With constraint (23.3), the star-shaped
subgraph of G that contains u and its neighbors is scaled by su. For two adjacent nodes i
and j, however, we can only satisfy this constraint if we set si = sj . Therefore, if G
is connected, we would have to select the same scale factor for all nodes in V . With
constraint (23.3), it is thus impossible to design a variable-scale map.

In order to allow for different scale factors in different parts of the map, we introduce a
relaxed version of constraint (23.3). We do not require that the neighborhood of node u is
exactly mapped to scale. Instead, we allow for small distortions, which we measure based
on residuals δxuv and δyuv. For this purpose, we introduce, for each edge uv ∈ E, auxiliary
variables δxuv and δyuv into our model. Relaxing constraint (23.3) simply yields

δxuv = su(Xv −Xu)− (xv − xu)
δyuv = su(Yv − Yu)− (yv − yu)

for each u ∈ V , v ∈ Adj(u) . (23.4)

If both u and v lie in the focus region F , we require

δxuv = δyuv = 0 for each u , v ∈ F , v ∈ Adj(u) . (23.5)

This makes sure that edges in the focus region indeed become enlarged by the zoom factor Z.
Our objective is to minimize the weighted square sum of the residuals:

Minimize
∑
u∈V

∑
v ∈Adj(u)

((
w(u, v) · δxuv

)2
+
(
w(u, v) · δyuv

)2)
(23.6)

with w(u, v) = 1/
√

(Xv −Xu)2 + (Yv − Yu)2. With this weight setting, we express that the
validity of the scale factor su decreases with increasing distance from node u. This finishes
the description of the core of the QP. All its constraints are linear; its objective function is
convex since it doesn’t contain mixed terms and all the weights are positive. Therefore, the
core QP can be solved efficiently.

Unfortunately, the core QP does not prevent edge crossings. Crossings are unlikely to
occur in triangulations but they do occur in less strongly connected networks. Hence, an
obvious idea is to triangulate the given plane graph G. Experiments, however, show that
this ad-hoc solution produces drawings with rather high distortion all over the network.
The reason is that the additional edges make the network inflexible. Sparse regions that
otherwise can help to balance the expansion of the focus regions are artificially made dense.

A more promising approach is to define, for each pair of edges, a line that separates the
two edges and to add new variables (the parameters of the line) and new constraints to the
QP. As it turns out, the necessary constraints are such that the set of feasible solutions is
not convex any more. In order to stay in the realm of convex quadratic programming, the
authors came up with a clever trick. They simply removed one degree of freedom from the
separating line; by fixing its slope. Clearly, adding the corresponding constraints to the QP
yields a new QP that is more constrained than actually necessary. By choosing a “good”
slope, however, the negative impact of the additional restriction can be kept small. Haunert
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and Sering suggested to use the slope of the maximum-width strip that separates the two
edges in the input drawing. The second trick they applied is to not add all new planarity
constraints before solving the QP, but only in case the solution of the QP actually contains
crossings. For each such crossing, exactly the constraints that forbid it are added to the
QP, and the modified instance is given back to the QP solver. A similar trick was used by
Nöllenburg and Wolff [NW11] in order to deal with planarity constraints in their MIP for
drawing metro maps, see Section 23.5.2.

Concerning an example, consider the input instance depicted in Figure 23.14. This street
network consists of 5864 vertices and 6675 edges. Applying the QP-based method to that
input with the focus region represented by the black circle and a zoom factor of 2 took 51.8
seconds on a Windows PC with 3 GB main memory and a 3 GHz Intel dual-core CPU. The
output is shown in Figure 23.15(a). For comparison, Figure 23.15(b) depicts the result of
applying a fisheye transformation [YOT09] to the same input. Applying such a transfor-
mation takes only fractions of a second. Figure 23.15 also shows, in the small inlets on the
right-hand side, the residuals of the street network, which can be seen as a measure for the
deformation of the network. (The lower inlet has a legend that explains the color-coding.)
Clearly, the method of Haunert and Sering yields very good solutions for drawing maps with
focus regions. More work is needed, however, to come up with a method that is similarly
good but much faster. This would be very interesting for all kinds of mobile applications.

Böttger et al. [BBDZ08] provide an interesting link between the schematized world of
metro maps and the non-schematized world of city (street) maps. They show how to
gradually morph a map showing both types of networks between a representation that is
geographic and a representation where the map is distorted such that the metro network is
schematized.

Figure 23.14 A street map (showing a detail of Providence, Rhode Island, U.S.A.) with
a circular focus region that contains the conference site of InfoVis 2011.
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(a) the method of Haunert and Sering [HS11]

0.0 to 2.5

2.5 to 5.0

5.0 to 7.5

>7.5

(b) the fish-eye transformation of Yamamoto et al. [YOT09]

Figure 23.15 The results of applying two deformation methods to the map in Fig-
ure 23.14. The inlets show edges with residuals in red.
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23.5.4 Cable Plans

Lauther and Stübinger [LS02] briefly describe SCHEMAP, an iterative method to layout
cable plans. Their method is based on a spring embedder and does not guarantee that
all edges are drawn rectilinearly. Figures 23.16 (a) and (b) show the input to and the
output of their method (in (b), the individual cables are drawn in various colors). Their
preliminary work inspired Brandes at al. [BEKW02] who present an algorithm that produces
an orthogonal drawing of a sketch of a graph. A sketch can be handmade or the physical
embedding of a geometric network like the real position of telephone cables. Brandes et al.
use a path-based min-cost flow formulation based on that of Tamassia [Tam87]. In order
to stabilize tree-like subgraphs that stick into the outer face, they use dummy edges to
connect all vertices on the convex hull of the original embedding to a rectangular frame
that contains the whole embedding; see Figure 23.16 (c). The frame and the dummy edges
are removed before the final layout (see Figure 23.16 (d)) is returned. Their algorithm runs
in O(n2 log n) time, where n is the number of vertices. The algorithm can, in principle, also
be used to layout metro maps. It does not, however, allow for diagonals, and it does not
explicitly take into account the special features and constraints of such maps.

(a) input network (taken from [BEKW02]) (b) output of SCHEMAP [LS02]

(c) frame used by Brandes et al. [BEKW02] (d) output of Brandes et al. [BEKW02]

Figure 23.16 Schematizing cable plans.

23.6 Other Graphs

In this section we consider graphs that do not fit into the classes we have treated in the pre-
vious sections. We focus on two scenarios, one scenario that has a geographic background—
graphs that describe train connections (see Section 23.6.1)—and one scenario that uses the
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cartographic-map metaphor to convey cluster information in (non-geographic) social net-
works such as collaboration graphs (see Section 23.6.3).

23.6.1 Timetable Graphs

A timetable graph has a vertex for each train station and an edge for each pair of stations
connected by a train that does not stop in between. The graph is of interest to railway
companies to check completeness and consistency of their schedules and to analyze changes
between consecutive schedules. An obvious way to layout such graphs is to embed vertices
at their geographic locations and edges as straight-line segments between them. However,
this causes many edge crossings and small angles between edges along the same train line.
Instead, Brandes and Wagner [BW00] introduce the concept of minimal and transitive
edges. An edge {u, v} is minimal if it corresponds to a piece of track that does not contain
a station served by some other train. The remaining transitive edges correspond to through
trains.

Whereas Brandes and Wagner use straight-line edges for minimal edges and long transitive
edges, they suggest to use cubic Bézier curves [Béz72] to draw all other edges. Vertices are
kept at their geographic location to allow for easy orientation. Then the layout problem
consists of placing two control points for each Bézier curve. The authors define attractive
and repulsive forces between control points and train stations within a local neighborhood.
Using the random field layout framework [Bra99] and a customized version of the force-
directed Fruchterman-Reingold method [FR91], they managed to draw even large timetable
graphs nicely within minutes.

In subsequent work, Brandes et al. [BST00] explored ways to speed up their method
and, at the same time, achieve perfect (or any prescribed) angular resolution in drawings of
timetable graphs (and the Internet multicast backbone). They show that the flexibility of
cubic Bézier curves allows them to optimize a number of criteria (with respect to the given
straight-line drawing) in linear time by considering each vertex separately. This reduces
the running time of their method on the same graphs as above from minutes to fractions of
seconds. They refer to their new method as the rotation method. For a sample output, see
Figure 23.17(b) and compare to the straight-line layout in Figure 23.17(a).

Unfortunately, due to the locality of the rotation method, the number of edge cross-
ings and S-shaped edges increases. With a slightly different set of authors, Brandes et al.

(a) straight-line layout (b) rotation method (c) optimized by Gauss–Seidel

Figure 23.17 Timetable graphs of the sourroundings of Venice.
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Figure 23.18 A comparison of elevated great circles (left) and Bézier curves output by
the rotation method of Brandes et al. [BST00] (right).

[BSTW01] get a grip on these issues by using two new ingredients. First, the preprocess
timetable graphs in order to make them more susceptible to the rotation method. Second,
they introduce a new objective function that combines three criteria concerning the posi-
tion and shape of edges, namely angular resolution, straightness, and roundness. They show
that this objective function is a generalization of the layout function of Tutte’s barycentric
method [Tut63]. Therefore, the function has a unique minimum, which is the solution of a
system of linear equations. Due to the size of their system, they resort in using the iterative
Gauss–Seidel method, which in their case converges very fast. Their new algorithm is just
about four times slower than the rotation method, and hence 50–100 times faster than the
force-directed approach. In terms of aesthetics, the new method comes much closer to, but
doesn’t quite reach the force-directed approach; see Figure 23.17(c).

23.6.2 Internet Traffic

Clearly, computer scientists are interested in analyzing the structure of the largest man-
made network, the Internet. Visualization plays an important role in this endeavor. Cox et
al. [CEH96] created SeeNet3D, a tool that can be used to view and analyze traffic between
routers of the Internet multicast backbone (MBone). The main view of the system represents
routers at their (approximate) geographic locations on spherical or (slanted) plane maps,
and it connects routers that communicate. The connections are drawn as circular arcs above
the geodesics between the endpoints. To avoid clutter, the height of the arcs increases with
the distance of its endpoints. SeeNet3D offers several synchronized views (spoke, helix,
pincushion display) in order to facilitate data analysis.

Munzner et al. [MHCF96] extend the work of Cox et al. by using the Virtual Reality
Modeling Language (VLMR 1.0) for the three-dimensional, spherical view. This allows
them to display labels, modify the width of the arcs and let the user choose a rotation
center different from the center of the sphere. For clutter removal, they also experiment
with drawing edges only partially; namely near their endpoints.

Brandes et al. [BST00] propose a different, more traditional method for clutter reduction
by applying their rotation method for timetable graphs (see Section 23.6.1) to the spherical
setting, replacing the somewhat inflexible arcs by three-dimensional cubic Bézier curves.
For a comparison, see Figure 23.18.
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23.6.3 Social Networks

In order to get a grip on the problem of visualizing large graphs with vertex clusters, Gansner
et al. [HGK10] came up with the idea of using the metaphor of a political map. In such maps,
each country is colored such that no two neighboring countries use the same color. Gansner
et al. take advantage of this well-known map style. Their tool GMap combines existing
general-purpose graph drawing methods for visualizing the given graph (as a traditional
node-link diagram) with new methods to create artificial maps whose countries correspond
to the clusters in the graph. GMap also colors the countries, striving to make the color
difference between adjacent countries large. Note that the GMap approach, while exploiting
(the map-users exposure to) cartography, is about visualizing an abstract binary relation.
Still, we found the idea of combining the drawing of graphs and maps so striking that we
decided to discuss it in this chapter.

In their paper, Gansner et al. give specific solutions to two steps of the above approach,
namely the steps of map making and of map coloring. The map-making step assumes
that the given graph has been drawn and clustered; the authors suggest to use pairs of algo-
rithms that have similar notions of distance, for example, multi-dimensional scaling [KW78]
for drawing the graph and the k-means algorithm [Llo82] for clustering. The GMap imple-
mentation uses the GraphViz [GN00] spring embedder and modularity clustering [New06].

Making the map. Assuming a drawing of the given graph G = (V,E), Gansner
et al. first place vertex labels (with font size as some function of vertex weight). They use
standard overlap removal techniques [GH10]. In order to subdivide the given rectangular
map area such that each vertex v of G receives a cell that is large enough for its label `v,
Gansner et al. use a Voronoi-based approach. Rather than directly computing the Voronoi
diagram of the labels (which would give rise to rather artificial-looking regions), they select
a set Pv of equidistant points on the boundary of `v and perturb them slightly; see the black
dots in Figure 23.19. In order to avoid large regions with awkward shapes at the boundary
of the given graph drawing, they insert random points in the “sea,” that is, in the map
region that is sufficiently far from the drawn graph; see the small circles in Figure 23.19.
Then they compute the Voronoi diagram of the point set that they have constructed; see
the gray tessellation in Figure 23.19. The region Rv that corresponds to a vertex v of G
is the union of the Voronoi cells of the points in Pv. Let V =

⋃
C be the given clustering,

that is, a partition of V . Then, for each cluster C ∈ C, Gansner et al. simply define the

label(w)

label(u)

label(v)

Ru

RwRv

Figure 23.19 The Voronoi-based map-making step of GMap. Note that vertex v is more
important than vertices u and w. Hence, v receives a label typeset in larger font size.
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corresponding “country” to be
⋃

v∈C Rv. This finishes the description of the map-making
step.

For examples of maps that were generated with the method of Gansner et al., see Fig-
ures 23.20 and 23.21. The two graphs represent co-authorship of articles published at the
International Symposium on Graph Drawing during the years 1994–2004 and 1994–2007. It
is interesting to compare the traditional node-link diagram in Figure 23.20(a) with the cor-
responding map in Figure 23.20(b), which, technically, contains the same information—but
in a much more accessible way. It is also interesting to observe the changes that occurred
during the three additional years that were taken into account in Figure 23.21 as compared
to Figure 23.20(b). Note that Figure 23.21 is a clipping of a slightly larger map that, apart
from the “main land” has seven small islands (each with at most eight vertices)

Coloring the map. In the last step of their approach, Gansner et al. color the
countries of the map that they have computed. While the famous Four-Color Theorem
ensures that four colors always suffice for maps whose country adjacency graphGc = (Vc, Ec)
is planar, this does not hold if countries have exclaves (such as the Kaliningrad district,
which is not connected to Russia proper, or Steve North, who is part of the AT&T cluster
in Figure 23.20 but lies in a region disconnected from the main body of the cluster).

Gansner et al. model the coloring problem as follows. In order to handle exclaves properly,
they insist that each of the k := |C| = |Vc| countries actually receives a different color.
They assume that a set of colors in a linear color space has been predetermined so that the
difference between the colors is roughly equidistant. Hence, they simplify the problem by
asking for a (bijective) assignment c : Vc → {1, . . . , k} of the k vertices of Gc to the numbers
1, . . . , k such that ∑

uv∈Ec

(c(u)− c(v))2 (23.7)

is maximized over all such assignments. The problem is NP-hard [HKV11]. Therefore, they
solve the continuous version of the problem, where c′ : Vc → R must fulfill the additional
requirement that

∑
v∈V (c′(u))2 = 1. This problem is solved when c′ is the eigenvector

corresponding to the largest eigenvalue of the Laplacian of Gc. As a heuristic for the
discrete version of the problem, they let c(u) be the rank of c′(u) in the sorted sequence of
the c′-values. They suggest to apply, in a post-processing step, a 2-opt type greedy algorithm
that swaps the c-values of pairs of vertices whenever this increases the term (23.7). The
combination of the two methods seems to yield good results in practice.

Concluding, even for large social networks such as co-authorship graphs or Amazon book
co-purchase networks, the GMap yields very nice map-like visualizations. Recently, GMap
has been extended to dynamic scenarios [MKH11, HKV12].
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(a) traditional node-link diagram, label colors
indicate cluster membership

(b) same graph drawing plus map background
with countries corresponding to clusters

Figure 23.20 A portion of the co-authorship graph of articles published in the proceed-
ings of the International Symposium on Graph Drawing in the years 1994–2004.

Figure 23.21 A portion of the co-authorship graph of articles published in the pro-
ceedings of the International Symposium on Graph Drawing in the years 1994–2007. The
original map was clipped to increase the font size.
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