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20.1 Introduction

Biological processes are often represented in the form of networks such as protein-protein
interaction networks and metabolic pathways. The study of biological networks , their mod-
eling, analysis, and visualization are important tasks in life science today. An understanding
of these networks is essential to make biological sense of much of the complex data that is
now being generated. This increasing importance of biological networks is also evidenced
by the rapid increase in publications about network-related topics and the growing number
of research groups dealing with this area. Most biological networks are still far from being
complete and they are usually difficult to interpret due to the complexity of the relationships
and the peculiarities of the data. Network visualization is a fundamental method that helps
scientists in understanding biological networks and in uncovering important properties of
the underlying biochemical processes. This chapter therefore deals with major biological
networks, their visualization requirements and useful layout methods. We start with some
basic biology and important biological networks.

20.1.1 Molecular Biological Foundations

A cell consists of many different (bio-)chemical compounds. A crucial macromolecule in
organisms is DNA (deoxyribonucleic acid), which is the carrier of genetic information. But
DNA itself is not able to provide the structure of a cell, to act as a catalyst for chemical
reactions or to sense changes in the cell’s environment. Such functions are carried out by
proteins, large molecules which are built according to information stored in DNA sequences.
The central dogma of molecular biology deals with the information transfer from DNA to
proteins. It states that proteins do not code for the production of other proteins, DNA
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or RNA (ribonucleic acid), i.e., that information cannot be transferred from one protein
to another protein directly or from a protein back to nucleic acid. Instead, the standard
pathway of information flow is from DNA to RNA to protein. Genes represented by DNA
sequences are transcribed into RNA sequences which are then translated into proteins, see
Figure 20.1. These proteins have different types such as structural components (which
give cells their shape and help them move), transport proteins (which carry substances
such as oxygen), enzymes (which catalyze most chemical processes in cells and help change
metabolites into each other) and regulatory proteins (which regulate the expression of other
genes). Crick summarized the standard pathway of information flow as “DNA makes RNA,
RNA makes protein and proteins make us” [Kel00].

Figure 20.1 The standard pathway of information flow: DNA→RNA→protein. Two
kinds of proteins (enzymatic and regulatory proteins) are shown as well as two types of
gene regulation (via regulatory protein and external signal).

20.1.2 Biological Networks

Several highly important biological networks are related to molecules such as DNA, RNA,
proteins and metabolites and to interactions between them. Gene regulatory and signal
transduction networks describe how genes can be activated or repressed and therefore which
proteins are produced in a cell at a particular time. Such regulation can be caused by reg-
ulatory proteins or external signals. The related networks are considered in Section 20.2.
Protein-protein interaction networks represent the interaction between proteins such as the
building of protein complexes and the activation of one protein by another protein. Sec-
tion 20.3 deals with these networks and their visualization in detail. Metabolic networks
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show how metabolites are transformed, for example to produce energy or synthesize spe-
cific substances. Metabolic and closely related networks are studied in Section 20.4. In
Section 20.5 we consider phylogenetic trees, special networks or hierarchies which are often
built on information from molecular biology such as DNA or protein sequences. Phyloge-
netic trees represent the ancestral relationships between different species. They are used
to study evolution, which describes and explains the history of species, i.e., their origins,
how they change, survive, or become extinct. Finally, signal transduction, gene regulatory,
protein-protein interaction and metabolic networks interact with each other and build a
complex network of interactions; furthermore these networks are not universal but species-
specific, i.e., the same network differs between different species. These topics are discussed
in Section 20.6.

Often established layout methods as described in the previous chapters are used to visu-
alize biological networks. Sometimes these methods are slightly modified, e.g., by adding
extra forces to force-directed approaches. We will not discuss all these modifications in de-
tail for each network, instead we focus on two topics: metabolic networks and phylogenetic
trees. Metabolic networks have been studied for a long time in biology and biochemistry,
and specific visualization requirements are given, e.g., by established drawing styles. We
present some algorithmic extensions of the hierarchical layout approach which aim to ful-
fil these requirements. Phylogenetic tree visualizations are quite different to usual tree
drawings. Therefore we discuss specific algorithms which have been developed to produce
information-rich layouts of phylogenetic trees.

20.2 Signal Transduction and Gene Regulatory Networks

A key issue in biology is the response of a cell to internal and external stimuli and the
subsequent regulation of its genetic activity. Signal transduction and gene regulatory path-
ways and networks describe processes to coordinate the cell’s response to such stimuli. Here
we consider both networks together as the underlying mechanisms have many similarities,
the networks share some common elements and both often result in the regulation of gene
expression. Consequently, similar visualization approaches are used for signal transduction
and gene regulatory pathways and networks.

20.2.1 Definition

Signal transduction is a communication process within a cell to coordinate its responses to
an environmental change. The stimulus comes from the cell’s environment, e.g., molecules
such as hormones. The response is a reaction of the cell, e.g., the activation of a gene or
the production of energy. A signal transduction pathway is a directed network of chemical
reactions in a cell from a stimulus (an external molecule which binds to a receptor on the
cell membrane) to the response (e.g., the activation of a gene). Here we focus on signal
transduction pathways that aim at transcription factors and thus alter the expression of
genes in a cell. The signal transduction network of a cell is the complete network of all
signal transduction pathways. A signaling cascade is a process where signal transduction
involves an increasing number of molecules in the steps from the stimulus to the response.

Gene regulation is a general term for cellular control of the synthesis of proteins at the
transcription step. Gene regulation can also be seen as the response of a cell to an internal
stimulus. Often one gene is regulated by another gene via the corresponding protein (called
transcription factor), thus gene regulation is coordinated in a gene regulatory network . This
network directs the level of expression for each gene in the cell by controlling whether and
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how often that gene will be transcribed into RNA. Similar to signaling cascades in signal
transduction networks a gene can activate more genes in turn and an initial stimulus can
trigger the expression of large sets of genes.

As mentioned above we study signal transduction and gene regulation together. Fig-
ure 20.1 sketches both processes with signal transduction going from an external signal via
several steps to the activation of a gene as one possible response and gene regulation going
from a gene via a protein to another gene.

Events of signal transduction and gene regulatory processes occur in different parts of a
cell (cellular compartments). To represent compartments these networks can be modeled as
clustered graphs. A clustered graph C = (G,T ) consists of a directed graph G = (V,E) and
a rooted tree T , such that the leaves of T are exactly the nodes of G. The nodes v ∈ V of
the graph are chemical and biochemical compounds (ranging from ions, to small molecules,
macromolecules and genes) and the edges e ∈ E are biochemical events (e.g., binding, trans-
portation and reaction). The occurrence of signal transduction and gene regulatory events
in different cellular compartments can be modeled be the tree T . Each node t ∈ T represents
a cluster of nodes of G consisting of the leaves of the subtree rooted at t. The modeling
of such networks based on clustered graphs can be used for cluster-preserving layout algo-
rithms [EH00]. However, as it is only partly known in which compartment an event occurs,
signal transduction and gene regulatory processes are usually modeled by graphs. The path-
ways and networks can be derived from databases such as KEGG [KGKN02, KGH+06] and
TransPath [KVC+03] (for an overview of biological databases see, for example, [CG10]).

20.2.2 Visualization Requirements

Important goals of the visualizations of signal transduction and gene regulatory pathways
are the understanding of the regulation of cellular processes by external and internal signals,
the flow of information through the pathways and networks, the interconnection of genes,
the discovering of master-genes responsible for the regulation of larger sets of genes, and
the identification of main and alternative regulatory paths.

The main visualization requirements are:

• Pathways : The main direction of the processes (e.g., from top to bottom) should
be clearly visible to express the temporal order of the events.

• Compartments : Events of signal transduction and gene regulation occur in differ-
ent cellular compartments and this information should be visually represented.

• Complexes : Especially during signal transduction one event occurring frequently
is the building of molecular complexes. Their structure and how they are built
by interacting molecules should be displayed.

Signal transduction and gene regulatory pathways often contain metabolic reactions, there-
fore the visualization requirements discussed in Section 20.4 are also of interest. However,
there is no need for the consideration of open and closed cycles (see Section 20.4.2) and
usually co-substances are not considered.

20.2.3 Layout Methods

There are two established approaches to visualize signal transduction and gene regulatory
pathways and networks: force-directed and hierarchical layout methods. It should be noted
that some visualizations of gene regulatory networks in books and articles also use orthog-
onal or grid-based drawing styles.



20.3. PROTEIN-PROTEIN INTERACTION NETWORKS 625

Figure 20.2 A hierarchical layout of a part of the gene regulatory network of E. coli.

There are some systems supporting force-directed layouts for the visualization of signal
transduction and gene regulatory pathways and networks. These tools are either based on
re-implementations of well-known algorithms or on existing layout libraries. Usually the
visualizations do not meet the main requirements, especially the main direction and the
consideration of compartments. There are a few approaches to improve the general force-
directed method. Examples are the PATIKA system [DBD+02, GD06] where the force-
directed layout has been extended to deal with several application specific requirements,
e.g., cellular compartments, and the approach presented in [SDMW09] where placement,
directional, compartmental and other constraints are considered.

Another common approach for the visualization of signal transduction and gene regulatory
networks are graph drawing solutions based on hierarchical layout methods, see Figure 20.2.
There exist several systems which use hierarchical layouts for the visualization of these
networks, e.g., TransPath [KVC+03]. Most are based on existing layout libraries such as
dot [KN95] and Pajek [BM02]. These approaches meet some visualization requirements
such as the main direction of pathways.

20.3 Protein-Protein Interaction Networks

Proteins are one of the most important molecule groups for living cells. For example, they
serve as enzymes for catalysis of metabolic processes, signaling substances (hormones),
structural or mechanical material (hair), or transporters for other substances (oxygen).
The primary structure of a protein is a long sequence out of essentially twenty different
amino acids connected by peptide bonds .

20.3.1 Definition

A protein can interact with another protein, e.g., to build a protein complex or to activate
it. Protein-protein interactions form large networks. Their visualization aids biologists in
pinpointing the role of proteins and in gaining new insights about the processes within and
across cellular processes and compartments, e.g., for formulating and experimentally testing
specific hypotheses about gene function.

Often only the existence of an interaction between two proteins is known, but the interac-
tion type, such as activation, binding to, or phosphorylation, remains unknown. However,
for the understanding of biological processes, information about the interaction type is cru-
cial, although up to now databases contain little information about that. Therefore we
define a protein-protein interaction network as a directed graph G = (V,E, τ) where V
is the set of proteins, E the set of directed interactions (the initiator defines the source),
and τ : E → T defines the type of each edge (interaction type). Protein-protein interaction
networks can be derived from databases such as BIND [BDH03] and DIP [XFS+01].
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20.3.2 Visualization Requirements

Important goals of the visualization of protein-protein interaction networks are the under-
standing of the overall structure of the interactions, the interactions between two proteins,
and the functions of proteins by investigating the functions of their neighbors or of all
proteins within a cluster the protein belongs to. These networks are inherently complex:
large, non-planar with many edge crossings, many separate components, and nodes of a
wide range of degrees [HJP02]. Thus, the main visualization requirements are the common
aesthetic criteria for graph layouts such as even node distribution, symmetry, uniform edge
lengths, or Euclidian distances reflecting graph-theoretic distances.

20.3.3 Layout Methods

The established approach for the visualization of protein-protein interaction networks is the
force-directed layout method. For drawing networks where interactions are not typed or
not of interest accelerated force-directed methods are used: Basalaj and Eilbeck [BE99] use
an incremental multidimensional scaling heuristic [Bas99] and Han, Ju and Park [HJP02]
use Walshaw’s algorithm [Wal02], which is a multi level variant of the original algorithm of
Fruchterman and Reingold [FR91]. Both algorithms can generate two and three dimensional
drawings. For example, Figure 20.3 shows a force-directed layout of interactions in yeast
(Saccharomyces cerevisiae).

phosphorylate

phosphorylate

phosphorylate

inactivate

activate

inhibit inhibit

inhibit

bind to
bind to

bind to

bind to

bind to

bind to

bind to

bind to

bind to

inhibit [indirect]

activate [indirect]

activate [indirect] activate [indirect]

activate [indirect]activate [indirect]

inactivate

bind

bind

bind

bind

bind

bind

bind

activate

activate
activate

activate

activate

activate

activate
activate

activate

activate
activate

activate

YMR199W

YBR160W

YGR108W

YPR120C

YLR210W

YYPL256C

YAL040C

YPR119W

YGR109C

YDL155W

activate

YNL145W
YDR461W

YKL178C

YDR054C

YLR079W

YDR052C

YDL017W

YPL031C

YDL127W

YHR084W
YGR040W

YDL159W
YNL053W

YBL016W

YJL157C

YJR086W

YHR005C

YOR212W

YFL026W

YLR362W

YDR103W

YFL039C

YER114C

YBL085W

YLR229C

YAL041W

YBR200W

YHL007C

Figure 20.3 A force-directed 2D layout of protein-protein interactions in yeast (redrawn
from [FS03]).

However, the general methods cannot cope well with the complexity of protein-protein
interaction networks containing typed interactions. In those networks it is not only necessary
to show the interactions, but also to explore their different type. For computing visual
representations of a network depending on the type of interaction a combination of circular
and force-directed algorithms has been suggested [FS03]: Proteins not supporting a selected
type of interaction t ∈ T are placed on an outer circle, whereas proteins that support
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that type, i.e., to which an edge of type t is incident, are clustered inside the circle, see
Figure 20.4. Thereby the radius of the circle is chosen as big as possible while still fitting
in the drawing canvas. As the node labels have a font and thus a fixed height, the circular
placement is done with constant vertical distance between them rather than with equal
distribution. In the second phase, the positions of the nodes which are involved in the
selected interaction are recomputed. Let G′ = (V ′, E′) with E′ = { e ∈ E | τ(e) = t } and
V ′ ⊆ V the set of vertices adjacent to an edge in E′ be the subgraph representing the
interaction t. Based on a variation of the force-directed GEM layout [FLM95] the drawing
of G′ is generated. GEM optimizes minimal node distances and constant edge lengths while
it also tends to display symmetries. However, the gravity force to attract nodes to the
center is not suitable to keep all nodes in V ′ inside the circle. Either the gravity force has
to be set so high that it distorts the drawing, or it is not strong enough to prevent nodes
from escaping the circle. Thus, a reflective barrier at 80% of the circle radius is introduced.
Any node which is about to leave this perimeter is reflected toward the interior of the circle
while the energy acting on it is slightly dampened.
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Figure 20.4 The graph of Figure 20.3 with focus on interaction “bind” (redrawn
from [FS03]).

While working with a visualization focusing on a special type of interaction, users build
a mental map of the picture. Thus, when working with a dynamic visualization tool which
allows frequent changes of the interaction type of interest, it is important to help the user
in maintaining the mental map. In the described method [FS03] animations are used to
provide smooth transitions between different visualizations and ensure that the position of
the nodes on the outer circle are fixed over all types of interactions. After computing the
new drawing, the nodes are moved on straight lines from their initial positions to their final
positions. Thereby the node speed is increased in the beginning and decreased toward the
end to allow an easy perception. Edges which have been visible in the initial drawing fade
into the background while newly active edges fade from background to foreground color.
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20.4 Metabolic Networks

Metabolic reactions are fundamental to life processes, e.g., for the production of energy
and the synthesis of substances. A huge number of reactions occur at any time in living
cells and the product of one reaction is usually used by another reaction, thus metabolic
reactions are strongly interconnected and form metabolic pathways and networks.

20.4.1 Definition

A metabolic reaction R is a transformation of chemical substances or metabolites (reac-
tants) into other substances (products) usually catalyzed by enzymes . In general metabolic
reactions are reversible, that is, they occur in both directions. Such reactions are charac-
terized by a steady state, i.e., if occurring isolated they reach a state where the amount
of change in both directions is equal. A cell is in a constant exchange of substances with
its environment. Furthermore, many reactions are regulated, i.e., they are suppressed or
enhanced by other factors (allosteric control). This shifts the steady state and together
with the steady supply of substances from outside and their final use, e.g., by exporting
them from the cell, one can consider a main direction of a reaction. This is also expressed
by the differentiation of substances into reactants and products. As already seen, metabolic
reactions interact with each other, i.e., the product of one reaction is usually a reactant of
another reaction. A metabolic path P = (R1, . . . , Rn) is a sequence of metabolic reactions
where for all 1 ≤ i < n at least one product of reaction Ri is a reactant of reaction Ri+1.
The metabolic network or metabolism of a particular cell or an organism is the complete
network of metabolic reactions of this cell or organism. A metabolic pathway is a connected
sub-network of the metabolic network either representing specific processes or defined by
functional boundaries, e.g., the network between an initial and a final substance as shown
in Figure 20.5.

From a formal point of view a metabolic pathway is a hyper-graph. The nodes repre-
sent the substances and the hyper-edges represent the reactions. A hyper-edge connects
all substances of a reaction, is directed from reactants to products and is labeled with the
enzymes that catalyze the reaction. Hyper-graphs can be represented by bipartite graphs.
Additionally to the nodes representing substances, the reactions are nodes (either labeled
with the enzymes or with further nodes for enzymes) and edges are binary relations connect-
ing the substances of a reaction with the corresponding reaction node. This is a common
modeling of metabolic pathways, e.g., for their simulation using Petri-nets [HT98, RML93].
For the analysis and visualization of metabolic pathways substances are often divided into
two types [MZ03]: main substances and co-substances. Co-substances are usually small or
current metabolites, e.g., ATP, ADP, H2O, NH3 and NADH. These substances normally
transfer electrons or functional groups such as phosphate and amino groups [NIS90]. Main
substances are all other metabolites. However, this is not a global property but is given
according to the reaction [MZ03], and a small metabolite such as ATP may be considered
as main substance in a particular reaction. For visualization purposes this distinction is
important as main substances and co-substances are often differently visually represented.
Here a metabolic pathway is modeled as directed bipartite graph G = (VS , VR, E) with

nodes u1, . . . , un, w1, . . . , wm ∈ VS representing substances, nodes v ∈ VR representing reac-
tions (including the enzyme(s) catalyzing the reaction) and directed edges (u1, v), . . . , (un, v),
(v, w1), . . . , (v, wm) ∈ E representing the transformation of substances u1, . . . , un to sub-
stances w1, . . . , wm by the reaction v. A reversible reaction does not contain backward
edges as in some models for simulation purposes, instead this property of an reaction is
represented by an attribute. Another attribute is used to mark main and co-substances.
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Figure 20.5 An example of a metabolic pathway.
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There are several networks which are closely related to metabolic pathways or networks (see
Figure 20.6):

• Simplified metabolic network : A network which contains reactions, enzymes and
main substances, but no co-substances.

• Metabolite network and simplified metabolite network : A network which consists
only of substances (metabolites); in the simplified case only of main substances.

• Enzyme network : A network which consists only of the enzymes catalyzing the
reactions.

(a) (b) (c) (d)

Figure 20.6 A metabolic network (a) and corresponding networks: (b) the simplified
metabolic network, (c) the simplified metabolite network and (d) the enzyme network.
Circles denote metabolites and rectangles represent enzymes

These networks are not always directly associated with a metabolic network. For example,
the metabolites in a metabolite network are not necessarily connected according to the re-
actions of a metabolic network, but can be established by correlation analysis of metabolite
profiles [KWLF01]. An enzyme network can be derived from a protein-protein interaction
network. Again for relations in such a network a corresponding (connecting) substance can-
not always be found within the metabolic network and protein-protein interaction networks
may be undirected.

Metabolic pathways can be derived from several databases such as EcoCyc [KRS+00],
UM-BBD [EHW00], and MetaCrop [GBWK+08]. For an overview and comparison between
different databases see the work of Baxevanis, Wittig and De Beuckelaer [Bax03, WB01].
Simplified metabolic networks are widely used, a popular example is the KEGG/LIGAND
database [KGKN02].

20.4.2 Visualization Requirements

The focus of this and the following section is the visualization of (simplified) metabolic
pathways and networks. Undirected metabolite networks and enzyme networks as a subset
of protein-protein interaction networks have been discussed in Section 20.3.

Visual representations of metabolic pathways are widely used and help scientists to un-
derstand the complex relationships between the components of the networks. However, the
style of pathway visualizations varies significantly [Mic98]. Examples are biochemical and
biological textbooks [Cam96, LNC93, Mic99], pathway posters [Mic93, Nic97] and electronic
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databases [ABH94, KGKN02, OLP+00]. Visualizations of metabolic pathways should help
understanding the interconnections between metabolites, analyzing the flow of substances
through the network and identifying main and alternative paths. The established presen-
tation styles and discussions with users result in several visualization requirements [Sch02]:

1. Parts of reactions : The display of substances and enzymes is application and
user-specific. Usually for main substances their name, structural formula or both
should be shown. Co-substances should be displayed using their name or abbre-
viation and enzymes should be represented by their name or EC-number [Int92].

2. Reactions : The reaction arrow(s) should be shown from the reactants to the
products with enzymes placed on one side of the reaction arrow and co-substances
on the opposite side. The reversibility of a specific reaction should be clearly
visible. For co-substances their temporal order, which depends on the reaction
mechanism, is important, and they should be placed according to this order.

3. Pathways : The main direction of reactions (e.g., from top to bottom) should be
clearly visible to express the temporal order of reactions. There are important
exceptions to the main direction used for the visualization of specific pathways,
e.g., the citrate acid cycle or the fatty acid synthesis. The structure of these
cyclic reaction chains should be emphasized. Such pathways are characterized
by the continuous repetition of a reaction sequence in which the product of the
sequence re-enters in the next loop as a reactant. There are two mechanisms.
First, the reactant and the product of the reaction sequence are identical from
loop to loop (e.g., citrate acid cycle)— a mechanism called a closed cycle. Second,
the reactant of the reaction sequence varies slightly from the product (e.g., fatty
acid cycle) - this is called an open cycle.

Besides usual quality criteria, e.g., low number of edge crossings, these visualization
requirements result in some specific layout criteria: the hierarchical placement of nodes
depending on the structure of the network, the treatment of nodes of varying sizes and the
consideration of layout constraints for the order of co-substances and the visualization of
specific pathways. Often closed and open cycles are displayed as circles and spirals, respec-
tively. In a spiral related reaction steps from different loops and corresponding substances
are placed side by side to emphasis the cyclic structure. As this drawing style needs much
space and makes it difficult for a user to trace the reaction sequence of long pathways,
an alternative visualization would be to unravel the spiral and align related reactions and
substances horizontally.

20.4.3 Layout Methods

There are two established approaches to visualizing metabolic pathways and networks:
force-directed and hierarchical layout methods.

Force-directed methods are often used and several pathway analysis tools support such
layout. Frequently they visualize not only metabolic and metabolite pathways, but differ-
ent types of biochemical pathways and networks. Examples are PathwayAssist [NEDM03],
PathDB [MBF+00] and pathSCOUT [MdRW03]. These tools use either their own imple-
mentations of well-known algorithms or are based on existing layout libraries. For example,
VisANT [HMWD04] contains an algorithm based on the layout method of Eades [Ead84],
and the method described by Rojdestvenski [Roj03] is based on the force-directed method
of Kamada and Kawai [KK89]. On the other hand Cytoscape [SMO+03] uses the yFiles li-
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Figure 20.7 Visualizations of the metabolic pathway shown in Figure 20.5 using (a) a
force-directed algorithm [KK89] and (b) a hierarchical approach [STT81].

brary [WEK01] and the layout of BioJAKE [SMKS99], a tool for the creation, visualization
and manipulation of metabolic pathways, which is based on Graphviz [EGK+01].

Force-directed approaches do not meet the visualization requirements described in the
previous section and visualizations based on this method are very different to the diagrams
in posters and books, see Figure 20.7 (a). Different node sizes, the special placement of
co-substances and enzymes, the partitioning of substances into reactants and products as
well as the general direction of pathways are not considered. A few approaches extend this
layout method to deal with application specific requirements. Advanced approaches are
the algorithms described in [DBD+02, GD06] where directional and rectangular regional
constrains are considered which can be used to enforce different node types (e.g., main
and co-substances), layout directions and subcellular locations (cellular compartments),
and in [SDMW09] where placement, directional, compartmental and other constraints are
considered.

The second layout method for (simplified) metabolic pathways is hierarchical layout.
Tools supporting this layout are largely based on existing libraries. Such solutions show
the main direction of reactions and are sometimes able to deal with different node sizes.
However, there is no specific placement of co-substances, furthermore, open and closed cy-
cles are not emphasized. Figure 20.7 (b) shows a typical example of such a visualization.
For example, PathFinder [GHM+02] is restricted to acyclic pathways which are modeled as
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directed acyclic graphs and drawn using the VCG library [San95]. The hierarchical layout
of BioMiner [SSE+02] is based on yFiles [WEK01]. Some improved approaches consider
cyclic structures within the network or depict pathways of different topology using differ-
ent layouts, e.g., linear, circular and tree structured. Becker and Rojas [BR01] present
a graph layout algorithm for drawing metabolic pathways which emphasizes cyclic struc-
tures. However, these cycles are computed based on the topology of the network and not
on biological knowledge. Therefore pathways may be shown as circles even if they are not
closed cycles and closed cycles may not be emphasized by this method, e.g., if they contain
shortcuts within the cycle. Furthermore, open cycles are not considered. PathDB con-
tains a component for the visualization of metabolic pathways based on hierarchical layout
which allows co-substances to be represented in a smaller font on the side of the reaction
arrow [Men00, MBF+00].

The most advanced algorithms try to consider all the visualization requirements discussed
in Section 20.4.2. The approach of Karp et al. [KP94, KPR02] based on the Grasper-CL
system [KLSW94] depicts pathways of different topology using different layout algorithms
(linear, circular, tree, hierarchical). It places co-substances and enzymes beside reaction
arrows, but has restrictions concerning the order of co-substances or the layout of open
cycles. Another approach [Sch02] extends the hierarchical layout for different node sizes;
consideration of co-substances and enzymes and special layout of open and closed cycles
is implemented in the BioPath system [BFP+04]. The algorithm temporarily builds larger
nodes containing the layout of co-substances and enzymes for each reaction, extends the
layering step of hierarchical layouts by a local layering [FS04] and the crossing reduction
step by constraint crossing reduction [For04]. A drawing produced with this method is
shown in Figure 20.5.

The extensions of layering and crossing reduction are of interest also for other graph
drawing applications. Usually the layering step of hierarchical layouts computes a global
layering, i.e., a layering where nodes belong to a particular layer depending on the topolog-
ical sorting of the graph. Global layering of graphs tends to produce large drawings as the
distance between two layers is determined by the highest node of the layer. An algorithm to
compute a local layering, i.e., a layering where each node may be assigned to its own layer
depending only on the layers of its direct predecessors and their particular heights is shown
in Figure 20.8. It computes the layers from top to bottom. The y-coordinate of a node,
i.e., the upper boundary of the rectangle representing the node, and its layer are computed
together. Nodes can be split such that a high node may belong to a number of consecutive
layers. To reduce the number of layers and dummy nodes layers are joined together if they
are situated in an area starting from the current layer with depth yd. For local and global
layering the final part is the replacement of each edge-layer crossing by a dummy node in
order to compute a so called proper layering. This part is not shown in the algorithm, but
takes O (|V | ∗ |E|) in both the global and the local layering method. This is also the overall
running time for these algorithms.

For constraint crossing reduction Forster [For04] presents a heuristic shown in Algo-
rithm 20.9 which extends the well known barycenter heuristic [DETT99]. It starts with
partitioning the node set V2 into ordered node lists with one singleton list L(v) = 〈v〉 for
each node v. Later these lists are pairwise concatenated according to violated constraints.
Each violated constraint c = (s, t), i.e., a constraint that node s should be placed left of
node t, is removed. The lists containing s and t are concatenated in the required order and
treated as a cluster of vertices. The nodes s and t are replaced by a node vc to represent the
concatenated list L(vc) = L(s) ◦L(t). This node has a barycenter value which is computed
as if all edges incident to a node in L(vc) were incident to vc. After all violated constraints
have been removed the remaining nodes/node lists are sorted according to their barycenter
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Input: G = (V,E), height of nodes (h : V → R), minimum node distance d, depth of area
where layers are joint yd

Output: Coordinates y : V → R and layers l : V → N

Data: Min-heap H, counter c : V → N for the nodes
y ← ynext ← 0; l← 0
for all v ∈ V do

c(v)← indegree(v); h(v)← h(v) + d
if c(v) = 0 then

H.insert(v)
end if

end for

while !H.isEmpty() do
{Place nodes on current and consecutive layers within yd in one layer}
l← l + 1; y ← ynext
v ← H.delmin(); l(v)← l; y(v)← y
ynext ← y + h(v)
while (y + h(H.top())) ≤ (ynext + yd) do

v ← H.delmin();
l(v)← l; y(v)← y
for all u ∈ children(v) do

c(u)← c(u)− 1;
end for

end while

ynext := y + h(v);
for all v ∈ H do

{Split large nodes (on this and next layer)}
In G = (V,E) replace v by v1, v2 and the edge (v1, v2);
l(v1)← l; y(v1)← y; h(v1)← ynext − y; h(v2)← h(v)− h(v1)
Replace in heap H node v by node v2

end for

for all v ∈ V do

if v /∈ H and v not already placed and c(v) = 0 then

H.insert(v)
end if

end for

end while

Figure 20.8 Computing a local layering of the nodes

value. The result is a vertex permutation that satisfies all constraints and has few cross-
ings. During the algorithm the violated constraints have to be considered in an order which
avoids the generation of constraint cycles. This is done by the procedure FIND-VIOLATED-
CONSTRAINT(V,C) and with the O (|C|) algorithm for this procedure [For04] the running
time of the complete algorithm is O

(

|V2| log |V2|+ |E|+ |C|
2
)

.

20.5 Phylogenetic Trees

A fundamental issue in biology is the hierarchical classification of organisms in an evolu-
tionary context, i.e., reconstruction of ancestral relationships between different taxons , e.g.,
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Input: A two-level graph G = (V1, V2, E), acyclic constraints C ⊆ V2 × V2

Output: A permutation of V2 (result in L)
Data: singleton lists L and barycenter b : V → Q+

0 for all nodes
for all v ∈ V2 do

b(v)←
∑

u∈V position(u)/degree(v)
L(v)← 〈v〉

end for

V ← { s, t | (s, t) ∈ C } {constrained vertices}
V ′ ← V2 − V
while (s, t)← FIND-VIOLATED-CONSTRAINT(V,C) 6= ⊥ do

create new vertex vc
degree(vc)← degree(s) + degree(t) {update barycenter value}
b(vc)←

(

b(s) · degree(s) + b(t) · degree(t)
)

/degree(vc)
L(vc)← L(s) ◦ L(t)
for all c ∈ C do

if c is incident to s or t then
make c incident to vc instead of s or t

end if

end for

C ← C − {(vc, vc)} {remove self loops}
V ← V − {s, t}
if vc has incident constraints then

V ← V ∪ {vc}
else

V ′ ← V ′ ∪ {vc}
end if

end while

V ′′ ← V ∪ V ′

sort V ′′ by b()
L← 〈〉 {concatenate vertex lists}
for all v ∈ V ′′ do

L← L ◦ L(v)
end for

Figure 20.9 Computing a constrained crossing reduction

species, genes, or DNA sequences. The common approach for determining such relations is
the construction of a phylogenetic tree.

20.5.1 Definition

For hierarchical classification of a set of taxons A there are two common types of approaches:
The first are the phenetic methods, which have an |A| × |A| distance matrix ∆ assigning
each pair of taxons a quantitative difference as input. The goal is to group (commonly
two) most similar taxons/ancestors and thus to find out how an ancestor of theirs may
look like according to the principle of minimum evolution. This is done recursively until
a common ancestor is reached and a phylogenetic tree is obtained. All these methods are
based on clustering and thus explicitly do not consider evolutionary history. The second
type of approach is the cladistic methods, which have an |A| × |M | characteristic matrix
Γ assigning each taxon |M | characteristics like number of legs, ability to fly, or color of
skin as input. These methods try to find out the actual genealogy according to a model of



636 CHAPTER 20. BIOLOGICAL NETWORKS

the real evolutionary development assuming that identical characteristics of different taxons
indicate a common ancestry.

A phylogenetic tree (in literature also called evolutionary tree) T = (V,E, δ) is a tree
consisting of nodes V (taxons) and edges E (links). Leave nodes, i.e., nodes with exactly one
link, represent species, sequences, or similar entities; they are called operational taxonomical
units (and are represented by A ⊆ V ). Internal nodes represent (hypothetical) ancestors
generated from phylogenetic analysis; they are called hypothetical taxonomic units . The
lengths of the edges δ : E → R+

0 quantify the biological divergence between the incident
nodes, e.g., biological time or genetic distance. Phylogenetic trees are often stored in the
Newick file format [Fel95], which makes use of the correspondence between trees and nested
parentheses.
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Figure 20.10 An example of a phylogenetic tree (phylogram, redrawn from [DS04]).

A simple phenetic representative for creating a phylogenetic tree T = (V,E, δ) is the
O
(

|A|2 log |A|2
)

time “Unweighted Pair Group Method with Arithmetic Mean” (UPGMA)
[MS57]: Initially define clusters C ← { ci | 1 ≤ i ≤ |A| }, each containing one taxon of A,
set the cluster sizes s(ci) ← 1, and let V ← C. Then iterate until there is only one
cluster left: Find two closest clusters ci 6= cj according to ∆ (with the help of a priority
queue over the |A|2 elements of ∆). Join the clusters ci and cj to a new cluster cp by
C ← C ∪ {cp} − {ci, cj} with s(cp) ← s(ci) + s(cj), and add it to T with V ← V ∪ {cp}.

Introduce new edges E ← E ∪ {(cp, ci), (cp, cj)} with δ ((cp, ci))← δ ((cp, cj))←
∆ij

2 . Then
compute the distances from cp to all clusters ck ∈ C with k 6= i, j:
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∆pk ← ∆kp ←
s(ci)

s(cp)
·∆ik +

s(cj)

s(cp)
·∆jk (20.1)

At the end of the iteration delete the two columns i and j and the two rows i and j in ∆.
If ∆ is an ultrametric matrix, then UPGMA guarantees for the unique way W between

any two nodes vi, vj ∈ V :
∑

e∈W δ(e) = ∆ij and T is said to be ultrametric, too. Otherwise,
UPGMA is a heuristic.

Another common phenetic approach is theO
(

|A|3
)

time “Neighbor-Joining” (NJ) method
[SN87] which is an enhancement of UPGMA especially for protein and nucleotide data
(DNA does not evolute by accident, but follows some constraints which can be included in
the computation of NJ). The idea of NJ is to join clusters which are not only close to each
other, but also far from the rest. The initialization is the same as in UPGMA, whereas
the iteration for |C| > 2 is the following: For each cluster ci compute the mean distance
to an arbitrary other cluster ck ∈ C by d(ci) ←

∑

k 6=i
∆ik

|C|−2 . Find two closest clusters

ci 6= cj with least ∆ij − (d(ci) + d(cj)). Join the clusters ci and cj to a new cluster cp
by C ← C ∪ {cp} − {ci, cj}, and add it to T with V ← V ∪ {cp}. Introduce new edges
E ← E ∪{(cp, ci), (cp, cj)} with lengths as shown in (20.2) and compute the distances from
cp to all clusters ck ∈ C with k 6= i, j with (20.3).

δ ((cp, ci))←
1

2
∆ij +

1

2
(d(ci)− d(cj)) , δ ((cp, cj))←

1

2
∆ij +

1

2
(d(cj)− d(ci)) (20.2)

∆pk ← ∆kp ←
∆ik +∆jk −∆ij

2
(20.3)

Delete the two columns and the two rows i and j in ∆. If |C| = 2, i.e., C = {cs, ct}, then
connect cs, ct ∈ V by E ← E ∪ {(cs, ct)} with δ ((cs, ct))← ∆st and stop.

A typical representative of the cladistic category is the “Maximum Parsimony” (MP)
method. The idea is to define the (non-unique) tree T as optimal, which posits fewest
mutations as possible. For the “Small Parsimony” problem the topology of T is already
given and only the labels l(v) =

⋃

1≤j≤|M | lj(v) of the inner nodes v ∈ V , i.e., the po-

sition lj(v) of each characteristic mj ∈ M has to be determined. It can be solved in
O (|A||M | ·max { | dom(mj)| | mj ∈M }) time [Fit71], where dom(mj) is the set of all pos-
sible values which a taxon can adopt for mj . A solution is the following algorithm: Assign
each vi ∈ V for each mj ∈ M in a postorder traversal of T a set Sj(vi) ⊆ dom(mj) with
(20.4), where w1, w2 ∈ V are the children of vi.

Sj(vi)←











Γij , if vi is a leaf,

Sj(w1) ∩ Sj(w2), if Sj(v1) ∩ Sj(v2) 6= ∅,

Sj(w1) ∪ Sj(w2), otherwise.

(20.4)

In a subsequent preorder traversal of T for each node v ∈ V which has a parent u with
lj(u) ∈ Sj(v) set lj(v) ← lj(u). If no such u exists or v is a leaf set lj(v) to an arbitrary
element of Sj(v). The number of (independent) mutations in T is equal to how many times
the third item of (20.4) was used.

In the “Weighted Small Parsimony” version the probability of different mutations is not
unique, i.e., pj(a, b) defines the “price” of a change for a characteristic mj ∈M from state
a ∈ dom(mj) to b ∈ dom(mj). The goal is not to minimize the number of mutations, but
the sum of their prizes while the topology of T again is given. For that we present the
O (|A||M | ·max { | dom(mj)| | mj ∈M }) time algorithm [San75], which is a generalization
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of [Fit71]: Assign in a postorder traversal of T to each vi ∈ V quantities Sj (vi, tk(mj))
for each mj and all values tk(mj) ∈ dom(mj) with (20.5) for a leaf vi and (20.6) for an
internal node vi, where w1, w2 ∈ V are the children of vi. Considering only mutations of
characteristic mj , then Sj (v, tk(mj)) is the minimum total cost for the subtree rooted at
vi if lj(vi) was set to tk(mj).

Sj (vi, tk(mj))←

{

0, if Γij = tk(mj),

∞, otherwise.
(20.5)

Sj (vi, tk(mj))← min {pj (tk(mj), t) + Sj(w1, t) | tk(mj) 6= t ∈ dom(mj)}

+min {pj (tk(mj), t) + Sj(w2, t) | tk(mj) 6= t ∈ dom(mj)}
(20.6)

The minimum total cost of T with root r is
∑

mj∈M min {Sj(r, t) | t ∈ dom(mj) }. In a
subsequent preorder traversal of T update the labels of each vi ∈ V , where u is the parent
of vi:

lj(vi)←

{

arg min {Sj(r, t) | t ∈ dom(mj) } , if vi = r,

arg min {pj (lj(u), t) + Sj(vi, t) | t ∈ dom(mj)} , otherwise.
(20.7)

In contrast to the above, the “Large Parsimony” problem, where the topology of T is not
given, is NP-hard, regardless if discrete or weighted. However, there are some heuristics,
e.g., [HP82] which uses branch&bound to find the cheapest tree T among all trees. This
approach guarantees to find T , but its time complexity is in the worst case exponential in |A|
(exhaustive search). Another heuristic is “Nearest Neighbor Interchange” (NNI) [MGB73],
which defines a relation between each pair of trees and then uses well-known concepts like
greedy algorithms or simulated annealing to find a (local) optimum.

Given a tree T with known edge lengths δ, the likelihood of T is P (M |T ). It is a statistical
measure of how well it describes the biological data. Let Pa→b (δ(e)) be the probability
that character a ∈ dom(mj) will transform to b ∈ dom(mj) within the time δ(e), P (a) be
character frequency of a ∈ dom(mj) fixed throughout biological history, L be the set of all
reconstructions of T , i.e., all full labelings of internal nodes, and r ∈ V be the root of T .
Then [Fel73]:

P (M |T ) =
∏

j∈M





∑

l∈L



(P (lj(r)) ·
∏

(u,v)inE

Plj(u)→lj(v) (δ ((u, v)))







 (20.8)

If the character substitution is reversible, i.e., Pa→b (δ(e)) = Pb→a (δ(e)), then T is un-
rooted and r can be chosen arbitrarily without changing P (M |T ). The “Maximum Likeli-
hood” method (ML) [Fel73] computes the likelihood of a tree with dynamic programming
in O (|A||M | ·max { | dom(mj)| | mj ∈M }) time, i.e., it computes the likelihood of each
bifurcation and declares the tree with the greatest sum of likelihoods as the best. There are
also statistical methods for computing the optimum edge lengths δ for a given tree T with
regard to a maximum tree likelihood [SL99].

The topology of T is fixed. However, there is in most cases the freedom of permutation
of each node’s children and thus there are 2|V |−1 possible linear leaf orderings consistent
with the structure of a binary T . From a biological view it makes sense to order the leaves
such that similar leaves are close together. Remember, the dissimilarity of each pair of
leaves is stored in the distance matrix ∆. Therefore, the goal is to minimize the sum of
the lengths of the ways from each leaf to each other. In an optimal tree the lengths of
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all ways correspond exactly to the entries in ∆. Since in the general case no such optimal
tree exists (∆ represents a complete graph and not only a tree), leaf ordering makes sense.
It can be done, e.g., with the dynamic programming approach [BJDG+03] which needs
O
(

4k|V |3
)

time for a k-ary T . There, an optimal leaf ordering consistent with a binary
tree T is determined by a bottom-up computation of subintervals. Define M(u,wl, wr) to
be the cost of the best linear order of the leaves in the subtree T (u) induced by u ∈ V that
begins with leaf wl and ends with leaf wr. If u is a leaf, then M(u, u, u)← 0. Otherwise, let
v1 and v2 be the children of u such that wl ∈ T (v1) and wr ∈ T (v2). Then the optimality
criterion of (20.9) holds. For a k-ary tree, denote the children of u by v1, . . . , vp, 1 ≤ p ≤ k.
If wl ∈ T (v1) and wr ∈ T (vp), any ordering of v2, . . . , vp−1 is possible. Thus for each of the
p! orderings M(u,wl, wr) is computed in the same way as for binary trees by inserting k−1
internal binary dummy nodes while maintaining the current order.

M(u,wl, wr)←

min {M(v1, wl, ai) + ∆ij +M(v2, bj , wr) | leaf ai ∈ T (v1), leaf bj ∈ T (v2) } (20.9)

20.5.2 Visualization Requirements

As seen earlier, the graphs to visualize are directed (and thus rooted) or undirected trees
T = (V,E, δ) with given edge lengths δ. T is either a binary tree or very similar to a
binary tree, i.e., there are view nodes with a degree higher than three. Irrespectively of
edge direction, T should be laid out hierarchically to visualize the ancestral relationships
between taxons. Since the sum over the edge lengths on the unique path from one taxon
to another is the evolutionary distance, it is desirable to reflect this in the lengths of the
curves drawn for the edges. This means in the most simple case that δ(e) is the curve
length of e ∈ E. Traditional algorithms for drawing trees explicitly do not consider given
edge lengths. They follow aesthetic criteria as edges should have the same length and nodes
of the same depth should be drawn on the same y-coordinate [RT81, Wal90, WS79] or
radius [Ead92]. In most cases the nodes as well as the edges contain labels, which should
be drawn non-overlapping. Further a good layout follows common criteria for graph/tree
layout like no unnecessary edge crossings, compactness, and use of the entire available
drawing area.

As we will see in the next section, some layout methods will use the freedom of permuting
children to generate nice drawings. However, if not especially mentioned, we assume to have
already a fixed leave ordering given.

Although there is need to edit layouts dynamically [Car04a], e.g., collapsing and expand-
ing subtrees or editing annotations, for an easy understanding of large trees, we restrict
ourselves to static layouts for the sake of simplicity. Since there is an ongoing trend to
larger trees, which may contain several hundred thousand of nodes, a layout algorithm
must be efficient.

20.5.3 Layout Methods

The most common layouts for phylogenetic trees are vertical or circular dendrograms or
radial drawings [Car04b]. The typical representatives of the first group are the orthogonal
phylograms (see Figure 20.10), where the tree is drawn hierarchically and from left to right
and thus the vertices vertically from top to bottom. Each edge e = (u, v) has exactly one
bend b at the x-coordinate of u and at the y-coordinate v. The length of the horizontal edge
segment (b, v) represents δ(e). A parent node is vertically placed, e.g., in the middle between
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its extremal children or in the arithmetic mean of all its children. Since the topology of
the tree, the horizontal edge lengths, and the leave ordering (and thus the y-coordinates
of the leaves) are already fixed, the layout is already fixed and can be computed by the
O (|V |) time algorithm in Figure 20.11. Phylograms are easy to interpret and leave space
for edge annotations [Car04b]. Cladograms and curvograms drawing edges as straight lines
or splines are subtypes of phylograms and thus are not treated separately.

Input: T = (V,E, δ), y-coordinates of leaves
Output: Coordinates x, y : V → R for the nodes and xb, yb : E → R for the bends
Data: Stack S

r ← root(T )
S.push(r)
x(r)← 0
while !S.isEmpty() do
v ← S.top()
if v has an unmarked child w then

mark w; S.push(w)
xb ((v, w))← x(v)
x(w)← x(v) + δ ((v, w))

else

S.pop()
if v is an internal node then

y(v)← 1
2 (min { y(w) | w is a child of v }+max { y(w) | w is a child of v })

end if

if v 6= r then

u← S.top() {the parent of v}
yb ((u, v))← y(v)

end if

end if

end while

Figure 20.11 Computing coordinates for drawing a phylogram.

Another style of dendrograms is the circle layout , which draws the trees concentric around
the root with an unique radius for the leaves. Again, each edge e = (u, v) bends exactly
once at the radius of the parent u. The “vertical” segment is drawn as a segment of a circle,
whereas the “horizontal” one is an interval of a straight line from the root through the child
v, see Figure 20.13. The algorithm for computing a circle layout is similar to Algorithm 20.11
if treating x as levels (x, xb : V → {0, 1, . . . , height(T )}) with x(r) = 0 and y as angles
(y, yb : V → [0, . . . , 2π]). Instead of the Cartesian coordinates, the algorithm needs the
polar angles of the leaves distributed uniformly on a circle as input. Since the radius now is
unique for all leaves, we set x(w)← x(v)+1 instead of x(w)← x(v)+δ ((v, w)) for each edge
(v, w). This ignores edge lengths δ, however. Another approach [BBS05] which considers
edge lengths is to distribute the leaves uniformly on a circle, to set each inner node v on
the weighted Cartesian barycenter of its parent u and its children W as shown in (20.10),
and to draw each edge as a straight line. See Figure 20.13 for an example. The arising
equation system can be solved in O (|V |) time. Algorithm 20.12 shows the computation in
a unit circle. If reordering of the leaves is acceptable, the postorder traversal of the children
w of each node v can be ordered according to ascending height of T (w) (in terms of δ) plus
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δ ((v, w)). This should support the algorithm to draw edges with their desired length, but
raises the running time to O (|V | log |V |), however. Since even this cannot guarantee exact
lengths, the edges are colored, i.e., blue color means too short and red color too large, such
that the color saturation reflects the multiplicative failure.

((x(v), y(v))←
(x(u), y(u))

δ ((u, v))
+

∑

w∈W

(x(w), y(w))

δ ((v, w)) · |W |
(20.10)

Input: T = (V,E, δ) with δ(e) > 0 for all edges e
Output: Coordinates x, y : V → R for the nodes
Data: Coefficients c : V → R, offsets d : V → R2, and edge weights s : E → R

for each v ∈ V if deg(v) = 1 then l← l + 1
i← 0
postorder traversal(root(T ))
preorder traversal(root(T ))

procedure postorder traversal(node v)
for each child w of v do postorder traversal(w) {optionally ordered}
if v is a leaf or (v = root(T ) and deg(root(T )) = 1) then

c(v)← 0; d(v)←
(

cos
(

2πi
l

)

, sin
(

2πi
l

))

{fix vertex on circle}
i← i+ 1

else

s← 0
for each adjacent edge e← {u, v} do

if v = root(T ) or w is the parent of v then s(e)← 1
δ(e)

else s(e)← 1
δ(e)·(deg(v)−1)

s← s+ s(e)
end for

t← t′ ← 0
for each outgoing edge e← (v, w) do t← t+ s(e)

s
· c(w); t′ ← t′ + s(e)

s
· d(w)

if v 6= root(T ) then let e be the incoming edge of v; c(v)← s(e)
s·(1−t)

d(v)← t′

1−t

end if

end procedure

procedure preorder traversal(node v)
if v = root(T ) do x(v)← d(v)
else let u be the parent of v; x(v)← c(v) · x(u) + d(v)
for each child w of v do preorder traversal(w)

end procedure

Figure 20.12 Cartesian barycenter method for generating a circle layout.

Circle layouts provide the best use of the available space for trees with more than 100
leaves [Car04b]. Dendrograms in general are a good choice to visualize the leaf ordering.

The second type of drawings are the radial tree drawings [BBS05], which are preferred for
visualizing unrooted trees. Their edges are drawn as straight lines. To obtain coordinates
for the vertices, Algorithm 20.14 traverses T in preorder (here, breadth first search) from
a given root to the leaves. Thereby it assigns each subtree a wedge according to its size,
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Figure 20.13 Circle layouts with levels and weighted Cartesian barycenter.

i.e., according to its number of leaves (leafcount). Note that here all degree one vertices are
treated as leaves. Since the wedge sizes are independent of the root, rerooting the tree only
results in a different ordering of the children of the new root.

Input: T = (V,E, δ)
Output: Coordinates x, y : V → R for the nodes
Data: Queue Q, leafcount : V → N+ {from a previous postorder traversal}

r ← root(T )
Q.insert(r)
rightborder(r)← 0
wedgesize(r)← 2π
x(r)← y(r)← 0
while !Q.isEmpty() do
v ← Q.delete first()
η ← rightborder(v)
for each child w of v do

Q.insert(w)
rightborder(w)← η

wedgesize(w)← 2π·leafcount(w)
leafcount(r)

α← rightborder(w) + wedgesize(w)
2

x(w)← x(v) + cos(α) · δ ((v, w)); y(w)← y(v) + sin(α) · δ ((v, w))
η ← η +wedgesize(w)

end for

end while

Figure 20.14 Computing coordinates for drawing of radial tree drawings.

Clearly, Algorithm 20.14 has an O (|V |) running time if newly discovered children are
distributed in random order around their parent, e.g., as they occur in the adjacency list.
Advanced versions use the freedom of reordering the children. The first aims to reach a
symmetric layout: For each child v the metric of (20.11) is computed with a postorder
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traversal of T . It is a measure of how far the biological development goes on in the induced
subtree of v. Alternating, depending on the depth of the parent node, the child with higher
value is drawn on the left or on the right side of the corresponding wedge. If the parent
has more than two children, then the child with highest value is drawn in the middle and
the other children on its left and right side according to descending m. The second method
is to put evolutionary closely related children on near positions. For this (20.12) is used
to order the children ascending according to average distance of the leaves in the induced
subtree to the parent. However, in both cases the running time raises to O (|V | log |V |) and
ordering of children makes no sense for UPGMA-trees, since each child will have the same
m-value.

m(v)←

{

δ ((u, v)) , if v is a leaf,

δ ((u, v)) + max {m(w) | w is a child of v } , otherwise.
(20.11)

m(v)←

{

δ ((u, v)) , if v is a leaf,
∑

(v,w)(δ((u,v))+m(w))

|{w|w is a child of v }| , otherwise.
(20.12)
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Figure 20.15 Radial tree layout with the same root as in Figure 20.10 and leaf reordering
for drawing those closely related near. The right drawing is with spreading.

A lot of space is wasted by simply giving the wedge for a child v from the parent u
to v, i.e., the area between the pairwise parallel wedge borders. This can be avoided by
spreading (the subtrees induced by) the children w of v to use the full wedge of v originated
at u and not at v except of a small buffer. Spreading is done in a postprocessing step
and needs O

(

|V |2
)

time. Each label is drawn as an extension of the incoming edge of the
corresponding leaf, i.e., in the corresponding wedge. To leave space for labels in spreaded
layouts, the lengths of the labels are added to the δ values of the respective incoming edges,
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for computation only. Another more simple solution is to draw the labels with an angle of a
ray from the root through the leaves. Figure 20.15 shows a standard and a spreaded layout
of our running example. To overcome the problem of zero edge lengths, e.g., incoming edges
of ecoli----- or nico-tabac and nico-syl-A, a user definable minimum edge length is useful to
indicate edges and to simplify the labeling.

20.6 Discussion

In this chapter we discussed the visualization of biological networks. We focused on im-
portant networks closely related to molecular biology: gene regulatory, signal transduction,
protein-protein interaction and metabolic networks. Furthermore, we studied the visualiza-
tion of phylogenetic trees, hierarchies which are often built on information from molecular
biology such as DNA or protein sequences. However, there are many more networks in
biology: ecological networks such as food-webs, biological data analysis networks such as
correlation networks, and neuronal networks to name just a few. Moreover, even for the
networks discussed we presented only some visualization aspects.

Other topics of particular importance in the visualization of biological networks are,
for example, visual network comparison, exploration of network based phylogenetic trees,
visualization of data in the network context, and the exploration of integrated networks.
The same network often has to be compared in different organisms for applications such
as drug discovery and evolutionary studies. Several methods for the visual comparison of
biological networks, especially metabolic pathways, have been already developed [BDS04b,
GHM+02, Sch03], see also Figure 20.16. Differences in the network between different species
can be used to compute phylogenetic trees [MZ04, HS03] and methods for the interactive
visualization and triangulation of this complex structure (a tree built over networks) have
been developed [BDS04a].

Advances in high-throughput methods such as metabolite profiling and automatized en-
zyme assays have increased the need for automatized data analysis and visual exploration

Figure 20.16 Visual comparison of metabolic pathways in 2 1
2 dimensions.
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techniques to deduct biologically meaningful interpretations from the large amount of ex-
perimental data. The visualization of these data-rich networks provides new challenges
for algorithms such as the consideration of complex graphical elements and of different
node sizes. There is an increasing amount of approaches which look into this area, early
approaches were, for example, [BHK+05, DRS04, JKS06, TSS+05], and a comparison is
given in [KAO+09]. Also, the integration of different networks is increasingly important.
Elements of one biological network often belong to several networks. For example, a pro-
tein of a protein-protein interaction network may be an enzyme of a metabolic network,
an element of a gene regulatory network, or a leaf of a phylogenetic tree. This complex
structure of interwoven networks requires new visualization and exploration methods which
are the topic of current research. Finally, the standardization of the visual representation
of elements of biological networks has been the focus of recent developments. The Systems
Biology Graphical Notation (SBGN) [LHM+09] provides a set of standards for graphically
representing biological information. It can be considered as the biology equivalent of the
circuit diagram in electronics. The standard also contains layout requirements for SBGN
maps.

A detailed presentation of the above-mentioned and newly emerging topics would easily
fill not only another chapter, but a book. Biological network visualization is growing at an
extremely fast pace. However, our sole intention in this chapter was to raise awareness of the
relevance of graph drawing for the area of biological networks and provide an introduction
to this topic. The interested reader is referred to journals such as Bioinformatics and BMC
Bioinformatics as well as newly founded conferences such as VIZBI (since 2010) or IEEE
BioVis (since 2011) for ongoing developments.
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