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14.1 Introduction

Two-dimensional graph drawing, that is, graph drawing in the plane, has been widely
studied. While this is not yet the case for graph drawing in 3D, there is nevertheless a
growing body of research on this topic, motivated in part by advances in hardware for
three-dimensional graphics, by experimental evidence suggesting that displaying a graph
in three dimensions has some advantages over 2D displays [WF94, WF96, WM08], and by
applications in information visualization [WF94, WM08], VLSI circuit design [LR86], and
software engineering [WHF93]. Furthermore, emerging technologies for the nano through
micro scale may create demand for 3D layouts whose design criteria depend on, and vary
with, these new technologies.

Not surprisingly, the mathematical literature is a source of results that can be regarded
as early contributions to graph drawing. For example, a theorem of Steinitz states that a
graph G is a skeleton of a convex polyhedron if and only if G is a simple 3-connected planar
graph.

It is natural to generalize from drawing graphs in the plane to drawing graphs on other
surfaces, such as the torus. Indeed, surface embeddings are the object of a vast amount of
research in topological graph theory, with entire books devoted to the topic. We refer the
interested reader to the book by Mohar and Thomassen [MT01] as an example.

Numerous drawing styles or conventions for 3D drawings have been studied. These styles
differ from one another in the way they represent vertices and edges. We focus on the most
common ones and on the algorithms with provable bounds on layout properties and running
time.

In this chapter, by a drawing we always mean a graph representation (realization, layout,
embedding) where no two vertices overlap and no vertex-edge intersections occur unless
there is a corresponding vertex-edge incidence in the combinatorial graph. We say that two
edges cross if they intersect at a point that is not the location of a shared endpoint of the
edges in the combinatorial graph. A drawing is crossing-free if no two edges cross.
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456 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

It is natural to represent each vertex by a point and each edge by a straight-line segment
joining its endpoint vertices. These so-called straight-line drawings are one of the earliest
drawing styles considered both in the plane and in 3D. Steinitz’s Theorem, for example,
ensures the existence of 3D straight-line crossing-free drawings of all 3-connected planar
graphs. In fact, as will be seen later, all graphs have such drawings in 3D.

Regardless of the application, the placement of vertices is usually limited to points in
some discretized space. For example, when a drawing is to be displayed on a computer
screen, vertices must be mapped to integer grid points (pixels). This motivates the study of
grid drawings, where vertices are required to have integer coordinates. An attractive feature
of such drawings is that they ensure a minimum separation of at least one grid unit between
any pair of vertices. This aids readability and is thus a desirable aesthetic in visualization
applications.

straight-line crossing-free drawings whose vertices are located at points in Z
3 are called

3D (straight-line) grid drawings. The relaxation where edges are represented with polyg-
onal chains with bends (if any) also at grid-points gives rise to the so-called 3D polyline
grid drawings. Here, a point where a polygonal chain changes its direction is called a bend.
Straight-line grid drawings are thus a special case of polyline grid drawings. Polyline draw-
ings provide great flexibility. In particular, they allow 3D drawings with smaller volume
than is possible in the straight-line model. The number of bends, however, should be kept
as small as possible, since bends typically reduce the readability of a drawing.

If each segment of each edge in a polyline drawing is parallel to one of the three coordinate
axes, then we say the drawing is an orthogonal drawing. Orthogonal drawings are thus
special cases of polyline drawings. Since the orthogonal style guarantees very good angular
resolution, it is commonly chosen for VLSI design and data-flow diagrams. However, since
each vertex is represented by a point, for a graph to admit a 3D orthogonal drawing, each
vertex must have degree at most six. To overcome this difficulty, orthogonal box drawings
were introduced, where each vertex is represented by an axis-aligned box. In such drawings,
in addition to the volume and number of bends, various aspects of the sizes and shapes of
the boxes are taken as quality measures for the drawing.

Different drawing styles may be subject to different measures of quality. More often than
not, however, the measure of a good drawing, regardless of its purpose, rewards having few
edge crossings. When a drawing is to be displayed on a page or a computer screen, or is to
be used for VLSI design, it is important to keep the volume small to avoid wasting space.
On the other hand, a bend on an edge increases the difficulty for the eye to follow the course
of the edge. For this reason, it is desirable to keep the edges straight, or at least to keep
small the total number of bends and the maximum number of bends per edge.
Since by definition 3D grid drawings have straight edges and no crossings, volume is the

main aesthetic criterion for this drawing style. The convention for measuring the volume
of a drawing is to multiply together the number of grid points on each of three mutually
orthogonal sides of the axis-aligned bounding box of the drawing. In polyline and orthogonal
3D drawings, in addition to the volume, the number of bends is a measure of the quality of
the drawing.

In the last decade, this topic has been extensively studied by the graph drawing commu-
nity. Hence much of the following chapter, in particular Sections 14.2 and 14.3, is dedicated
to reviewing the results obtained for 3D (polyline) grid drawings and 3D orthogonal draw-
ings with the volume and the number of bends as the main aesthetic criteria.

Other measures of quality for 3D drawings include: angular resolution, defined as the size
of the smallest angle between any pair of edges incident to the same vertex; aspect ratio,
which is the ratio of the length of the longest side to the length of the shortest side of the
bounding box of the drawing; and edge resolution, which is the minimum distance between
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a pair of edges not incident to the same vertex. When the underlying combinatorial graph
has non-trivial automorphisms, displaying some of the symmetries of the graph can produce
beautiful drawings. The display of symmetry in a 3D drawing is one of the various topics
covered in Section 14.5. Another one concerns 3D crossing-free straight-line drawings where
vertices have real coordinates, that is, they are not restricted to lie on the integer grid.

Suppose edge crossings are permitted for graphs drawn in the plane, but that the edges
must then be colored so that no two edges that cross each other have the same color. The
minimum number of colors, taken over all possible drawings of that graph, is the classical
graph parameter known as thickness. If the edges are required to be straight, then this
parameter is called the geometric thickness. If, in addition, the vertices are required to lie
in convex position (i.e., the convex hull of the vertices contains no vertices in its interior),
then the parameter is called the book thickness.

These three extensively studied graph parameters have a natural interpretation in 3D
graph drawing that is important for multilayered VLSI design. Undesired crossings of
uninsulated wires are avoided by having wires placed onto several different physical layers,
making each layer crossing-free. The graph drawing convention associated with this appli-
cation area represents each vertex as a line-segment parallel to the Z-axis. Each vertex is
intersected by all layers (that is, by planes orthogonal to the Z-axis). Each edge is confined
to one of the layers and is drawn between its endpoints in its layer. Edges in the same layer
are not allowed to cross. Associating layers, and the edges placed in them, with colors,
clearly two edges with the same color do not cross. Thus the minimum possible number of
layers corresponds to the thickness parameter. Motivated by the fact that only a limited
but increasing number of layers is possible in VLSI technology and also noting that a small
number of layers is easier for humans to understand visually, the number of layers of a
drawing, that is, its thickness, is the main criterion for the quality for such drawings. The
thickness parameters are the subject of Section 14.4.

Graph theory notation used in this chapter: In what follows, all graphs are simple unless
stated otherwise. A multigraph is a graph with no loops but it may have multiple copies
of edges. A graph G with n = |V (G)| vertices, m = |E(G)| edges, maximum degree at
most ∆, and chromatic number c is referred to as an n-vertex m-edge degree-∆ c-colorable
graph. The complete graph on n vertices is denoted by Kn.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from a
subgraph of G by contracting edges. A class of graphs is minor-closed if for any graph in
the class, all its minors are also in the class. For example, the class of all planar graphs is
minor-closed since contracting and/or deleting an edge in a planar graph results in another
planar graph. On the contrary, contracting an edge in a 4-regular graph may result in a
vertex of degree higher than 4, thus the class of all 4-regular graphs is not minor-closed. A
minor-closed class of graphs is proper if it is not the class of all graphs.

14.2 Straight-Line and Polyline Grid Drawings

14.2.1 Straight-Line Grid Drawings

A three-dimensional straight-line grid drawing (sometimes called a three-dimensional Fary
grid drawing) of a graph, henceforth called a 3D grid drawing , represents the vertices by
distinct points in Z

3 (called grid-points), and represents each edge as a line-segment between
its endpoints, such that edges only intersect at common endpoints, and an edge intersects
only the two vertices that are its endpoints (see Figure 14.1). In contrast to the case for
the plane, every graph has a 3D grid drawing, by a folklore construction. It is therefore of
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interest to optimize certain quality measures of such drawings. The most commonly studied
measure for 3D grid drawings is their volume, measured as follows.

Figure 14.1 A 3D grid drawing of a graph.

The bounding box of a 3D grid drawing is the minimum axis-aligned box containing the
drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1, then we speak
of an X × Y × Z grid drawing with volume X · Y · Z. That is, the volume of a 3D grid
drawing is the number of gridpoints in the bounding box. This definition is formulated so
that two-dimensional straight-line grid drawings have positive volume.

A starting point for many results on 3D grid drawings is the following simple fact.

Fact 14.1 A straight-line drawing of a graph (on n > 3 vertices) such that no four vertices
are coplanar has no crossings.

This fact is key to the folklore construction that proves that every graph has a 3D grid
drawing. In particular, a moment curve M is a curve defined by parameters (q, q2, q3).
It is not difficult to prove that no four distinct points on this curve are coplanar. Thus
given a graph G on n vertices, a 3D grid drawing of G can be obtained by placing each
vertex vi ∈ V (G), 1 ≤ i ≤ n, at (i, i2, i3). This construction gives an n × n2 × n3 3D
grid drawing with O(n6) volume. Cohen et al. [CELR96] improved this bound by placing
each vertex vi at the grid-point (i, i2 mod p, i3 mod p), where p is a prime such that n <
p ≤ 2n. The resulting drawing is an n × 2n × 2n 3D grid drawing with O(n3) volume.
This construction is a generalization of an analogous two-dimensional technique due to
Erdös [Erd51]. Furthermore, Cohen et al. [CELR96] proved that the Ω(n) × Ω(n) × Ω(n)
bounding box and thus the Θ(n3) volume bound is asymptotically optimal in the case of
the complete graph Kn. The proof of this lower bound is based on the fact that in any 3D
grid drawing of Kn, no five vertices can be coplanar, so each side of the bounding box has
size at least n/4.

Theorem 14.1 [CELR96] Every n-vertex graph has a 3D grid drawing with O(n3) volume.
Moreover, the bounding box of every 3D grid drawing of Kn, the complete graph on n
vertices, is at least n

4 × n
4 × n

4 , and thus has Ω(n3) volume.
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Since complete graphs require cubic volume, it is of interest to identify fixed graph pa-
rameters that allow for 3D grid drawings with smaller volume. The first such parameter
to be studied was the chromatic number [CS97, PTT99]. Calamoneri and Sterbini [CS97]
proved that each 4-colorable graph has a 3D grid drawing with O(n2) volume. Generalizing
this result, Pach et al. [PTT99] proved the following theorem.

Theorem 14.2 [PTT99] Every n-vertex graph with chromatic number χ has a 3D grid
drawing with O(χ2n2) volume. This bound is asymptotically optimal for the complete bi-
partite graphs with equal sized bipartitions.

The main idea behind this result is similar to the one for general graphs. In case of
complete graphs, crossings are avoided by ensuring that no four vertices are coplanar.
That restriction, however, necessarily leads to cubic volume 3D grid drawings and is overly
cautious for graphs that have small chromatic number. In particular, vertices that belong
to the same color class may all be coplanar, as there are no edges between them. To avoid
crossings, it suffices to ensure that if two edges share an endpoint, that they are not collinear
and otherwise, that they are not coplanar. The construction in [PTT99] does exactly that.
All the vertices that belong to the same color class have the same x-coordinate; in particular,
they all belong to some plane orthogonal to the X-axis. Edge crossings are then avoided
by appropriate choice of y- and z-coordinates for the vertices. Specifically, if p ∈ O(n) is
a suitably chosen prime, the main step of this algorithm represents the vertices in the i-th
color class by grid-points in the set {(i, t, it) : t ≡ i2 (mod p)}. It follows that the volume
bound is O(c2n2) for c-colorable graphs.

Many interesting graph families have bounded chromatic number, including planar graphs,
bounded genus graphs, and bounded treewidth graphs. In fact all proper minor-closed fam-
ilies have bounded chromatic number. By the above result, all such families have 3D grid
drawings with quadratic volume. This naturally gives rise to the question of which graph
families admit 3D grid drawings with subquadratic, or even linear volume for each mem-
ber of a class. Since n distinct points on the 3D integer grid cannot fit in a sublinear
volume bounding box, linear volume grid drawings are the best possible for any graph.
Pach et al. [PTT99] proved that the quadratic volume bound is asymptotically optimal
for the complete bipartite graph with equal sized bipartitions. This was generalized by
Bose et al. [BCMW04] for all graphs.

Theorem 14.3 [BCMW04] Every 3D grid drawing with n vertices and m edges has volume
at least 1

8 (n+m). In particular, the maximum number of edges in an X × Y × Z drawing
is exactly (2X − 1)(2Y − 1)(2Z − 1)−XY Z.

For example, graphs admitting 3D grid drawings with O(n) volume have O(n) edges.
Planar graphs are one natural class to consider as a candidate for admitting 3D grid

drawings with small volume. They have chromatic number at most four, and thus, by the
above results [CS97, PTT99], they admit O(n2) volume 3D grid drawings. More strongly,
the classical result of de Fraysseix et al. [dFPP90] and Schnyder [Sch89] states that every
planar graph has a 1×O(n)×O(n) 3D grid drawing, that is, planar graphs admit 2D grid
drawings in O(n2) area. In 2D this is the best possible, as there are planar graphs that
require quadratic area. Intuition suggests, however, that in 3D one should be able to do
better. The following open problem has been first suggested by Felsner et al. [FLW01].

Open Problem 14.1 [FLW01] Do planar graphs admit linear volume 3D grid drawings?

Although the problem is still open, in a recent breakthrough, Di Battista et al. [DFP10]
showed that planar graphs admit O(n log16 n) volume 3D grid drawings. Some progress has
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also been made for more general classes of graphs. In particular, all proper minor-closed
families of graphs have been proved to admit O(n

3

2 ) volume 3D grid drawings [DW04c].
Refer to Table 14.1 for exact bounds.

Most, if not all, of the successful attempts to derive linear volume bounds have been done
by constructing 3D grid drawings that fit in a bounding box with dimensions O(1)×O(1)×
O(n). In such a drawing all the vertices lie on O(1) parallel lines. Thus not only does
such a drawing have many quadruples of vertices that are coplanar, but in fact a constant
fraction of all vertices are collinear.

Consider a drawing of a graph where all vertices lie on t lines parallel to the Z-axis, such
that no three lines are coplanar and no two vertices on the same line are adjacent. Suppose
there is a pair of edges that cross in such a drawing and that we would like to remove just
that one crossing. If the four endpoints of the edges belong to four distinct parallel lines,
as illustrated in Figure 14.2, then, for example, increasing the z-coordinate of the highest
vertex removes the crossing. Whenever four endpoints belong to three distinct lines, the two
edges do not cross in the projection to the XY-plane and thus cannot cross in the drawing. If,
however, the endpoints belong to two parallel lines, then the only way to remove the crossing
is to change the ordering of the vertices on one of the two lines, as illustrated in Figure 14.2.
These are the difficult crossings to handle, as they arise from a combinatorial situation
of “bad” vertex orderings. Having that in mind, Dujmović et al. [DMW02] introduced
track layouts of graphs, although similar structures are implicit in much previous work
[FLW01, HLR92, HR92, RVM95].

y z

x

v vx x

y w yw

Figure 14.2 Removing a crossing when the edge endpoints are on parallel lines.

Let {Vi : i ∈ I} be a proper vertex t-coloring of a graph G. Let <i be a total order on
each color class Vi. Then {(Vi, <i) : i ∈ I} is a t-track assignment of G. An X-crossing in a
track assignment consists of two edges vw and xy such that v <i x and y <j w, for distinct
colors i and j. A t-track layout of G is a t-track assignment of G with no X-crossing. The
track-number of G, denoted by tn(G), is the minimum integer t such that G has a t-track
layout. Some authors [DLMW05, Di 03, DLW02, DM03] use a slightly different definition of
track layout (called improper), in which intra-track edges are allowed between consecutive
vertices in a track.



14.2. STRAIGHT-LINE AND POLYLINE GRID DRAWINGS 461

Track layouts, which are a purely combinatorial structure, and 3D grid drawings are
intrinsically related. In particular, a graph G has a O(1)×O(1)×O(n) 3D grid drawing if
and only if G has O(1) track number [DMW05]. More precisely:

Theorem 14.4 [DMW05, DW04c] Let G be an n-vertex graph with chromatic number
χ(G) = c and track-number tn(G) = t. Then:

(a) G has an O(t)×O(t)×O(n) 3D grid drawing with O(t2n) volume, and

(b) G has an O(c)×O(c2t)×O(c4n) 3D grid drawing with O(c7tn) volume.

Conversely, if a graph G has an X × Y × Z 3D grid drawing, then G has track-number
tn(G) ≤ 2XY .

The key to proving part (a) of the theorem is knowing that there are no bad orderings,
that is, no X-crossings; the rest is a generalization of the number theoretic teachings of
Erdös that assigns appropriate z-coordinates to vertices such that crossings between edges
whose endpoints belong to four distinct tracks are avoided. Proving part (b) of this theorem
is much more involved.

Theorem 14.4 (a) says that graphs that have bounded track number admit linear volume
3D grid drawings. Part (b) says that graphs that have bounded chromatic number and sub-
linear track number have sub-quadratic 3D grid drawings. This provides a strong motivation
for studying track layouts of different graph families. Consider first a few simple examples.
A caterpillar is a tree such that deleting the leaves gives a path. It is simple to verify that
a graph has track-number two if and only if it is a caterpillar. Trees have track number at
most three. That can be verified by starting with a natural 2D crossing-free drawing of a
tree, then wrapping it around a triangular prism, as illustrated in Figure 14.3.

4

5

2

1

3

1

2

3

Figure 14.3 3-track layout of trees.

For track layouts such that no two adjacent vertices are allowed to be in the same track,
the chromatic number of a graph is a lower bound for its track number. For example,
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tn(Kn) = n. However, that lower bound is very weak. Observe, for example, that the
complete bipartite graph Kn,n, although 2-colorable, has track number n+1: if two vertices
from the same bipartition belong to the same track, then no pair of vertices from the other
bipartition can lie on the same track, as otherwise that would imply that K4,4 has track
number two.

The concept of track layouts, in the case of three tracks, is implicit in the work of
Felsner et al. [FLW01]. They established the first non-trivial O(n) volume bound for out-
erplanar graphs. Their algorithm “wraps” a two-dimensional drawing around a triangular
prism. They proved that outerplanar graphs have improper track number at most three.

Dujmović et al. [DMW05] proved that graphs of bounded treewidth have bounded track
number and therefore have linear volume 3D grid drawings. Many graphs arising in ap-
plications of graph drawing have small tree-width. Outerplanar and series-parallel graphs
are the obvious examples. They have treewidth at most two. Another example arises in
software engineering applications. Thorup [Tho98] proved that the control-flow graphs of
go-to free programs in many programming languages have treewidth bounded by a small
constant: in particular, 3 for Pascal and 6 for C. Other families of graphs having bounded
tree-width (for constant k) include: almost trees with parameter k, graphs with a feedback
vertex set of size k, band-width k graphs, cut-width k graphs, planar graphs of radius k,
and k-outerplanar graphs. If the size of a maximum clique is a constant k then chordal,
interval and circular arc graphs also have bounded tree-width.

Note that bounded tree-width is not necessary for a graph to have a 3D grid drawing with
O(n) volume. The

√
n×√

n plane grid graph has Θ(
√
n) tree-width and has a

√
n×√

n×1
grid drawing with n volume. It also has a 3-track layout (simply wrap the grid graph,
along its diagonals, around a triangular prism,) and thus has a O(1)×O(1)×O(n) 3D grid
drawing.

The track number of a graph is at most its pathwidth plus one [DMW02]. Many interest-
ing graph families have bounded chromatic number and pathwidth at most O(

√
n). Thus

by Theorem 14.4 (b) they have O(n
3

2 ) volume 3D grid drawings [DW04c]. Included in this
family are planar graphs, graphs of bounded genus, graphs with no Kh-minor where h is a
constant, and in fact all proper minor-closed families. Refer to Table 14.1 for details.

A vertex coloring is said to be a strong star coloring [DW04c] if, for each pair of color
classes, all edges (if any) between them are incident to a single vertex. That is, each
bichromatic subgraph consists of a star and possibly some isolated vertices. The strong
star chromatic number of a graph G, denoted by χsst(G), is the minimum possible number
of colors in a strong star coloring of G. No matter what ordering on the vertices in each
color class in a strong star coloring, there is no X-crossing. Thus the track-number tn(G) ≤
χsst(G), as observed in [DW04c].

Every graph with m edges and maximum degree ∆ has track number at most 14
√
∆m.

The proof relies on the Lovàsz Local Lemma [DW04c]. It is well known that the chromatic
number χ of a graph G is at most its maximum degree plus one. Together with Theorem 14.4
(b), this implies that graphs of bounded degree have 3D grid drawings with O(n

3

2 ) volume.

Recently these results have been improved by essentially replacing ∆ by the weaker notion
of degeneracy. A graph G is d-degenerate if every subgraph of G has a vertex of degree at
most d. The degeneracy of G is the minimum integer d such that G is d-degenerate. A
d-degenerate graph is (d+1)-colorable by a greedy algorithm. For example, every forest is 1-
degenerate, every outerplanar graph is 2-degenerate, and every planar graph is 5-degenerate.
Dujmović and Wood proved that every m-edge d-degenerate graph G satisfies (tn(G) ≤)
χsst(G) ≤ 5

√
2dm and (tn(G) ≤) χsst(G) ≤ (4 + 2

√
2)m2/3. Again, Theorem 14.4 (b)

implies that graphs of bounded degeneracy have 3D grid drawings with O(n
3

2 ) volume.
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The family of graphs with bounded degeneracy is vast. It includes all proper minor-
closed families, such as, for example, planar graphs. In fact the family is strictly larger than
that, since there are graph classes with bounded degeneracy but with unbounded clique
minors. For example, the graph K ′

n obtained from Kn by subdividing every edge once has
degeneracy two, yet contains a Kn minor.
An affirmative answer to the following open problem would imply linear volume 3D grid

drawings for planar graphs and thus an affirmative answer to Open Problem 14.1.

Open Problem 14.2 [DMW05] Do planar graphs have O(1) track-number?

A tight relationship between track layout and another well-studied type of graph drawing
called queue layout has been established in [DPW04]. Queue layouts were introduced by
Heath et al. [HLR92, HR92] and are defined as follows. A queue layout of a graphG = (V,E)
consists of a total order < on the vertices V (G), and a partition of the edges E(G) into
queues, such that no two edges in the same queue are nested with respect to <: two edges
vw and xy are nested with respect to < if v < x < y < w. The minimum number of queues
in a queue layout of G is called the queue-number of G, and is denoted by qn(G).
It has been established in [DPW04] that a graph has a bounded track number if and only

if it has a bounded queue number. Thus Open Problem 14.2 is equivalent to following open
problem from 1992 due to Heath et al. [HLR92, HR92].

Open Problem 14.3 [HLR92, HR92] Do planar graphs have O(1) queue-number?

The best-known upper bound for the queue-number of planar graph is O(log4n), due to Di
Battista et al. [DFP10]. Unfortunately, for more general proper minor closed families, the
best-known bound for both the track number and the queue number is O(

√
n). The bound

follows easily from the fact that proper minor closed families have pathwidth bounded by
O(

√
n).

The best-known bounds on the volume of 3D grid drawings for different graph families
are summarized in Table 14.1.

Although almost all of the results on 3D grid drawings focus on the volume of such
drawings, some results about aspect ratio of 3D grid drawings were reported in [DMW02].

3D grid drawings have been generalized in a number of ways.

Crossings allowed: Pór and Wood [PW04] considered a variation of 3D grid drawings
where edges are allowed to cross. Specifically, they considered 3D drawings where each
vertex is represented by a distinct grid point in Z

3 such that the line-segment representing
each edge does not intersect any vertex, except the two at the endpoints of the edge. Let
such drawings be called 3D straight-line grid drawings. With that relaxation, better volume
bounds are possible. For instance, a 3D straight-line grid drawing of the complete graph
Kn is nothing more than a set of n gridpoints with no three collinear, and such a set
can be found with grid volume Θ(n

3

2 ) [PW04]. Generalizing this construction, Pór and
Wood [PW04] proved that if edge crossings are allowed, every c-colorable graph has a 3D
straight-line grid drawing with O(n

√
c) volume. That bound is optimal for the c-partite

Turán graph.
Dujmović et al. [DMS13] studied the crossing number of graphs that have linear volume

3D straight-line grid drawings. In particular, they showed that in every 3D straight-line grid

drawing of volume N of a graph with m ≥ 16N edges, there are at least Ω(m
2

N log log m
N )

crossings. They also showed that this bound cannot be much bigger, namely for all m ≤
N2/4, there is a graph with m edges that has a 3D straight-line grid drawing of volume
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N and O(m
2

N log m
N ) crossings. One such graph is the complete bipartite graph, KN/2,N/2.

They showed similar results in higher dimensions.

14.2.2 Upward

Another straight-line graph drawing model for the 3D integer grid is the upward 3D grid
drawing. A 3D grid drawing of a directed graph G is upward if z(v) < z(w) for every arc
vw of G. Obviously an upward 3D grid drawing can only exist if G is a directed acyclic
graph (a dag). Upward two-dimensional drawings have been widely studied.

Poranen [Por00] proved that series-parallel digraphs have upward 3D grid drawings with
O(n3) volume, and that this bound can be improved to O(n2) and O(n) in certain special
cases.

Di Giacomo et al. [DLMW05] extended the definition of track layouts to dags as follows.
An upward track layout of a dag G is a track layout of the underlying undirected graph of
G, such that if G+ is the directed graph obtained from G by adding an arc from each vertex
v to the successor vertex in the track that contains v (if it exists), then G+ is still acyclic.
The upward track number of G, denoted by utn(G), is the minimum integer t such that G
has an upward t-track layout. Di Giacomo et al. [DLMW05] proved the following analogue
of Theorem 14.4 (a).

Theorem 14.5 [DLMW05] Let G be an n-vertex graph with upward track-number utn(G) ≤
t. Then G has an O(t)×O(t)×O(tn) upward 3D grid drawing with O(t3n) volume. Con-
versely, if a dag G has an X × Y ×Z upward 3D drawing then G has upward track-number
utn(G) ≤ 2XY .

This theorem provides motivation for studying upward track layouts of dags. Di Gia-
como et al. [DLMW05] proved that directed trees have upward track number at least four
and at most seven. The upper bound was subsequently improved to five [DW06]. Together
with the above theorem, that implies that all directed trees have upward 3D grid drawings
with linear volume [DLMW05]. Although undirected outerplanar graphs (and all bounded
treewidth graphs) have bounded track number and linear volume 3D grid drawings, the
situation is much different in the case of dags. In particular, Di Giacomo et al. [DLMW05]
proved that there is an outerplanar dag that requires Ω(n3/2) volume in every upward 3D
grid drawing. In particular, as illustrated in Figure 14.4, let Gn be the dag with vertex set
{ui : 1 ≤ i ≤ 2n} and arc set {−−−−→uiui+1 : 1 ≤ i ≤ 2n− 1} ∪ {−−−−−−−→uiu2n−i+1 : 1 ≤ i ≤ n}.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

Figure 14.4 Illustration of G5.

Suppose that Gn has an X × Y × Z upward 3D grid drawing. Observe that Gn is
outerplanar and has a Hamiltonian directed path (u1, u2, . . . , u2n). Thus (u1, u2, . . . , u2n)
is the only topological ordering of Gn. Thus Z ≥ 2n . Di Giacomo et al. [DLMW05] proved
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that utn(Gn) ≥
√
2n. Theorem 14.5 implies that 2XY ≥ utn(Gn) ≥

√
2n. Hence the

volume is Ω(n3/2) [DLMW05].
This result highlights a substantial difference between 3D grid drawings of undirected

graphs and upward 3D grid drawings of dags, since every (undirected) outerplanar graph
has a 3D grid drawing with linear volume [FLW01]. In the full version of their paper, Di
Giacomo et al. [DLMW05] constructed an upward 3D grid drawing of Gn with O(n3/2)
volume. It is unknown whether every n-vertex outerplanar dag has an upward 3D grid
drawing with O(n3/2) volume.

The proof that every graph has a 3D grid drawing with O(n3) volume [CELR96] gener-
alizes to upward 3D grid drawings. In particular,

Theorem 14.6 [DW06] Every dag G on n vertices has a 2n × 2n × n upward 3D grid
drawing with 4n3 volume. Moreover, the bounding box of every upward 3D grid drawing of
the complete dag on n vertices is at least n

4 × n
4 × n, and thus has Ω(n3) volume.

As already stated, Pach et al. [PTT99] proved that every c-colorable graph has an O(c)×
O(n) × O(cn) drawing with O(c2n2) volume. The result generalizes to upward 3D grid
drawings as follows.

Theorem 14.7 [DW06] Every n-vertex c-colorable dag G has a c×4c2n×4cn upward 3D
grid drawing with volume O(c4n2).

Every acyclic orientation of Kn,n requires O(n2) volume in every upward 3D grid drawing
[PTT99]. Hence Theorem 14.7 is tight for constant c. The theorem implies the quadratic
volume upper bound for numerous families of dags, including series-parallel dags, planar
dags, dags of constant treewidth, all proper minor-closed dags, dags with bounded degen-
eracy, and so on.

14.2.3 Polyline

Consider a relaxation of 3D straight-line grid drawings where edges are allowed to have
bends. In particular, a three-dimensional polyline grid drawing of a graph, henceforth
called a 3D polyline drawing , represents the vertices by distinct gridpoints, and represents
each edge as a polygonal chain between its endpoints with bends (if any) also at gridpoints,
such that distinct edges only intersect at common endpoints, and each edge only intersects
a vertex that is an endpoint of that edge. Here a point where a polygonal chain changes its
direction is called a bend. A 3D polyline drawing with at most b bends per edge is called a
3D b-bend drawing. Thus 0-bend drawings are 3D grid drawings.

As discussed in the next section, the volume and number of bends in 3D polyline drawings
where edges are restricted to be axis-aligned have been studied extensively. The study of
3D polyline drawings has only recently been initiated [DW04b]. Tools developed for 3D
(straight-line) grid drawings, such as track layouts, turned out to be useful for the polyline
drawings as well. That is simply because a 3D b-bend drawing of a graph G is precisely
a 3D straight-line drawing of a subdivision of G with at most b division vertices per edge.
This provides a motivation for a study of track layouts of graph subdivisions. Recall that a
subdivision of a graph G is a graph D obtained from G by replacing each edge vw ∈ E(G)
by a path having v and w as endpoints and having at least one edge. Internal vertices on
this path are called division vertices.
Dujmović and Wood [DW04b] proved that every n-vertex m-edge graph G has a subdi-

vision D with at most log n division vertices per edge and such that the track number of D
is at most four. Thus by the aforementioned relationship to the 3D grid drawings, D has a
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(straight-line) 3D grid drawing with O(|V (D)|) volume. Since |V (D)| = m log n, it follows
that every graph G has a 3D polyline drawing with O(m log n) volume and at most log n
bends per edge. These results are further generalized [DW04b] as indicated in Table 14.1.
For example, complete graphs admit 2-bend 3D polyline grid drawings in O(n2) volume.
That bound is best possible if the number of bends per edge is restricted to be at most two.
If only one bend per edge is allowed, then the complete graphs admit 1-bend 3D polyline
grid drawings with O(n5/2) [DEL+05] volume. The best-known lower bound in this case is
Ω(n2).

Table 14.1 summarizes the best-known upper bounds on the volume and bends per edge
in 3D grid drawings and 3D polyline drawings. In general, there is a trade-off between few
bends and small volume in such drawings, which is evident in Table 14.1.

graph family bends volume reference
per edge

straight-line
arbitrary 0 O(n3) [CELR96]

arbitrary 0 O(m4/3n) [DW04c]
maximum degree ∆ 0 O(∆mn) [DW04c]

maximum degree ∆ 0 O(∆15/2m1/2n) [DW06]
d-degenerate 0 O(dmn) [DW06]

d-degenerate 0 O(d15/2m1/2n) [DW04c]
c-colorable 0 O(c2n2) [PTT99]

c-colorable 0 O(c6m2/3n) [DW04c]

proper minor-closed 0 O(n3/2) [DW04c]
planar 0 O(n log16 n) [DFP10]
outerplanar 0 O(n) [FLW01]
bounded treewidth 0 O(n) [DMW05]

polyline
c-colorable q-queue 1 O(cqm) [DW04b]
arbitrary 1 O(nm) [DW04b]

arbitrary 1 O(n5/2) [DEL+05]
q-queue 2 O(qn) [DW04b]
q-queue (constant ǫ > 0) O(1) O(mqǫ) [DW04b]
q-queue O(log q) O(m log q) [DW04b]

Table 14.1 Volume of 3D straight-line and polyline drawings of graphs with n vertices
and m ≥ n edges.

In the case of dags, upward variants of 3D polyline grid drawings have also been consid-
ered. For instance, with two bends per edge allowed, every n-vertex dag G has an upward
2-bend n× 2× 2n 3D grid drawing with volume 4n2 [DW06].

14.3 Orthogonal Grid Drawings

3D polyline (b-bend) drawings where all edge segments are restricted to be parallel to one
of the three axes are called 3D orthogonal (b-bend) point-drawings . This restriction implies
that only graphs with maximum degree at most six have such drawings. For that reason the
notion is generalized to 3D orthogonal (b-bend) (box -)drawings, where vertices of the graph
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are represented by pairwise non-intersecting boxes. A box is a rectanguloid with all of its
corners at grid points. A 3D orthogonal (b-bend) (box)-drawing where all boxes degenerate
to cubes, line-segments, or points is called, respectively, a 3D orthogonal (b-bend) cube-,
line-, or point-drawing.

The 3D orthogonal drawings have very good angular resolution, which makes them suit-
able for numerous applications. Minimum edge separation and minimum vertex separation
are also guaranteed in such drawings. Notice that neither good angular resolution nor good
edge separation is a feature of 3D (straight-line) grid drawings. The main quality measures
for 3D orthogonal drawings are the volume and the number of bends (per edge). Other
criteria of importance include the length of the edges, and, in the case of 3D orthogonal
box-drawings, the size and the shape of the boxes. While the focus of this section is orthog-
onal drawings in 3D, degree-4 graphs admit 3D polyline drawings with angular resolution
even better than 90 degrees. Study of such drawings with small number of bends and good
volume bounds has recently been initiated by Eppstein et al. [ELMN11].

It is NP-hard to optimize most of these aesthetic criteria for 3D orthogonal drawings. Us-
ing straightforward extensions of known two-dimensional hardness results, Eades et al. [ESW96]
showed that it is NP-hard to find a 3D orthogonal point-drawing of a graph that minimizes
any one of the following aesthetic criteria: the volume, the number of bends per edge, the
total number of bends, and the total edge length.

Not surprisingly, the 3D orthogonal point-drawings were the first to be studied; we con-
sider them in the next section, followed by a review of 3D orthogonal box-drawings in
Section 14.3.2.

14.3.1 Point-Drawings

In a 3D orthogonal point-drawing a vertex can have at most six neighbors. Thus only graphs
of degree at most six may admit such drawings. In fact a graph has a 3D orthogonal point-
drawing if and only if its maximum degree is at most six. This result will be discussed
shortly (Theorem 14.8 below). The drawings used in establishing this result have many
bends. This is unavoidable, since every 3D orthogonal point-drawing of the triangle (that
is, K3) obviously has at least one bend. Moreover, to draw an edge between any pair of
vertices not on the same grid line, at least one bend is required, and to draw and edge
between a pair not on the same grid plane, at least two bends are required. This sheds
light on the fact that no nontrivial class of graphs (excluding trees) is known to admit 3D
orthogonal point-drawings with zero bends. Less obvious is the well-known result that any
3D orthogonal point-drawing of a multi-graph comprising of two vertices and six edges has
an edge with at least three bends. For simple graphs, K5 requires an edge with at least two
bends [Woo03a]. This provides the best-known lower bound on the number of bends per
edge for 3D orthogonal point-drawings of degree-6 graphs.

Volume Θ(n3/2):

One of the earliest results concerning 3D orthogonal point-drawings is due to Kolmogorov
and Barzdin [KB67] and established a lower bound of Ω(n3/2) for the volume of degree-6
graphs. This lower bound was matched with an upper bound by Eades et al. [ESW96] to
establish the following theorem.

Theorem 14.8 [ESW96, KB67] Every n-vertex degree-6 graph has a 3D orthogonal point-
drawing in O(n3/2) volume, and that bound is best possible for some degree-6 graphs.
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Figure 14.5 3D orthogonal 2-bend point-drawing of K5 (in coplanar model).

To obtain the upper bound, Eades et al. [ESW96] developed an O(n)-time algorithm1

that produces a 3D orthogonal point-drawing for a degree-6 graph G. Their algorithm is
a modification of the method developed by Kolmogorov and Barzdin [KB67] for a similar
problem. The algorithm places all the vertices of G on an O(n) × O(n) grid in the Z = 0
plane and draws each edge with at most sixteen bends. This model of drawing where all
the vertices intersect one grid plane is known as the coplanar model. Figure 14.5 illustrates
a 2-bend orthogonal point-drawing of K5 in the coplanar model.

2 and 3 Bends:

Theorem 14.8 states that for the point-drawings, the optimal volume for degree-6 graphs
is known (at least asymptotically). The situation is different for the number of bends per
edge. As noted above two bends per edge may be necessary. The best-known upper bound
is three. This result was first proved by Eades et al. [ESW00].

Theorem 14.9 [ESW00] Every degree-6 graph has a 3D 3-bend orthogonal point-drawing.

We now overview the most commonly used approach for producing 3D orthogonal point-
drawings. The approach was first taken by Eades et al. [ESW00] in their 3-bend algorithm
that establishes Theorem 14.9.

A cycle cover of a graph G, also called a 2-factor, is a 2-regular spanning subgraph of G,
that is, a spanning subgraph that consists of cycles. If the graph is directed, then the cycles
in the cover are required to be directed as well. Eades et al. [ESW00] gave an algorithmic
proof that the edges of every degree-6 graph G can be oriented in such a way that G is a
subgraph of some directed graph G′ (possibly with loops) such that the edges of G′ can be
colored with three colors each of which induces a directed cycle cover of G′. The proof can
be viewed as a repeated application of the classical result of Petersen that every regular
graph of even degree has a 2-factor. The cycle covers can be computed in O(n) time for
n-vertex graphs.

Having this in mind, most algorithms for producing 3D orthogonal point-drawings start
off with the decomposition of G′ into three cycle covers, denoted, say, by Cred, Cblue, and
Cgreen. In the second step vertices of G′ are positioned on the 3D grid in some way that
makes drawing the red cycles easy. For example, in the coplanar model, vertices can be
placed in the Z = 0 plane and all red edges can be drawn in that plane. The remaining

1The running time in the conference paper is O(n3/2). This was later reduced in [ESW00].
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edges Cblue and Cgreen are then routed above and below the Z = 0 plane, respectively. In
general, the third step involves finding drawings for the edges in Cblue and Cgreen.
The 3-bend algorithm of Eades et al. [ESW00] positions each vertex vi of G

′ at (3i, 3i, 3i)
for some arbitrary vertex ordering (v1, v2, . . . , vn) of V (G′). This model of 3D orthogonal
point-drawings, where vertices are place along the 3D diagonal of a cube, is called the
diagonal model. The resulting drawings have volume at most 8n3 after all the grid planes
not containing a vertex or a bend are deleted. Wood [Woo04] modifies the 3-bend algorithm
of Eades et al. [ESW00] to produce 3-bend drawings in the diagonal model with n3 + o(n3)
volume, which is to date the best volume bound on 3D orthogonal 3-bend drawings. To
achieve this, Wood places each vertex vi of G′ at (i, i, i) in a particular vertex ordering
(v1, v2, . . . , vn) stemming from book embeddings. For more on book embeddings, refer to
the next section on graph thickness. While the algorithm of Eades et al. runs in O(n) time,
the algorithm of Wood runs in O(n5/2) time due to the book embedding computation. The
diagonal model was also used in the incremental algorithm of Papakostas and Tollis [PT99].
Their algorithm, which runs in O(n) time, supports on-line insertion of vertices in constant
time. The resulting 3D orthogonal 3-bends point-drawings have volume at most 4.63n3.

The upper bound from Theorem 14.9 and the lower bound of two on the number of bends
per edge leave the following open problem.

Open Problem 14.4 [ESW00] Does every degree-6 graph have a 3D 2-bend orthogonal
point-drawing?

This problem is considered to be the most important open problem concerning 3D orthog-
onal point-drawings. The answer to the question remains unknown even when attention
is restricted to more specific classes of graphs, including degree-6 planar graphs, degree-6
series-parallel graphs, and degree-6 outerplanar graphs. It is easy to observe that every
degree-6 tree has a 3D orthogonal point-drawing with no bends.
A natural candidate for answering Open Problem 14.4 in the negative was K7, as con-

jectured in the conference version of [ESW00]. The counterexample to that conjecture was
discovered by Wood [Woo03a]. His construction is illustrated in Figures 14.6 and 14.7
(courtesy of David R. Wood). Moreover, Wood exhibited 3D 2-bend point-drawings for
other small multipartite 6-regular graphs: K6,6, K3,3,3 and K2,2,2,2.
For degree-5 graphs, Wood [Woo03b] answered Open Problem 14.4 in the affirmative.

Theorem 14.10 [Woo03b] Every degree-5 graph has a 3D 2-bend orthogonal point-drawing.

The O(n2)-time algorithm of Wood that establishes this result produces 3D orthogonal
point-drawings of degree-6 graphs in the so-called general position model, where no pair of
vertices belongs to the same grid plane. (Note, for example, that a drawing in the diagonal
model is also in the general position model.) In the case of degree-5 graphs, the algorithm
outputs 2-bend drawings in the general position model. While this model allows for 2-bend
drawings for degree-5 graphs, the same is not the case for degree-6 graphs. In particular,
Wood [Woo03a] constructed an infinite family of degree-6 graphs that have an edge with at
least 3 bends in every 3D orthogonal point-drawing in the general position model.

Tradeoffs and more bounds:

Tradeoff issues between the maximum number of bends per edge and the volume of 3D
orthogonal point-drawings were first studied by Eades et al. [ESW00]. They began with an
algorithm to draw a degree-6 graph in the coplanar model with O(n3/2) volume and at most
7 bends per edge. By successive refinements of this algorithm, they obtained 3D orthogonal
point-drawings of degree-6 graphs with the following bounds: volume O(n2) with at most 6



470 CHAPTER 14. THREE-DIMENSIONAL DRAWINGS

X

Y

Z

Figure 14.6 A 3D orthogonal 2-bend point-drawing ofK7. (Figure taken from [Woo03a].)

bends per edge, and volume O(n5/2) with at most 5 bends per edge. For drawings in O(n2)
volume, Biedl [BJSW01] reduced the number of bends per edge to 4.

Numerous refinements of these results have appeared in the literature. Table 14.2 sum-
marizes the best-known bounds on 3D orthogonal point-drawings. Some of the algorithms
associated with the bounds in Table 14.2 are dynamic, supporting operations such as vertex
insertion [PT99, CGJW01] and deletion, as well as edge deletion and insertion [CGJW01].
See also [DPV00].

In addition to the number of bends per edge, the total number of bends in 3D orthogonal
point-drawings has also been investigated. Wood [Woo03a] showed that every 3D orthogonal
point-drawing of K7 has at least 20 bends, which implies the lower bounds of 20m/21 bends
for simple m-edge graphs. The algorithm of Wood [Woo03b] that establishes Theorem 14.10
also produces 3D orthogonal point-drawings for simple m-edge degree-6 graphs with at most
16m/7 bends, thus having an average of 2 2

7 bends per edge. The drawings are in the general
position model, for which the bound is optimal since K7 requires 16

7 |E(K7)| bends in that
model, as established in [Woo03a].

14.3.2 Box-Drawings

Only degree-6 graphs admit 3D orthogonal point-drawings. Hence it was only natural
to consider the extension to box-drawings for general graphs. For point-drawings, it was
enough to consider K3 to realize that there are degree-6 graphs that do not admit such
drawings with straight-line edges. It is less obvious that not all graphs admit 3D orthogonal
box-drawings with straight-line edges (that is, with zero bends). In a straight-line orthogo-
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Z

Figure 14.7 Breakaway view of the 3D orthogonal 2-bend point-drawing of K7. (Figure
taken from [Woo03a].)

graph family max. (avg.) bends volume reference
per edge

multigraph 7 Θ(n3/2) [ESW00]

multigraph (dynamic) 14 Θ(n3/2) [BJSW01]
multigraph 4 O(n2) [BJSW01]
multigraph (dynamic) 5 O(n2) [CGJW01]
multigraph ∆ ≤ 4 3 O(n2) [ESW00]
simple 4 (2 2

7
) 2.13n3 [Woo03b]

multigraph (dynamic) 3 4.63n3 [PT99]
multigraph 3 n3 + o(n3) [Woo04]
simple ∆ ≤ 5 2 n3 [Woo03b]

Table 14.2 The volume and the number of bends per edge in 3D orthogonal point-
drawings of n-vertex graphs with maximum degree ∆ ≤ 6.

nal box-drawing of a graph G, each edge is a line segment parallel to one of the three axes.
This defines an associated coloring of the edges with three colors, where a subgraph of G
induced by each color class has a visibility representation by rectangles. (Refer to the last
section, page 478, for the definition of a visibility representation.) Bose et al. [BEF+98]
proved that Kn does not have such a representation for n ≥ 56.
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Ramsey theory implies that for every constant c ∈ N there is a constant r(c) (the Ramsey
number) such that every edge 3-coloring of the complete graph Kn with n ≥ r(c) contains
a monochromatic subgraph isomorphic to Kc. With c = 56, that establishes the fact that
Kr(56) does not have a straight-line 3D orthogonal box-drawing. This argument (in three
and higher dimensions) was first pointed out by Biedl et al. [BSWW99]. The constant
r(56), stemming from Ramsey theory, is a truly big number. Fekete and Meijer [FM99]
significantly improved that upper bound to K184. Their proof uses the fact that K56 does
not have a 3D rectangle visibility representation. The largest complete graph known to
admit a straight-line 3D orthogonal box-drawing is K56 [FM99].

The above discussion highlights that not all graphs have 3D orthogonal box-drawings
with zero bends. Indeed, it is easy to observe that every n-vertex m-edge graph G has
an orthogonal (line)-drawing with one bend per edge: simply represent each vertex vi,
1 ≤ i ≤ n, of G by a line-segment with endpoints (i, i, 1) and (i, i,m), and then draw
each edge in distinct Z = j planes, 1 ≤ j ≤ m, using one bend. The resulting drawing has
O(n2m) volume. Better volume bounds are possible for 3D orthogonal 1-bend box-drawings.
Biedl et al. [BSWW99] showed that in the previous construction with the segments having
endpoints at (i, i, 1) and (i, i, n), it is possible to draw all the edges of Kn in Z = j,
1 ≤ j ≤ m, using one bend per edge. They suggested a relationship between assigning
edges to the planes in this type of drawing and assigning edges to the pages of a book
embedding. This relationship was later explored by Wood [Woo01], resulting in improved
volume bounds for 1-bend box-drawings of m-edge graphs. In particular, he proved that
every graph has a 3D orthogonal 1-bend box-drawing in O(n3/2m) volume.

A lower bound of Ω(n5/2) for the volume of 3D orthogonal box-drawings of n-vertex
graphs (regardless of the number of bends) was established by Biedl et al. [BSWW99].
They developed an O(m)-time algorithm that constructs drawings matching that volume
bound and using at most 3 bends per edge, thus establishing that all n-vertex graphs have
3D orthogonal 3-bend box-drawings in Θ(n5/2) volume. Closing the gap between the O(n3)
upper bound and the Ω(n5/2) lower bound for 3D orthogonal 1-bend box-drawings of Kn

remains an interesting open problem.
The lower bound of Biedl et al. [BSWW99] was established using the complete graph Kn.

The proof relies critically on the fact that between any two disjoint vertex sets of size Ω(n)
in Kn, there are Θ(n2) edges. To generalize this lower bound to sparse graphs and to be able
to express it in terms of the number of edges, Biedl et al. [BTW06] exhibited graphs such
that between any two disjoint vertex sets of size Ω(n) there are Θ(m) edges. That allowed
them to extend the arguments of [BSWW99] to establish the lower bound of Ω(m

√
n) on

the volume of 3D orthogonal box-drawings of m-edge n-vertex graphs. They developed
an O(m2/

√
n)-time algorithm that constructs drawings matching that volume bound and

using at most 4 bends per edge, thus establishing that all graphs have 3D orthogonal 4-
bend box-drawings in Θ(m

√
n) volume. It is unknown whether all m-edge graphs admit

3D orthogonal box-drawings with such volume and at most 3 bends per edge, as is the case
for Kn.

The discussion above pertains to drawings where the volume and the number of bends
per edge are the only concerns. The shapes and the sizes of boxes used to represent vertices
are unrestricted. However, for box-drawings the size and the shape of a vertex with respect
to its degree are also important aesthetic criteria. For a vertex v in a 3D orthogonal box-
drawing the surface of v is the number of grid lines intersecting the box-representing v times
two. The surface of v indicates the number of grid lines available for drawing edges incident
to v. In point-drawings, for example, the surface of each vertex is six. Generally, in any
3D orthogonal box-drawing, the surface of each vertex v is at least the degree of v. Ideally,
the surface of v should also not be much bigger than the degree of v. Biedl et al. [BTW06]
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defined a 3D orthogonal box-drawing of a graph G to be degree-restricted if there exists
some constant α ≥ 1 such that for every vertex v in G, surface(v) ≤ α·degree(v).

Degree-restricted drawings do not, however, impose any aesthetic restriction on the shape
of the boxes used to represent vertices. The aspect ratio of a vertex in a 3D orthogonal
box-drawing is the ratio of the length (measured in the number of grid points) of the longest
side of the box representing that vertex to the shortest side of that box. 3D orthogonal
box-drawings have a bounded vertex-aspect ratio if there exists a constant r such that all
vertices have aspect ratios at most r. Note that r ≥ 1, and for the case of 3D orthogonal
point-drawings and cube-drawings, it is one. Also note that degree-restricted drawings may
have unbounded vertex-aspect ratio; consider, for example, a drawing in which each vertex
is represented by a segment with length equal to its degree.

The discussion at the beginning of this subsection pertains to 3D orthogonal box-drawings
with (possibly) unbounded vertex-aspect ratios and with no degree-restrictions. The best-
known upper bounds on the volume and the number of bends per edge in such unrestricted
3D orthogonal box-drawings are summarized in the top part of Table 14.3. The upper
bounds can be compared to the best-known lower bound on the volume of such drawings
which, as discussed above, is Ω(m

√
n) regardless of the number of bends [BTW06]. The

table exhibits the tradeoff between the number of bends per edge and the volume of such
drawings.

Biedl et al. [BTW06] derived lower bounds for the volume of 3D orthogonal box-drawings
that are required to be degree-restricted and/or have bounded vertex-aspect ratio. In
particular, they proved an Ω(m3/2/α) lower bound on the volume of 3D orthogonal box-
drawings that are degree-restricted for some α ≥ 1, as well as an Ω(m3/2/

√
r) lower bound

on the volume of 3D orthogonal box-drawings for which each vertex has aspect ratio at most
r. For bounded α and bounded r, both bounds become Ω(m3/2). The discussion pertaining
to the proof technique of Biedl et al. [BTW06] used to derive the Ω(m

√
n) volume bound

for unrestricted drawings applies to these two lower bounds as well.

Biedl et al. [BTW06] also developed an algorithm that constructs the corresponding 3D
orthogonal box-drawings matching the volume lower-bound and using at most 6 bends
per edge, thus establishing that all m-edge graphs have 3D orthogonal 6-bend box-drawings
with volume Θ(m3/2) such that the drawings are degree-restricted and have bounded aspect
ratio.

The best-known upper bounds on the volume and the number of bends per edge in degree-
restricted 3D orthogonal box-drawings are summarized in the middle part of Table 14.3,
while drawings that are both degree-restricted and have bounded vertex-aspect ratio are
addressed at the bottom of the table. These upper bounds on the volume can be compared
to the best-known lower bound of Ω(m3/2).

The table reveals that no further asymptotic improvements are possible for the volume of
drawings in all three aesthetic models discussed. There is room for improvement, however,
with regard to the number of bends per edge, as suggested by some of the open problems
mentioned in this subsection.

14.4 Thickness

Thickness is a classical graph parameter that has been studied since the early 1960s. It
was first defined by Tutte [Tut63]. The thickness of a graph G, denoted by θ(G), is the
minimum k ∈ N such that the edge set of G can be partitioned into k planar subgraphs.

For ease of exposition in this section, we express the concept of thickness in terms of
drawings in the plane. The thickness of a drawing in the plane with vertices represented
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graphs bends volume reference
unbounded vertex-aspect ratio / not degree-restricted

simple 1 O(n3) [BSWW99]

simple 1 O(n3/2m) [Woo01]
simple 2 O(nm) [Woo01]

simple 3 O(n5/2) [BSWW99]
multigraphs 3 O(nm) [BTW06]
simple 4 Θ(m

√
n) [BTW06]

unbounded vertex-aspect ratio / degree-restricted
simple 2 O(n2m) [Bie98, Woo99]
simple 2 O(n2∆) [Bie98]
multigraphs 5 O(m2) [BTW06]

multigraphs 6 Θ(m3/2) [BTW06]

bounded vertex-aspect ratio / degree-restricted

simple 2 O((nm)3/2) [Bie98, Woo99]

simple 2 O(nm
√
∆) [Bie98]

multigraphs 5 O(m2) [BTW06]

simple 10 O((n∆)3/2) [HTS83]

multigraphs 6 Θ(m3/2) [BTW06]

Table 14.3 Volume and the maximum number of bends in 3D orthogonal (box)-drawings
of n-vertex m-edge degree-∆ graphs for various aesthetic criteria.

as points and edges represented as simple curves is the minimum k ∈ N such that the
edges of the drawing can be partitioned into k subgraphs such that each subgraph has no
crossings in the drawing; that is, each edge is assigned one of k colors such that no pair
of like-colored edges of the drawing cross. Since any planar graph can be drawn with its
vertices at prespecified points in the plane (see, for example, [PW01]), a graph has thickness
k if and only if it has a drawing in the plane with thickness k [Hal91]. However, in such
a drawing the edges may be highly curved and thus unsuitable for most applications. For
instance, when the edges are represented by polygonal chains, then Ω(n) bends per edge
may be needed [PW01]. This motivates the notion of geometric thickness.

A drawing of a graph in the plane is geometric if every edge is represented by a straight-
line segment. The geometric thickness of a graph G, denoted by θ(G), is the minimum
k ∈ N such that there is a geometric drawing of G with thickness k. Kainen [Kai73] first
defined geometric thickness under the name of real linear thickness, and it has also been
called rectilinear thickness. By the Fáry-Wagner theorem, a graph has geometric thickness
one if and only if it is planar. Graphs of geometric thickness two, the so-called doubly linear
graphs, were studied by Hutchinson et al. [HSV99] in the context of rectangle-visibility
graphs.

Another parameter closely related to geometric thickness is book thickness. A geometric
drawing in which the vertices are in convex position is called a book embedding. The book
thickness of a graph G, denoted by bt(G), is the minimum k ∈ N such that there is book
embedding of G with thickness k. The book embeddings have also been called stack layouts,
and book thickness is also called stacknumber, pagenumber and fixed outerthickness.

Whether two edges cross in a book embedding is simply determined by the relative
positions of their endpoints in the cyclic order of the vertices around the convex hull. One
can think of the vertices as being ordered on the spine of a book and each plane subgraph
being drawn without crossings on a single page. A graph has book thickness one if and
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only if it is outerplanar [BK79]. Bernhart and Kainen [BK79] proved that a graph has book
thickness at most two if and only if it is a subgraph of a Hamiltonian planar graph. Unlike
thickness, being able to partition the edge set of a graph G into k outerplanar subgraphs
does not imply that G has book thickness at most k. For example, the edge set of K5 can
be partitioned into two cycles, yet K5 has book thickness more than two, since it is not a
subgraph of a Hamiltonian planar graph. The situation is similar for geometric thickness
as will soon become clear.

Book embeddings, first defined by Ollmann [Oll73], are ubiquitous structures with a
variety of applications; see [DW04a] for a survey with over 50 references. These applications
include sorting permutations, fault-tolerant VLSI design, and compact graph encodings
as well as graph drawing. In general, drawings arising from the study of thickness have
applications in graph visualization (where each plane subgraph is colored by a distinct
color), and in multilayer VLSI (where each plane subgraph corresponds to a set of wires
that can be routed without crossings in a single layer).

First we consider the relationship between the three thickness parameters. By definition,
for every graph G

θ(G) ≤ θ(G) ≤ bt(G). (14.1)

These inequalities have been shown to be strict for certain graphs [DEH00]. In the other
direction, no such relationship is possible for any bounding function. Eppstein [Epp01]
proved that geometric thickness is not bounded by any function of book thickness. In par-
ticular, the graph obtained by subdividing each edge of Kn once has geometric thickness at
most two. On the other hand, a Ramsey-theoretic argument shows that the book thickness
of that graph is not bounded by any constant.

Using a more elaborate Ramsey-theoretic argument applied to graphs formed by start-
ing with n points and adding a new point adjacent to each triple of the n points, Epp-
stein [Epp04a] proved that geometric thickness is not bounded by any function of thickness.
In particular, for every t there exists a graph with thickness three and geometric thickness
at least t. This leaves an interesting open problem.

Open Problem 14.5 [Epp04a] Do graphs with thickness two have bounded geometric thick-
ness?

Complete graphs: The thickness of the complete graph Kn was intensely studied in the
1960s and 1970s. Results by a number of authors [AG76, Bei67, BH65, May72] together
prove that θ(Kn) = ⌈(n+ 2)/6⌉, unless n = 9 or 10, in which case θ(K9) = θ(K10) = 3.

Bernhart and Kainen [BK79] proved that bt(Kn) = ⌈n/2⌉. In fact, they proved that
every convex drawing of Kn can be partitioned into ⌈n/2⌉ plane spanning paths.

Bose et al. [BHRCW06] proved that every geometric drawing of Kn has thickness at most
n −

√

n/12. It is unknown whether every geometric drawing of Kn has thickness at most
(1− ǫ)n. Dillencourt et al. [DEH00] studied the geometric thickness of Kn, and proved that

⌈(n/5.646) + 0.342⌉ ≤ θ(Kn) ≤ ⌈n/4⌉ . (14.2)

Their upper bound construction generalizes to show that for any n, θ(Kn) ≤ ⌈n/4⌉.
What is θ(Kn)? It seems likely that the answer is closer to ⌈n/4⌉ rather than to the above
lower bound.

Maximum degree: Next, we consider the relationships among the three thickness parameters
and the maximum degree. Recall that, a graph with maximum degree ∆ is called a degree-
∆ graph. Wessel [Wes84] and Halton [Hal91] proved independently that the thickness of a
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degree-∆ graph is at most ⌈∆/2⌉. The proof is based on the classical result of Petersen that
every regular graph of even degree has a 2-factor, that is, a set of vertex disjoint cycles that
together cover all the vertices. The theorem implies that the edges of a ∆-regular graph
for even ∆ can be partitioned into ∆/2 sets of vertex disjoint cycles. Vertex disjoint cycles
are planar, and thus the upper bound follows by proving that every degree-∆ graph is a
subgraph of some ∆-regular graph. Sýkora et al. [SSV04] proved that this bound is tight.
Malitz [Mal94b] proved that there exist ∆-regular n-vertex graphs with book thickness at

least Ω(
√
∆n1/2−1/∆). Thus, unlike thickness, book thickness is not bounded by any func-

tion of maximum degree. The proof is based on a probabilistic construction. Malitz [Mal94b]
also derived an upper bound of O(

√
m) ∈ O(

√
∆n) for the book thickness, and thus the

geometric thickness, of m-edge graphs.
Eppstein [Epp04a] asked whether bounded degree graphs have bounded geometric thick-

ness. Duncan et al. [DEK04] gave an affirmative answer for degree-4 graphs. By Petersen’s
theorem, the edges of a degree-4 graph G can be partitioned into two sets each of which in-
duces a subgraph comprised of vertex disjoint paths and cycles in G. Duncan et al. [DEK04]
proved that two such subgraphs can be drawn simultaneously on some planar point set us-
ing straight-line edges, thus proving that G has a geometric drawing with thickness at most
two. Moreover, they provided a linear-time algorithm to produce such thickness-2 geometric
drawings for degree-4 graphs. In the case of degree-3 graphs, the resulting drawings fit in
the n× n grid.

In a recent development, the above-mentioned question of Eppstein has been answered
in the negative. Barát et al. [BMWR3] have shown that bounded degree graphs may have
unbounded geometric thickness, even approaching the square root of the number of vertices.
In particular, for all ∆ ≥ 9 there exists a ∆-regular n-vertex graph with geometric thickness
Ω(

√
∆n1/2−4/∆−ǫ). The proof is non-constructive and based on counting arguments. The

authors have shown that there are more graphs with bounded degree than with bounded
geometric thickness. To count the number of n-vertex graphs of thickness k, they considered
the number of order types of n points and all the ways of connecting the points in an order
type into a geometric drawing of thickness k.

Open Problem 14.6 [BMWR3] Do degree-∆ graphs with ∆ ∈ {5, 6, 7, 8} have bounded
geometric thickness?

Proper minor-closed families: Blankenship and Oporowski [Bla03, BO01] proved that all
proper minor-closed families have bounded book thickness and therefore, by Equation 14.1,
bounded thickness and geometric thickness. Proper minor-closed families include, for ex-
ample, planar graphs, bounded genus graphs, and bounded treewidth graphs. The proof
depends on Robertson and Seymour’s deep structural characterization of the graphs exclud-
ing a fixed minor. As a result, the obtained bound on book thickness for graphs excluding
a Kℓ-minor is a truly huge function of ℓ.
A much better bound is known for the thickness of such families. Kostochka [Kos82] and

Thomason [Tho84] proved independently that graphs excluding a Kℓ-minor have thickness
at most O(ℓ log ℓ). Better bounds on book thickness (and thus geometric thickness) are also
known for many minor-closed families. The question of book thickness of planar graphs was
settled by Yannakakis [Yan86] in 1986: he proved that the book thickness of planar graphs
is at most four and that there are planar graphs with book thickness matching that bound.
There is some dispute over this lower bound. The construction is given in the conference
version of the paper only [Yan86], where the proof is far from complete.

Endo [End97] determined that the book thickness of toroidal graphs, that is, graphs with
genus one, is at most seven. Malitz [Mal94a] proved by a probabilistic argument that the
book thickness of graphs with genus γ is at most O(

√
γ).
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Exact bounds are known for all three thickness parameters in relation to treewidth. In
particular, for graphs of treewidth k the maximum thickness and the maximum geometric
thickness both equal ⌈k/2⌉ [DW05]. This says that the lower bound for thickness can be
matched by an upper bound, even in the more restrictive geometric setting. For graphs of
treewidth k, the maximum book thickness equals k if k ≤ 2 and equals k+1 if k ≥ 3. While
the lower bounds are proved in [DW05], the upper bounds on book thickness are due to
Ganley and Heath [GH01].

Computational complexity: The graphs with book thickness one are precisely the outer-
planar graphs [BK79], and thus can be recognized in linear time. The graphs with book
thickness two are characterized as the subgraphs of planar Hamiltonian graphs [BK79],
which implies that it is NP-complete to test if bt(G) ≤ 2 [Wig82]. In fact, even deter-
mining thickness of a given book embedding is hard. Specifically, a book embedding with
k pairwise crossing edges has thickness at least k, since each edge must receive a distinct
color. However, the converse is not true. There exist book embeddings with no (k + 1)
pairwise crossing edges for graphs that have thickness at least Ω(k log k) [KK97]. Moreover,
it is NP-complete to test if a given book embedding of a graph has thickness k [GJMP80].

Testing whether a graph has thickness k is NP-hard [Man83] even for k = 2. Eppstein
[Epp04b] considered the problem of testing if a given geometric drawing has thickness k. For
k = 2 the problem can be solved in polynomial time but becomes NP-complete for k ≥ 3.
Dillencourt et al. [DEH00] asked what the complexity is for determining the geometric
thickness of a given graph.

Open Problem 14.7 [DEH00] Is it NP-hard to test if the geometric thickness of a graph
is k?

We close this section with an open problem that relates book thickness and 3D grid
drawings.

Open Problem 14.8 [DW04b] Do all bipartite graphs that have book thickness three have
bounded track-number?

By studying book thickness of graph subdivisions Dujmović and Wood [DW04b] proved
that an affirmative answer to this question would imply an affirmative answer to Open
Problems 14.1, 14.2, and 14.3. More generally, it would imply that the queue-number is
bounded by book-thickness, which is a long standing open problem [HLR92]. Since all
proper minor-closed graph families have bounded book thickness [BO01], an affirmative
answer to this question would further imply that all proper minor-closed graph families
have linear volume 3D grid drawings.

14.5 Other (Non-Grid) 3D Drawing Conventions

3D crossing-free straight-line drawings with real coordinates: Three dimensional straight-line
crossing-free graph drawings in which the vertices are allowed real coordinates have also been
studied. Naturally, having a less restrictive model allows for drawings with better bounds,
for example better volume bounds, in comparison to the grid model. One disadvantage to
using real coordinates, however, becomes evident when a drawing is to be displayed, on
a computer screen for example. Then the real vertex coordinates must be converted into
integer coordinates. There are no guarantees that rounding off will maintain the correctness
of the embedding.
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As in the grid model, the main criterion for measuring the quality of a drawing is its vol-
ume. To make a discussion about volume meaningful, that is, to disallow arbitrary scaling,
the vertices are required to lie at least unit distance apart. As noted in the introduction,
a classical result of Steintz states that the triconnected planar graphs are exactly the 1-
skeletons of convex polyhedra in 3D, that is, they admit 3D convex drawings. This may
be considered as one of the first results in the real coordinates model. The construction,
however, seems to require exponential volume in the number of vertices of a graph. The
same is true for the number of bits needed to represent the coordinates of the vertices. This
outlook has been greatly improved by Chrobak et al. [CGT96]. The technique they used to
derive their results falls under the category of so-called force directed methods.

Force directed methods model the graph as a physical system. For example, edges can be
modeled as springs and vertices as charged particles that repel each other. A configuration
where the sum of the forces on each particle is zero, that is, a local minimum of the system,
gives a straight-line drawing of the graph. The famous barycenter method developed by
Tutte [Tut60] is an example of the force directed approach. Specifically, the barycenter
method takes a 3-connected plane graph G and fixes the vertices of the outer face in a
convex position in the plane. The remaining vertices of G are then added one by one at the
barycenter of their neighbors. The resulting system of linear equations gives coordinates for
the internal vertices, and results in a 3D drawing of G where all internal faces are convex.
This method can be extended to 3D.

As noted above, the best-known bounds are due to Chrobak et al. [CGT96]. They de-
veloped a force-directed algorithm that, given an n-vertex triconnected planar graph G,
outputs a 3D drawing of G with O(n) volume. Moreover, the vertex coordinates in the
drawing can be represented by O(n log n)-bit rational numbers. The algorithm runs in
O(M(n1/2)) time, where M(n) is the time needed to multiply two n × n matrices. They
also showed that if the minimum angle between two edges incident to the same vertex is
required to be some fixed function of the maximum degree, then there are bounded-degree
triconnected planar graphs that require 2Ω(n) volume in any 3D convex drawing.

In other results in the real coordinate model, Garg et al. [GTV96] proved that all graphs
with bounded chromatic number can be drawn in O(n3/2) volume with constant aspect
ratio and using O(log n)-bit rational numbers for vertex coordinates. If the number of bits
is increased to O(n log n), they showed that all graphs have 3D straight-line crossing-free
drawings in O(n) volume. Their algorithms run in O(n) time provided that the graph
coloring is given as a part of the input.

Simulated annealing techniques for generating 3D straight-line drawings of general graphs
have also been considered [CT96].

3D graph representations: In a graph representation, vertices are depicted as some set of
objects and edges indicate a relationship between the objects. In the case of visibility
representations, for example, there is an edge between two vertices in the graph if and only
if there is a line-segment that joins the objects representing the vertices and that does not
intersect any other object, that is, if the two objects are (mutually) visible. Typically,
these line-segments may be required to align with an axis. In two dimensions, popular
visibility representations studied are bar - and rectangle visibility . Both models are related
to orthogonal drawings in the plane. Only thickness-2 graphs have such two-dimensional
visibility representations, which motivates the study of 3D counterparts.

The concept generalizes naturally to three dimensions. The vertices may be disjoint
2D objects parallel to the XY-plane, and the edges may be line-segments parallel to Z-axis
connecting pairs of visible objects. It is easy to see that all graphs have such a representation
if the objects may be arbitrary non-convex polygons. Attention has therefore been restricted
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to convex polygons. For instance, K7 has a representation with unit squares and K8 does
not, and every graph has a representation with unit disks. Bose et al. [BEF+98] proved
that Kn has a representation with arbitrary rectangles for n ≤ 22, while for n ≥ 56 it
does not. They also showed that all planar graphs and all complete bipartite graphs have a
representation with arbitrary rectangles, but that the family of representable graphs is not
closed under graph minors.

Alt et al. [AGW98] considered representations with arbitrary convex polygons and showed
that there is no convex polygon P that would allow every complete graph to have a visibility

representation by shifted copies of P . In particular, for n > 22
k

, Kn cannot be represented
by a convex k-gon. This bound has been improved by Štola [Što04], who proved that
the maximum size of a complete graph with a visibility representation by copies of regu-
lar k-gon is between k + 1 and 26k. Visibility representations with boxes have also been
considered [FM99].

Kotlov et al. [KLV97] discovered a relationship between graph representations by touching
spheres in 3D and the algebraic graph invariant µ introduced by Colin de Verdière.

Surfaces and the theory of graph minors: The field of topological graph theory studies
geometric realizations of graphs in 3-space and embeddings on surfaces. Embeddings of
graphs on higher surfaces are a natural generalization of embeddings in the plane.
The celebrated graph minors theorem of Robertson and Seymour [RS] implies that there

is a finite number of forbidden minors for graphs embeddable on any given fixed surface.
The Kuratowski theorem identifies the forbidden minors for the plane. The projective plane
is the only other surface for which all the forbidden minors (35 of them) are known. Mohar
[Moh99] gave a linear-time algorithm that for any graph and any fixed surface S, either
finds an embedding of the given graph in S or identifies a subgraph homeomorphic to a
forbidden minor for S.

The power of the graph minors theorem can be nicely illustrated by means of the following
3D graph drawing problem. A graph is knotless if it has an embedding in 3D that does
not contain a non-trivial knot, that is, if it has an embedding such that every cycle in the
embedding bounds a disk. For example K7 is known not to have a knotless embedding.
It is easy to observe that the class of all knotless graphs is minor-closed. One algorithmic
consequence of the graph minors theory is that there is a cubic time algorithm to test
membership of a graph in any proper minor-closed family. Thus, remarkably, there exists
a cubic time algorithm to test if a graph is knotless. This problem was not even known to
be decidable before the advent of the graph minors theory. At present, however, no explicit
algorithm is known, let alone a polynomial-time one, as the theory only guarantees the
existence of such an algorithm.

A related concept is that of a linkless embedding. A graph is linkless if it has an embed-
ding in 3D that does not contain a pair of linked cycles, that is, two cycles in the embedding
that cannot be separated by a 2-sphere embedded in 3D. For example, K6 is known not to
be linkless. Unlike the case for knotless graphs, the full characterization of linkless graphs
is known. In particular, a graph is linkless if and only if it does not contain as a minor one
of the six members of the Peterson family of graphs. A ∆Y -exchange in a graph replaces
a triangle by a 3-star, while a Y∆-exchange replaces a 3-star by a triangle. The Peterson
family is comprised of the six graphs that can be obtained from K6 by a sequence of ∆Y -
and Y∆-exchanges. It is also known that a graph G is linkless if and only if its Colin de
Verdière invariant µ(G) is at most four. Whether knotless graphs are precisely those graphs
whose Colin de Verdière invariant is at most five is an interesting open problem.

Good viewpoints: In most visualization applications, a 3D drawing of a graph will eventually
be displayed as an image on some kind of 2D medium, such as a computer screen or a sheet
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of paper. This can be achieved by using projections. In computer graphics the most
commonly used projections are the parallel and perspective projections. A 2D image, by
its very nature, will necessarily contain less information than the original 3D drawing. It is
therefore desirable to find viewpoints (the position and the direction the viewer is facing)
that result in “nice” 2D images, that is, projections that preserve as much information
about the 3D drawing as possible. Having an edge of the 3D drawing map to one point in
the projection is lossy in that context, as is having two vertices project to the same point.
Bose et al. [BGRT99] developed an algorithm that, given a 3D straight-line drawing,

computes an arrangement of curves that describe all bad viewpoints for that drawing. A
viewpoint is bad if it maps three 3D points to the same point in the projection (vertices
count as two points). Their algorithm runs in O(m4 logm+k) time, where m is the number
of edges of the graph and k may be O(m6) in the worst case.

The arrangement above distinguishes between bad and good viewpoints. Eades et al. stud-
ied a model with a continuous measure of goodness for a viewpoint [EHW97]. In particular
the goodness of a viewpoint increases with distance from its nearest bad point. They also
considered different definitions of bad points and developed an algorithm to compute them
based on techniques of Bose et al. [BGRT99].

3D symmetry: Connections between symmetry and aesthetics have long been recognized.
Thus displaying automorphisms of a graph as symmetries in its drawing is a very desirable
feature. Drawing graphs symmetrically involves solving at least two problems. The first is
to determine the symmetries (automorphisms) of a graph. The second problem is, given
the graph automorphisms, to display as many of them as possible as geometric symmetries
of a drawing of the graph. Symmetries in 3D can be displayed by, for example, rotation,
reflection, and inversion. For a detailed account on symmetric drawings, including 3D
symmetric drawings, the reader is referred to Chapter 3.

Higher dimensions: One of the basic problems in discrete geometry is determining when a
graph can be realized with prescribed edge lengths in R

d. An interesting graph invariant
related to that concept is the dimension of a graph, introduced by Erdős et al. [EHT65].
It is defined as the minimum d such that the graph has a drawing in R

d with straight-line
edges all of unit length (with possible crossings). They show, among other results, that
the dimension of the complete graph Kn is n − 1 and that the dimension of the complete
bipartite graph is at most four.

A concept related to the dimensionality of a graph is that of realizability. A realization
of a graph is a straight-line “drawing” with vertices represented as points, where there is no
restriction on how vertices and edges may intersect. A graph G is d-realizable if, given any
realization of G in R

t, there exists a realization of G with the same edge-lengths in R
d. For

example, a path is 1-realizable since its vertices can be arranged on a line with any desired
edge-lengths. A tree is also 1-realizable. On the other hand, the triangle is not 1-realizable,
since it has a realization in R2 with unit distance edges but no such realization is possible
in R1. Connelly and Sloughter [BC07] proved that a graph is 1-realizable if and only if it
is a forest. It is 2-realizable if and only if it has treewidth at most two, that is, if it is a
series-parallel graph. They showed that a graph is 3-realizable if and only if it does not
contain K5 or an octahedral graph as a minor.

A relationship between the connectivity of graphs and higher dimensional drawings has
been established [LLW88]. In particular, k-connected graphs were characterized in terms
of particular convex drawings in R

k−1. A force directed method was used to derive these
results.

Dujmović et al. [DMS13] studied higher dimensional straight-line grid drawings (with
possible crossings). They showed that in every d-dimensional (d ≥ 4) straight-line grid
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drawing of volume N of a graph with m ≥ (22 + 1)N edges, there are at least Ω(m
2

N )
crossings. They also showed that there are graphs for which this bound is tight.

Some other directions explored include the idea of producing 2D drawings by starting with
a “nice” higher dimensional drawing of a graph and then projecting it to a plane. Higher-
dimensional visibility representations with hyper-rectangles [CDH+96] have also been con-
sidered.
Applications and information visualization: This chapter was mainly focused on theory and
foundations of 3D Graph Drawing, that is, results with provable bounds on properties on
drawings and provable bounds on the running times of drawing algorithms. An important
theme outside the scope of this chapter is that of development of software packages for 3D
graph drawing (see, for example, [GT97, PV97]) as well as information visualization in 3D.
Graph drawing in 3D relates to this area particularly because graphs model hierarchies and
networks. Understanding large social and biological trees and networks requires the support
of visualization tools [BvLH+11, LLB+12, NJBJ09]. A substantial body of research litera-
ture explores the possibility of combining 3D graphics and interactive animation technology
with an understanding of human perception for the purpose of conveying information, in-
cluding graph models, to humans [XRP+12]. Classic work of Robertson et al. [RMC91]
proposed to visualize organizational hierarchies with 3D animations of trees. Work on
visualization of graphs is found not only in the information visualization literature, but
also domain specific literature such as that of biology and bioinformatics. Important key
words include information visualization, human computer interaction, computer graphics,
animation, human perception.
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[DW05] V. Dujmović and D. R. Wood. Graph treewidth and geometric thickness
parameters. In Proc. 13th Int. Symp. on Graph Drawing (GD’05), volume
3843 of LNCS, pages 129–140. Springer, 2005. Also in, Discrete and
Computational Geometry, 37(4): 641-670 (2007).
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