
Four-Bit Wireless Link Estimation

Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Philip Levis
UC Berkeley, Univ. of Southern California, MIT CSAIL, Stanford Univ.

rfonseca@cs.berkeley.edu, gnawali@usc.edu, jamieson@csail.mit.edu, pal@cs.stanford.edu

Abstract
We consider the problem of estimating link quality in
an ad-hoc wireless mesh. We argue that estimating links
well requires combining information from the network,
link, and physical layers. We propose narrow, protocol-
independent interfaces for the layers, which in total pro-
vide four bits of information: 1 from the physical layer,
1 from the link layer, and 2 from the network layer.
We present a link estimator design with these interfaces
that reduces packet delivery costs by up to 44% over
current approaches and maintains a 99% delivery ratio
over large, multihop testbeds.

1. INTRODUCTION
Accurate link quality estimates are a prerequisite for

efficient routing in wireless mesh networks: poor link
estimates can cause a 200% or greater slowdown in net-
work throughput [9]. Furthermore, accurate and respon-
sive link estimation is key to applying more sophisti-
cated opportunistic forwarding [7] or network coding
techniques [12]. Despite its importance, link estimation
remains an open problem, in part because many factors
conspire to make it challenging, such as the prevalence of
intermediate-quality links [23], the time-varying nature
of a wireless channel [19], multipath inter-symbol inter-
ference [6], link asymmetries [15], and hardware varia-
tions [24]. Furthermore, the physical, link, and network
layers each have valuable information that can improve
estimates, such as channel quality, packet delivery ra-
tios, route utility, and acknowledgments. The complex-
ity of this design space, combined with the rich infor-
mation that certain chipsets or protocols can provide,
has led many protocols to use cross-layer design, where
each layer freely shares protocol-specific information in
order to improve performance.

In this paper, we propose a different approach. We
distill the feedback provided by the physical, link, and
network layers for accurate link estimation to narrow
interfaces. The benefit of narrow interfaces has a long
history in system design: they simplify semantics, re-
duce dependencies, and are easier to use as well as im-
plement. All together, our proposed interfaces provide 4

bits of information: 1 from the physical layer, 1 from the
link layer, and 2 from the network layer. These bits of
information are protocol independent, thereby keeping
layers decoupled and avoiding unforeseen dependencies
that hinder network evolution.

To examine the efficacy of this 4-bit interface ap-
proach, we consider it in a notoriously-difficult class of
wireless mesh, wireless sensornets. Unlike higher-power
wireless meshes, RAM limitations mean wireless sen-
sornets cannot store state for all possible neighbors.
This limitation requires that routing IP in these meshes
(e.g., with 6lowpan [1]) requires good route summariza-
tion [20]. Therefore, link estimation accuracy is not the
only concern: an estimator must also choose good neigh-
bors to estimate.

Each layer in the protocol stack can contribute to-
wards these goals. From the physical layer we can mea-
sure channel quality during a packet. Not all packets are
equal: a packet with few bit errors is more likely to be
from a good link than one which has many bit errors.
These physical layer measurements are fast and cheap,
enabling a link estimator to avoid spending effort on
marginal or poor links [5]. We can distill this down to
the white bit, which denotes whether the channel qual-
ity during a received packet was high.

From the link layer, we can measure whether packets
are delivered and acknowledged. One problem faced by
broadcast probe-based estimators, such as ETX [9] and
MintRoute [22], is that they decouple link estimation
from data traffic: if a link goes bad and packets are lost,
the link estimate will not reflect this change until the
next routing beacon is dropped. We can distill this down
to the ack bit, which denotes whether the node received
a layer 2 acknowledgment in response to a transmission.

From the network layer, we can learn which links are
the most valuable for higher-layer performance. With-
out layer 3 information, estimators may select links which
form circuitous routes, or in the worst case, which dis-
connect a network. At least one wireless sensornet de-
ployment has failed due to inconsistency between layer 2
and layer 3 link tables [14]. We can distill these concerns
down to two bits: the pin bit, which tells the estimator
to not evict a link because it is in use, and the compare

(a) EAR, ETX (b) MintRoute (c) MultihopLQI (d) SP (e) Four Bit

Figure 1: A link estimator, represented by the triangle in the center of each figure, interacts with up to three layers. Attached boxes
represent unified implementation. Outgoing arrows represent information the estimator requests on packets it receives. Incoming
arrows represent information the layers actively provide.

bit, which the estimator can use to ask the network layer
if a link looks promising.

This paper makes three research contributions. First,
in Section 2, we identify valuable information each layer
can provide for link estimation and experimentally di-
agnose failure cases each layer cannot identify. Second,
in Section 3, we define a set of narrow interfaces that
provide information from each layer to a link estima-
tor. Third, we describe a prototype estimator that uses
these interfaces and evaluate its improvement over cur-
rent approaches in Section 4. Even though the interfaces
provide only a total of four bits of information, test-
bed experiments show that our estimator outperforms
existing cross-layer approaches. We compare our esti-
mator with MultihopLQI, the current state of the art
estimator used by many sensornet protocols and sys-
tems [2, 10, 16, 18, 21]. On the Intel mirage testbed [8],
our link estimator reduces packet delivery costs by 29%
while maintaining a 99.9% delivery ratio in comparison
to MultihopLQI’s 93%. On the USC Tutornet testbed,
our link estimator reduces packet delivery costs by 44%
while maintaining a 99% delivery ratio in comparison
to MultihopLQI’s 85%. Furthermore, as this estimator
is independent of the three layers, it can be easily incor-
porated into a wide variety of protocols.

These results provide strong evidence that link esti-
mators can be decoupled from particular layer imple-
mentations yet remain efficient and accurate. Decom-
posing link estimation in this way simplifies network
stacks and promotes protocol evolution and interoper-
ability.

1.1 Model
In this paper we consider link estimation in a multi-

hop wireless network whose MAC layer is CSMA-based
and whose physical layer supports burst-mode (packe-
tized), coded communications. This general framework
applies to networks at scales from Zigbee wireless sen-
sornets up to 802.11 mesh networks. While our evalua-
tion in Section 4 only covers the former, the Zigbee radio
shares a common radio band (2.4 GHz) and physical-
layer coding (direct-sequence spread spectrum) with the

later.

2. LAYER LIMITATIONS
A link estimator should be accurate and efficient.

It should provide good estimates of link qualities, and
be agile in detecting changes, all the while minimizing
memory requirements and overhead traffic. Each of the
physical, link, and network layers can provide valuable
information for the link estimator, as demonstrated by
previous work (c.f. Figure 1). We argue that a link es-
timator should use information from all three layers to
best achieve these goals, not only because each layer can
provide information that is unique or much more more
inexpensively obtained, but also because there are dif-
ferent link conditions that some layers can detect while
others cannot. The physical layer’s per-packet channel
quality assessment cannot always detect channel tempo-
ral variations. While the link layer can accurately mea-
sure ETX, it cannot inexpensively decide which links to
estimate. The network layer knows which links are most
useful for routing, but estimating link qualities at the
network layer is inefficient and slow to adapt.

To ground our discussion, we will look into a class
of multihop traffic called collection, in which multiple
nodes send data in anycast fashion to one of possibly
many basestations. This is the most prevalent traffic
pattern in wireless sensor networks. Our results, though,
are also applicable to more general any-to-any multihop
traffic.

As an example of how we can use information to help
the link estimator, we take a closer look at two collec-
tion protocols that are part of the TinyOS 2 distribu-
tion [3], the Collection Tree Protocol, or CTP [4], and
MultiHopLQI [5]. CTP uses a probe-based link estima-
tor, while MultiHopLQI relies solely on the link quality
indicator (LQI) provided by the CC2420 radio chip. We
have performed collection experiments with these pro-
tocols on an 85-node testbed at a low rate, with each
node generating one packet every 10 seconds. Figure 2
shows a typical routing tree formed by CTP (a), Multi-
HopLQI (b), and a version of CTP with no restriction
on the size of the link estimator tables (c). It also shows

the average cost, in number of transmissions, for each
delivered packet. Lower costs mean shorter paths with
good quality.

CTP’s cost is higher than MultiHopLQI’s, even though
the latter only uses physical layer information. This is
the symptom of two problems. First, because CTP uses
a bidirectional probe-based link estimator, its link ta-
ble size limits a node’s in-degree. Second, also because
of the limited link table size, it may be that the best
outgoing link is not even on the table to be selected
for routing. Figure 2(c) shows that when the link table
is unrestricted, CTP can outperform MultiHopLQI. In
Section 4 we show how using information from the phys-
ical, link, and network layers we can completely mitigate
these problems. The following subsections elaborate on
the benefits and limitations of each layer.

2.1 Physical Layer
The physical layer can provide immediate informa-

tion on the quality of the decoding of a packet. Such
physical layer information provides a fast and inexpen-
sive way to avoid borderline or marginal links. It can
increase the agility of an estimator, as well as provide a
good first order filter for inclusion in the link estimator
table. In Figure 1, MultiHopLQI (c) and SP1 (d) use
physical layer information for link estimation.

As this physical layer information pertains to a single
packet and it can only be measured for received packets,
channel variations can cause it to be misleading. For ex-
ample, many links on low power wireless personal area
networks are bi-modal [19], alternating between high
(100% packet reception ratio, PRR) and low (0% PRR)
quality. On such links, the receiver using only physi-
cal information will see many packets with high channel
quality and might assume the link is good, even if it is
missing many packets.

Figure 3 shows a limitation of physical layer infor-
mation that we observed during a 12-hour low rate col-
lection experiment using MultiHopLQI on a 94 node
testbed. As Figure 1(c) shows, MultiHopLQI does not
use link layer information. Although the protocol per-
formed well overall, there were bursts of packet loss. As
Figure 3 shows, for a period of time, the PRR between
the nodes C and P dropped from an average of 0.9 to
almost 0.6. This degradation in link quality was not ac-
companied by a drop in the decoding quality indicator
(LQI). All of the packets C received had high quality:
it just wasn’t receiving all the packets.

2.2 Link Layer
Link estimators such as ETX and MintRoute use pe-

riodic broadcast probes to measure incoming packet re-
ception rates. These estimators calculate bidirectional
link quality — the probability a packet will be delivered

1When using information provided by the underlying radio.

 0.6
 0.7
 0.8
 0.9

 1

PR
R(

fra
ct

io
n)

PRR from P to C

 70
 80
 90

 100
 110

LQ
I

LQI from P to C

 0
 20
 40
 60
 80

 0 1 2 3 4 5 6 7 8 9 10 11 12Cu
m

. #
 p

ac
ke

ts
 (x

10
4)

Time(hrs)

Unackd packets

Figure 3: Unaware of the reduced PRR, MultiHopLQI attempts
to deliver packets on the same link between the forth and sixth
hour causing increased number of retransmissions due to unac-
knowledged packets.

and its acknowledgment received — as the product of
the two directions of a link. While simple, this approach
is slow to adapt, and assumes that periodic broadcasts
and data traffic behave similarly.

By enabling layer 2 acknowledgments and counting
every acknowledged or unacknowledged packet, a link
estimator can generate much more accurate estimates
at a rate commensurate with the data traffic. These es-
timates are also inherently bidirectional. In Figure 1(a)
EAR and ETX use feedback from the link layer for link
estimation. Rather than inferring the ETX of a link by
multiplying two control packet reception rates, with link
layer information on data traffic an estimator can actu-
ally measure ETX. However, albeit accurate, relevant,
and fast, sending data packets requires routing informa-
tion, which in turn requires link quality estimates. This
bootstrapping is best done at lower layers. Also, espe-
cially in dense networks, choosing the right set of links
to estimate can be as important as the estimates them-
selves, which can get expensive if done solely at the link
layer.

2.3 Network Layer
The physical layer can provide a rough measure of

whether a link might be of high quality, enabling a link
estimator to avoid spending effort or marginal or bad
links. Once the estimator has gauged the quality of a
link, the network layer can in turn decide which links are
valuable for routing and which are not. This is impor-
tant when space in the link table is limited. For exam-
ple, geographic routing [11] benefits from neighbors that
are evenly spread in all directions, while the S4 routing
protocol [17] benefits from links that minimize distance

0

4

3

1

2

1

1

3

2

2

1

3

3

2
2

1

2

1

3

2 3
2

1
3

3

1

3

3

2

1

3 2
4

3

3

2

3

2

33

3
3

3

4

3

5

3

5

2

32
4

3

3

2

4

4 4

3

4

3

3

4

3
4

4

3

4

4

3

4

44

3

4

3

4

4

4
4

4

(a) CTP (cost = 3.14)

0

1

1

1

1

1

1
1

1

1

1

2

1

21

1 2
2

1

1

1

1

1

1

1

1

2

2

1

2

2

1

2
2 2

2

2

22

2

2
2

2

1

1

2 2

2
2

2

2
22

2

2

2

2

2 2

2 2

2

2

3

3

2

3

23

3

3

2

3

33

3

4

3

3

3

3
3

3

(b) MultiHopLQI (cost = 2.28)

0

1

1

1

1

1

1
1

1

1

1

1

1

2

2 1

1
2

1

1

1

1

1

1

1

1

2

22

2
2

1

2 2

2

2

33

3

2
2

2

1

1

1

2

1
2

2

1

2
22

2

2

2

2

1 1

2

2

2

2

2

2

2

12

2

2

2

2

22

3

3

2

2

2

3
2

2

(c) CTP unconstrained (cost = 1.86)

Figure 2: Routing trees formed on 85 node topology by CTP with 10-node link table, MultiHopLQI, and CTP with unrestricted link
table. The average cost in transmissions per delivered message is in parenthesis. The root is the node in the bottom left corner, and
darker nodes mean longer paths to the root.

to beacons. One recent infamous wireless sensornet de-
ployment delivered only 2% of the data collected, in part
due to disagreements between network and link layers
on what links to use. For this reason, the MintRoute
protocol (Figure 1(b)) integrates the link estimator into
its routing layer. SP (Figure 1(d)) provides a rich inter-
face for the network layer to inspect and alter the link
estimator’s neighbor table. The network layer can per-
form neighbor discovery and link quality estimation, but
without access to information such as retransmissions,
acknowledgments, or even packet decoding quality, this
estimation becomes slow to adapt and expensive.

In the following section we describe how we can ef-
ficiently achieve cooperation between the link estima-
tor and all three layers, with clean and well-defined in-
terfaces using only four bits of information. We then
demonstrate in Section 4 that indeed our interfaces al-
low significant performance gains through effective in-
formation exchange between the layers.

3. DESIGN
Section 2 showed that each layer can measure or ob-

serve properties that aid link estimation. The physical
layer can quantify the state of the medium during in-
coming packets. The link layer can measure whether
packets are delivered and acknowledged. The network
layer can provide guidance on which links are the most
valuable and should be estimated. This section proposes
interfaces between the three layers and describes a link
estimator that uses them.

3.1 Estimator interfaces
Figure 4 shows the interfaces each layer provides to

a link estimator. Together, the three layers provide four
bits of information: two bits for incoming packets and
one bit each for transmitted unicast packets and link
table entries.

A physical layer provides a single bit of informa-
tion. If set, this white bit denotes that each symbol
in received packet has a very low probability of decod-
ing error. A set white bit implies that during the re-
ception, the medium quality is high. The converse is
not necessarily true: if the white bit is clear, then the

Figure 4: A link estimator, represented by the triangle in the
center, uses four bits of information from the three layers. Out-
going arrows represent information the estimator requests on
packets it receives. Incoming arrows represent information the
layers actively provide.

medium quality may or may not have been high during
the packet’s reception.

A link layer provides one bit of information per trans-
mitted packet: the ack bit. A link layer sets the ack bit
on a transmit buffer when it receives a layer 2 acknowl-
edgment for that buffer. If the ack bit is clear, the packet
may or may not have arrived successfully.

A network layer provides two bits of information, the
pin bit and the compare bit. The pin bit applies to
link table entries. When the network layer sets the pin
bit on an entry, the link estimator cannot remove it
from the table until the bit is cleared. A link estimator
can ask a network layer for a compare bit on a packet.
The compare bit indicates whether the route provided
by the sender of the packet is better than the route
provided by one or more of the entries in the link table.
We describe how the link estimator uses the compare
bit in Section 3.3 below.

3.2 Interface Considerations
The four bits represent what we believe to be the min-

imal information necessary for a link estimator. Further-
more, we believe that the interfaces are simple enough
that they can be implemented for most systems. For ex-
ample, radios whose physical layers provide signal strength
and noise can compute a signal-to-noise ratio for the

white bit, using a threshold derived from the signal-
to-noise ratio/bit error rate curve. Physical layers that
report recovered bit errors or chip correlation can alter-
natively use this information. In the worst case, if radio
hardware provides no such information, the white bit
can never be set.

The interfaces introduce one constraint on the link
layer: they require a link layer that has synchronous
layer 2 acknowledgments. While this might seem de-
manding, it is worthwhile to note that most commonly-
used link layers, such as 802.11 and 802.15.4, have them.
Novel or application-specific link layers must include L2
acknowledgment to function in this model.

The compare bit requires that a network layer be
able to tell whether the route from the transmitter of a
packet is better than the routes of current entries in the
link table. The compare bit does not require that the
network layer be able to decide on all packets, merely
some subset of them. This implies that some subset of
network layer packets, such as routing beacons, contain
route quality information.

3.3 A hybrid estimator
We describe a hybrid estimator that combines the

information provided by the three layers with periodic
beacons in order to provide accurate, responsive, and
useful link estimates. The estimator maintains a small
table (e.g., 10) of candidate links for which it main-
tains ETX values. It periodically broadcasts beacons
that contain a subset of these links. Network layer pro-
tocols can also broadcast packets through the estima-
tor, causing it to act as a layer 2.5 protocol that adds a
header and footer between layers 2 and 3.

The estimator follows the basic table management al-
gorithm outlined by Woo et al. [22], with one exception:
it does not assume a minimum transmission rate, since
it can leverage outgoing data traffic to detect broken
links. Link estimate broadcasts contain sequence num-
bers, which receivers use to calculate the beacon recep-
tion rate.

The estimator uses the white and compare bits to
supplement the standard table replacement policy. When
it receives a network layer routing packet which has the
white bit set from a node that is not in the link estima-
tion table, the estimator asks the network layer whether
the compare bit is set. If so, the estimator flushes a ran-
dom unpinned entry from the table and replaces it with
the sender of the current packet.

The estimator uses the ack bit to refine link esti-
mates, combining broadcast and unicast ETX estimates
into a hybrid value, an approach necessitated by the
large variance of traffic volume across different links in
the network [13]. We follow the link estimation method
proposed by Woo et al. [22], separately calculating the
ETX value every ku or kb packets for unicast and broad-

1.0
Ack Bit ETX

Beacon PRR

Beacon EWMA

Hybrid ETX

1.0 0.83

5.0 3.1 1.72.1

1.25 6

3.9

Received/Acked Packet Lost/Unacked Packet

0.67

1.2

Figure 5: Our link estimator combines estimates of ETX sep-
arately for unicast and broadcast traffic with window sizes of
ku = 5 and kb = 2 respectively. The latter are first themselves
averaged before being combined. We show incoming packets
are light boxes, marking dropped packets with an “×”. The es-
timator calculates link estimates for each of the two estimators
at the times indicated with vertical arrows.

cast packets, respectively. If a out of ku packets are ac-
knowledged by the receivers, the unicast ETX estimate
is ku

a . If a = 0, then the estimate is the number of failed
deliveries since the last successful delivery. The calcula-
tion for the broadcast estimate is analogous, but has an
extra step. We use a windowed exponentially weighted
moving average (EWMA) over the calculated reception
probabilities, and invert the consecutive samples of this
average into ETX values. These two streams of ETX
values coming from the two estimators are combined in
a second EWMA, as shown in Figure 5. The result is a
hybrid data/beacon windowed-mean EWMA estimator.
When there is heavy data traffic, unicast estimates dom-
inate. When the network is quiet, broadcast estimates
dominate.

Contrary to most pure broadcast-based estimators,
our estimator does not actively exchange and maintain
bidirectional estimates using the beacons. Because the
ack bit inherently allows the measurement of bidirec-
tional characteristics of links, our estimator can afford
to only use the incoming beacon estimates as bootstrap-
ping values for the link qualities, which are refined by
the data-based estimates later. This is an important fea-
ture, as it decouples the in-degree of the nodes in the
topology from the size of the link table.

4. EVALUATION
We have implemented a prototype of the link estima-

tor described in Section 3.3 in TinyOS 2, and evaluate
it by replacing the standard link estimator in CTP. Our
estimator uses the four bit interfaces to the physical,
link, and network layers, and we modified these layers
in CTP to also use the interfaces. In this section we per-
form a detailed experimental comparison between our
prototype, the original CTP, and MultiHopLQI. In the
following discussion, we label our prototype as simply
‘4B’. As described above, MultihopLQI uses the Link
Quality Indication (LQI), a feature of the CC2420 ra-
dio, and for that radio it is currently the best performing
collection implementation for TinyOS.

 1.5

 2

 2.5

 3

 1.5 2 2.5 3

A
ve

ra
ge

 C
os

t (
xm

its
/p

ac
ke

t)

Average Tree Depth (hops)

White/Compare Bits

Ack Bit: U
nidir. E

st.

Ack
 B

it:
Unidir.

Est.

W
hi

te
/C

om
pa

re
 B

its

4B
CTP + white bit

CTP + unidir
CTP T2

MultiHopLQI
Cost = Depth

Figure 6: Exploring the link estimation design space: adding the
ack bit and/or the white and compare bits to CTP decreases cost
(lower is better) and the average depth of a node in the routing
tree.

In our comparison we run all three protocols on the
Mirage testbed, using 85 MicaZ nodes with one node set
as the basestation. We also ran experiments on a sec-
ond testbed, TutorNet, using 94 TelosB nodes. Transmit
power is set at 0 dBm unless otherwise specified. In each
experiment we stagger the boot time of all nodes using a
uniform distribution over a range of thirty seconds. Each
node sends a collection packet with some jitter to avoid
packet synchronization with other nodes. The workload
each node offers is a constant-rate stream of packets
sent to a sink. This creates many concurrent flows in
the network, converging at the sink. All experiments on
Mirage lasted between 40 and 69 minutes. On TutorNet
we ran much longer experiments, ranging from 3 to 12
hours. The fact that the testbeds are static, and that all
of our results agree from one testbed to the other gives
us confidence in the results of the shorter runs.

The primary metric we use to evaluate performance
is cost: the total number of transmissions in the net-
work for each unique delivered packet. Cost is impor-
tant as it directly relates to network lifetime. It takes
into account the number of hops in a path, the number
of per-link retransmissions needed, and also the wasted
network effort in packets that are dropped. To put cost
into perspective, we also look at the average depth
of the topology trees. If all links are perfect, average
depth is a lower bound for cost. The difference between
the two is indicative of the quality of the links chosen, as
it stems from either retransmissions or dropped packets.
Finally, we also look at delivery rate, the fraction of
unique messages received at the root.

We first explore how the addition of each of the bits
in Section 3.1 impacts cost and route length. We com-
pare the original CTP with 4B, and two intermediary
implementations. The uppermost-left point of Figure 6
shows the cost and depth of CTP running in the Mirage

Figure 7: Average node depth and cost for MultiHopLQI and
4B for decreasing transmit powers on the Mirage testbed. 4B
reduces cost by 19-28%.

testbed. Adding unidirectional link estimation to CTP
with the ack bit reduces average tree depth by 93%, and
reduces cost by 31%. Unidirectional estimates decouple
in-degree from the link table size, hence the large de-
crease in depth.

Adding the white and compare bits to the resulting
protocol decreases cost to 55% of the original CTP, pos-
sibly because of improved parent selection. Adding only
the white and compare bits to CTP provides reductions
of 15% in cost and 23% in average depth. The figure also
shows MultiHopLQI’s cost and depth in the same test-
bed for comparison. It is only when we use information
from the three layers that 4B does better than Multi-
HopLQI. 4B has 29% lower cost and 11% shorter paths
than MultiHopLQI. On another set of experiments on
TutorNet, 4B’s cost and average depth were respectively
44% and 9.7% lower than MultiHopLQI’s. The trees pro-
duced by 4B are very similar qualitatively and in average
depth to the trees produced by CTP with unrestricted
link tables (Figure 2).

Figure 7 compares the cost and average node depth of
4B and MultihopLQI in the Mirage testbed as transmit
power varies from −20 dBm to 0 dBm. In each proto-
col, we see that both average node depth and cost in-
crease with decreasing transmit power, as nodes need to
route packets over more hops to get to the sink. 4B’s im-
provement in cost over MultihopLQI ranges from 29%
to 11%, and the improvement in average depth from
11% to 3.5%. 4B’s cost, for the 0 and -10 dBm cases,
is at most 13% above the lower bound, while it is at
most 43.4% above the lower bound for MultiHopLQI.

0 dBm −10 dBm −20 dBm 0 dBm −10 dBm −20 dBm

0.
4

0.
6

0.
8

1.
0

D
el

iv
er

y
R

at
io

MultiHopLQI4B

Figure 8: Boxplots of per-node delivery distributions at decreas-
ing transmit power, for both MultihopLQI and 4B. Whiskers
show the minimum and maximum values. Boxes show the 1st
and 3rd quartiles. The line is the median. 4B maintains much
higher and consistent delivery rates across the network.

In a network with many hops, both protocols become
less efficient. The relative increase in cost (62% above
average depth for 4B and 95% for MultiHopLQI) are
indicative of retransmissions and/or losses. Even with
similar tree depths, however, 4B is able to select better
links in this situation.

Figure 8 looks at the per-node distribution of deliv-
ery ratios for the same experiments, and gives some in-
sight on why the costs in Figure 7 grow faster than the
average depth. For 0 and 10 dBm, 4B showed an aver-
age delivery ratio above 99.9%, with minimum 99.3%.
For 0 dBm, MultihopLQI’s average delivery ratio over
all nodes was 95.9%, with the worst node at 64%. As
the transmit power decreases, the relative importance
of RF noise increases, creating localized asymmetries in
the network. As in the example of Section 2, MultiHo-
pLQI’s performance drops as some of this variation in
link quality is not captured by the physical layer link
quality indicator. We plan to look further into the dy-
namic behavior of the network, but the much smaller
number of packet losses in 4B, even at -20dBm, indi-
cates that most of the inefficiency seen in its cost is due
to retransmissions, rather than loss. This suggests that
the estimator is agile enough to notice packet losses and
trigger the switch to a new route.

5. CONCLUSION
In this paper we have presented narrow, well-defined

interfaces that allow a link estimator to use information
from the physical, link, and network layers. Our pro-
totype has shown significant improvements on cost and
delivery ratio over the state of the art, while maintaining
layered networking abstractions. This is encouraging, as
we have not fully explored the possibilities of using our
four bits of of interface. Looking forward, a portable, ac-
curate, and efficient link estimator is ever more impor-
tant with the growing popularity of PANs, and the ex-
tension of IP to low-power, embedded networks through

efforts like IETF 6lowpan. For example, TCP’s perfor-
mance is known to be very sensitive to packet loss, and
the improvements achieved using our link estimator may
have a large impact on end-to-end throughput.

6. REFERENCES
[1] 6lowpan charter. http:

//www.ietf.org/html.charters/6lowpan-charter.html.
[2] Moteiv Corp.: Boomerang.

http://www.moteiv.com/software.
[3] Tinyos 2. http://www.tinyos.net/tinyos-2.x/doc.
[4] Tinyos 2 tep 123: The collection tree protocol.

http://www.tinyos.net/tinyos-2.x/doc/txt/tep123.txt.
[5] MultiHopLQI. http:

//www.tinyos.net/tinyos-1.x/tos/lib/MultiHopLQI,
2004.

[6] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.
Link-level measurements from an 802.11b mesh network. In
Proc. of the ACM SIGCOMM Conf., pages 121–132,
Portland, OR, 2004.

[7] S. Biswas and R. Morris. ExOR: Opportunistic Multi-hop
Routing for Wireless Networks. In Proc. of the ACM
SIGCOMM Conf., pages 133–144, Philadelphia, PA, Aug.
2005.

[8] B. N. Chun, P. Buonadonna, A. AuYoung, C. Ng, D. C.
Parkes, J. Shneidman, A. C. Snoeren, and A. Vahdat.
Mirage: A Microeconomic Resource Allocation System for
SensorNet Testbeds. In Proc. of the 2nd IEEE Workshop on
Embedded Networked Sensors (EmNets 2005), May 2005.

[9] D. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-Throughput Path Metric for Multi-Hop Wireless
Routing. In Proc. of the ACM MobiCom Conf., San Diego,
CA, Sept. 2003.

[10] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govindan,
B. Greenstein, A. Joki, D. Estrin, and E. Kohler. The tenet
architecture for tiered sensor networks. In Proc. of the ACM
SenSys Conf., pages 153–166, Boulder, CO, Nov. 2006.

[11] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. In International Conference
on Mobile Computing and Networking (MobiCom 2000),
pages 243–254, Boston, MA, USA, 2000.

[12] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and
J. Crowcroft. XORs in the Air: Practical Wireless Network
Coding. In Proc. of the ACM SIGCOMM Conf., pages
243–254, Pisa, Italy, August 2006.

[13] K.-H. Kim and K. Shin. On Accurate Measurement of Link
Quality in Multi-hop Wireless Mesh Networks. In Proc. of
the ACM MobiCom Conf., pages 38–49, Los Angeles, CA,
Sept. 2006.

[14] K. Langendoen, A. Baggio, and O. Visser. Murphy Loves
Potatoes: Experiences from a Pilot Sensor Network
Deployment in Precision Agriculture. In IEEE Parallel and
Distributed Processing Symposium, Rhodes Island, Greece,
Apr. 2006.

[15] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Analyzing the MAC-level behavior of Wireless Networks in
the Wild. In Proc. of the ACM SIGCOMM Conf., pages
75–86, Pisa, Italy, Aug. 2006.

[16] G. Mainland, M. Welsh, and G. Morrisett. Flask: A
Language for Data-driven Sensor Network Programs.
Technical Report TR-13-06, Harvard Univ., 2006.

[17] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith. S4: Small
State and Small Stretch Routing Protocol for Large
Wireless Sensor Networks. In Proc. of the USENIX NSDI
Conf., Cambridge, MA, Apr. 2007.

[18] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-Aware Fair Rate Control in Wireless Sensor
Networks. In Proc. of the ACM SIGCOMM Conf., pages
63–74, Pisa, Italy, Aug. 2006.

http://www.ietf.org/html.charters/6lowpan-charter.html
http://www.ietf.org/html.charters/6lowpan-charter.html
http://www.moteiv.com/software
http://www.tinyos.net/tinyos-2.x/doc
http://www.tinyos.net/tinyos-2.x/doc/txt/tep123.txt
http://www.tinyos.net/tinyos-1.x/tos/lib/MultiHopLQI
http://www.tinyos.net/tinyos-1.x/tos/lib/MultiHopLQI

[19] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. Some
Implications of Low Power Wireless to IP Networking. In
Proc. of the ACM HotNets Conf., pages 31–37, Irvine, CA,
2006.

[20] J. P. Vasseur. In IETF 69th Meeting.
[21] G. Werner-Allen, P. Swieskowski, and M. Welsh. Fidelity

and Yield in a Volcano Monitoring Sensor Network. In
Proc. of the ACM OSDI Conf., Seattle, WA, Nov. 2006.

[22] A. Woo, T. Tong, and D. Culler. Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor
Networks. In Proc. of the ACM SenSys Conf., pages 14–27,
Los Angeles, CA, Nov. 2003.

[23] J. Zhao and R. Govindan. Understanding Packet Delivery
Performance in Dense Wireless Sensor Networks. In Proc.
of the ACM SenSys Conf., pages 1–13, Los Angeles, CA,
Nov. 2003.

[24] M. Zuniga and B. Krishnamachari. An Analysis of
Unreliability and Asymmetry in Low-Power Wireless Links.
Transactions on Sensor Networks, 3(2), 2007.

	Introduction
	Model

	Layer Limitations
	Physical Layer
	Link Layer
	Network Layer

	Design
	Estimator interfaces
	Interface Considerations
	A hybrid estimator

	Evaluation
	Conclusion
	References

