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Abstract—We present our automated program repair tech-
nique ssFix which leverages existing code (from a code database)
that is syntax-related to the context of a bug to produce patches
for its repair. Given a faulty program and a fault-exposing
test suite, ssFix does fault localization to identify suspicious
statements that are likely to be faulty. For each such statement,
ssFix identifies a code chunk (or target chunk) including the
statement and its local context. ssFix works on the target chunk
to produce patches. To do so, it first performs syntactic code
search to find candidate code chunks that are syntax-related,
i.e., structurally similar and conceptually related, to the target
chunk from a code database (or codebase) consisting of the local
faulty program and an external code repository. ssFix assumes
the correct fix to be contained in the candidate chunks, and
it leverages each candidate chunk to produce patches for the
target chunk. To do so, ssFix translates the candidate chunk by
unifying the names used in the candidate chunk with those in
the target chunk; matches the chunk components (expressions
and statements) between the translated candidate chunk and
the target chunk; and produces patches for the target chunk
based on the syntactic differences that exist between the matched
components and in the unmatched components. ssFix finally
validates the patched programs generated against the test suite
and reports the first one that passes the test suite.

We evaluated ssFix on 357 bugs in the Defects4J bug dataset.
Our results show that ssFix successfully repaired 20 bugs with
valid patches generated and that it outperformed five other repair
techniques for Java.

Index Terms—Automated program repair; code search; code
transfer

I. INTRODUCTION

A typical automated program repair technique accepts as
input a faulty program and a fault-exposing test suite. As
output, it produces patched programs that pass the test suite. A
significant fraction of current repair techniques adopt a search-
based approach [1]–[8]: they define a set of modification rules
to generate a space of patches and search in the space for
patches that are plausible (i.e., the corresponding patched
programs pass the test suite). A study by Long and Rinard
[9] shows that (1) the search space, though huge, could be
insufficient to contain a correct patch and (2) the search space
often contains hundreds of plausible-but-incorrect patches
which could simply block the finding of a correct one. Within
a 12-hour time limit, the state-of-the-art repair techniques SPR
[5] and Prophet [10] generated patches for less than 60% bugs
in a dataset containing 69 bugs with more than 60% of the

first found patches being incorrect. Early repair techniques are
shown to have poor performance: as [7] shows, the majority
of patches generated by GenProg [1], AE [2], and RSRepair
[4] are incorrect.

To address the problem, the study [9] suggests leveraging
repair information beyond the test suite to create a search space
that is likely to contain a correct patch and is targeted so that
the correct patch could be effectively identified. One idea is to
leverage existing code fragments to produce effective patches.
We call the code fragments that contain the correct forms of
expressions, statements, etc. and can be used for generating a
correct patch the repair code fragments. GenProg assumes the
faulty program itself contains the repair code fragments at the
statement level for patch generation. The study by Barr et al.
[11] has demonstrated the feasibility of this assumption. If the
repair code fragments may exist in the local program, they may
also exist elsewhere in many non-local programs. The study
by Sumi et al. [12] supports this assumption. They found up to
69% of the repair code fragments (in the form of code lines)
can be obtained (possibly with identifier renaming) from both
the local program and non-local programs. The study is based
on the UCI dataset [13] containing 13,000 Java projects. We
believe it is more likely to find the repair code fragments for
bug1 repair in smaller granularity (e.g., at the expression level)
and from a larger code database (e.g., GitHub, which is huge
and is still rapidly growing).

Repair code fragments could possibly exist in the faulty
program itself and/or in non-local programs. Then the problem
is how to find and leverage such code fragments to produce
patches. One idea is to use semantic code search, i.e., finding
code fragments that are likely to be semantically correct.
However, semantic code search is often expensive and it may
fail to find many repair code fragments that do not represent
the correct implementation (they may contain more functional
features than the correct implementation does, they may use
different data types or side-effect processing mechanisms, etc.)
but can be leveraged to produce a correct patch. CodePhage
(CP) [14] and SearchRepair [15] are two repair techniques
that use semantic code search. CP’s code search relies on
code execution, and it can only find code that can process
the given inputs. SearchRepair uses symbolic execution to

1In this paper, we use “bug” and “fault” interchangeably.
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encode program semantics as constraints. Symbolic execution,
however, has limited expressive power for program semantics.
SearchRepair’s code search is based on constraint solving
which is undecidable in general and is often expensive. Cur-
rently SearchRepair was only shown to work for small C
programs.

If semantic code search is still limited, the natural question
would be: does syntactic code search work? Our paper an-
swered this question. We propose a novel repair technique
ssFix which performs syntactic code search to find and
leverage existing code fragments from a codebase (which
consists of the local faulty program and an external code
repository) to produce patches for bug repair. We assume a
repair code fragment that can be effectively leveraged for
bug repair to be syntax-related (i.e., structurally similar and
conceptually related) to the fault-located part of the faulty
program. Intuitively, such a repair code fragment is likely
to implement a coding task similar to what is implemented
in the faulty code fragment (e.g., both as iterating a list of
data items to look for certain values having similar names)
and implements it correctly. Compared to SearchRepair and
CP, ssFix is not directly targeted at finding code fragments
that are semantically correct. Instead, ssFix uses a lightweight
syntactic code search (based on a Boolean model and a TF-
IDF vector space model) to find syntax-related code fragments
where a repair code fragment is likely to exist. Given such a
fault-related code fragment (as a candidate code chunk), ssFix
translates the code chunk by unifying the identifier names
in it with those in the faulty code fragment (the target code
chunk), matches the components between the two chunks, and
produces patches for the target chunk based on the syntactic
differences that exist between the matched components and
in the unmatched components. For a candidate chunk that is
syntax-related to the target chunk, the syntactic differences
are small, and the search space is largely reduced. Through
experiments, we demonstrated the feasibility of the assumption
on which ssFix is built and the effectiveness of ssFix for bug
repair.

In this paper, we make the following contributions:
• We developed a novel automated repair technique ss-

Fix which performs syntactic code search to lever-
age existing code from a codebase to produce
patches for bug repair. ssFix is currently available at
https://github.com/qixin5/ssFix.

• We evaluated ssFix on all the 357 bugs in the Defects4J
dataset. Our results show that ssFix successfully repaired
20 bugs with valid patches generated. The median time
for producing a patch is about 11 minutes. Compared to
five other repair techniques for Java, our results show that
ssFix has a better performance.

II. OVERVIEW

In this section, we show an overview of ssFix and explain
how it works with an example. ssFix accepts as input a faulty
program, a fault-exposing test suite, and a codebase consisting
of the faulty program and a code repository (we used the

1 public static boolean isSameLocalTime(Calendar cal1,Calendar cal2){
2 if (cal1 == null || cal2 == null){
3 throw new IllegalArgumentException(‘‘The date must not be null’’);
4 }
5 return(cal1.get(Calendar.MILLISECOND)==cal2.get(Calendar.MILLISECOND)&&
6 cal1.get(Calendar.SECOND)==cal2.get(Calendar.SECOND) &&
7 cal1.get(Calendar.MINUTE)==cal2.get(Calendar.MINUTE) &&
8 cal1.get(Calendar.HOUR)==cal2.get(Calendar.HOUR) &&
9 cal1.get(Calendar.DAY_OF_YEAR)==cal2.get(Calendar.DAY_OF_YEAR) &&

10 cal1.get(Calendar.YEAR)==cal2.get(Calendar.YEAR) &&
11 cal1.get(Calendar.ERA)==cal2.get(Calendar.ERA) &&
12 cal1.getClass()==cal2.getClass());
13 }

Fig. 1. The faulty method of L21 (the fault is in red)

Merobase repository [16]). As output, ssFix either produces
a patched program that passes the test suite or nothing if it
cannot find one within a given time budget. ssFix goes through
four stages to repair a bug: fault localization, code search,
patch generation, and patch validation.

We use an example to go through the four stages. The faulty
method as shown in Figure 1 is from a faulty program (bug
id: L21) in the Defects4J bug dataset. It accepts as parameters
two calendar objects cal1 and cal2 and checks whether they
represent the same time. The fault is at Line 8 where the 12-
hour calendar field Calendar.HOUR is used for comparing
two local hours. Given two calendar objects whose hour fields
are different (e.g., one is 4 and the other is 16) but all the
other fields are identical, the faulty program may treat them
as identical although they represent different times (one is
early morning and one is late afternoon). For bug repair, the
following modification should be made

- cal1.get(Calendar.HOUR) == cal2.get(Calendar.HOUR)
+ cal1.get(Calendar.HOUR_OF_DAY) == cal2.get(Calendar.HOUR_OF_DAY)

where the 24-hour calendar field Calendar.HOUR_OF_DAY
is used. The modification is relatively simple, but none of the
repair tools that ssFix is compared to succeeded for this bug.
By leveraging existing code that is syntax-related to the bug
context, ssFix successfully repaired the bug with the correct
patch generated.

A. Fault Localization
In the first stage, ssFix employs the fault localization

technique GZoltar (version 0.1.1) [17] to identify a list of sus-
picious statements in the program that are likely to be faulty.
The statements in the list are ranked by their suspiciousness
(measured as scores) from high to low. For bug repair, ssFix
goes through the list: each time it looks at one statement (the
target statement) and works on generating patches for a local
code area (as a code chunk) including the statement (we will
explain how to generate such a code chunk later). Currently,
ssFix can only produce patches that make local changes (i.e.,
within the local code chunk) in the faulty program, though this
may involve modifying more than one statement. (Note that
if the faulty program crashed with a stack trace printed, ssFix
will first follow the stack trace to look at each statement in the
stack trace first if the statement is from the faulty program.
GZoltar does not use the stack trace information to compute
a statement’s suspiciousness. To repair a failure which causes
the program to crash, we assume the statements from the stack
trace are more suspicious than the other statements in the
faulty program.) The faulty return statement starting at Line 5
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1 GregorianCalendar calEnd = new GregorianCalendar();
2 calEnd.setTimeInMillis(end.getTime());
3 if (calStart.get(Calendar.HOUR_OF_DAY)==calEnd.get(Calendar.

,! HOUR_OF_DAY)
4 && calStart.get(Calendar.MINUTE)==calEnd.get(Calendar.MINUTE)
5 && calStart.get(Calendar.SECOND)==calEnd.get(Calendar.SECOND)
6 && calStart.get(Calendar.MILLISECOND)==calEnd.get(Calendar.

,! MILLISECOND)
7 && calStart.get(Calendar.HOUR_OF_DAY)==0
8 && calStart.get(Calendar.MINUTE)==0
9 && calStart.get(Calendar.SECOND)==0

10 && calStart.get(Calendar.MILLISECOND)==0
11 && start.before(end))
12 return true;

Fig. 2. A candidate code chunk retrieved from the Merobase repository (the
fix expression is in purple). The chunk’s enclosing method isAllDay checks
whether the two time values obtained by start.getTime() (not shown) and
end.getTime() both as millisecond values) represent the starting time of two
days (from 00:00 of one day to 00:00 of the next day). The full class name
of the chunk is org.compiere.util.TimeUtil.

in Figure 1 is the second statement ssFix looks at among all
the suspicious ones.

B. Code Search

Given a target statement identified as suspicious, ssFix goes
through three steps to find syntax-related code fragments from
the codebase: target chunk identification, token extraction, and
candidate retrieval. As the first step, ssFix generates a code
chunk tchunk including the statement itself and possibly its
context. ssFix then searches for code fragments in the codebase
as cchunks that are syntax-related, i.e., structurally similar
and conceptually related, to tchunk. A tchunk to be used
as the query for code search should not be too small (e.g.,
including only a simple statement as return x) because it does
not include enough context. On the other hand, it should also
not be large. The study by Gabel and Su [18] shows that a
code fragment with more than 40 tokens can be too unique
in general to have similar code fragments retrieved for code
search at the repository level. Based on this result, we develop
a simple chunk generation algorithm (Algorithm 1) to generate
a tchunk including the target statement and its local context
if the statement is not too large (to determine its size, we
use a threshold based on the LOC of the statement). For our
example, ssFix uses this algorithm to produce a tchunk with
only the return statement included.

As the second and third steps, ssFix extracts the struc-
tural k-gram tokens and the conceptual tokens from tchunk
and invokes the Apache Lucene search engine [19] to do a
document search to obtain a list of indexed code fragments
(treated as documents) from the codebase. The retrieved list
of code fragments (which we call the candidate code chunks,
or cchunks) are ranked from the ones that are the most
syntax-related to tchunk to the least (measured by the scores
computed by Lucene’s default TF-IDF model from high to
low). Later, ssFix goes through the list and leverages each
cchunk to produce independent patches for tchunk. More
details can be found in Section III-A. The retrieved cchunk
shown in Figure 2 is what ssFix later uses to produce a correct
patch for tchunk. This cchunk is ranked No. 6 among all the
retrieved chunks.

C. Patch Generation
ssFix leverages a candidate chunk cchunk to produce

patches for tchunk in three steps: candidate translation,
component matching, and modification. tchunk and cchunk
may use different identifier names for variables, fields, types,
and methods that are syntactically (and semantically) related.
For example, the two chunks in Figure 1 and in Figure 2 use
different names: cal2 and calEnd for a related variable.
As the first step, ssFix translates cchunk (if retrieved from a
non-local program) by unifying the identifier names in cchunk
with those that are syntactically related in tchunk. Without
such a translation, ssFix would often fail to directly use
statements and expressions from cchunk to produce patches
for tchunk: the patched program could simply fail to compile
for using unrecognized names. We developed an heuristic
algorithm (Algorithm 2) which ssFix uses to match variables,
fields, types, and methods between tchunk and cchunk based
on how they are used in the two chunks. ssFix then renames
the variables, fields, types, and methods in cchunk to their
matched counterparts in tchunk to achieve the translation.
For our example, ssFix determines calStart to match
cal1 and calEnd to match cal2 based on pattern-matched
expressions like the following three pairs (see Section III-B1
for more details).

cal1.get(Calendar.MILLISECOND) == cal2.get(Calendar.MILLISECOND)
calStart.get(Calendar.MILLISECOND) == calEnd.get(Calendar.MILLISECOND)

cal1.get(Calendar.SECOND) == cal2.get(Calendar.SECOND)
calStart.get(Calendar.SECOND) == calEnd.get(Calendar.SECOND)

cal1.get(Calendar.MINUTE) == cal2.get(Calendar.MINUTE)
calStart.get(Calendar.MINUTE) == calEnd.get(Calendar.MINUTE)

ssFix creates a translated version of cchunk as rcchunk by
renaming the two variables calStart and calEnd to their
respective matched ones cal1 and cal2 in tchunk.

The translated chunk rcchunk may not represent the correct
patch but may contain the correct forms of components
(expressions and statements) to be used in tchunk or indi-
rectly suggest a faulty statement in tchunk to be deleted
for producing a correct patch. Instead of replacing tchunk
with rcchunk at the chunk level for patch generation, ssFix
matches components that are syntactically related between
the two chunks and produces patches based on the syntactic
differences that exist between the matched components and in
the unmatched components. Specifically, ssFix uses a modified
version of the tree matching algorithm used by ChangeDistiller
[20] to do component matching, and it modifies tchunk to
produce patches using three types of operations: replacement,
insertion, and deletion (see Section III-B2 and Section III-B3).
For our example, ssFix found the following pair of components
(and 26 others) from tchunk and rcchunk to match.

cal1.get(Calendar.HOUR) == cal2.get(Calendar.HOUR)
cal1.get(Calendar.HOUR_OF_DAY) == cal2.get(Calendar.HOUR_OF_DAY)

In tchunk, it then replaces the first component with the second
(from rcchunk) to produce the correct patch.

D. Patch Validation
For each cchunk, ssFix produces a set of patches. It filters

away patches that are syntactically redundant and patches that
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have been tested earlier (generated by other cchunks). ssFix
next sorts the filtered patches based on the modification types
and the modification sizes to make a correct patch likely to
be found before an overfitting patch (such a patched program
can pass the test suite but does not actually or fully repair
the bug). More details can be found in Section III-C. ssFix
reports the first patched program that passes the test suite. If
no such program can be found, ssFix looks at the next cchunk
from the retrieved list and repeats the patch generation and
patch validation processes. For our example, ssFix successfully
found the correct patch after validating 202 individual patched
programs that failed the testing (the majority of those simply
failed the fault-exposing test case). It took ssFix less than seven
minutes to find this patch.

III. METHODOLOGY

In this section, we elaborate on the last three stages that
ssFix takes for bug repair. Fault localization itself is a research
field and is not the focus of this paper. ssFix simply uses the
approach described in Section II-A to do fault localization.

A. Code Search
The code search stage of ssFix starts with a target statement

s identified as suspicious in the first stage. ssFix generates
a local code chunk tchunk including s itself and possibly
the local context of s. ssFix then extracts the structural and
conceptual tokens from the text of tchunk. ssFix treats the
extracted tokens as a vector of terms and uses Lucene’s
Boolean Model and its TF-IDF vector space model to find
candidate code chunks cchunks that are syntax-related to
tchunk from the codebase.

Algorithm 1 Generating a Local Target Code Chunk
Input: s, th . s: target statement, th: LOC (we use 6)
Output: tchunk . A target code chunk
1: function CHUNKGEN(s,th)
2: tchunk  {s}
3: if getSize(tchunk) � th then return tchunk

. getSize returns the LOC of a code chunk
4: s0  get the parent statement of s
5: if s0 exists then
6: tchunk0  {s0}
7: if getSize(tchunk0)  th then return tchunk0

8: s1  get the statement before s in its block
9: s2  get the statement after s in its block

10: if both s1 and s2 exist then
11: tchunk1  {s1, s, s2}
12: if getSize(tchunk1)  th then return tchunk1

13: else if s1 exists but s2 does not exist then
14: tchunk2  {s1, s}
15: if getSize(tchunk2)  th then return tchunk2

16: else if s1 does not exist but s2 exists then
17: tchunk3  {s, s2}
18: if getSize(tchunk3)  th then return tchunk3

19: else
20: return tchunk

1) Chunk Generation: A tchunk with some context of s
included could provide information about what s intends to do
with the semantics potentially common to a large amount of
existing code fragments in the codebase. Although it is often
necessary to include some context of s (especially when s is
too simple in its form as return x for example, and does not
contain enough semantics), it can be a bad idea to include a

large context (e.g., a method that implements multiple tasks).
As the study [18] shows, for repository code search, significant
syntactic redundancies were observed for code containing only
up to 40 tokens (or 5-7 lines approximately). A larger code
fragment is likely to be too unique. Based on this observation,
we developed a simple algorithm chunkgen which generates a
tchunk including only the local context of s with a chunk-
size threshold th (6 LOC) specified. As shown in Algorithm 1,
if the size of s is equal to or larger than th, ssFix simply
produces a tchunk including s itself (Lines 2-3). Otherwise,
ssFix produces a tchunk including either the enclosing parent
statement of s up to the declared method (not inclusive), if any
exists, (Lines 5-7) or a maximum of s and its two neighboring
statements (Lines 8-18) as long as the size of tchunk is no
larger than th.

The way ssFix generates cchunks is similar: For each Java
source file in the codebase, ssFix looks at every method
defined in every class defined in the file. It extracts the
following code fragments within the method as cchunks: (1)
every compound statement which contains children statements
and (2) every sequential three statements within each code
block (e.g., a body block of a for-statement). (Note that
for any compound statement which has a non-block single
statement as its body, ssFix will create a new block as the
body containing the statement. Also note that if a code block
contains no more than three statements, all the statements are
then included in the chunk). ssFix produces a cchunk using
(1) and (2) to cover the two cases it produces a tchunk using
the target statement’s parent statement and the target statement
itself plus its neighboring statements. Note that ssFix does not
use any chunk-size threshold to produce a cchunk. This makes
ssFix be able to find a cchunk that is smaller or larger than
tchunk (for statement deletion and insertion).

Currently, ssFix produces a relatively small tchunk (with
only the suspicious statement s and possibly its local context
included) used for both code search and patch generation. Our
experiments show that this works reasonably well. But it is still
possible to use a larger tchunk including more than the local
context of s to do code search (possibly with different query
weights put on different context levels) to have a cchunk in
a comparable size retrieved, and later to find smaller chunks
(e.g., using clone detection techniques like [21], [22]) within
the original two chunks for patch generation. We consider
exploring this as our future work.

2) Token Extraction: Given either tchunk or cchunk, ssFix
extracts the structural k-gram tokens and the conceptual tokens
from the text of the chunk. For every generated cchunk in the
codebase, ssFix employs Lucene [19] to create an index for
the extracted tokens to facilitate code search. Given tchunk,
ssFix searches in the codebase for cchunks that have “similar”
tokens using Lucene’s Boolean model and its TF-IDF vector
space model.

Extracting the structural k-gram tokens: ssFix first
tokenizes the text of a chunk and gets a list of tokens. To
mask names, number constants, and literals that are program
specific, ssFix symbolizes different types of tokens: ssFix uses
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the symbol $v$ for non-JDK variables and fields, $t$ for
non-JDK & non-primitive types, $m$ for non-JDK methods,
$lb$ for boolean literals (true or false), $ln$ for number
constants, and $ls$ for string literals that contain whitespace
characters (e.g., as an exceptional message). ssFix does not
symbolize JDK tokens, primitive types, character literals, or
string literals that do not contain whitespace characters since
they are often semantics-indicative. We call the symbolized
tokens the code pattern tokens and we call the string of these
tokens concatenated by single spaces the code pattern. ssFix
next splits the list of code pattern tokens into sub-lists by
curly brackets and semicolons to avoid generating k-grams
that are not very interesting (e.g., a k-gram that starts at
the end of one statement but ends at the start of another).
Finally, ssFix concatenates (with no space in between) every
sequential k (we set k=5) tokens within every sub-list of tokens
to get the structural k-gram tokens. (Note that if a sub-list
contains less than k tokens, ssFix would produce a less-than-k-
gram token.) Given a statement as str.charAt(1)==’e’;
where charAt is a JDK method, ssFix splits the statement
into a list of tokens, symbolizes the tokens (changing str to
$v$ and 1 to $ln$), splits the symbolized list into a sub-
list of tokens by semicolon, and finally gets a list of four 5-
gram tokens: { $v$.charAt($ln$ , .charAt($ln$) ,
charAt($ln$)== , ($ln$)==’e’ }.

Extracting the conceptual tokens: Two chunks that are
conceptually related often use common tokens such as “time”,
“iterator”, or “buffer”. ssFix extracts such conceptual tokens
as follows: ssFix first tokenizes the text of a chunk and
gets a list of tokens containing Java identifiers only. For any
token that is camel-case or contains underscores or numbers,
ssFix splits the token into smaller tokens and appends them
to the list. ssFix finally changes each token in the list into
lower-case and eliminates any tokens whose string lengths
are less than 3 or greater than 32 as well as the stop words
and the Java keywords. For example, the list of conceptual
tokens for str.getChars(0,strLen,buffer,size)
is {“str”, “getchars”, “chars”, “strlen”, “str”, “len”, “buffer”,
“size”} (Note that “get” is a stop word that is eliminated).

3) Candidate Retrieval: For candidate retrieval, ssFix in-
vokes Lucene’s query search with the query tokens being
the extracted tokens from tchunk2. It uses Lucene’s default
TF-IDF vector space model (which uses Lucene’s Practical
Scoring Function defined in [23]) to retrieve cchunks. The
retrieval process ignores any cchunk whose the number of
matched tokens (the tokens that are matched with those in
tchunk) is less than n/8 where n is the total number of tokens
in tchunk. To do so, ssFix uses Lucene’s Boolean model.

For each tchunk, ssFix obtains a list of cchunks that
have the highest relatedness scores ranked from high to low.
Currently, it only looks at the top 100 (at most) cchunks that
are not syntactically redundant for bug repair.

2It is also possible to invoke Lucene’s query search twice using the
structural tokens and the conceptual tokens independently and then merge
the results, but we did not experiment this.

B. Patch Generation

In this stage, ssFix leverages a candidate chunk cchunk
to produce patches for tchunk in three steps: candidate
translation, component matching, and modification.

Algorithm 2 Creating an Identifier Mapping
Input: tchunk, cchunk
Output: imap[idBind! idBind] . idBind is an identifier binding
1: imap[idBind! idBind] empty
2: cmap[(idBind, idBind)! int] empty
3: tcompts, ccompts get the component lists of tchunk, cchunk (components

visited in pre-order)
4: matched compts  match components between tcompts and ccompts by

code pattern equality
5: for all (tcompt, ccompt)2 matched compts do
6: tptokens, cptokens  get the code pattern tokens of tcompt, ccompt

7: . tptokens & cptokens are two lists having identical elements
8: for all (tptoken, cptoken)2 (tptokens, cptokens) at every list index do
9: if tptoken and cptoken are both identifier symbols then

10: tidbind get the identifier binding of tptoken
11: cidbind get the identifier binding of cptoken
12: if (cidbind, tidbind) is an entry in cmap then
13: c cmap.get(cidbind, tidbind)
14: cmap.add((cidbind, tidbind), c + 1)
15: else
16: cmap.add((cidbind, tidbind), 1)
17: for all cidbind from cmap do
18: tidbind  get the mapped identifier with the max value of c (tie breaking by

the Levenshtein Similarity between identifier strings)
19: imap.add(cidbind, tidbind)
20: return imap

1) Candidate Translation: A candidate chunk cchunk and
the target chunk tchunk may use different identifier names for
variables, fields, types, and methods that are syntactically and
semantically related, especially when they are not from the
same program. We developed an heuristic algorithm shown in
Algorithm 2 to map variable, field, type, and method identifiers
appeared in cchunk to those in tchunk that are syntactically
related (and may thus be semantically related) based on
matching the code patterns of their contexts. (The code pattern
used here is identical to what we defined in Section III-A2 but
with all non-JDK identifiers, number constants, and literals
symbolized to increase matching flexibility). Given a cchunk
that is not from the local, faulty program (where tchunk is
from), ssFix uses the algorithm to match their identifiers and
renames every identifier in cchunk (which has a match) as
its matched identifier in tchunk to get a translated version of
cchunk as rcchunk. Since a cchunk and a tchunk from the
same faulty program use identifier names consistently, ssFix
does not create a translated version for such a cchunk.

Algorithm 2 accepts as input tchunk and cchunk. It outputs
an identifier mapping imap that maps an identifier that appears
in cchunk, as a reference binding (or a binding), to an
identifier that appears in tchunk, also as a binding. (ssFix
matches and renames all identifiers that have the same binding
consistently.) The algorithm starts by collecting in pre-order
a list of components (statements and expressions) in the tree
structure of the chunk (for either tchunk or cchunk) that
are not number constants, literals (boolean, null, character,
and string literals), or identifiers (Line 3). These components
represent all the contexts of all the identifiers in the chunk. The
algorithm then matches the components (Line 4) by comparing
their code patterns. Two components can match iff their code
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patterns (as two strings) are identical. For every matched
components whose code patterns are identical (and thus share
an identical list of code pattern tokens), the algorithm obtains
the two lists of code pattern tokens (Line 6). At every index
where the two code pattern tokens are both identifiers, the
algorithm gets the identifier bindings, matches them, and
saves this match with a count in a map cmap (Lines 8-
16). Finally, the algorithm iterates cmap, for each identifier
binding in cchunk (cidbind), it finds its matched identifier
binding in tchunk (tidbind) with the maximum matching
count. If there are more than one such matched tidbinds, the
algorithm breaks the ties by comparing the string similarity of
the identifier bindings (Lines 17-19).

2) Component Matching: ssFix matches components be-
tween tchunk and rcchunk to identify their syntactic differ-
ences at the component level. Later it leverages the syntactic
differences that exist between the matched components and
in the unmatched components to produce patches for tchunk.
ssFix extends the tree matching algorithm of ChangeDistiller
(Fig. 9 in [20]) to do component matching based on the com-
ponent types, structures, and contents. The original algorithm
performs tree matching at the statement level and is used
for code evolutionary analysis. The algorithm used by ssFix
follows its basic idea to match leaf nodes first (using the
match1 function) and then inner nodes (using the match2

function) in a bottom-up way. We make changes to the original
algorithm on the definitions of leaf and inner nodes, node
compatibility, and node similarity.

Specifically, we define a leaf node to be either a simple
statement which has no children statements or an expression
that is not a number constant, a literal, or an identifier. We
define an inner node to be a compound statement that has
children statements. We give a new definition for the node
compatibility (the l function in [20]) as follows: (1) a leaf node
is not compatible with an inner node, (2) two leaf nodes are
compatible if (a) their node types are equal (e.g., both as return
statements) and (b) they follow the node-type-specific rules:
for ArrayAccess or ArrayCreation, the array types should
be compatible (i.e., the array dimensions are equal and the
element types are equal); for ClassInstanceCreation, the class
types should be identical; for InfixExpression, PostfixExpres-
sion, or PrefixExpression, the expression operators should be
identical; for Assignment, the assignment operators should be
identical; and for MethodInvocation, the method names should
be identical, and (3) two inner nodes are compatible if their
node types are equal or they are both loop statements (for,
while, or do statements). As for the node similarity metrics
used in the match1 and match2 functions in [20], we make
two changes: (1) we decrease the values of the thresholds f
and t and (2) we ignore the bigram string similarity part for the
similarity metric in match2. ChangeDistiller was designed to
match nodes that are highly similar for evolutionary analysis.
In our context, we decrease the thresholds f and t to allow
components that are syntactically related but are not highly
similar to match. Currently ssFix uses 0.2 for f and 0.4
for t and it works reasonably well with these thresholds for

TABLE I
SUB-COMPONENT REPLACEMENT RULES FOR CERTAIN TYPES OF

MATCHED COMPONENTS

Component Rule

If Statements

1. Replace condition
2. Replace then-branch
3. Replace else-branch
4. Combine conditions with &&
5. Combine conditions with ||

For Statements

1. Replace initializers
2. Replace condition
3. Replace updaters
4. Replace initializers, condition, & updaters
5. Replace body

Loop Statements
(not both as for-statements)

1. Replace condition
2. Replace body

Switch Statements 1. Replace expression
2. Replace body

Try Statements
1. Replace try-body
2. Replace catch-clauses
3. Replace finally-body

Synchronized Statements
1. Replace synchronized expression
2. Replace body

Return Statements
(with boolean returned expressions)

1. Combine the expressions with &&
2. Combine the expressions with ||

Catch Clauses 1. Replace caught exception
2. Replace body

Assignments/Infix Expressions
1. Replace left-hand side
2. Replace operator
3. Replace right-hand side

Method Calls/Super Method Calls
1. Replace caller expression
2. Replace method name
3. Replace arguments⇤

Constructor Calls (i.e., this(...)) 1. Replace arguments⇤

Super Constructor Calls 1. Replace caller expression
2. Replace arguments⇤

Prefix/Postfix Expressions 1. Replace operator
2. Replace operand

⇤ ssFix may produce multiple patches by replacing each individual argument of tcpt with the corresponding
argument of ccpt in the same argument index. This only happens when the two components have the same
number of arguments.

our experiments. We do not consider the similarity of two
conditions (as if-conditions or loop-conditions) as a factor to
match two compound statements (as two inner nodes) because
a bug could make one condition dissimilar to the other. In
such case, we still allow the two statements to match as long
as they have similar children according to the Dice Coefficient
similarity used in the match2 function in [20] so that the faulty
condition has a chance of being repaired.

3) Modification: In the final step of patch generation,
ssFix modifies tchunk based on the matched and unmatched
components between tchunk and rcchunk to yield an initial
set of patches using three types of modifications: replacement,
insertion, and deletion. We next discuss each in turn.

Replacement: For every matched components (tcpt, ccpt)
where tcpt is a component from tchunk and ccpt is a
component from cchunk, ssFix replaces tcpt with ccpt and
the sub-components of tcpt with the sub-components of ccpt
to produce patches. Specifically, ssFix first replaces tcpt with
ccpt to produce a patch if tcpt is not syntactically identical to
ccpt. ssFix may do more replacements on the sub-components
of tcpt and ccpt based on their types following the rules we
created in Table I. (Recall that if tcpt matches ccpt, either
they have the same component type or they are both loop
statements.) For each row in Table I, there is more than one
rule. ssFix follows the rules to produce patches independently:
each time, it follows one rule to produce one patch (it would
not produce a patch if the replacement makes no actual
syntactic changes.) Note that ssFix may make multiple changes
using one replacement. For example, it may follow Rule 2 for
loop statements to replace a loop body with another which
may make changes to several statements within the body.

Insertion & Deletion: ssFix inserts an unmatched statement
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component (cstmt) from rcchunk in tchunk to produce a
patch. For any component (cstmt) in rcchunk, ssFix first
checks whether it is qualified for insertion, i.e., (1) whether it
is a statement that has no match in tchunk and (2) whether
it has no matched children statements. If not qualified, ssFix
ignores the insertion of cstmt because the potential occurrence
of cstmt in tchunk could lead to statement redundancy caused
by itself or by its children statements. If cstmt is qualified,
ssFix computes estimated positions where cstmt is likely to fit
in tchunk and later inserts cstmt at every estimated position
to yield patches. Specifically, ssFix first finds the two sibling
statements of cstmt in its parent block (as csl and csh) that are
closest to cstmt and have matches. ssFix gets their matched
statements tsl and tsh in tchunk and inserts cstmt at every
position in between (if they both exist and are from the same
block). Otherwise, if at least one of tsl and tsh exists, ssFix
inserts cstmt at every position after tsl in its located block
and/or at every position before tsh in its located block to
yield patches. If neither tsl nor tsh exists, ssFix ignores the
insertion for cstmt since there is no matching evidence that
cstmt is needed.

For deletion, ssFix deletes any statement component in
tchunk that has no matched statement in rcchunk. Similar
to insertion, if the unmatched statement has matched children
statements, ssFix ignores its deletion.

C. Patch Validation

ssFix leverages a cchunk retrieved from the codebase to
produce a set of patches for tchunk. In this stage, ssFix
first filters aways patches that are syntactically redundant
and patches that have been tested earlier (generated by other
cchunks), next sorts the patches by the modification types
and sizes, then validates each patched program against the test
suite, and finally reports the first one (if any) that passes the
test suite. Like every repair technique that uses a test suite as
the correctness criterion for patch evaluation, it is possible that
ssFix produces an overfitting, patched program that passes the
test suite but does not actually or fully repair the bug. Studies
[7], [24] have shown that (1) a repair technique is more likely
to produce an overfitting patch using deletion than using other
types of modifications and (2) a simple patch is less likely to
be overfitting than a complex patch. Based on these results,
we created the following rules to rank two patches: (1) a patch
generated by replacement or insertion always has a higher rank
than a patch generated by deletion, (2) if there is a tie, a patch
with a smaller modification tree height has a higher rank, and
(3) if there is still a tie, a patch with a smaller edit distance
has a higher rank. We define a modification tree height of a
patch to be the maximum heights of the tree structures of the
modification-related components cpt and cpt0 (for insertion or
deletion, if a component is null, the height is 0). We define
an edit distance of a patch to be the edit distance between
the content strings of cpt and cpt0 (if a component is null,
the content string is empty). ssFix follows the rules to rank
patches and does patch sorting.

Note that ssFix may produce hundreds of patches given a
cchunk that is dissimilar to tchunk. For efficiency, ssFix only
selects a maximum of the top-sorted k (we set k = 50) patches
that it produced for tchunk using a cchunk for validation. If
a patched program compiles, ssFix first tests it against the test
case(s) that the original, faulty program failed. If the patched
program succeeds, ssFix then tests it against the test suite.

IV. EMPIRICAL EVALUATION

To evaluate the performance of ssFix, we used the Defects4J
bug dataset (version 0.1.0) [25] which contains a set of 357
real bugs. We ask two research questions.

• RQ1: How many bugs can ssFix repair? What is the
performance of ssFix on repairing these bugs?

• RQ2: Compared to other techniques, how effective is
ssFix?

We conducted two experiments to answer them. We next show
each experiment in turn.

A. RQ1
We implemented ssFix and evaluated its performance on

all 357 real bugs in the Defects4J bug dataset. Our results
show that ssFix repaired 20 bugs with valid patches generated.
The median time for generating a plausible patch is about 11
minutes.

1) Experimental Setup:
a) Bug Dataset: The Defects4J dataset [25] consists

of 357 real bugs from five Java projects: JFreeChart (C),
Closure Compiler (Cl), Commons Math (M), Joda-Time (T),
and Commons Lang (L). Each bug in the dataset is associated
with a developer patch showing how the bug can be correctly
repaired. The dataset has been commonly used for evaluating
an automated repair technique for Java [26], [27], [8], [28].

b) ssFix’s Running Setup: Our implementation of ssFix
used the Merobase repository [16] (which contains about 2.5
million Java source files, or about 180 million LOC) as the
external code repository and five versions of the projects (C8,
Cl14, L6, M33, and T4) as the local faulty programs3. To
avoid using a fixed version of a bug to produce patches,
in the code search stage, ssFix ignores any candidate chunk
cchunk retrieved from the codebase if (1) the full-class name
of cchunk’s located class is the same as that of the target
chunk’s (or tchunk’s) located class4 and (2) the signature of
cchunk’s enclosing method is the same as that of tchunk’s
method.5 We ran ssFix to repair each bug within a time budget
of 120 minutes on machines with eight AMD Phenom(tm) II
processors and 8G memory.

3For each of the three bugs: M53, M59 and M70, the fault’s located class
contains a repair statement. The repair statement, however, is not contained
in the class of M33 whose class name is identical to that of the fault’s located
class. So we additionally indexed the fault’s located class for each bug (three
classes in total).

4The Commons Lang & the Commons Math projects may use either lang3
& math3 or lang & math as parts of their package names respectively. We
unified these name differences for comparing two class names.

5Even doing so, we still manually found, in our initial experiments, the two
cchunks (for L43 and L33) that ssFix used to yield patches are suspicious to
be from the fixed versions of the two faulty programs. We created a black-list
for the enclosing methods of those cchunks.
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TABLE II
ALL PLAUSIBLE PATCHES GENERATED BY SSFIX

Project (#Bugs) Time (in minutes) #Plausible #Valid⇤ #Correct
Sem(Syn)⇤

CChunk Rank CChunk Locality #Tested Patch
min max med min max med #Local #Non-Local min max med

JFreeChart (26) 3.4 77.9 8.8 7 3 2(2) 1 65 34 2 5 2 4337 132
Closure Compiler (133) 7.6 34.8 12.8 11 2 1(1) 1 51 1 9 2 2 489 84
Commons Math (106) 2.2 100.5 14.8 26 10 7(6) 1 91 7 12 14 1 5609 171.5

Joda-Time (27) 1.8 8.1 4.0 4 0 0(0) 1 24 5 1 3 3 426 61.5
Commons Lang (65) 3.4 56.4 6.1 12 5 5(5) 1 60 8 1 11 3 2454 34.5

Total (357) 1.8 100.5 10.7 60 20 15(14) 1 91 6.5 25 35 1 5609 99
⇤ We manually compared a generated patch to the developer patch to determine its validity and correctness.

2) Results: Table II is a summary6 of the repair perfor-
mance of ssFix. From left to right, the table shows the project
name and the number of bugs in the project, the repairing
time (min, max, and median), the number of bugs for which
plausible patches were generated (a patch is plausible if the
patched program passes the test suite), the number of valid
patches generated (we consider a patch to be valid if the
patched program passes the test suite and does not introduce
regressions in general), the number of correct patches gener-
ated (we consider a patch to be correct if it is semantically
equivalent to the developer patch associated with the bug, in
a stricter case, such a patch can be syntactically equivalent
to the developer patch), the ranks (in min, max, and median
from 1 to 100) of the candidate chunks used for generating
the patches, the numbers of chunks retrieved from the local
project and from the external code repository, and the number
of failed patches ssFix created and tested (against at least one
test case) before finding a plausible patch.

As shown, ssFix produced plausible patches for 60 bugs
in total (a patch is plausible if the patched program passes
the test suite). The running time (in minutes) for repairing
these 60 bugs ranges from 1.8 to 100.5 with the median
being 10.7. A plausible patch is produced and identified
by ssFix automatically. To determine whether a generated,
plausible patch does not introduce regressions and whether it
is semantically correct in general, we manually compared the
patch with the corresponding developer patch contained in the
Defects4J dataset. Among the 60 plausible patches generated
(for the 60 bugs), we determined 20 patches to be valid.
Among the 20 valid patches, we determined 15 patches to
be semantically equivalent to the developer patches associated
with their repaired bugs, and 14 of the 15 patches to be not
only semantically but also syntactically equivalent to the cor-
responding developer patches. In terms of passing the test suite
without introducing regressions in general, we determined 5
patches to be valid though they are not semantically equivalent
to the developer patches. Below is one such patch generated
for the bug M57:

+ double sum=0; (by developer)
+ float sum=0; (by ssFix)
- int sum=0;

ssFix patched the program by changing the declared type of
sum from int to float to avoid precision loss. The patched
program now passes the test suite. Although the patch is not se-
mantically equivalent to the developer patch, we consider it as

6The complete result can be found at
https://github.com/qixin5/ssFix/blob/master/expt0/rslt.

valid. We manually determined 7 of the 60 plausible patches to
be defective (and thus overfitting): they introduce regressions
to their original programs and are thus invalid and incorrect.
For four of them, ssFix deleted the expected program seman-
tics. For the remaining 33 (60-20-7) patches, it is not easy for
us to manually determine their validity since the patches are
not syntactically equivalent or similar to the developer patches,
so we released them for other reviews. All the 60 plausi-
ble patches and the corresponding candidate chunks can be
found under https://github.com/qixin5/ssFix/tree/master/expt0.
For each of the 20 valid patches, we provided an explanation
as to why we believe it is valid/correct.

ssFix failed 297 (357-60) bugs with no patches generated.
To understand the failures, we manually examined the devel-
oper patches for all the 357 bugs and found that there are 263
complex bugs for which the correct patches are not within
the search space of ssFix (recall that ssFix can currently only
repair relatively simple bugs by making modifications within a
relatively small code chunk). Among the 297 failed bugs, there
are 221 such complex bugs for which ssFix cannot produce
correct patches. (But note that ssFix did produce valid patches
for 2 of the 263 complex bugs: Cl115 & M30. Each such patch
makes and only makes some but not all of the changes made by
the developer patch, and the corresponding patched program
passes the test suite.)

Among the other 94 (357-263) simple bugs, ssFix produced
plausible patches for 33 bugs, and it failed 61 bugs with no
patches generated. One challenge lies in the accuracy of fault
localization. We found GZoltar simply failed to identify the
target faulty statements for 15 bugs (among the 61 failed ones).
We also found there are 19 bugs for which the suspicious ranks
of the target statements are greater than 50 (with the median
rank being 159), and ssFix did not actually looked at any of
these target statements under the current running setup.

Another challenge lies in ssFix’s code search ability in
finding effective candidates. The current way ssFix does code
search is not effective for all cases. The bug Cl10 is one
example. ssFix produces a target chunk as shown below.

if (recurse) {
- return allResultsMatch(n, MAY_BE_STRING_PREDICATE);
+ return anyResultsMatch(n, MAY_BE_STRING_PREDICATE);

} else { return mayBeStringHelper(n); }

Since all the identifier names are locally defined by the faulty
program, ssFix creates a code pattern with all the names
symbolized, and extracts a list of structural tokens that are
a little too general (which roughly say that the code chunk
contains an if-statement and two method calls to be returned).
The extracted conceptual tokens together are a little too unique
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to be used for finding related candidate chunks in the codebase.
As a result, ssFix failed to find candidate chunks that are truly
syntax-related from Merobase. The candidate chunks found
from the local program however do not contain the correct
expression to be used for bug repair. So ssFix failed to repair
the bug. In the last part of Section III-A1, we propose a way
for improvement and consider to explore it as our future work.

In principle, the ways ssFix uses to do candidate translation,
component matching, and modification can also limit ssFix
from producing a valid/correct patch. But we found these
are not actual problems when a target statement is accurately
located and an effective candidate chunk is found.

Since ssFix uses a test suite (as opposed to a formal
specification) as the correctness criterion for patch evaluation,
it can generate a defective patch which introduces regressions.
An inaccurate fault localization technique and an ineffective
candidate could both lead to a defective patch being generated.
We actually found that it can be problematic to produce
patches by deletion using a candidate chunk that is not very
related to the target chunk. ssFix produced four defective
patches by deleting the non-buggy statements.

B. RQ2

We compared ssFix to five other repair techniques for
Java: jGenProg [26], jKali [26], Nopol (version 2015) [29],
HDRepair [30], and ACS [31] on the same dataset. Compared
to these techniques, our results show that ssFix has a better
performance: it produced larger numbers of patches that are
valid and correct with the efficiency of producing a plausible
patch being either comparable or better. Note that we did not
compare ssFix to other repair techniques that are written for
C (e.g., SearchRepair [15], CodePhage [14], SPR [5], Prophet
[10], and Angelix [32]) or are not publicly available as of
August, 2017 (e.g., PAR [3]).

1) Experimental Setup: We ran jGenProg, jKali, Nopol,
HDRepair, and ACS each to repair all the 357 bugs in the
Defects4J dataset on machines that have the same configura-
tions with the ones on which we ran ssFix. The time budget
for repairing a bug is two hours (the same for ssFix). Since
jGenProg and HDRepair use randomness for patch generation,
we ran the tool (either jGenProg or HDRepair) in three
trials7 to repair a bug, and we considered the tool to have
a valid/correct patch generated if it did so in at least one trial.
For the other three techniques, we ran them each only in one
trial to repair each bug.

2) Results: Table III shows the repairing time (min, max,
and median) and the numbers of plausible, valid, and correct
patches generated by all the six techniques. Figure 3 shows
the ids of the bugs for which the techniques produced valid
patches. Our results show that ssFix significantly outperforms
jGenProg, jKali, and Nopol: ssFix produced many more valid

7Note that our experiment was very expensive and we only ran jGenProg/H-
DRepair in three trials. We believe our current running setup is sufficient to
show that ssFix outperforms the two tools: the number of valid and correct
patches generated by ssFix in one trial is about four times larger than the
number of those patches generated by jGenProg or HDRepair in three trials.

TABLE III
ALL PLAUSIBLE PATCHES GENERATED BY SSFIX AND FIVE OTHER

TECHNIQUES (SEE FIGURE 3 FOR THE SPECIFIC BUGS FOR WHICH VALID
PATCHES WERE GENERATED BY THE SIX TECHNIQUES)

Tool Time (in minutes) #Plausible #Valid #Correct
min max med sem syn

ssFix 1.8 100.5 10.7 60 20 15 14
jGenProg 10.8 78.5 30.5 19(27) 3 3(5) 2

jKali 4.4 81.6 8.5 18(22) 1 1(1) 1
Nopol 1.6 101.3 12.6 33(35) 0 0(5) 0

HDRepair 8.2 87.7 52.3 16(23†) 5 4(10†) 3
ACS 88.8 113.1 93.9 7(23‡) 3 3(18‡) 2

The numbers in parentheses (in the 5th and 7th columns) are copied from the results
reported in [8], [28], [33] (where the reported results in [28], [33] are based on four
of the five projects except the Closure Compiler project, and the reported result in [8]
is based on all the five projects). Our results (not in parentheses) are based on all the
five projects.
† The results reported in [8] are based on a repair experiment on 90 selected bugs using a
fault localization technique performed at the method level (with a faulty method known
in advance). For each bug, the authors of [8] looked for a correct patch within the top
10 generated patches (if any). Our results are based on all the 357 bugs. The fault
localization was performed at the project level. For a consistent comparison, we only
checked the validity and correctness of the first generated patch (if any).
‡ In our experimental setup, we found that ACS (available at [31]) took longer than
what is reported in the paper [28] to produce a plausible patch, and we did not reproduce
many correct patches reported in [28].
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Fig. 3. Valid Patches Generated by Different Techniques

patches (using either less or comparable time) than these tech-
niques did. All the valid patches generated by these techniques
were actually generated by ssFix. jGenProg cannot practically
produce a correct patch when the repair statement does not
exist in the faulty program. It deletes a statement in high
probability and this often leads to a defective patch generated.
jKali can only delete a statement, so it is not expected to
produce any correct patch that does not involve statement
deletion. Nopol uses a conditional synthesis technique to
produce patches related to an if-statement. Our results show
that it is prone to produce a patch with a synthesized condition
being too constrained or too loose. An example (M85) is
shown below.

if (fa * fb >= 0.0) { ... } //The faulty statement
if (fa * fb > 0.0) { ... } //The correct patch
if (fa * fb >= 1) { ... } //Nopol’s patch

Although Nopol created a patch by constraining the original
if-condition to make the test suite pass, it is overly constrained
and would not be correct in general.

HDRepair is an extension of GenProg. It uses more modifi-
cation operations than GenProg does but leverages the bug-fix
patterns mined from existing bug-fixing instances to make the
patch search process guided. However, our results show that
HDRepair’s bug-fix-pattern driven algorithm is not truly effec-
tive. Compared to jGenProg, it only produced two more valid
patches with the median repairing time being longer. Overall,
ssFix outperforms HDRepair. But HDRepair did produce three
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valid patches that ssFix failed to produce. For example, to
produce one of such patches (for M75), HDRepair reused a
statement return getPct(Long.valueOf(v)) from the class of the
faulty statement return getCumPct((Comparable<?>) v); and
applied a modification to replace getCumPct with getPct. ssFix
did not find the repair statement since its local context is not
similar to that of the faulty statement.

ACS is a recently developed technique that also uses con-
dition synthesis to repair a program. It leverages techniques
of test case analysis, document analysis, dependency analy-
sis, and predicate mining to produce an if-statement with a
synthesized condition that is likely to be correct. Our results
show that ACS generated valid patches for three bugs that
none of the other techniques successfully repaired. M85 is
an example that ACS successfully repaired by synthesizing
a correct if-condition as fa*fb>=0.0&&!(fa*fb==0.0): it first
identified a target expression (fa*fb), then performed keyword
search over the GitHub repositories to find relevant predicates
and produced the expression !(fa*fb==0.0), and it finally
produced the correct condition by conjoining this expression
with fa*fb>=0.0. Through using relevant expressions from
GitHub, ACS synthesized a correct condition that is neither
too constrained nor too loose. Although ACS produced three
valid patches that no other techniques produced, our results
show that ssFix still outperforms ACS in terms of the number
of valid patches generated and the repairing time. Since ACS
is designed to repair bugs related to if-conditions, it is not easy
for ACS to produce a direct, valid patch for bugs like L59 for
which ssFix produced a correct patch by replacing a method
argument strLen with another width.

C. Discussion
In our experiments, we referred to the developer patch

associated with a bug to manually determine the validity
and correctness of a patch generated by a repair technique.
There can be in general other ways to define the validity and
correctness of a patch. For a fraction of plausible patches
generated by ssFix and other techniques, we cannot easily
determine their validity or correctness, but it is possible that
some of the generated patches are valid and correct even
though they are not syntactically equivalent or similar to the
developer patches. Even so, we do not believe there can be
a significant fraction of valid/correct patches among such
plausible ones, and we released all the plausible patches
at https://github.com/qixin5/ssFix/tree/master/expt0/patch.
Though possibly biased, a manual evaluation method like
ours is commonly used to evaluate the quality of patches
generated by current automated repair techniques. The
problem however can be mitigated through using a held-out
test suite (to quantify overfitting) and/or other approaches
that can identify overfitting patches (e.g., [34], [35]).

The repair performance of ssFix significantly depends on the
performance of code search, and we think there is still room
for ssFix’s code search to be improved (e.g., through using
the proposed solution we mentioned in the last part of Sec-
tion III-A1 and/or using a larger code database). With a better

code search, ssFix can be more efficient, and can produce
more valid/correct patches and less overfitting patches. (To
produce less overfitting patches, ssFix may also be combined
with techniques like [34]–[38]).

V. RELATED WORK

ssFix leverages existing code fragments to produce patches
for bug repair. SearchRepair [15] and CodePhage [14] are
two repair techniques that are built on a similar idea. The
main difference between ssFix and the two techniques lies in
how they perform code search to find code for bug repair.
ssFix uses syntactic code search while the two techniques
use semantic code search (based on symbolic execution and
constraint-solving, and program execution respectively). ssFix
is related to a branch of automated repair techniques [1]–[4],
[6], [8], [39] that work by first defining a set of modification
rules to have a search space of patches created and then using
different ways to search in the space for patches that are
likely to be correct. relifix [6] is one of the techniques that
is related to ssFix in that it produces patches based on the
changed statements between two programs. However, relifix
only targets on repairing regression errors, and it does not
do cross-project code search, code translation or component
matching. relifix uses more modification operations than ssFix
does to produce patches. It uses randomness for patch genera-
tion while ssFix does not. Another branch of repair techniques
[24], [27], [28], [32], [40]–[42] leverage synthesis techniques
to produce patches. SPR [5] is a staged repair technique
combines using modification operations and using condition
synthesis to generate patches. Prophet [10] is built upon SPR
and uses a probabilistic model for patch ranking. ssFix is
related to these techniques but does not use any synthesis
techniques to produce patches. ssFix is also related to many
repairing techniques using formal specifications (e.g., [43]),
focusing on specific fixing tasks (e.g., [44]) and providing
suggestions and feedbacks (e.g., [45], [46]).

Techniques like SYDIT [47], LASE [48], REFAZER [49],
and Genesis [50] can extract, synthesize, and infer code trans-
formations for bug repair and for other purposes. Different
from these techniques, ssFix does not learn any transforma-
tions but directly leverages existing code from a database to
produce patches for bug repair.

The way ssFix produces patches can be thought of as
creating a hybrid of two pieces of code (i.e., the target and
the candidate chunks of code). ssFix is thus related to works
that do code transfer (or transplantation) [14], [51]–[54].

VI. CONCLUSION

In this paper, we presented our automated repair technique
ssFix which performs syntactic code search to find existing
code from a code database that is syntax-related to the
context of a bug and further leverages such code to produce
patches for bug repair. Our experiments have demonstrated the
effectiveness of ssFix in repairing real bugs. In the future, we
will look at using different code search techniques on a larger
code database for a potential performance enhancement.
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