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Abstract: This article formalizes the claim that interactive finite computing agents are more expre
than Turing machines. The impact of models of interaction on Church’s thesis and Godel’s incomple
result is explored. The evolution from algorithmic to interactive models of computation in computer a
tecture, software engineering, and AI is considered in a final section.
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In computer science, important concepts usually come with a plethora of alternative characteriza
Christos Papadimitriou [Pa]

1.  Interaction Machines
Algorithms and Turing machines (TMs) have been the dominant model of computation during the

50 years of computer science, playing a central role in establishing the discipline and providing a
foundation for theoretical computer science. We claim that TMs are too weak to express interact
object-oriented and distributed systems, and propose interaction machines (IMs) as a stronger mo
better captures computational behavior for finite interactive computing agents. We show that the
equivalence of TMs, the lambda calculus, and recursively enumerable sets in expressing the com
functions is paralleled by an equally robust equivalence of models and mechanisms of interactive co
ing. Moreover, changes in technology from mainframes and procedure-oriented programming to ne
and object-oriented programming are naturally expressed by the extension of models of computatio
algorithms to interaction.

Section 1 introduces interaction machines, an observation-based metric for interactive expressi
and expressiveness hierarchies for sequential and distributed interaction. Section 2 extends machin
Interaction, Computability, and Church’s Thesis 1/20
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algebras, and Church’s thesis from algorithms to interaction. Section 3 presents non-well-founded s
ory as a framework for interactive semantics, while section 4 extends induction to coinduction by re
ing the base case and replacing least by greatest fixed points. Section 5 examines metamathe
implications, including the extension of Church’s thesis, the relation between mathematical paradig
Brouwer and Hilbert and the computational paradigms of Church and Turing, and the interpretat
Godel incompleteness. Section 6 shows that interactive models provide a unifying framework for so
engineering, AI, HCI, and other application-oriented subdisciplines of computer science.

1.1 Sequential Interaction Machines (SIMs)
Turing machinesare finite computing agents that noninteractively transform input into output string

sequences of state transitions. TM computations for a given input are history-independent and rep
ible, since TMs always start in the same initial state and shut out the world during computation.

Turing machine: TMs are state-transition machines M = (S, T, s0, F), with finite sets of states S and
tape symbols T, a starting state s0, and a state-transition relation F: SxT -> SxO. TMs transform finite inp
strings x∈T* to outputs y = M(x) by a finite sequence of steps that read a tape symbol i, perform a
transition (s,i) -> (s’,o), write a symbol o, and/or move the reading head one position right or left [Tu

TMs compute functions f:X->Y from integers to integers (strings to strings). The class of funct
computable by TMs are called the computable functions.

SIMs are stream processing machines that model sequential interaction by I/O streams.
Sequential interaction machine:SIMs are state-transition machines M = (S, I, m) where S is an e

merable set of states, I is an enumerable set of dynamically bound inputs, and the transition mapp
SxI -> SxO maps state-action pairs into new states and outputs.

Each computation step (s,i)->(s’,o) of a SIM can be viewed as a complete TM computation, where
dynamically supplied input token (string), the output o may affect subsequent inputs, and s’ is the
state of the SIM. Elements of both S and I are finite at any given time but their size is unbounde
behavior of SIMs is expressed byI/O streams:

I/O streamshave the form (i1,o1), (i2,o2), ... , where ok is computed from ik but precedes and can influ
ence ik+1. The dependence of ik+1 on ok is calledinput-output coupling.

Input-output coupling violates the separation of domains and ranges, causing dynamic depende
inputs on prior outputs that is characteristic of interactive question-answering, dialog, two-person g

and control processes. Transitions m from sk to sk+1 I/O pairs are associated with I/O pairs (ik, ok).

Persistent Turing machines (PTMs)are a canonical model for SIMs that minimally extends TMs [GW
Persistent Turing Machine: A PTM is a multitape TM with a persistent work tape whose content

preserved between interactions.
The state of a PTM is its persistent worktape and may be enumerably infinite. Single interaction

PTM correspond to TM computations.
Example: An answering machine is a PTM whose worktape contains a sequence of recorded me

and whose operations are “record message”, “playback”, and “erase”. History dependent behavior
answering machine is illustrated by the I/O stream segment “(record X, ok), (record Y, ok), (play
XY)”, where the third output “XY” depends on the first and second input. Both the content of the work
and the length of input for recorded messages are unbounded, but we show [GW2] that “simple”

i1

s0 s1 s2 s3

i4i2 i3

m m m

o1 o2 o3
Figure 2: SIM with Input i∈I, Output o∈O, and mapping m
Interaction, Computability, and Church’s Thesis 2/20
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whose inputs are binary have the expressiveness of a PTM with unbounded input message.

1.2 Interactive Behavior and Expressiveness
Expressiveness of finite computing agents is defined in terms of a notion of observable behavi

generalizes the notion of algorithm behavior.
System behaviorof a finite computing agent M is specified by its set of all possible interactions w

all possible environments, and is denoted by B(M).
TM behavior is specified by a set of I/O pairs, while SIM behavior is specified by a set of I/O stre

SIMs have the same transformation mechanisms as TMs but have richer environment interactio
enables them to express richer behavior. Multi-agent interaction machines (MIMs), that interact with
tiple autonomous interaction streams, have even richer interaction environments (section 1.3) that a
mate to the interaction of physical objects in the real world.

Observable behavior of agents relative to a class of environments is generally more relevant in m
ing interactive applications than system behavior for all possible environments.

Observable behaviorof an agent (machine) M for an environment (observer) E is the set of all be
iors of M in E and is denoted by BE(M).

Observable behavior is a projection of system behavior to a specific context. The system behavio
is defined as a union of behavior over all possible observation environments B(M) =∪ E. BE(M). The
interpretation of “all possible” depends on the range of interactions considered legitimate. Turing ma
interactions permit only I/O pair observations and exclude I/O streams, while SIM interactions perm
streams but exclude multiple I/O streams. When considering agents that simulate interaction with t
world, multi-stream environments with the interaction power of MIMs must be considered.

Given two finite agents M1, M2, the exclusive-or BE(M1)⊕BE(M2) is called the distinguishability set
DS for M1, M2 in E. Members of DS are calleddistinguishability certificates. Two machines are distin-
guishable if DS is nonempty and are equivalent if they are not distinguishable. Agents equivalent re
to a restricted environment E1 may have distinct behavior for a more permissive environment E2, just as for
people. Greater problem-solving power of agents (or capability of people) becomes manifest only
agents are tested under demanding conditions that allow capabilities to be exercised.

Expressiveness:Machine M1 is more expressive than machine M2 in environment E if BE(M1) is a
strictly larger set of behaviors than BE(M2).

Expressiveness of finite computing agents can be formally defined by observation equivalence re
that measure the ability of agents to make observational distinctions about their environment.

Observation equivalence:A class S of systems and a class E of environments determines an obs
tion-equivalence relation EQ(S, E) such that systems M1, M2∈S are equivalent iff their behavior is indis
tinguishable for all e∈E. That is, Be(M1) = Be(M2) for all e∈E. Environments e, e’∈E are equivalent for
systems S if they induce indistinguishable behavior Be(M) = Be’(M) for all M∈S.

Machines induce an equivalence relation on an environment E such that machine M1 is more expressive
than M2 if the equivalence relation EQ(M1, E) induced by M1 on E is strictly finer than EQ(M2, E). Greater
expressiveness of machines implies greater distinguishability among environments, which in turn
that more expressive machines can solve larger classes of computational problems.

Observation equivalence relations induced by finite automata were studied by Myhill and Nerode
They showed that a finite automaton induces an equivalence relation of finite index on its environme
of tapes): finite automata can make only a finite number of distinctions about their environment
Myhill/Nerode result can be generalized to show that TMs and IMs induce stronger equivalence rel
and are therefore more expressive.

Lemma: The equivalence relation induced by a TM on its tape environment has an enumerable 
Proof: A TM that defines a one-to-one function on an enumerable domain (for example, the succ

function), defines an equivalence relation of enumerable index on its set of tapes.
Interaction, Computability, and Church’s Thesis 3/20
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Lemma: SIMs induce an equivalence relation with nonenumerable index on their environment.
Proof: SIM inputs are streams (models by non-well-founded sets) that distinguish among nonenu

ble environments.
By extending the Myhill-Nerode results about finite automata beyond TMs to SIMs we show the

prising result that finite computing agents can make nonenumerable distinctions about their environ
This directly describes the greater expressiveness of interaction in terms of methods borrowed fro
early history of automata theory.

finite automata induce an equivalence relation of finite index on their environment (of tapes)
TMs induce an equivalence relation of enumerable index on their (tape) environment
SIMs induce equivalence relations of nonenumerable index on their (external) environments
Interaction between an environment and an observer can be modeled as a producer/consumer

where E is a producer of behavior, S is a consumer, and the observed behavior (throughput) BE(S) is the
smaller of produced and consumed behavior. When the environment with which a finite agent intera
TM, then behavior richer than a TM cannot be detected, just as the intelligence of a human agent ca
detected if the agent is never given tasks that require intelligence.

Since the behavior BE(S) depends on E as well as S, we classify environments into classes that su
progressively stronger forms of interaction.

Turing machine environments (agents noninteractively transform initial to final string)
SIM environments (agents respond to sequences of interactive inputs, proactively explore enviro
MIM environments (agents respond to autonomous (distributed) streams of interactive inputs)
the physical world W (interaction at least as demanding for agents as MIM environments)
Behavior of agents in a TM environment is expressed by input-output pairs, while behavior in a

environment is expressed by sequences of observations (I/O streams) that allow more finely-grain
tinctions among behaviors than single observations. Nonequivalence of two SIMs can be detecte
finite distinguishability certificate (observation sequence) but equivalence cannot be finitely detecte

Since computational models aim to express properties of real-world environments, W is the
demanding of the environments considered here. Interaction machines that interact with the real wo
have the property that EQ(SIM, W) is a finer equivalence relation on the real world that EQ(TM, W). S
permit a finer granularity equivalence relation for real-world environments than TMs and MIMs perm
finer granularity relation than SIMs. Agents that model behavior of real-world environments W impo
expressiveness hierarchy such that TMs, SIMs, and MIMs are progressively more expressive finite
able to make progressively finer distinctions about the world and solve larger classes of problems.

Lemma: BW(TMs)⊂ BW(SIMs)⊂ BW(MIMs), where⊂ is set inclusion for classes of behaviors
Proof: The result BW(TMs) ⊂ BW(SIMs) follows from the fact that TMs induce equivalence relatio

of enumerable index while SIMs induce equivalence relations of nonenumerable index. Eviden
BW(SIMs) ⊂ BW(MIMs) is given in section 1.3.

For environments that are TMs, the equivalence relation induced by SIMs is no finer than that in
by TMs, while for SIM environments, MIMs are no more expressive than SIMs. A given level of exp
siveness of a finite agent can be shown only if a testing environment has at least that expressivene
TM observer, all computing agents including SIMs and MIMs appear to behave like a TM, while to a
all computing environments as well as the physical world appear to behave like TMs. Failure to ob
that computers have greater expressive power than TMs was due in large measure to the fact that o
tion environments (testing environments) were restricted to be TMs.

BTM(TMs) = BTM(SIMs) = BTM(MIMs); BTM(TMs) = BSIM(TMs) = BMIM(TMs) = BW(TMs)
Once the idea of expressiveness as distinguishing power is introduced, many levels of express

may be distinguished. Let SIMk be the class of SIMs restricted to no more than k interactions. For all k
the distinctions that can be made by SIMk+1 in environment W are greater than those by SIMk. SIMs deter-
mine an infinite expression hierarchy with TMs at the bottom (corresponding to behavior BW(SIM1)).
Interaction, Computability, and Church’s Thesis 4/20
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Lemma: For all k>0, BW(SIMk) ⊂ BW(SIMk+1); and BW(TM) = BW(SIM1)
Proof: Consider an environment of SIMs with buffers of length k that buffer the output of their first

interactions and disgorge their first output only on the kth interaction. For this environment, machin
the class SIMk can distinguish machines with buffers of length k by distinguishability certificates of len
k, but cannot distinguish among machines with buffers of length k+1. As a second example, consi
environment of machines Mk with binary inputs that print a 1 whenever the last k interactive inputs ar
and a 0 otherwise. The shortest distinguishability certificate between Mk+1 and Mk has length k+1. Note
that SIMk must have a memory of at least size log(k) to track distinguishability certificates of length
that the state for the classes SIMk is not bounded.

SIMs model interactive question answering. The expressiveness hierarchy for SIMs shows that o
questioning that makes use of follow-up questioning has greater expressiveness than off-line ques
Ken Starr can obtain more information about questioned subjects (Clinton) by interactive than nonin
tive questioning because later questions can use information not available to noninteractive ques
Strategies that permit k+1 interactive questions can elicit more information (about Clinton) than k
tions, assuming that Clinton has at least the expressive power of a SIM. This is formally prove
expressing interactive question-answering as interaction between two SIMs and using the result tha
can make finer distinctions about a SIM environment than TMs. The strategy used by the Senate of
a list of 81 predetermined questions was predictably ineffective because it is an off-line strategy that
sponds to asking a single complex question with many parts.

1.3 Multi-Stream Interaction Machines (MIMs)
Multi-stream interaction machines (MIMs)are finite agents that interact with multiple autonomo

streams: for example, distributed databases or ATM systems that provide services to multiple auton
clients. MIM behavior is not expressible by SIMs [WG] in the sense that MIMs can make a richer cla
observational distinctions (perform a larger class of tasks) than SIMs. This contrasts with the fact tha
titape TMs are no more expressive than single-tape TMs. TMs express the behavior of a single agen
express the interaction of 2 agents, while MIMs express the interaction of n agents for n>2. Analysis
greater expressiveness of 3-agent than 2-agent interaction provides a computational framework fo
ing that the 3-body problem in physics is not reducible to the 2-body problem [We3].

MIMs provide a precise definition ofdistributed systems: A system (computing agent) is distribute
iff its interactions can be described by a MIM but not by a SIM.

This definition neatly defines distributed behavior for a single finite computing agent in terms of
currency (nonserializability) of its interactive behavior. The notion that “distributed = interactively con
rent” is attractive because of its precision and simplicity. Its focus on concurrency of interactio
opposed to nonlocality of data may at first seem nonstandard, but in fact expresses distributedness
of a natural notion of nonlocality of agents. MIMs that cannot be expressed as SIMs express inheren
locality of the agents that interact with the MIM. Our claim that MIMs are more expressive that S
implies that distributed systems (defined as above) are more expressive than nondistributed system

MIM environments interact concurrently with finite agents. Interactive concurrency differs qualitat
from concurrent execution of actions and is a form of “second-order concurrency”. Concurrent sy
with many parallel processes may be noninteractive (closed), interact with a single external stre
interact with multiple streams [We1]. Distributed computing can be precisely defined as concurrent
action: distributed systems have second-order concurrency while nondistributed systems interact
most a single stream [WG].

Greater expressiveness of machine M1 than M2 for a multiple-stream environment E can in principle b
observationally defined by the property that induced observation equivalence relation EQ(M1, E) is finer
than EQ(M2, E), just as for SIMs. For example, a CEO M1 who can draw finer distinctions about a com
pany E than a CEO M2 can make more effective decisions. However, equivalences induced by MIM
Interaction, Computability, and Church’s Thesis 5/20
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environments are harder to visualize and define than equivalences induced by SIMs, involving conc
interaction with multiple streams that cannot be directly related to making environmental distinction

We present two kinds of arguments for the greater expressiveness of MIMs:
1. MIMs may have nondeterministic behavior not expressible by SIMs
MIMs model distributed systems that cannot be completely observed by any sequential ob

(stream). Each stream of a MIM models an observer that views the MIM through a particular interfac
there is no observer that can observe the complete MIM. Observers of a MIM are like the prov
observers of an elephant who can only observe the trunk or the tail but not the complete elephant.

Systems consisting of a SIM with an observer areclosed, while MIMs with any primary observer are
open, since they can be modified unpredictably by secondary observers (Figure 3). Modification of a
by secondary observers is perceived by a primary observer as nondeterministic behavior.

MIMs that are deterministic from the viewpoint of a metaobserver (God) who observes their com
behavior appear nondeterministic from the viewpoint of any single primary observer with limited seq
tial observation powers. This is a variant of Einstein’s argument that “God does not play dice” which
the basis of his disagreement with traditional interpretations of quantum theory. Einstein’s hidden va
model was proved inconsistent with observation [Per]. When Einstein’s “hidden variable model”
express observation of SIMs are extended to “hidden interface models” that express observation of
with unobservable (hidden) interfaces, the arguments of Bohr and Bell against Einstein do not app
hidden interface model potentially provides a stronger argument for the thesis that “God does no
dice” that could prove Einstein to be right. An experiment for deciding between Bohr’s and Einstein’s
of nondeterminism is proposed in [We3].

2. MIMs may have nonserializable behavior not expressible by SIMs
Nonserializability of autonomous streams provides a more direct argument than nondeterminism

greater expressiveness of MIMs. Multiple autonomous streams cannot be serialized as a single
because atomicity of input-output coupling of streams cannot be preserved under merging for tas
require collaboration or coordination among streams. We illustrate nonserializability for delegation o
tasks - a particularly simple form of coordination.

If (iu, ou) is an input-output interaction of an agent A with a user U and (oe, ie) is an interaction b
with an expert E to whom A delegates a subtask in responding to U, then interactions occur in the tem
sequence (iu, oe, ie, ou). The user stream element (iu, ou) and expert stream interaction (oe, ie) ca
treated as atomic and independent. There is no serial order of execution of the two interactions (iu, o
(oe, ie) that achieves the desired effect. This example shows that even simple forms of coordinati
delegation cannot be expressed by SIMs, because of the breakdown of serializability.

Coordination violates serializability (atomicity) of input-output coupling of streams
Adding autonomous streams (observation channels) to an interactive computing agent increa

expressiveness, whereas adding noninteractive tapes to a TM simply increases the structural comp
predetermined inputs, and does not affect expressive power. The restriction of MIM’s to serializable b
ior, just as that of SIMs to noninteractive behavior, trades tractability for problem-solving power.

multi-stream system

Figure 3: Multi-Stream Interaction of Primary and Secondary Observers

           MIM

                      primary observer

secondary observers who interact

MIMs -> n-agent systems, n>2
SIMs -> 2-agent systems
TMs -> 1-agent systems

MIM + primary observer -> open system
SIM + primary observer -> closed system

with MIM through hidden interfaces
Interaction, Computability, and Church’s Thesis 6/20
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MIMs are more expressive than SIMs, while multitape and single tape TMs are equally expressiv
Serializing the effect of multiple threads (streams) restricts the problem-solving power of finite a

in important ways, since nonserializable behavior of computers and people is more important than
erally realized. Nonserializable behavior is a feature of collaboration that distinguishes high-level m
ers who handle interaction with multiple subordinates from assembly line workers who interact w
single stream [WG]. MIMs model important forms of higher level human behavior. The ability to cha
terize collaborative behavior by MIMs and to distinguish collaborative from sequential expressivenes
prove to be important in formalizing collaborative computing.

Collaboration, coordination, and management is modeled by MIMs but not by SIMs or PTMs
MIMs support the behavior of nonserializable transactions and true concurrency [Pr1], while SIMs

port only serializable transactions and interleaving concurrency. We conjecture that the richer beha
nonserializability and true concurrency can in principle be expressed by a form of observation equiv
that generalizes bisimulation. The abstraction from Turing machines to recursively enumerable sets
alleled by the abstraction from SIMs to non-well-founded sets, which model the behavior of s
streams. We conjecture (section 3.3) that MIMs can likewise be consistently specified by axioms of s
ory whose precise form requires further research.

2.  Extensions of Expressiveness
Algorithms express time-independent noninteractive transformation behavior of finite comp

agents, but not the full range of interactive behavior of object-oriented, agent-oriented, or distributed
puting systems. They are time-independent abstractions whose semantics is independent of both e
time and the time at which they are executed. Algorithmic complexity is deliberately defined inde
dently of the speed of actual computers, depending only on number of executed instructions.

2.1 Interactive Extensions of Machines, Sets, and Algebras
The robust equivalent expressiveness of TMs, the lambda calculus, and recursively enumerable

paralleled by an equally robust equivalence of machine, set theoretic, and algebraic models for inte
computing. The expressiveness of interactive computing agents can be equivalently specified by m
[We1, We2], set theory [BM], and algebra [JR], just as for algorithms. IMs are the interactive analo
TMs, non-well-founded sets are the interactive analog of recursively enumerable sets, while coalgeb
the analog of algebraic models like the lambda calculus.

 extending machine expressiveness: Turing machines -> interaction machines
 extending set theoretic expressiveness: well-founded sets -> non-well-founded sets.
 extending algebraic expressiveness: algebras -> coalgebras
Greater expressiveness can be captured by behavior of machines, specification power for sets, o

tion power for algebras. The underlying cause of greater expressiveness is the extension from const
based inductive to observation-based coinductive methods of definition, reasoning, and modeling
The equivalent expressiveness of TMs, algorithms, computable functions, and formal systems is du
their maximal expressiveness but to their common reliance on induction for computation and reaso

 extending mathematical expressiveness: inductive models -> coinductive models
Induction determines enumerable collections of finite structures constructible from a base cas

integers), while coinduction determines nonenumerable collections of infinite structures (the real
bers). Induction is related to reducibility in the sense that inductively definable sets and systems
constructed from (reduced to) sets of primitive elements. Coinductive sets and systems are not co
ible from or reducible to primitive elements. Coinduction is related to abduction (inference from an ag
behavior to its inner structure) [We3] and to possible world semantics [Kr].

Once the idea that interactive computing is more expressive than algorithms is proposed, inte
extensions to both intuitive and formal notions of computation can be explored. Mathematical mode
correspond to intuitive notions of interactive computing suggest equivalences between extended no
intuitive and formal computation that are the basis for extensions of Church’s thesis.
Interaction, Computability, and Church’s Thesis 7/20



”. It
algo-

is

ss all
h the
ion that
func-
ludes
tation.
what
on
tuitive
How-
ad to

el.
uitive
quen-
on Y.
-

ctured
induc-

s

terac-

logy
he chal-
et for
n. For
2.2 Interactive Extensions of the Church-Turing Thesis
The Church-Turing thesis has the form “the intuitive notion X corresponds to the formal notion Y

equates the intuitive notion of effective computability of functions, shown by Turing to correspond to
rithmic computation, with the formal notion of TMs and the lambda calculus:

Church-Turing Thesis: The intuitive notion of effective computability for functions and algorithms
formally expressed by Turing machines (Turing) or the lambda calculus (Church).

X = computability by algorithms, Y = Turing machines, the lambda calculus
We accept Church’s thesis, but distinguish it from the broader thesis that TMs completely expre

forms of computability. Our position on Church’s thesis is stated in [We1] and quoted in [PR]: “Thoug
thesis is valid in the narrow sense that TMs express the behavior of algorithms, the broader assert
algorithms capture the intuitive notion of what computers compute is invalid”. The assumption for
tions from integers to integers that their input is completely given before the computation starts exc
interactive computation whose input may depend on events that occur during the process of compu

In exploring the relation between intuition and formalism in computing we can ask the question “
is the formal notion Y for the intuitive notion X” or the very different question “what is the intuitive noti
X captured by a formal notion Y”. Church’s thesis addresses the second question identifying an in
notion of computability as the semantic domain for formal models of TMs and the lambda calculus.
ever, premature commitment to a particular formal model for computing or any other discipline can le
a narrow view of its subject matter by excluding phenomena that do not conform to the formal mod

We provide a definite answer to the question “what is the formal model that corresponds to int
notion of sequential interaction”. The Church-Turing thesis can be generalized from algorithms to se
tial interaction by extending both the intuitive notion X of computation and the associated formal noti

Church-style thesis for sequential interaction:The intuitive notion of sequential interaction is for
mally modeled by non-well-founded sets.

X = computability by sequential (single-stream) interaction, Y = non-well-founded sets
Multi-stream interaction is shown to be more expressive than sequential interaction and it is conje

that formal models for multi-stream interaction correspond to general models of coalgebras and co
tion. This suggests a further generalization of Church’s thesis.

Church-style thesis for general interaction:The general intuitive notion of interactive computing i
formally modeled by coinductive models (coalgebras).

X = general (multi-stream) interaction, Y = coinductive models of computation
These extensions of the Church-Turing thesis provide mathematical legitimacy for models of in

tion by showing that intuitive notions of interaction have well-defined formal models (Figure 1).

Reexamination of the intuitive notion of computability in the context of interactive software techno
suggests a broader class of models of computation than those of Church and Turing, and provides t
lenge of developing formal models that match new forms of intuition. This challenge has been m
sequential interaction by providing machine and set theory models that express this intuitive notio

intuitive notions of computation

 noninteractive models
 algorithms, functions
 automatic computation

formal models of computation

 Turing machines
 lambda calculus
 recursively enumerable sets

 multi-stream interaction machines
 coinductive models of computing
 “nonlinear” set equations

 multi-stream interaction
 collaboration, distribution
 nonserializable behavior

 sequential interaction
 dialog, two-person games
 serializable behavior

 persistent Turing machines
 non-well-founded sets
 coalgebras with flat set equations

Figure 1: Correspondences Between Intuitive Notions and Formal Models
Interaction, Computability, and Church’s Thesis 8/20
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multi-stream interaction there is as yet no definitive formal model, but some ideas for a framewo
multi-stream interaction are presented in section 3. Section 5 examines the relation between in
notions and formal models of computing in greater detail.

3.  Mathematical Models of Interaction
Set theory provides an abstract mathematical setting in terms of which semantic notions about co

ing can be formally expressed. Non-well-founded set theory extends inductive to coinductive meth
definition that determine a larger class of sets and allow reasoning and modeling of behavior for
classes of computing systems and computational problems. Coinduction supports the definition of n
merable classes of infinite (non-well-founded) structures and supports consistent methods of circu
soning as well as a notion of equivalence related to bisimulation. Non-well-founded set theory exp
the semantics of interaction for single streams, while general coinductive reasoning provides a se
framework for multi-stream interaction.

3.1 Non-Well-Founded Set Theory
Sets in traditional set theory are inductively constructible from atomic elements by union, interse

complement, cross-product and powerset constructors. Powersets define sets that contain sets as
but any constructively definable set is well-founded in the sense that the process of defining sets in te
other sets is finitely grounded.

Well-foundedness of sets is expressed by well-foundedness of relations. A binary relation R on a
is non-well-foundedif there is an infinite sequence bi∈S for i = 0,1,2,..., such that bi+1Rbi for all i, and is
well-foundedotherwise. Well-founded sets are defined in terms of well-foundedness of the set memb
relation∈. A set is well-founded if the set membership relation over its structure is well-founded an
non-well-founded otherwise: well-founded setshave only finite set-membership chains, whilenon-well-
founded sets may have infinite set-membership chains.

Zermelo-Frankel set theory provides an axiomatic specification ZF of sets that can be supplemen
thefoundation axiom to obtain the axiom system ZFC.

foundation axiom (FA): all sets are well-founded (ZF + FA = ZFC)
The well-founded sets definable by ZFC are precisely the inductively constructible (recursively

merable) sets. A set has a finite set membership chain iff it can be inductively constructed from prim
elements by a finite number of construction operations. However, ZFC excludes non-well-founded
which can be defined as the solutions of systems of flat set equations.

flat set equations:A system of flat set equations has the form (S, A, m), where S is a set of varia
(states), A is a set of constants (actions, observations) and m: S -> P(A∪S) is a mapping that specifies fo
each s∈S a set of constants in A and variables in S.

Extending set theory by admitting solutions of set equations is analogous to extending the integ
rationals by admitting solutions to equations with integer coefficients.Non-well-founded set theoryaug-
ments ZF with theanti-foundation axiom (AFA)to obtain ZFA. ZFA is consistent if ZF is consistent [BM]

Anti-Foundation Axiom:  Every flat system of equations has a unique solution (ZF + AFA = ZFA).
Equations of the form m: S = P(AxS) whose right hand sides are sets of ordered pairs can be expr

as flat equations by the reduction (a,b) -> {a, {a,b}} [BM]. Equations S = P(AxS) are an important sub
of flat equations that model the observable behavior of state transition systems. Ordered pairs (a,s
the observation semantics of systems for which an observation a causes a transition to state s.

Definition: A streamover A is an ordered pair s = (a, t), where a∈A and t is another stream. The set
of all streams over A is the maximal solution (maximal fixed point) of the equation S = AxS.

Example: The solution of the set equation s = {(0,s), (1,s)} specifies an infinite set of binary stre
illustrating that non-well-founded sets may be nonenumerable.

Solutions of flat set equations are well-founded if there is no circularity in their definition as in
{a,t} , t = {a,b} and are non-well-founded otherwise. The solution of s = {(0,s), (1,s)} does not satisfy
Interaction, Computability, and Church’s Thesis 9/20
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and cannot be inductively generated. It is not a member of ZFC, illustrating that the class ZFA is s
larger than ZFC (models a larger class of systems).

Non-well-founded sets can modellabeled transition systems(LTSs). An LTS with n states can be
specified by a system of n simultaneous set equations (S, A, m), where m:S -> P(AxS) maps stat
subsets of action-state pairs. For example, a state with outgoing edges labeled a to s1, b to s2, and c
represented by the equation s = {(a,s1), (b,s2), (c,s3)} (Figure 4).

The labels (actions) of an LTS should be interpreted as input-output pairs (ik, ok) of an I/O stream. This
is consistent with Figure 2 for SIMs, which shows an I/O pair labeling each state transition edge
unfolded behavior of an LTS can determine a nonenumerable set of possible behaviors that are solu
the set equations representing the LTS. Coinductively specified finite agents may have nonenum
interactive behaviors, while noninteractive finite agents (TMs) have enumerable behaviors.

3.2 Coalgebras
Coalgebras are a model for interactive computing that parallels algebras as a modeling framew

algorithms. Algebras specify incremental expression evaluation whose goal is to compute a value
coalgebras specify incremental system observation whose goal is to determine system behavior.
tions of algebras are computation steps, while operations of coalgebras are interaction (observation
Equivalence classes of expressions that have the same value are enumerable, while equivalence c
systems (programs) that have the same behavior are not.

Algebras are structures A = (S, m: F(S) -> S), where S is the carrier set and F is a functor that d
mines the signature of A. We usually interpret S as a set of values and m: F(S) -> S is a value-pres
homomorphic mapping m from a syntactically specified set of expressions into a value set. Algebras
mine reduction processes (mappings) from an inductively definedinitial algebra of syntactically specified
expressions to a quotient algebra that determines the value set.

Coalgebrasare structures CA = (S, m: S ->Γ(S)), where S is a carrier set andΓ is a functor that deter-
mines the signature of CA. We usually interpret S as a set of states of an observed system and m: SΓ(S)
as a behavior-preserving homomorphism of observed systems with an unknown state into unfolded
behaviors (observation sequences).

Coalgebras whose mappings are one-to-one are calledfinal coalgebras. States of final coalgebras repre
sent unfolded system behaviors and, for mappings m that are expressible as flat equations, are spe
non-well-founded sets. Final coalgebras are canonical behavior specifications for equivalence cla
systems with the same behavior that are a coalgebraic analog of canonical value specifications (
forms) for algebraic values. Initial algebras are an inductively specified set of expressions, while fina
gebras are coinductively specified sets of behaviors.

Coalgebraic homomorphisms that map systems into their behaviors are stronger than algebraic
morphisms that map expressions into values because equivalence classes of systems with the sam
ior (for example, programs that compute the same function) are nonenumerable, while clas
expressions with the same value are enumerable. The greater richness of non-well-founded ove
founded sets translates into greater computation power of coalgebras over algebras.

Coalgebras that specify non-well-founded sets and model sequential interaction have mappings
form m: S -> P(A∪S), corresponding to the AFA. It is shown in [BM] that mappings such as m: S
P(AxS) of LTSs or mappings m: S -> OxP(AxS) of automata are expressible as flat systems of equ

s

s1

s2

s3

a

b
c

Figure 4: Set equation for State with Three Outgoing Edges

Equation for state s of an LTS
s = {(a, s1), (b, s2), (c, s3)}
Interaction, Computability, and Church’s Thesis 10/20
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3.3 Beyond Non-Well-Founded Sets
The extension to non-well-founded sets is specified axiomatically by postulating that every “lin

(flat) set equation of a certain form has a solution. Though there is no corresponding axiomatic ext
for single-stream to multi-stream models, we conjecture that such an extension could be specifi
extending the requirement that set equations have a solution from linear to nonlinear equations, wh
number of streams corresponds to the degree of the equation, and each of the n solutions correspon
behavior of a single stream (perceptions of a single observer). The coinductive dual of nonlinear equ
remains to be developed, but the notion that coinductive nonlinear equations of degree n have n so
which can be interpreted as streams of a MIM is an attractive one.

Equations of an LTS of the form s = {(a,s1), (b,s2), (c,s3)} can be written in the notation of process alge
bra as s = a.s1 + b.s2 + c.s3 for a suitable interpretation of . and +. In this second form we can represen
LTS by the equation S = A.S. This can in principle be rewritten as (A-I).S = 0, so that the fixed point so
tion (non-well-founded set) S can be viewed as an eigenvector of the matrix equation.

MIMs with n autonomous streams can be represented as nonlinear systems of the form m1*m2*...*mn,
where mi is the mapping function for stream i and * is a yet to be defined product operation whose pr
ties reflect interaction among autonomous streams. We expect * to be associative and symmetric, re
that the behavior of MIMs should not depend on stream order.

Consistent extensions of set theory that admit larger sets than the non-well-founded sets are clea
sible [WG]. In principle, any finite agent can be modeled by a consistent extension of set theor
expresses the class of behaviors computable by the agent. Thus there is a consistent extension of s
that expresses the behavior of a MIM. The conjecture of the previous paragraph makes a stronger c
decomposability of behavior into “factors” associated with individual streams of the MIM. Put ano
way the conjecture asserts that behavior of a multi-stream agent may be compositionally defined in
of behaviors of single streams. This conjecture corresponds to strengthening the model theoretic p
“existence implies consistency” to the principle “consistency implies existence”, which is discuss
length in section 5.3. The formalization of multi-stream interaction is a subject of future research.

Coalgebraic mappings of the form S ->Γ(S) are “Markovian” in the sense that the new state depen
only on the previous state. Non-Markovian mappings of the formΓ(S) ->Γ’(S) can model systems whose
next state depends on several previous states or on several streams. The remarks in this subse
speculative, but may provide pointers for a set theory of multi-stream models of interaction.

4.  From Induction to Coinduction
Induction is a process of definition and reasoning that determines enumerable sets of finite stru

reachable from an initial base case. The integers are the prototypical inductively definable set: they
enumerable set generated from the initial element 0 by the successor function. Coinduction is a s
form of definition and reasoning for nonenumerable sets of infinite structures. We examine the m
nisms of induction and suggest that coinduction is derivable from induction by eliminating the require
of a base case and replacing least by greatest fixed points. Eliminating the base case extends closed
systems while replacing least by greatest fixed points extends construction to observation paradigm

The assertion “God created the integers and all the rest is the work of man” implies that inductio
sufficient and complete reasoning principle for understanding the world. Coinduction requires str
creation principles (ontology) and extends mathematical modeling power from inductively definable
interactive construction processes to observation processes for interactive finite agents.

4.1 The Inductive Modeling Paradigm
Induction determines a construction paradigm for definition, reasoning, and modeling characterize
(1) An initiality condition that determines base elements of inductively generated sets
(2) An iteration condition that allows new elements to be constructed (derived) from initial elemen
(3) A minimality condition that only elements so constructed are definable
Interaction, Computability, and Church’s Thesis 11/20
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inductive definition: initiality (base) condition, constructive iteration condition, minimality conditio
construction paradigm: generate (construct) structures inductively from base elements

Induction is the basis for defining sets of strings, languages, formal systems, and computable fun
The set A* of all strings over an alphabet A has the following base, iteration and minimality conditio

Strings: (1) the empty string e∈A*; (2) if x ∈A* then ax∈A*; (3) A* contains no other elements.
Languages L(G) are defined by grammars G over terminal symbols T and nonterminal symbols

sets of strings inductively generated from an initial nonterminal S by generating rules (productions)
A languageL(G) over T is the set L(G) = {x | S => x and x∈T*}, where G = (N, T, S, P) is a grammar

with nonterminals N, terminals T, initial nonterminal symbol S and productions P.
(1) symbol S; (2) productions P; (3) only inductively generated strings in T* are in L(G)
Theorems of a formal system are inductively derived from axioms by rules of inference.
A formal system FS = (AX, TH, RI) is an inductive specification of a set TH of theorems:
 (1) axioms AX; (2) rules of inference RI; (3) only inductively generated formulae are theorems.
Computable functions f: X -> Y are inductive at two distinct levels. They map an inductively defin

domain X to a range Y by inductively defined computing processes [Tu1]. TMs transform inductiv
defined strings by inductively defined state-transition steps. This condition is sufficient as well as n
sary: computable functions can be defined as inductive computations over inductively defined doma

Inductively defined domain (statics):The domain X is inductively defined.
Inductively defined computation (dynamics): The process of computation is inductively defined.
Formal systems likewise make use of two levels of inductive definition. Well-formed formulae and

oms are defined by static induction, while processes of proof are defined by dynamic induction. The
provable theorems is defined by inductively derivable formulae from inductively defined axioms.

The robust equivalence of TMs, the lambda calculus, RE sets, and functions from integers to inte
due to their reliance on induction as the principle of definition and reasoning. However, in spite
robustness, induction is not the strongest possible definition and reasoning principle. Coinductio
stronger principle that makes use of circular reasoning to handle partially observable environments,
ing finite computing agents to perform tasks with nonenumerable interactive behaviors.

4.2 Coinduction and Greatest Fixed Points
Coinduction determines adeconstruction paradigmthat deconstructs composite structures into progr

sively more primitive ones. Coinduction models processes ofobservation. Observation is a deconstruction
process that reveals progressively more structure about observed entities. Processes of observati
no initiality assumptions and can continue to reveal new knowledge about the observed objects
nitely: hidden information is progressively approximated by processes that do not terminate.

Coinduction can be derived from induction by relaxing requirements of induction as follows:
(1) Eliminate the initiality condition (base case)
(2) Reverse the direction of iteration: construction -> deconstruction, observation
(3) Replace minimal by maximal fixed points
coinductive definition: deconstructive iteration condition, maximality condition.
observation paradigm: observe already existing constructed elements.
By expressing induction and coinduction in terms of more primitive concepts, we can separately

sider the effect of eliminating initiality, reversing iteration, and replacing minimality by maximality in d
inition and reasoning processes. Eliminating initiality, combined with reversal of iteration, correspon
elimination of finite coinductive termination (finite finality). It removes the closed-system requireme
complete environment specification before the computation starts, thereby modeling open systems

Non-well-founded sets, defined as solutions to sets of flat equations (section 3), show that coind
can define nonenumerable sets. Stream inputs for IMs are coinductively defined (section 3). Sets
solutions of recursive stream equations do not exist in traditional set theory, where stream equation
the trivial empty set as their solution. The minimal fixed point of the equation S = AxS is the empty
Interaction, Computability, and Church’s Thesis 12/20
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while the maximal fixed point is the set of all streams over S.
Minimality, modeled by least fixed points, is a property of constructive processes of computatio

constructive mathematics, while maximality, modeled by greatest fixed points, is a property of emp
observation paradigms for describing observed behavior in an already constructed (already existing)
Minimality of behavior is associated with maximality of constraints on behavior, while maximality
behavior is associated with minimality of constraints. Maximal fixed points (minimal constraints) pro
a mathematical framework for the empirical paradigm that any behavior (possible world) consisten
observation is admissible. Specifications that admit any possible world consistent with a specificati
maximal fixed points (minimal constraints on behavior). The distinction between possible-world sem
of Kripke [Kr] and traditional model theory is precisely that of maximality versus minimality. Distinctio
between restrictive and permissive social organization, such as those between totalitarian and dem
societies, are modeled by minimality versus maximality. Minimality models centrally controlled struc
while maximality admits distributed control.

totalitarianism  embodies the minimality principle:everything is forbidden that is not allowed.
democracy supports the maximality principle:everything is allowed that is not forbidden.
Non-well-founded set theory extends traditional set theory with sets that are solutions to recurs

equations. It provides a framework for formalizing sets with a coinductive (non-well-founded) struc
and correspondingly extends the class of models that sets can formalize to include interactive mo
computation. Coinduction extends the definition and reasoning ability of finite computing agents so
can model nonenumerable sets defined by streams.

Algorithmic denotational semantics is specified by lattice-structured approximations to least
points that determine computable functions [Sc], while traditional operational semantics express
state-transition structure of algorithm execution steps. Non-well-founded sets express richer deno
than well-founded sets, specifying maximal fixed points. Non-well-founded set theory provides a de
tional semantics for streams, while coalgebras provide a framework for operational semantics of in
tion machines that are transducers of streams [WG].

5.  Metamathematics of Coinduction
In this section, we examine the relation between intuitive and formal notions of computing of Chu

thesis, consider Godel-style incompleteness theorems for coinductive models of computation, and r
ine notions of constructive, formalist, and realist mathematics for coinductive modeling.

Church and Turing’s work on computability in the 1930s was strongly influenced by the intense
dational debates between intuitionists and formalists in the 1920s [De]. Church’s thesis, that relates
tive” to “formal” notions of computing, can be viewed as a computational counterpart of Hilbert’s th
that intuitive notions of mathematics can be expressed by formal notions of logic. Both are comple
conjectures that claim complete expressibility of intuitive by formal notions, and both are true for indu
models but false for coinductive models.

Coinduction models stronger behavior of finite agents than inductive intuitionist or formalist mo
because of an ontological commitment to the existence of a strictly larger class of mathematical o
(the non-well-founded sets). It provides stronger notions of formalism and intuition than inductive mo
Thus the interactive Turing test [We3], which permits machines that think to be interaction machine
model both stronger forms of intentionality that satisfy Searle and stronger forms of extensionality th
isfy Penrose. Coinductive models suggest new interpretations of both Brouwer’s “intuitionist” belief
mathematical reasoning is based on inner intuitions, and of Hilbert’s “formalist” thesis.

5.1 From Formal Models to Intuitive Notions
Theses that relate intuitive to formal models of computing, like Church’s thesis, are motivated eith

the desire to formalize a given intuitive notion or by the goal of providing intuition for a given formal c
cept. Church’s thesis has the second motivation, providing intuitions for the robust formal concept of
putability expressible by Turing machines, the lambda calculus, or partial recursive functions.
Interaction, Computability, and Church’s Thesis 13/20
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equivalent expressiveness of formalisms provides strong evidence for the existence of a robust in
notion that Church called “effective computability”.

Church-Turing thesis: Formal effective computability by the lambda calculus (Church) or TMs (T
ing) expresses the intuitive notion of effective computability of functions (over positive integers).

In the early years of computing the intuitive notion of computing was identified with algorithms,
the focus of research on the complexity, performance, and design of algorithms provided a solid fo
tion for computer science. As technology became increasingly interactive, software engineering an
interactive subfields of computer science experiences a crisis in part because algorithmic foundation
not support interactive application technology. But the intuitive notion of computing continued to be
malized by TMs because no formal model beyond that of TMs or well-founded set theory was ava
Non-well-founded set theory and SIMs provide well-defined mathematical and machine models th
beyond algorithms, allowing Church’s thesis to be extended.

We agree that effectively computable functions from integers to integers are modeled by TM
claim that the robustness of Church-Turing models is due to their common inductive basis rather tha
ability to completely express all forms of computation. Coinductive models uniformly extend the ex
siveness of machines, algebras, and set theory. Coinduction provides a more expressive mental tool
inition, reasoning, and modeling that shows Turing machines to be weak expressive models limi
induction. When the intuitive notion of effective computation is broadened to include interaction, fo
computability must be correspondingly broadened to streams specified by non-well-founded sets.

Thesis for sequential interaction: Formal specifiability by non-well-founded sets, SIMs, or PTM
corresponds to the intuitive notion of effective computability for sequential (single-stream) interactio

Both Church and Turing formalized computability in terms of functions f: X -> Y from integers to in
gers. Expressing domains as inductively definable integers requires complete specification of arg
before the computation starts and separability of domains and ranges: conditions assumed by Chu
Turing but violated by I/O streams (section 2). Stream mappings f: stream -> stream are certainly no
tions from integers to integers: whether they are classified as noncomputable functions (over nonind
domains) or computable nonfunctions (because mappings over noninductive domains are not con
functions) is a matter of definition. The question of whether computable mappings over nonindu
domains are functions has not, to the authors’ knowledge, been formally settled.

The Church-Turing thesis is a conjecture about the restricted notion of algorithmic computation
than about the broader intuitive notion of computing. The thesis for sequential interaction is likew
conjecture about a restricted notion of computing that non-well-founded sets are not the most exp
class of consistent set theoretic models and that more powerful consistent models are axiomatically
able. More expressive classes of computing mechanisms may be definable by replacing the AFA by
sistent axiom that specifies a larger class of sets. We further conjecture that there is no well-d
maximal class of axiomatically definable consistent sets, and that no well-defined formal notion of
mal effective computability exists. This suggests that any formal notion of effective computability is
tive rather than absolute, definable only relative to assumptions about the form of interaction.

5.2 Reinterpreting Godel Incompleteness
Church’s thesis can be viewed as a completeness conjecture that TMs completely express the i

semantic notion of “effective computability”. Hilbert’s thesis that logic can completely express intu
notions of mathematics is a comparable completeness conjecture. Godel’s incompleteness theorem
the impossibility of reducing mathematics to first-order logic [Fe] and by implication of reducing
behavior of finite computing agents to logic [We3]. Godel proved his theorem by showing that arithm
over the integers could not be expressed by an enumerable number of formulae, using diagonaliza
prove nonenumerability. We believe that incompleteness for interaction machines can be proved by
ing on the fact that the interactive behaviors of interactive agents cannot be enumerated.

First-order logic can model only enumerable semantic domains because its number of theorems
merable, which is easy to prove. Proving that a particular semantic domain is nonenumerable can b
Interaction, Computability, and Church’s Thesis 14/20
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but diagonalization is a useful tool that was used by both Cantor to prove nonenumerability of the rea
Godel to show nonenumerability of the true assertions about integer arithmetic. Godel’s incomple
result is a simple corollary of the “folk theorem” that inductively specified enumerable classes of theo
cannot completely model nonenumerable classes of objects or situations [We3].

First-order logic can model only inductively (recursively) enumerable semantic domains
To prove Godel incompleteness of any domain, show it is not enumerable
Diagonalization is a tool for showing that specific domains are not enumerable
Whereas mathematicians immediately realized the impact of Godel incompleteness on Hilbert’

gram, computer scientists have been slow to accept the implications of Godel’s result. TMs are an e
sively weak though formally strong notion of effective computability that parallel the expressively w
but intuitively strong notion of proof of intuitionist models of mathematics. Church’s thesis is the comp
tional analog of restricting mathematics to intuitionist methods of definition and reasoning. Th
Church’s thesis was proposed several years after Godel’s incompleteness theorem, it is “pre-Gode
its claim that computing can be completely expressed by an inductive (constructive) model of compu

IMs have nonenumerable possible behaviors corresponding to non-well-founded sets of streams
TMs have enumerable possible behaviors corresponding to sets of strings (functions over domains
gers). Incompleteness of sequential interaction can be directly proved by showing that non-well-fo
sets cannot be expressed as well-founded sets. Godel’s incompleteness result implies not only tha
tive mathematics is too weak to express arithmetic over the integers, but also that interactive mod
incomplete. The incompleteness of interactive models is easier to prove than incompleteness of ari
because interactive models are more strongly nonenumerable than recursively enumerable set
uncountable rather than merely not recursively enumerable.

Linear logic [Gi] provides a bisimulation-based semantics of interaction for two-person games
more fine-grained than that of computable functions. It is described in [Ab] as an “intensional” sema
of interaction that “interpolates between denotational and operation semantics as traditionally conc
But in fact it extrapolates beyond traditional semantics by building a “second-order” operational sem
on top of a denotational semantics for functions. We conjecture that linear logic is complete for sequ
interaction in the sense that it can express SIM behavior and non-well-founded set theory. Ho
exploring connections between linear logic and non-well-founded sets is beyond the scope of this p

We further conjecture that multi-stream behavior of MIMs cannot be expressed by non-well-fou
sets or linear logic and that MIM behavior can be expressed by consistent coinductive axiomatic spe
tion. This suggests the following extension of the Church-Turing thesis for general interactive behav

Coinductive Church-Turing thesis: Coinductively specifiable behaviors expressible by axiomatic
theory correspond to the intuitive notion of computations expressible by finite computing agents.

This completeness conjecture asserts that coinduction can completely express interaction
Church-Style theses can be viewed as a completeness result about the characterization of an intuit
formal notion of computation, while the hierarchy of progressively stronger theses determine incom
ness results of the weaker thesis as an expression of formal or intuitive semantics of the stronger th

Godel credits his mathematical successes to his Platonic belief in the independent reality of math
cal objects, arrived at early in his university years [Fe]. His proof that arithmetic for integers could n
formalized was motivated by his belief in “philosophical realism”. But Godel concealed his Platonist (
ist) beliefs, using Platonist principles as a basis for research rather than as a topic for analysis.

5.3 From Coinductive to Realist Ontology
Non-well-founded sets can model larger classes of objects, situations, and computational problem

well-founded sets because axioms of ZFA admit existence of a larger class of sets than axioms of ZF
existential (ontological) strength of mathematical paradigms determines the expressiveness of the
els. Questions of mathematical existence are central to Russell’s attempted reduction of mathem
logic, Brouwer’s intuitionism, Hilbert’s formalism, and Godel’s incompleteness result [De].

Logicians were reluctant to accept coinductive models because they failed to distinguish be
Interaction, Computability, and Church’s Thesis 15/20
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inconsistent and consistent forms of circular reasoning, following Russell in overreacting to the para
of set theory [BM]. An additional reason for excluding coinductive thinking from mainstream mathem
was the restrictive influence on logic of constructive mathematics exemplified by Brouwer’s intuition

Hilbert in principle accepted the Platonic position that consistency (of a formalism) implies exist
(of a model). But in practice he restricted formalism to inductive definition and reasoning, excluding
sistent as well as inconsistent forms of circular reasoning. We refer to Hilbert’s formalism as “induc
formalism because he rejected consistent coinductive circular reasoning.

When Godel proved incompleteness of arithmetic by showing, through diagonalization, that true
tions of arithmetic cannot be inductively defined, the mainstream mathematical community acc
incompleteness as an absolute impossibility result for formalist mathematics rather than a relative
about the weakness of inductive reasoning. The alternative of adopting a stronger notion of form
based on the acceptance of all forms of consistent reasoning was rejected.

Finsler’s prescient work on set theory in the 1920s [Fi] showed the consistency of circular reas
and anticipated Godel’s incompleteness result, but was largely ignored because it did not conform
mainstream paradigm of formalist mathematics. Finsler, influenced by Cantor’s model of the real num
took to its logical conclusion the viewpoint that concepts exist independently of formalisms in which
are expressed. He went beyond Hilbert’s formalism in applying the principle “consistency implies e
ence”, accepting the existence of consistent sets of concepts independently of whether they are form
The discovery sixty years after the foundational discussions of the 1920s that non-well-founded set
models interactive computing validates the view that conceptually consistent sets exist independe
their formalizability or constructibility. We call this viewpoint arealist ontology of mathematics.

Realism traditionally refers to models that accord an existence to modeled objects independe
whether they are perceived [EB]. By analogy, mathematical realism, as we define it, accords obje
existence independently of whether they are formalized. Realism in mathematics and empiricism in
ics and computing both accord independent existence to objects being modeled, providing a founda
empirical computer science and a basis for an interdisciplinary methodology of empiricism [We3].

Intuitionism, inductive formalism, and realism can be classified by their degree of commitment t
existence of mathematical objects, embodying progressively stronger forms of ontological comm
that can model progressively larger classes of applications.

intuitionism (Brouwer):  existence requires (inductive) constructibility (minimal ontology)
inductive formalism (Hilbert):  consistency of (inductive) formal systems implies existence of mod
realism (Cantor, Finsler): consistency (of a specification) implies existence (maximal ontology)
Coinductive models of finite agents are realist in the sense that they can model both nonenum

real-number domains and physical domains like the real world. They relate mathematical and ph
meanings of the term “real” because coinduction models both mathematical nonenumerability and
cal interaction. They determine an ontological paradigm shift from constructive to realist models.
structive inductively defined ontologies specified by least fixed points are weaker than realist coinduc
defined ontologies specified by greatest fixed points. Maximal fixed points admit interactive and
dependent behavior for finite agents: they provide a mathematical foundation for realist ontology.

Hilbert’s inconsistency in claiming to accept the realist principle “consistency implies existence”
>E), but limiting its application to inductive formalism is a primary cause of Godel incompleteness. F
man [Fe] does not adequately explain Godel’s reasons for his surprising opposition to (C->E). Our an
suggests that it may stem from the fact that C->E is incompatible with Godel’s belief in objective m
matics and his acceptance of the inductive formalism of his teacher Hilbert. Godel’s puzzling remo
an incisive discussion of C -> E between the initial and published version of his thesis [Fe], may w
due to his failure to resolve perceived contradictions between the principle of C->E and Hilbert forma

Claim: C->E, inductive formalism, and objective mathematics cannot be simultaneously true.
C->E, inductive models, and objective mathematics are incompatible starting points for a mathem

Weltanschauung. Hilbert, Godel, and Cantor (Finsler) each accept two and reject one of these princip
Hilbert: C->E + inductive formalism; inconsistency with objective mathematics was proved by Go
Interaction, Computability, and Church’s Thesis 16/20
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Godel: objective mathematics + inductive formalism; explains Godel’s rejection of C->E
Cantor, Finsler: C->E + objective mathematics; implies rejection of inductive formalism
Hilbert’s belief in C->E and inductive formalism was shown by Godel to be incompatible with ob

tive mathematics, while Godel’s belief in objective mathematics and inductive formalism caused h
reject C->E. The realist, coinductive paradigm of mathematics corresponds to Cantor and Finsler’s
in C->E and objective mathematics, which require rejection of inductive formalism.

Godel’s incompleteness result was due to acceptance of the principle that inductively defined o
have a mathematical existence while coinductively defined objects do not. Had Godel instead acce
>E and recognized along with Finsler that this implied acceptance of coinductive reasoning, his in
pleteness result for inductive reasoning would have become a completeness result for coinductive
ing and the evolution of logic might have been very different.

6.  Interactive Software Technology
The evolution of computing in its first 50 years may, as a first approximation, be described as a t

tion from algorithmic to interactive computation. SIMs provide a domain-independent model of sequ
interaction that spans architecture, software engineering, and AI, while MIMs provide a correspo
domain-independent model for coordination, collaboration, and distributed computation.

1950s: machine language, assemblers, hardware-defined action sequences
1960s: procedure-oriented languages, compilers, programmer-defined action sequences
1970s: structured programming, composition of action sequences, algorithm composition
1980s: object-based languages, personal computers, sequential interaction architecture
1990s:networks, coordination and collaboration, distributed interaction architecture
The 1950s through the 1970s were concerned with the development and refinement of algorithm

nology for mainframes, sequential interaction became the dominant technology of the 1980s, while d
uted interaction became the dominant technology in the 1990s. Whereas the shift from mach
procedure-oriented languages involves merely a change in the granularity of actions, the shift from
dures to objects is more fundamental, involving a qualitative extension from algorithmic to intera
finite computing agents. The extension from sequential to distributed interaction requires a further
mental paradigm shift in models of computation. SIMs express the shift from algorithms to sequ
interaction architecture, while MIMs express the further shift to distributed interaction.

Figure 5 illustrates the extension from algorithms to interaction along a number of dimensions.
algorithmic concept in the left-hand column is paralleled by a more expressive interactive concept
right-hand column. Moreover, each right-hand concept has both a single-agent (sequential) and a
agent (distributed) form whose expressiveness is specified by SIMs and MIMs.

The transition from input-output transformations to interactive services over time arises in many d
ent contexts. Services over time cannot be reduced to or expressed by algorithms or TMs. Algorith
time-independent (instantaneous) episodes in the life-cycle of an interactive system. The one-dime

services over time (QoS)
object-oriented programming
structured object-oriented prog.
emergent behavior
programming in the large
agent-oriented (distributed) AI
open systems
empirical computer science

input-output transformation
procedure-oriented programming
structured programming
compositional behavior
programming in the small
logic and search in AI
closed systems
algorithmic computer science

     Figure 5: Parallel Extensions from Algorithms to Interaction

Algorithmic Concepts                    Interactive Concepts
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quantitative performance metric of algorithmic complexity becomes the multidimensional qualitative
formance metric of quality of service (QoS), which is an increasingly central focus for research in the
base and human-computer interaction communities.

Objects provide richer services to clients than algorithmically specified procedures. Procedures s
sales contracts, guaranteeing an output for every input, while objects specify marriage contracts, d
ing ongoing contracts for services over time. An object’s contract with its clients specifies its behavi
all contingencies of interaction (in sickness and in health) over the lifetime of the object (till death u
part) [We1]. The folk wisdom that marriage contracts cannot be reduced to sales contracts is compu
ally expressed by interaction not being reducible to algorithms.

The quip that “everyone talks about object-oriented programming but no one knows what it is”
true today as it was 20 years ago. “Knowing what it is” has proved elusive because of the implicit
that “what it is” must be reducible to algorithms. Though object-based programming has become a
nant technology, its foundations are not well understood because attempts to express object beha
TM models have proved unsuccessful. Interactive models provide a broader framework than algorith
defining “what it is”. Component-based software technology is even less mature than object-based te
ogy: it is the technology underlying interoperability, coordination models, pattern theory, and the W
Wide Web [We4]. Knowing what it is requires liberation from sequential object-based models.

The transition to object-oriented programming made procedural structured programming bas
composing while statements and functional obsolete. Objects behavior cannot be composit
expressed in terms of more primitive components. Structured programming for actions (verbs) can
mally defined by function composition, while structured object-based programming for composite o
(nouns) is modeled by design patterns that have no compositional formal specifications [GHJV]. As
sequence, the study of design patterns is a noncompositional art rather than a science.

Compositionality is a desirable property for formal tractability of programs that has led to advoca
functional and logic programming as a basis for computation. But it limits expressiveness by requirin
whole to be expressible as the sum of its parts. Actual object-oriented programs and computer ne
exhibit noncompositional emergent behavior. There are inherent trade-offs between formalizabilit
expressiveness that are clearly brought out by the expressive limitations of compositionality. Argume
the 1960s that go-tos are considered harmful for formalizability can be paralleled by arguments
1990s that compositionality is considered harmful for expressiveness.

Go-tos and noncompositionality are harmful for formalizability but beneficial for expressiveness
extension of this argumetn suggests that interactive computing agents are harmful for formalizabil
beneficial for expressiveness. In this paper we have shown that finite computing agents are nece
expressing object-oriented and distributed computing, and that they can be formalized by non
founded sets and coinductive models. The principle that things should be as simple as possible but
pler suggests that TMs are too simple a model to completely capture computation and that IMs are
sary for a comprehensive theory of computational behavior.

Programming in the large (PIL) is not determined by size, since a program consisting of a sequen
million addition instructions is not PIL. PIL is synonymous with interactive programming, differing qu
tatively from programming in the small in the same way that interactive programs differ from algorit
Embedded and reactive systems that provide services over time are PIL, while noninteractive pr
solving is not PIL even when the algorithm is complex and the program is large.

The evolution of artificial intelligence from logic and search to agent-oriented programming is rem
ably similar to the evolution of software engineering. This paradigm shift is evident in research on a
[Ag], on interactive planning and control [DW], and in textbooks that systematically reformulate A
terms of intelligent agents [RN]. AI illustrates more clearly than software engineering that reasoning
inadequate basis for modeling [We1]. Though logic is a form of computation, computation cann
entirely reduced to logic. The goals of the Fifth-Generation Computing Project of the 1980s, which a
to provide a logic-based framework for universal computation, were in principle unrealizable.

Open systems can be precisely defined as interactive systems: interactive models provide a tool f
Interaction, Computability, and Church’s Thesis 18/20
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sifying forms of openness and for analyzing open-system behavior. Empirical computer science ca
wise be precisely defined as the study of interactive systems [We3].
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