
Object Detection

Yali Amit and Pedro Felzenszwalb, University of Chicago

Related Concepts

– Object Recognition
– Image Classification

Definition

Object detection involves detecting instances of objects from a particular
class in an image.

Background

The goal of object detection is to detect all instances of objects from a known
class, such as people, cars or faces in an image. Typically only a small number
of instances of the object are present in the image, but there is a very large
number of possible locations and scales at which they can occur and that need
to somehow be explored.

Each detection is reported with some form of pose information. This could
be as simple as the location of the object, a location and scale, or the extent
of the object defined in terms of a bounding box. In other situations the pose
information is more detailed and contains the parameters of a linear or non-linear
transformation. For example a face detector may compute the locations of the
eyes, nose and mouth, in addition to the bounding box of the face. An example
of a bicycle detection that specifies the locations of certain parts is shown in
Figure 1. The pose could also be defined by a three-dimensional transformation
specifying the location of the object relative to the camera.

Object detection systems construct a model for an object class from a set of
training examples. In the case of a fixed rigid object only one example may be
needed, but more generally multiple training examples are necessary to capture
certain aspects of class variability.

Object detection methods fall into two major categories, generative [1,2,3,4,5]
and discriminative [6,7,8,9,10]. The first consists of a probability model for the
pose variability of the objects together with an appearance model: a probabil-
ity model for the image appearance conditional on a given pose, together with
a model for background, i.e. non-object images. The model parameters can be
estimated from training data and the decisions are based on ratios of posterior
probabilities. The second typically builds a classifier that can discriminate be-
tween images (or sub-images) containing the object and those not containing the
object. The parameters of the classifier are selected to minimize mistakes on the
training data, often with a regularization bias to avoid overfitting.

Other distinctions among detection algorithms have to do with the computa-
tional tools used to scan the entire image or search over possible poses, the type



Fig. 1. A bicycle detection specified in terms of the locations of certain parts.

of image representation with which the models are constructed, and what type
and how much training data is required to build a model.

Theory

Images of objects from a particular class are highly variable. One source
of variation is the actual imaging process. Changes in illumination, changes in
camera position as well as digitization artifacts, all produce significant variations
in image appearance, even in a static scene. The second source of variation is due
to the intrinsic appearance variability of objects within a class, even assuming
no variation in the imaging process. For example, people have different shapes
and wear a variety of clothes, while the handwritten digit 7 can be written with
or without a line through the middle, with different slants, stroke widths, etc.
The challenge is to develop detection algorithms that are invariant with respect
to these variations and are computationally efficient.

Invariance

The brute force (naive) approach to invariance assumes training data is plenti-
ful and represents the entire range of object variability. Invariance is implicitly
learned from the data while training the models.

When training data is limited it is necessary to build invariance into the
models. There are two complementary methods to achieve this. One involves
computing invariant functions and features, the other involves searching over
latent variables. Most algorithms contain a combination of these approaches.
For example many algorithms choose to apply local transformations to pixel in-
tensities in such a way that the transformed values are invariant to a range of
illumination conditions and small geometric variations. These local transforma-
tions lead to features and the array of feature values is the feature map. More
significant transformations are often handled through explicit search of latent
variables or by learning the remaning variability from training data.



Fig. 2. The output of a face detection algorithm.

Invariant functions and features This method constructs functions of the data
that are invariant with respect to the types of variability described above and
can still distinguish between object and background images. This may prove
difficult if object variability is extensive. Invariant functions that produce the
same output no matter the pose and appearance of the object necessarily have
less discriminative power.

There are two common types of operations leading to invariant functions.
The first involves computing local features that are invariant to certain image
transformations. The second operation involves computing geometric quantities
that are invariant to some or all three-dimensional pose variation. For example
the cross-ratio among distinguished points is a projective invariant that has been
used to recognize rigid objects.

An example of a local feature, invariant to certain photometric variations
and changes in illumination, is the direction of the image gradient, from which
a variety of edge features can be computed. More complex features capture the
appearance of small image patches and are often computed from edge features.
An example would be the histogram of gradient (HOG) features [9]. These fea-
tures are usually computed at a dense grid of locations in the image, leading to
a dense feature map.

Local pooling of features is commonly used to introduce some degree of in-
variance to small geometric variations. A typical example is the MAX operation
[11,1]. In this case a quantity that is to be computed at a pixel is replaced by the
maximum of the quantity in a neighborhood of the pixel. When the maximum is
extended over the entire window the result is a bag of features model [12], which
reduces to counting the number of binary features of different types that occur



within a window. In this case all spatial information is lost, leading to models
that are invariant to fairly large geometric transformations.

For computational reasons it is often useful to sparsify the feature map by
applying local decisions to find a small set of interest points. The assumption
is that only certain features are useful (or necessary) for object detection. The
approach yields sparse feature maps that can be processed much more efficiently.
Examples of commonly used sparse features are SIFT descriptors [13], corner
detectors and edge conjunctions [1]. One drawback of sparse features is that
hard decisions are being made on their presence, and if some are missed an
algorithm may fail to detect an instance of the object.

Note that it is possible to predefine a very large family of features that is
never fully computed, rather, in training an informative subset is selected that
can produce the required classification for a particular object class. One example
are the Haar features that compute differences of intensity averages in adjacent
rectangles of varying sizes and locations [7]. Another example are geometric edge
arrangments of increasing complexity.

Latent variables An explicit parameterization of the variability can be defined
via latent variables that are not directly observable from the image data. These
are not necessarily needed for the final report on the object detections, but their
values simplify the solution of the detection problem. For example to detect
faces at a range of orientations, at each candidate region one could decide, for
each possible orientation, whether or not the region contains a face at that
orientation. In general a set Θ defines latent parameters that could capture
global illumination parameters, a linear or non-linear map from a model domain
into the image domain, or specify the locations of a finite set of object parts.
The last case is common in part-based models where latent part placements are
used to decide if the object might be present at a particular location in the
image [10]. The set of possible latent values, Θ, can be quite large or infinite.
This leads to computational challenges that have been addressed by a variety
of methods including coarse-to-fine computation, dynamic programming and
geometric alignment.

Detection via Classification

Both generative and discriminative models start with an initial choice of image
features and with a choice of the latent pose parameters that will be explicitly
modeled. The primary differences between generative and discriminative models
are in the methods of training and computation. One important distinction is
that generative models do not need data from background to train the object
model whereas discriminative methods need data from both classes to learn the
decision boundaries.

The most common approach to object detection reduces the problem to one
of binary classification. Consider the problem of detecting objects of fixed size
but varying positions in the image. Let W denote a reference window size that
an instance of the object would occupy. Let L denote a grid of locations in



the image. Let Xs+W denote the image features in a window (sub-image) with
top-left corner at s ∈ L. One can reduce the detection problem to a binary
classification problem as follows. For each location s ∈ L classify Xs+W into two
possible classes corresponding to windows that contain an object and windows
that do not contain an object. The sliding-window approach to object detection
involves explicitly considering and classifying every possible window. Note that
the same approach can be used to detect objects of different sizes by considering
different window sizes or alternatively windows of fixed size at different levels of
resolutions in an image pyramid.

Generative Models

A general framework for object detection using generative models involves mod-
eling two distributions. A distribution p(θ; ηp) is defined on the possible latent
pose parameters θ ∈ Θ. This distribution captures assumptions on which poses
are more or less likely. An appearance model is defined describing the distribution
of the image features in a window conditional on the pose, p(Xs+W |object, θ; ηa).
Here ηp and ηa are the model parameters. For example, ηa might define a tem-
plate specifying the probability of observing certain features at each location
in the detection window under a canonical choice for the object pose, while θ
specifies a transformation of the template. Warping the template according to
θ leads to probabilities for observing certain features at each location in Xs+W

conditioned on this particular choice of pose parameters [1,2,4].

Training data with images of the object are used to estimate the parame-
ters ηp and ηa. Note that the images do not normally come with information
about the latent pose variables θ, unless annotation is provided. Estimation
thus requires inference methods that handle unobserved variables, for example
the different variants of the expectation maximization algorithm [4,3]. In some
cases a probability model for background images is estimated as well using large
numbers of training examples of images not containing the object.

The basic detection algorithm then scans each candidate window in the im-
age, computes the most likely pose under the object model and obtains the
‘posterior odds’, i.e. the ratio between the conditional probability of the window
under the object hypothesis at the optimal pose, and the conditional probability
of the window under the background hypothesis. This ratio is then compared to
a threshold τ to decide if the window contains an instance of the object

p(Xs+W |object, θ; ηa)p(θ; ηp)

p(Xs+W |background)
> τ.

When no background model has been trained offline, a simple adaptive back-
ground model can be estimated online for each window being tested. In this
case no background training data is needed [4]. Alternative background models
involve sub-collections of parts of the object model [14].



Discriminative Models

If no explicit latent pose variables are used the underlying assumption is that
the training data is sufficiently rich to provide a sample of the entire variation
of object appearance. The discriminative approach trains a standard two class
classifier using large amounts of data from the object and background classes.
Many classifier types have been used, including neural networks, SVMs, boosted
decision trees and radial basis functions.

Cascades Because of the large size of the background population and its com-
plexity discriminative methods are often organized in cascades [7]. An initial
classifier is trained to distinguish between the object and a manageable amount
of background data. The classifier is designed to have no false negatives at the
price of a larger number of false positives. Then a large number of background
examples are evaluated and the misclassified ones are collected to form a new
background data set. Once a sufficient number of such false positives is accumu-
lated a new classifier is trained to discriminate between the original object data
and the new ‘harder’ background data. Again this classifier is designed to have
no false negatives. This process can be continued several times.

At detection time the classifiers in the cascade are applied sequentially. Once
a window is classified as background the testing terminates with the background
label. If the object label is chosen, the next classifier in the cascade is applied.
Only windows that are classified as object by all classifiers in the cascade are
labelled as object by the cascade. Note that having no false negatives during
training training provides no guarantee that in testing instances of the objects
won’t be missed.

Pose variables Certain discriminative models can also be implemented with la-
tent pose parameters [10]. Assume a generic classifier defined in terms of a space
of classifier functions f(x;u) parameterized by u. Usual training of a discrimi-
native model consists of solving an equation of the form

min
u

n∑
i=1

D(yi, f(xi;u)) + C(u),

for some regularization term C(u) which prevents overfitting and a loss function
D measuring the distance between the classifier output f(xi;u) and the ground
truth label yi = 1 for object and yi = 0 for background.

The minimization above can be replaced by

min
u

∑
yi=1

min
θ∈Θ

D(1, f(θ(xi);u)) +
∑
yi=0

max
θ∈Θ

D(0, f(θ(xi);u)) + C(u).

Here θ(x) defines a transformation of the example x. Intuitively for a positive
example one would like there to be some transformation under which xi is clas-
sified as object, while for a negative example one would like it to be the case
that there is no transformation under which xi is classified as object.



Computational methods

The basic detection process consist of scanning the image lattice and at each
location s testing whether Xs+W is classified as object or background. This is
typically done at multiple resoltions of the image pyramid to detect objects at
multiple scales, and is clearly a very intesive computation. There are a number
of methods to make it more efficient.

Sparse features When sparse features are used it is possible to focus the com-
putation only in regions around features. The two main approaches that take
advantage of this sparsity are alignment [15] and the generalized Hough trans-
form. Alignment uses information regarding the relative locations of the features
on the object. In this case the locations of some features determine the possible
locations of the other features. Various search methods enable a quick decision
on whether a sufficient number of features was found to declare object, or not.
The Hough transform typically uses information on the location of each feature
type relative to some reference point in the object. Each detected feature votes
with some weight for a set of candidate locations of the reference point. Loca-
tions with a sufficiently large sum of weighted votes determine detections. This
idea can also be generalized to include identification of scale as well. The vot-
ing weights can be obtained either through discriminative training or through
generative training [1].

Cascades As mentioned above the cascade method trains a sequence of classifiers
with successively more difficult background data. Each such classifier is designed
to be very computationally efficient. When the data in the window Xs+W is
declared background by any classifier of the cascade the decision is final and the
computation proceeds to the next window. Since most background windows are
rejected early in the cascade most of the windows in the image are processed
very quickly.

Coarse to fine The cascade method can be viewed as a coarse to fine decomposi-
tion of background that gradually makes finer and finer discriminations between
object and background images that have significant resemblance to the object.
An alternative is to create a coarse to fine decomposition of object poses [8].
In this case it is possible totrain classifiers that can rule out a large subset of
the pose space in a single step. A general setting involves a rooted tree where
the leaves correspond to individual detections and internal nodes store classifiers
that quickly rule out all detections below a particular node. The idea is closely
related to branch-and-bound methods [12] that use admissible lower-bounds to
search a space of transformations or hypotheses.

Dynamic programming There are a number of object detection algorithms that
represent objects by a collection of parts arranged in deformable configurations
or as hierarchies of such arrangements of parts of increasing complexity. When
the hierarchies and the arrangements have the appropriate structure dynamic



programming methods can be used to efficiently search over the spaces of ar-
rangements [1], [2].

Application

Object detection methods have a wide range of applications in a variety of
areas including robotics, medical image analysis, surveillance and human com-
puter interaction. Current methods work reasonably well in constrained domains
but are quite sensitive to clutter and occlusion.

A popular benchmark for object detection is the PASCAL VOC object de-
tection challenge. The goal of the challenge is to detect objects from common
categories such as people, cars, horses and tables in photographs. The challenge
has attracted significant attention in the computer vision community over the
last few years and the performance of the best systems have been steadly in-
creasing by a significant amount on a yearly basis.

Face detection is a typical application of object detection algorithms. There
has been significant success in deploying face detection methods in practical
situations. For example current digital cameras use face detection to decide where
to focus and even detect smiles to decide when to take the picture. Figure 2 shows
a typical output of a face detection algorithm.

Recommended Readings

[1] Amit, Y. (2002). 2d Object Detection and Recognition: Models, Algorithms
and Networks. MIT Press, Cambridge, MA.

[2] Felzenszwalb, P., Huttenlocher, D. (2005). Pictorial structures for object
recognition. International Journal of Computer Vision 61(1) 55–79

[3] Fergus, R., Perona, P., Zisserman, A. (2003). Object class recognition by
unsupervised scale-invariant learning. IEEE CVPR 2003

[4] Amit, Y., Trouvé, A. (2007). POP: Patchwork of parts models for object
recognition. International Journal of Computer Vision 75(2) 267–282

[5] Jin, Y., Geman, S. (2006). Context and hierarchy in a probabilistic image
model. IEEE CVPR 2006

[6] Rowley, H.A., Baluja, S., Kanade, T. (1998). Neural network-based face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence
20(1) 23–38

[7] Viola, P., Jones, M.J. (2004). Robust real time face detection. International
Journal of Computer Vision 57(2) 137–154

[8] Fleuret, F., Geman, D. (2001). Coarse-to-fine face detection. International
Journal of Computer Vision 41(1-2) 85–107

[9] Dalal, N., Triggs, B. (2005). Histograms of oriented gradients for human
detection. IEEE CVPR 2005

[10] Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D. (2010). Object
detection with discriminatively trained part based models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 32(9) 1627–1645

[11] Riesenhuber, M., Poggio, T. (2000). Models of object recognition. Nature
Neuroscience 3 1199–1204 Supplement.



[12] Lampert, C., Blaschko, M., Hofmann, T. (2009). Efficient subwindow
search: A branch and bound framework for object localization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 31(12) 2129–2142

[13] Lowe, D. (2004). Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60(2) 91–110

[14] Chang, L.B., Jin, Y., Zhang, W., Borenstein, E., Geman, S. (2011). Context
computation, and optimal roc performance in hierarchical models. Interna-
tional Journal of Computer Vision

[15] Ullman, S. (1996). High-Level Vision. MIT. Press, Cambridge, MA.


