Discriminatively Trained Mixtures of Deformable Part Models

Pedro Felzenszwalb and Ross Girshick
University of Chicago

David McAllester
Toyota Technological Institute at Chicago

Deva Ramanan
UC Irvine

http://www.cs.uchicago.edu/~pff/latent
Model Overview

- Mixture of deformable part models (pictorial structures)
- Each component has global template + deformable parts
- Fully trained from bounding boxes alone
2 component bicycle model

- Root filters
 - Coarse resolution
- Part filters
 - Finer resolution
- Deformation models
Object Hypothesis

- Image pyramid
- HOG feature pyramid

Score of object hypothesis is sum of filter scores minus deformation costs.

Score of filter is dot product of filter with HOG features underneath it.

Multiscale model captures features at two resolutions.
Connection with linear classifier

score on detection window \(x \) can be written as

\[
f_w(x) = \max_z w \cdot \Phi(x, z)
\]

concatenation filters and
deforation parameters
concatenation of HOG
features and part
displacements and 0’s

\(w \): model parameters
\(z \): latent variables:
component label and
filter placements
Latent SVM

\[f_w(x) = \max_{z} w \cdot \Phi(x, z) \]

Linear in \(w \) if \(z \) is fixed

Training data: \((x_1, y_1), \ldots, (x_n, y_n)\) with \(y_i \in \{-1, 1\} \)

Learning: find \(w \) such that \(y_i f_w(x_i) > 0 \)

\[w^* = \arg\min_w \lambda \|w\|^2 + \sum_{i=1}^{n} \max(0, 1 - y_i f_w(x_i)) \]

Regularization
Hinge loss
Latent SVM training

\[w^* = \arg\min_w \lambda \|w\|^2 + \sum_{i=1}^{n} \max(0, 1 - y_i f_w(x_i)) \]

- Non-convex optimization
- Huge number of negative examples
- Convex if we fix \(z \) for positive examples
- Optimization:
 - Initialize \(w \) and iterate:
 - Pick best \(z \) for each positive example
 - Optimize \(w \) via gradient descent with data mining
Initializing w

- For k component mixture model:
- Split examples into k sets based on bounding box aspect ratio
- Learn k root filters using standard SVM
 - Training data: warped positive examples and random windows from negative images (Dalal & Triggs)
- Initialize parts by selecting patches from root filters
 - Subwindows with strong coefficients
 - Interpolate to get higher resolution filters
 - Initialize spatial model using fixed spring constants
Car model

- Root filters
 - Coarse resolution
- Part filters
 - Finer resolution
- Deformation models
Person model

- Root filters
 - Coarse resolution
- Part filters
 - Finer resolution
- Deformation models
Bottle model

root filters
coarse resolution

part filters
finer resolution

deformation models
Histogram of Gradient (HOG) features

- Dalal & Triggs:
 - Histogram gradient orientations in 8x8 pixel blocks (9 bins)
 - Normalize with respect to 4 different neighborhoods and truncate
 - 9 orientations * 4 normalizations = 36 features per block
- PCA gives ~10 features that capture all information
 - Fewer parameters, speeds up convolution, but costly projection at runtime
- Analytic projection: spans PCA subspace and easy to compute
 - 9 orientations + 4 normalizations = 13 features
- We also use 2*9 contrast sensitive features for 31 features total
• predict \((x_1, y_1)\) and \((x_2, y_2)\) from part locations

• linear function trained using least-squares regression
Context rescoreing

• Rescore a detection using “context” defined by all detections

• Let v_i be the max score of detector for class i in the image

• Let s be the score of a particular detection

• Let $(x_1, y_1), (x_2, y_2)$ be normalized bounding box coordinates

• $f = (s, x_1, y_1, x_2, y_2, v_1, v_2, \ldots, v_{20})$

• Train class specific classifier
 - f is positive example if true positive detection
 - f is negative example if false positive detection
Bicycle detection
More bicycles

False positives
Car
Source code for the system and models trained on PASCAL 2006, 2007 and 2008 data are available here:

http://www.cs.uchicago.edu/~pff/latent