Semantic Multicast for Content-based Stream Dissemination

Olga Papaemmanouil
Brown University

Uğur Çetintemel
Brown University
Stream Dissemination Applications

- Push-based applications
 - Environmental monitoring
 - Real-time financial services

- Characteristics
 - High data volume
 - Fast stream rates
 - Highly dispersed sources & destinations
Content-based Dissemination

- Centralized filtering
 - Single node gathers profiles
 - Unicast to destinations
 - e.g., XFilter [Altinel et al., 2000]

- Distributed content-based routing
 - Interest-based routing
 - Predefined acyclic overlay network
 - e.g. SIENA [Carzaniga et al., 2001]
 - Predicate-based filtering network
 - Upstream profile aggregation
 - Content filtering of each message at each hop
Content-based routing overhead

- Processing cost
 - Local filtering of each message
 - Compression/decompression for XML streams

- Bandwidth consumption
 - Missed tree optimization opportunities
 - Different client sets request different sub-streams
 - One spanning tree of the whole network is not the best solution for low cost
Our approach: Semantic Multicast

- Constructs content-based (a.k.a. semantic) multicast channels
 - Independent overlay dissemination trees
 - Channels characterized by their content

- Advantages
 - Decreases processing cost
 - Eliminates local filtering at interior brokers
 - Decreases overall bandwidth requirements
 - Allows QoS-aware multicast trees
Content-based Channelization

- SemCast decides:
 - Number of channels
 - Content of channels
 - Clients subscriptions to channels
 - Channel implementation

- Operational goals
 - No false exclusion
 - Low run-time cost: Overall bandwidth consumption
 - Minimize redundancy among channels’ content
 - Create efficient multicast trees
System Model

- Source brokers (S)
 - Receive XML streams from publishers
- Gateway brokers (GB)
 - Receive XPath profiles from subscribers
- Rendezvous points (RP)
 - Roots of channels
- Interior brokers (I)
 - Forward incoming messages
- Coordinator
 - Identifies content of channels
SemCast Overview

- Membership Management
 - Syntactical analysis of profiles
- Dynamic Channelization
 - Exploit statistical information
 - Reorganize channels
Membership Management

- Adding subscriptions
 - Gateway broker forwards unsatisfied subscriptions to coordinator
 - Coordinator creates a new channel for any subscription not covered by existing channels

- Removing subscriptions
 - Gateway broker forwards request to upstream brokers
 - Interior brokers remove channel entries from routing tables
 - Coordinator removes channel if there are no more remaining clients
Profile Containment Hierarchies

- Identify channels covering a profile based on profile syntax
 - Containment algorithms for XPath expressions. e.g. [Wood, 2003]
- Maintain *syntax-based containment hierarchies*
- Parent profile covers children
 - Root is the channel’s content expression

![Diagram of containment hierarchies]

WEBDB 2004, June 18, Paris
Dynamic Channelization

- Syntactic analysis might cause high data redundancy
 - Undiscovered full/partial overlapping profiles
 - Assign similar profiles to different channels
 - Forward matching messages to more than one channel
- Use statistics to re-evaluate channelization
 - Profile overlap
 - Run-time stream rate
Profile Overlapping Relations

- SemCast exploits also partial overlap among profiles
- Partial overlap
 - $P_i \ k$-overlaps with P_j: $P_i \subseteq^k P_j$, $k = \frac{\text{match}(P_i P_j)}{\text{match}(P_i)}$
- Containment
 - Special case of partial overlap, $k=1$
 - P_j covers P_i: messages matching P_i are subset of those matching P_j
Rate-based Hierarchies

- \(P_j \) is parent of \(P_i \) if

\[
P_i \subseteq^1 P_j \text{ and } k = \max_{P_j, i \neq j} \left\{ \frac{k}{r_{j-i}} \mid P_j \subseteq^k P_i \right\}
\]

\(r_{j-i} \) = rate of non-overlapping part between \(P_j \) and \(P_i \)

- \(P_j \) is more general than \(P_i \)
- If multiple candidate parents exist
 - Maximum overlap
 - Low stream rate of redundant messages
Hierarchy Merging

- Highly diverse profiles may increase cost
 - High message replication
 - Large number of channels
 - Large routing tables at interior brokers
- Merging hierarchies with partial overlap reduces cost
 - Use a cost-based model
 - Merge pairs with maximum benefit in bandwidth
 - High profile overlap
 - Efficient single multicast tree
Multicast Tree Construction

- Base low cost heuristic
 - Request channel’s destinations from RP
 - Find min-cost path to all destinations in the channel
 - Connect to closest one

WEBDB 2004, June 18, Paris
Simulation

- Metrics
 - Processing cost
 - Eliminate need for local filtering (not in this paper)
 - Bandwidth efficiency

- Approaches
 - *Unicast* approach
 - *SPT*: Shortest Path Tree approach
 - Distributed pub-sub system [Carzaniga et al., 2001]
 - *SemCast*: Distributed content-based channelization
 - *Optimal*: Centralized Steiner tree construction

- Simulation environment
 - Random graph generated by GT-ITM
 - Up to 700 nodes and 7000 profiles
Bandwidth efficiency

% cost degradation over Optimal

profile selectivity percentage

Network size = 700
#profiles = 7000
Scalability

% cost degradation over Optimal

- Unicast
- SPT
- SemCast Heuristic

Network size (profile selectivity factor = 0.7%)
Related Work

- Publish-Subscribe Systems
 - Centralized approaches: XML Filtering
 - XFilter [Altinel et al., 2000], YFilter [Diao et al., 2002]
 - XTrie [Chan et al., 2002]
 - Distributed approaches: Content-based Routing
 - Gryphon [Opyrchal et al., 2000]
 - SIENA [Carzaniga et al., 2001]

- Application-Level Multicast
 - SCRIBE [Castro et al., 2002]
 - CAN-based Multicast [Ratnasamy et al., 2001]
Conclusions & Ongoing Work

- **SemCast**
 - Performs semantic split of incoming streams
 - Eliminates local filtering in interior brokers
 - Improves bandwidth consumption

- **Ongoing work**
 - SemCast prototype
 - Demonstrate processing cost benefit
 - Investigate affects of network topology
 - Storage-oriented model: caching XML nodes