SemCast: Semantic Multicast for Content-based Data Dissemination

Olga Papaemmanouil
Brown University

Uğur Çetintemel
Brown University
Wide Area Stream Dissemination

- Applications
 - Network monitoring
 - Real-time financial services/enterprise
 - News services (RSS feeds)

- Characteristics
 - High data volume
 - Highly dispersed sources & destinations
 - Low latency delivery
Content-based Dissemination

- High level of expressiveness
 - Profiles are query predicates
- Sources/destinations decoupling
 - Destinations depend on message content
Content-based Pub/Sub

- Content-based routing
 - Predefined acyclic overlay network
 - SIENA [Carzaniga et al., 2001], Gryphon [Banavar et al., 1999]
 - Predicate-based filtering network
 - Upstream profile aggregation

- Limitations
 - Processing cost at each hop
 - Bandwidth consumption
Processing cost overhead

At each level:
- Content-based filtering at each level
 - Maintain data structures at every broker
- Compression/decompression
 - Usually with XML streams
- Encryption/decryption
 - Integrity-critical applications (e.g., financial feeds, distributed games)
- Forwarding costs could dominate dissemination costs
Bandwidth overhead

- Missed tree optimization opportunities
- Clients’ profiles could overlap
- One spanning tree is suboptimal
 - Intermediate nodes may receive irrelevant data

Cost = 13 msg/time unit
Max Latency = 3 hops

Cost = 10 msg/time unit
Max Latency = 3 hops
Our approach: Semantic Multicast

- Constructs multiple content-based (a.k.a. semantic) dissemination channels
 - Semantic split of incoming streams
 - Channels characterized by their content
 - Independent overlay dissemination trees
SemCast’s advantages

- Low processing cost
 - Eliminates local filtering at interior brokers
 - Low processing requirements for intermediate nodes

- Low overall bandwidth requirements
 - Low-cost dissemination trees
 - Enables latency-cost trade off
 - Delay-bounded trees for latency-sensitive applications
Content-based Channelization

- SemCast decides:
 - Number of channels
 - Content of channels
 - Clients subscriptions to channels
 - Channel implementation

- Operational goals
 - No false exclusion
 - Low run-time cost: Overall bandwidth consumption
 - Minimize redundancy among channels’ contents
 - Create efficient dissemination trees
 - Optimal solution for channelization: NP-complete
 [Adler et al., 2001]
System Model

- Source brokers (S)
 - Receive streams from publishers
- Gateway brokers (GB)
 - Receive profiles from subscribers
- Rendezvous points (RP)
 - Roots of channels
- Interior brokers (I)
 - Forward incoming messages
- Coordinators
 - Identify content of channels
SemCast overview

- Subscription management
 - Join existing channels or create new channels

- Periodically reorganizes channels
 - Exploits overlap among profiles
 - Content of channel defined by profiles assigned to it
 - Assign similar profiles to same channel
 - Identify overlap between profiles
 - Statistical & syntactical information
 - Discover containment relations
 - Merge channels with high partial overlap
 - Use cost-based model to assign profiles to channels
Containment relations

- SemCast discovers *containment hierarchies*
 - \(P_j \) contains \(P_i \)
 - Messages matching \(P_i \) are subset of those matching \(P_j \)
 - Profile syntax reveals containment relations
 - Statistics approximate containment relations
- Hierarchies are possible semantic channels
Cost-based Channelization

- Containment hierarchies might cause high data redundancy
 - High message rate for non-overlapping part
 - Small message rate for overlapping part
- Partial overlapping profiles may increase cost
 - Assign similar profiles to different channels
 - Forward matching messages to more than one channel
- Use cost-based model for channelization
Cost-based containment relations

- Place profiles in the same hierarchy (channel) *if* it improves bandwidth consumption
- If P_j covers P_i, compare cost
 - P_i and P_j in same channel
 - P_i on different channel
 - Apply lowest-cost scenario
- Cost estimation
 - Statistics on message rate
 - Approximate number of edges
 - Calculate edges for the Steiner tree connecting brokers
Hierarchy Merging

- Merging hierarchies with *partial overlap* reduces cost
 - Use a cost-based model
 - Send non overlapping part through “noise” channels

\[E_1 : x:\{25,..,55\} \]
\[E_2 : x:\{15,..,50\} \]

Destinations D₁

Destinations D₂
Hierarchy Merging

- Merging hierarchies with *partial overlap* reduces cost
 - Use a cost-based model
 - Send non overlapping part through “noise” channels

```latex
\begin{align*}
E_1 \land \neg E_2 & : x: [50, \ldots, 55] \\
E_1 \land E_2 & : x: [25, \ldots, 50] \\
\neg E_1 \land E_2 & : x: [15, \ldots, 25]
\end{align*}
```
Incremental tree construction

- Base low cost heuristic
 - Request channel’s gateway broker from RP
Incremental tree construction

- Base low cost heuristic
 - Request channel’s gateway broker from RP
 - Find min-cost path to all destinations in the channel
 - Connect to closest one
 - Incremental Steiner tree

- Delay-bounded trees
 - Find min-cost path to one broker in the tree that covers delay bound.
Experimental study

- Metrics
 - Processing cost
 - Bandwidth efficiency

- Approaches
 - Unicast approach
 - SPT: Shortest Path Tree approach
 - Distributed pub-sub system [Carzaniga et al., 2001]
 - SemCast: Distributed content-based channelization
 - SemCast-O: Centralized Steiner tree construction

- Network environment
 - Graphs generated by GT-ITM
Bandwidth efficiency-
Disjoint profiles

higher bandwidth consumption

Network size = 600 nodes
Profiles= 7000

SemCast’s trees are close to Steiner trees
SemCast performs better than SPT, Unicast with no overlapping profiles
Bandwidth efficiency - Overlapping profiles

SemCast performs better than SPT with overlapping profiles
Scalability

higher bandwidth improvement

% cost improvement over SPT

<table>
<thead>
<tr>
<th>aggregated profile overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>

- SemCast (N=300)
- SemCast (N=400)
- SemCast (N=600)

N = Network size
Profiles = 5 × N
Selectivity factor = 2

SemCast’s improvement increases with the network size
Related Work

- Publish-Subscribe Systems
 - Distributed approaches: Content-based Routing
 - Gryphon [Opyrchal et al., 2000]
 - SIENA [Carzaniga et al., 2001]
 - ONYX [Diao et al., 2004]
 - Centralized approaches: XML Filtering
 - XFilter [Altinel et al., 2000], YFilter [Diao et al., 2002]
 - XTrie [Chan et al., 2002]
- Application-Level Multicast
 - SplitStream [Castro et al., 2003]
 - Scribe [Castro et al., 2002]
 - CAN-based Multicast [Ratnasamy et al., 2001]
Conclusions & Ongoing Work

- SemCast
 - Performs semantic split of incoming streams
 - Eliminates local filtering in interior brokers
 - Improves bandwidth consumption

- Ongoing work
 - SemCast prototype
 - More expressive profiles
 - Statefull subscriptions
 - Wireless environment