
The Arrow Distributed Directory Protocol

Michael J. Demmer1 and Maurice P. Herlihy2?

1 Tera Computer Company, Seattle WA 98102, miked@tera.com
2 Computer Science Department, Brown University, Providence, RI 02912

herlihy@cs.brown.edu

Abstract. Most practical techniques for locating remote objects in a
distributed system su�er from problems of scalability and locality of
reference. We have devised the Arrow distributed directory protocol, a
scalable and local mechanism for ensuring mutually exclusive access to
mobile objects. This directory has communication complexity optimal
within a factor of (1+MST-stretch(G))=2, where MST-stretch(G) is the
\minimum spanning tree stretch" of the underlying network.

1 Introduction

Many distributed systems support some concept of mobile objects. A mobile
object could be a �le, a process, or any other data structure. For an object to be
mobile, we require only that it can be transmitted over a network from one node
to another. A mobile object \lives" on only one node at a time, and it moves from
one node to another in response to explicit requests by client nodes. A directory

service allows nodes to keep track of mobile objects. A directory must provide
the ability to locate a mobile object (navigation), as well as the ability to ensure
mutual exclusion in the presence of concurrent requests (synchronization).

This paper describes the arrow distributed directory protocol, a novel direc-
tory protocol being implemented as part of the Aleph toolkit [10], an distributed
shared object system currently under development at Brown. The arrow direc-
tory protocol is designed to avoid scalability problems inherent in many directory
services currently used in distributed shared memory systems. In this paper, we
focus on proving the correctness of the protocol, and on analyzing its commu-
nication complexity. The service's data structures and protocols are extremely
simple, and yet its communication complexity compares well to more compli-
cated asymptotic schemes in the literature.

2 Motivation

Perhaps the simplest way to implement a directory service is to have each node
broadcast each access request, and await the response from the node currently
holding the object. Indeed, this approach is common in bus-based multiproces-
sor systems (e.g., [9]), where broadcasting can be accomplished eÆciently. In

? Supported by AFOSR agreement F30602-96-0228 DARPA OD885.

distributed systems, however, broadcast is impractical, so a directory structure
must provide a way to navigate and synchronize by point-to-point communi-
cation. It is equally impractical to have each node store each object's current
location, since all nodes must be noti�ed when an object moves. Additionally,
since requests occur simultaneously, maintaining consistency in such schemes
becomes diÆcult.

The most common directory protocol used in existing distributed shared
memory systems is a home-based structure. Each mobile object is associated with
a �xed node, termed that object's \home". The home keeps track of the object's
location and status (e.g., busy or idle). When a client node requests an object,
it sends a message to the object's home. The home sends a message to the client
currently holding the object, and that client forwards the object to the requesting
client node. The home can also enforce the necessary synchronization, by queuing
concurrent requests. Home-based schemes are simple and easy to implement,
and they have been observed to work well for small-to-medium scale systems.
Nevertheless, such schemes su�er from problems of scalability and locality. As
the number of nodes grows, or if an object is a \hot spot", that object's home is
likely to become a synchronization bottleneck, since it must mediate all access to
that object. Moreover, if a client is far from an object's home, then it must incur
the cost of communicating with the home, even if the node currently holding the
object is nearby.

One way to alleviate these problems is to allow an object's home to move.
For example, Li and Hudak [15] proposed a protocol in which each object is
initially associated with a particular node, but as an object is moved around,
it leaves a virtual trail of forwarding pointers, starting from the original home.
A limitation of this approach is that many requests for an object may still go
through the original home, or end up chasing an arbitrarily long sequence of
pointers. Additionally, if the object is close but the home is far, the client may
still have to incur the large communication costs.

Our approach is also based on the idea of a trail of pointers, although we use
them in a di�erent way. Objects have no �xed homes, and synchronization and
navigation are integrated into a single simple protocol. When a client requests an
object from another client, all messages are sent through direct or nearly-direct
paths, preserving locality, and permitting us to give explicit worst-case bounds
on the protocol's communication complexity.

3 The Directory Structure

In this section, we give an informal de�nition of the arrow directory protocol,
together with examples illustrating the interesting aspects of its behavior. A
more formal treatment appears in Section 4.

For brevity, we consider a directory that tracks the location of a single object.
We model a distributed system in the usual way, as a connected graph G =
(V;E), where jV j = n. Each vertex models a node, and each edge a two-way
reliable communication link. A node can send messages directly to its neighbors,

and indirectly to non-neighbors along a path. Each edge is weighted with a
communication cost. The cost of sending a message from one node to another
along a particular path is just the sum of that path's edge costs. The distance

dG(x; y) is the cost of the shortest path from x to y in G. The network is
asynchronous (steps are interleaved in an arbitrary order) but reliable (every
node eventually takes a step and every message is eventually delivered). We
assume the network provides a routing service [7, 21] that allows node v to send
a message to node u with cost dG(u; v).

The arrow directory is given by a minimumspanning tree T for G. Each node
v stores a directory entry link (v), which is either a neighbor of v in T , or v itself.
The meaning of the link is essentially the following: if link (v) = v, then the object
either resides at v, or will soon reside at v. Otherwise, the object currently resides
in the component of the spanning tree containing link(v). Informally, except for
the node that currently holds an object, a node knows only in which \direction"
that object lies. If T has maximumdegree �, then the directory requires n�log(�)
bits of memory to track the object (some techniques for memory reduction are
discussed below).

The entire directory protocol can be described in a single paragraph. The
directory tree is initialized so that following the links from any node leads to the
node where the object resides. When a node v wants to acquire exclusive access
to the object, it sends a �nd (v) message to u1 = link(v) and sets link(v) to v.
When node ui receives a �nd (v) message from node ui�1, where ui+1 = link(ui),
it immediately \
ips" link(ui) to ui�1. If ui+1 6= ui, then ui forwards the message
to ui+1. Otherwise, ui bu�ers the request until it is ready to release the object
to v. Node ui releases the object by sending a move(v) message containing the
object directly to v, without further interaction with the directory.

Despite the protocol's simplicity, it has a number of non-trivial properties
that we believe to be of both practical and theoretical interest. Before analyzing
this behavior, it is helpful to review some simple examples. Figure 1 shows a
properly initialized directory, where directed edges correspond to the directory
links. The object resides at node u (indicated by a square). When node v requests
the object, it sends a �nd (v) message to u1 = link(v), and then sets link(v) to v.
When u1 receives the message from v, it forwards it to u2 = link (u1), and sets
link(u1) to v. Continuing in this way, each vertex thus \
ips" the link to point
in the direction from which the �nd (v) message arrived. Figure 2 illustrates the
directory state after three steps. Links changed by the protocol are shown in
gray: v's link points to itself, u1 points to v and u2 points to u1.

As shown in Figure 3, the �nd (v) message continues to
ip links until it
arrives at u, where the object resides (marked by link(u) = u). When u receives
the �nd (v) message, it responds by sending the object in a move((v) message
directly to v. This response takes the shortest path, and does not a�ect the
directory structure. As illustrated in Figure 4, after v has received the object,
all links in the graph again lead to the object's new location, so any subsequent
�nd messages will be directed there. The cost of acquiring access to the object
is

dT (u; v) + dG(v; u):

u

v

w

Fig. 1. Initial Directory State

u

v

u
2 1

uu
3

w

Fig. 2. Threee steps after u issues �nd(u) message

The term dT (u; v) is the cost of sending the �nd (v) message from u to v through
the directory tree, and the term dG(v; u) is the cost of sending the move(v)
message directly through the network. Notice the locality of this interaction: the
message traÆc a�ects only the nodes between u and v in the directory tree and
network.

We now turn our attention to a concurrent example in which multiple nodes
try to acquire the object at the same time. As described above, as a �nd message
traverses the directory tree, it
ips each link to point back to the neighbor from
which the �nd originated. If two �nd messages are issued at about the same
time, one will eventually cross the other's path, and be \diverted" away from
the object and toward its competitor. Figure 2 illustrates this behavior. If any of
the nodes on the right half of the tree requests the object, then its �nd message
will follow the links to v, whereas nodes on the left half of the tree will follow
the links to u.

For example, suppose w requests the object while v's �nd is still in progress.

u

u
2 1

uu
3

v

w

Fig. 3. Find message received

u

u
2 1

uu
3

v

w

Fig. 4. Move message received

This second �nd will be diverted to v. When v receives w's message, it will
not respond until it is has received the object and is ready to release it. This
directory state is illustrated in Figure 5, where w's request is blocked at v.

Now suppose that node z issues a �nd which arrives at u, where it is bu�ered
(u is not �nished with the object). The �nd message from v is then diverted to
z, as illustrated in Figure 6. This example illustrates how the arrow directory
integrates synchronization and navigation in a natural way. In a quiescent state
(when no messages are in transit), the directory imposes a distributed queue
structure on blocked �nd requests. When z completes its �nd, after
ipping its
links, it blocks at u. Similarly, v blocks at z, and w at v. These blocked re-
quests create a distributed queue where each �nd is bu�ered at its predecessor's
node. When u releases the object, it goes directly to z, then v, then w. This
distributed queue structure is valuable from a practical perspective, for several
reasons. First, it ensures that no single node becomes a synchronization bot-
tleneck. Second, if there is high contention for an object, then each time that

u

v

u
2 1

u

w

queue: w

Fig. 5. w's request blocked at v

u

z v

w

queue: wqueue: v

queue: z

Fig. 6. De
ected �nd

object is released, that node will already have a bu�ered �nd request. In the
limit, the cost of delivering �nd messages is hidden by the local computation
times, and the protocol's performance approaches optimal (repeated local com-
putation followed by direct object delivery). Third, the queue structure ensures
locality: each �nd message takes a direct path through the spanning tree to its
predecessor's node, with no detour to a home node.

The communication complexity of the concurrent execution in which the
object goes from u to z to v to w is

(dT (z; u) + dG(u; z)) + (dT (v; z) + dG(z; v)) + (dT (w; v) + dG(v; w)):

The �rst expression in each parenthesized term is the cost of sending the �nd

message from each node to its predecessor via the directory tree, and the second
is the cost of sending the move message directly from each node to its successor.
There are two important points to notice about this communication cost. First,
there is no synchronization overhead: the communication cost is the same as a

serial execution in which each node issues its �nd only after its predecessor is
ready to release the object. Second, the inherent cost of the transfer from u to
z is dG(z; u) + dG(u; z), the inherent cost of delivering matching �nd and move

messages. The arrow directory replaces the �rst term with dT (z; u), suggesting
that the navigation cost of the arrow directory approaches optimality to the
degree that dT (z; u) approaches dG(z; u). We elaborate on these observations in
the next section.

4 Analysis

In this section, we describe the algorithm using a simpli�ed version of the I/O
automaton formalism of Lynch and Tuttle [17], we sketch safety and liveness
issues, and evaluate the algorithm's cost.

4.1 Description

Recall that the network is a connected graph G = (V;E), where jV j = n. There
are two kinds of messages: node v issues a �nd (v) message to request access to
an object, and move(u) to transfer ownership to u. Each node v has following
attributes: link(v) is a node, queue(v) is either a node or ?, and owner(v) is a
boolean. Each pair of nodes (u; v) has a an associated pending (u; v), which is a
set of messages that have been sent but not delivered (i.e., in transit, or queued
at the sender or receiver).

A node v or link link(v) is terminal if link (v) = v. The directory is initialized
so that there is exactly one node v0 such that v0 is terminal and owner(v0) is
true, the remaining non-terminal link pointers form an oriented tree, and all
pending(u; v) sets are empty. Message delivery is reliable, but not necessarily
FIFO. A node initiates a �nd operation by sending a �nd message to itself For
brevity, we assume that a node w has only one �nd (w) message in the network
at a time.

We use T to denote the undirected tree, and L to denote the directed graph
induced by non-terminal links. The algorithm has the property that T does
not change, but L does. The algorithm is de�ned by a number of transitions.
The �rst part of each transition is a precondition that must be satis�ed for the
transition to occur, and the second part describes the state of the directory after
the transition. A primed component indicates how a component's state changes
after the transition.

Several transitions require a node atomically to remove a message from a
network link, undergo an internal transition, and insert the message in another
link. In practice, this atomicity is realized simply by requiring each node to �nish
processing one message before it starts processing the next.

The �rst transition says that when �nd (w) is sent from node u to a non-
terminal node v, v
ips its link pointer to u and forwards the message to its old
link.

pre: �nd (w) 2 pending(u; v)
link(v) 6= v

post: pending 0(u; v) = pending (u; v)� f�nd (w)g
pending 0(v; link(v)) = pending(v; link (v)) [f�nd (w)g
link

0(v) = u

If, however, v is a terminal node, then w is enqueued behind v.

pre: �nd (w) 2 pending(u; v)
link(v) = v

post: pending
0(u; v) = pending (u; v)� f�nd (w)g

link
0(v) = u

queue 0(v) = w

We do not explicitly model whether the object is actively in use. Instead, we
treat the owner's receipt of a �nd and its corresponding move as distinct events,
separated by an arbitrary but �nite delay. If the current owner's queue is non-
empty, then it may relinquish ownership and move the object directly to the
waiting node.

pre: owner(v) = true

queue(v) 6= ?
post: pending

0(v; queue(v)) = pending (v; queue(v)) [fmove(queue(v))g
owner 0(v) = false

queue 0(v) = ?

When a waiting node receives the object, that node becomes the new owner.

pre: move(v) 2 pending(u; v)
post: owner 0(v) = true

pending
0(u; v) = pending (u; v)� fmove(v)g

4.2 Safety

Our proof of the directory's safety properties is an invariance argument. At all
times, we show that there exists a well-de�ned path in L from any node that
leads either to the object's current owner, or to another node that has requested
the object. Because �nd messages follow these paths, any message that reaches
the end of a path will either acquire ownership of the object, or join the queue
waiting for the object.

First, we need to check that such paths exist.

Lemma1. The following property is invariant:

�nd (w) 2 pending(u; v)) link(u) 6= v ^ link (v) 6= u: (1)

Proof. Initially, the property holds vacuously, because no messages are in transit.
Consider the �rst transition to violate the property. There are two cases to
consider. In the �rst case, suppose the directory enters a state where

�nd (w) 2 pending
0(u; v) ^ link

0(u) = v:

Immediately before this transition, we claim that

�nd (w) 2 pending(v; u) ^ link(u) = v;

so the property was already violated. First, �nd (w) is in pending (v; u), because
otherwise link 0(u) would not be set to v. Second, link (u) must be v, because
otherwise the message would not be forwarded to v.

In the second case, suppose the directory enters a state where

�nd (w) 2 pending
0(u; v) ^ link

0(v) = u:

Immediately before this transition, we claim that

�nd (w) 2 pending(v; u) ^ link(v) = u;

so the property was already violated. First, �nd (w) is in pending (v; u), because
otherwise link 0(u) would not be set to v. Second, link(v) must be u, because the
transition does not change link(v).

Lemma2. The directed graph L induced by the non-terminal links is always

acyclic.

Proof. Because T is a tree, it suÆces to show the directory cannot enter a state
where link(u) = v and link(v) = u for distinct nodes u and v. Consider the
�rst transition that sets link

0(v) = u while link (u) = v. Any such transition is
enabled only if �nd (w) 2 pending(u; v) and link(u) = v, which is impossible by
Lemma 1.

De�nition3. The path from a node is the directed path in L from that node
to a terminal node.

De�nition4. The target of v, denoted target(v), is the terminal node at the
end of its path. If �nd (w) is a message in pending (u; v), then that message's
target is target(v).

Lemma 2 guarantees that these notions are well-de�ned. A node is a waiter if it
has requested an object, but has not yet become the owner of that object.

We are now ready to prove our principal safety result:

Theorem5. The path from any node always leads either to the current owner

or a waiter.

Proof. Any node v partitions the set of nodes G into Av and Bv, where Av

consists of nodes whose paths include v, and Bv consists of the rest. For every
u in Av, target(u) = target(v).

Consider the directory state immediately before a transition\
ipping" link (v)
to u. By Lemma 2, u 2 Bv. After the transition, for every w in Bv , target 0(w) =
target(w), so target(w) remains an owner or a waiter. For every z inAv (including
v itself), target 0(z) = target 0(u) = target(u), so target(z) remains an owner or a
waiter.

4.3 Liveness

Liveness is also based on invariance arguments. Liveness requires that transitions
occur fairly : any transition whose precondition remains true will eventually oc-
cur. (For example, any message in pending(u; v) will eventually be removed.)
We will show that when a �nd message is in transit, that message \traps" its
target in a component L1 of the link graph L: other �nd and move messages
can move the target within L1, but the target cannot leave L1. Each transition
that advances the �nd message shrinks L1 by at least one node, so after at most
n advances, L1 consists of a single node, and the �nd message must reach its
target.

Theorem6. Each �nd (w) message will be delivered to its target in n steps or

fewer.

Proof. Suppose �nd (w) is in pending (u; v). Deleting the edge (u; v) from the
undirected tree T splits T into two disjoint trees, before(w) (containing u)
and after(w) (containing v). Lemma 1 states that as long as �nd (w) is in
pending (u; v), then link(v) 6= u and link(u) 6= v, so the message's target will re-
main in after(w). (Other �nd requests may still move the target within after(w).)

If a transition delivers �nd (w) to its target, we are done. A transition that
moves the message from pending (u; v) to pending 0(v; link (v)) induces a new par-
tition before

0(w) and after
0(w), where v 62 after

0(w). Because each after
0(w) is

strictly smaller than after(w), the �nd (w) message will arrive at its target after
at most n steps.

4.4 Complexity

How should we evaluate the communication cost of this protocol? Following Pe-
leg [20], it is natural to compare our communication complexity to that of an
optimal directory for which synchronization and navigation are free. The optimal

directory accepts only serial schedules (so it pays nothing for synchronization),
and delivers each �nd and move message directly (so it pays nothing for navi-
gation).

An execution is a sequence of atomic node steps, message sends, and message
receipts. An execution is complete if every �nd message has a matching move.
and an execution is serial if the receipt of the i-th move message precedes the
sending of each (i + 1)-st �nd. The next lemma states that we can restrict our
attention to complete serial executions.

Lemma7. If E is any complete concurrent execution of the arrow directory

protocol, then there exists a complete serial execution E0 that serializes requests

in the same order, sends the same messages, and leaves the directory in the same

state.

De�ne the MST-stretch of G, denoted MST-stretch(G), to be

max
u;v2V

dT (u; v)

dG(u; v)
:

This quantity measures how far from optimal a path through the minimum
spanning tree can be. The MST-stretch can be n in the worst case (a ring), but
is likely to be much smaller in realistic networks (such as LANs, or the Internet).

Consider a serial execution in which v0; : : : ; v` successively acquire the object.
In the arrow directory, each �nd message traverses the spanning tree T , with
cost dT (vi; vi+1), while in the optimal directory, the message goes directly from
vi to vi+1, with cost dG(vi; vi+1). The ratio of these quantities is no more than
MST-stretch(G). In both the arrow and optimal directories, the move message
incurs cost dG(vi; vi+1), so this ratio is 1. (From a practical perspective, it is
worth emphasizing that we are not hiding any constants: these bounds really
are MST-stretch(G) and 1, not O(MST-stretch(G)) or O(1).)

As a result, for any complete serial execution, the ratio of communication
costs for the arrow directory and the optimal directory is bounded by

1 +MST-stretch(G)

2
:

The lower the network's MST-stretch, the closer the communication cost of the
arrow directory is to optimal.

5 Discussion

Our discussion so far has focused on the safety, liveness, and communication cost
of an idealized directory scheme. We now brie
y address other issues of practical
interest.

One sensible way to reduce the directory's memory consumption and mes-
sage traÆc is to organize the directory as a two-level structure. The network
is partitioned into neighborhoods of small diameter, where the arrow directory
is maintained at a per-neighborhood granularity, and a home-based directory
is used within each individual neighborhood. (For example, the neighborhood
could be a local subnetwork, and the node its gateway.) The resulting hybrid
scheme trades communication cost against memory consumption and directory
tree traÆc. As discussed below, Peleg [20] and Awerbuch and Peleg [3] have also
proposed multi-level directory structures.

Note that only �nd messages go through the directory tree | the network's
routing service handles all other traÆc, such as move messages, remote proce-
dure calls, etc. Find messages for di�erent objects that arrive together can be
combined before forwarding.

We have assumed for simplicity that every node is initialized with a directory
entry for each object. It is more practical to initialize an object's directory links
in the following \lazy" manner. Before a node can request an object, it must
�rst acquire that object's name. When a node u receives a message from v
containing the name of an unfamiliar object, it sends a message through the
directory tree to v initializing the intermediate missing links. This lazy strategy
preserves locality: if all references to an object are localized within the directory
tree, then the other nodes need never create a directory entry for that object.

So far, we have considered only exclusive access to objects. Many applications
would bene�t from support for shared (read-only) access as well. We now outline
a simple extension of the arrow directory protocol to support read-only replica-
tion. When multiple read-only copies exist, one is designated the primary. Each
directory entry consists of a primary link pointing toward the primary copy,
and a set of secondary links, each pointing toward one or more copies. When
a node requests a read-only copy of an object, it follows any secondary link
from each vertex, creating a new secondary link pointing back to itself at each
node it visits. When a node requests exclusive access to the object, it �rst fol-
lows the primary links,
ipping each primary link toward itself. When the node
has acquired exclusive access to the primary, it invalidates the read-only copies
by following,
ipping, and consolidating the secondary links. When all invalida-
tions are complete, the node has acquired the object. This protocol is linearizable
[11]. More eÆcient protocols might be achieved by replacing linearizability with
weaker notions of correctness [1].

We have not addressed the issue of fault-tolerance. Distributed mutual exclu-
sion algorithms address the problem by \token regeneration", e�ectively electing
a node to hold the new token. Here, the problem is di�erent, since we cannot
elect a new object, but we do need to recover navigational information that may
be lost following a crash.

6 Related Work

Distributed directory management is closely related to the problem of distributed
mutual exclusion. Na��mi, Tr�ehel, and Arnold [18] describe a distributed mutual
exclusion algorithm (the NTA algorithm) also based on a dynamically changing
distributed directed graph. In the NTA algorithm, when a node receives a mes-
sage, it
ips its edge to point to the node from which the request originated. In
our algorithm, however, the node
ips its edge to point to the immediate source
of the message. As a result, our graph is always a directed subgraph of a �xed
minimal spanning tree, while the NTA graph is more
uid.

The safety and liveness arguments for NTA and for our algorithm are simi-
lar, (though not identical), but the complexity models are quite di�erent. The
complexity analysis given in [18] is based on a model in which the underlying
network is a clique, with unit cost to send a message from any node to any
other. All nodes are assumed equally likely to request the token, and requests
are assumed to occur sequentially. Under these assumptions, NTA shows that
the average number of messages sent over a long period converges to O(logn).
(Ginat [8] gives an amortized analysis of the NTA algorithm and some variants.)
Our analysis, by contrast, models the underlying network as a weighted graph,
where the end-to-end cost of sending a message is the sum of weights along
its path. Instead of taking an average over a presumed uniform distribution, we
compete against a directory with perfect instantaneous knowledge of the object's
current location and no synchronization costs. The complexity analysis of Na��mi
et al. does not apply to our algorithm, nor ours to theirs.

The NTA complexity model is appropriate for the general problem of dis-
tributed mutual exclusion, while ours is intended for the more speci�c problem
of managing distributed directories in the Internet. Each link in our spanning
tree is intended to represent a direct network link between routers, which is
why our algorithm does not
ip edges to point to arbitrarily distant network
nodes (even though the routing service renders any pair of nodes \adjacent" for
communication). The NTA complexity model, while mathematically quite ele-
gant, does not seem well-suited for distributed Internet directory management,
because point-to-point communication cost is not uniform in real networks, and
access requests to distributed objects are typically not generated uniformly at
random, but often have strong locality properties. For these reasons, a compet-
itive complexity model seems more appropriate for our purposes.

Another mutual exclusion protocol employing path reversal is attributed to
Sch�onhage by Lynch and Tuttle [16]. In this protocol, the directory is a directed
acyclic graph. Users residing at leaf nodes request the object, and requests are
granted by arbiters residing at internal nodes. Edges change labels and orienta-
tion to re
ect the object's current status and location.

The arrow directory protocol was motivated by emerging active network tech-
nology [14], in which programmable network switches are used to implement cus-
tomized protocols, such as application-speci�c packet routing. Active networks
are intended to ensure that the cost of routing messages through the directory
tree is comparable to the cost of routing messages directly through the network.

Small-scale multiprocessors (e.g., [9]) typically rely on broadcast-based proto-
cols to locate objects in a distributed system of caches. Existing large-scale mul-
tiprocessors and existing distributed shared memory systems are either home-
based, or use a combination of home-based and forwarding pointers [4, 5, 6, 12,
13, 15, 19].

Plaxton et al. [22] give a randomized directory scheme for read-only objects.
Peleg [20] and Awerbuch and Peleg [3] describe directory services organized as
a hierarchical system of subdirectories based on sparse network covers [2]. The
earlier paper [20] proposed the notion of stretch to evaluate the performance of
distributed directory services. In the worst case, these directories use per-object
memory logarithmic in n, while ours is linear. (As described above, we believe we
can avoid worst-case memory consumption in practice.) Strictly speaking, the
asymptotic communication complexities are incomparable. Their notion of an
optimal concurrent �nd execution is less conservative than ours, but for simplic-
ity we will treat them as equivalent. The ratio of their concurrent �nd and move

operations to their notion of an optimal protocol is polylogarithmic in n, while
the ratio of our concurrent �nd and move operations to our (more conservative)
notion of an optimal protocol is (1 + MST-stretch(G))=2. The arrow directory
has lower asymptotic communication complexity when the MST-stretch of the
network is less than some polylogarithm in n. Nevertheless, we feel the most im-
portant distinction is that the arrow directory protocol is much simpler than any
of the hierarchical protocols, because it is explicitly designed to be implemented.
We plan to report experimental results in the near future.

References

1. S.V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
Technical Report ECE TR 9512 and Western Research Laboratory Research Re-
port 95/7, Rice University ECE, Houston, TX, September 1995. A version of this
paper appears in IEEE Computer, December 1996, 66-7.

2. B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Fast distributed network decom-
positions and covers. Journal of Parallel and Distributed Computing, 39(2):105{
114, 15 December 1996.

3. B. Awerbuch and D. Peleg. Online tracking of mobile users. Journal of the ACM,
42(5):1021{1058, September 1995.

4. B. Bershad, M. Zekauskas, and W.A. Sawdon. The Midway distributed shared
memory system. In Proceedings of 38th IEEE Computer Society International

Conference, pages 528{537, February 1993.
5. J.B. Carter, J.K. Bennet, and W. Zwaenepoel. Implementation and performance

of Munin. In Proceedings of the 13th Symposium on Operating Systems Principles,
pages 152{164, October 1991.

6. D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories: A scalable
cache coherence scheme. In Proceedings Of The 4th International Conference on

Architectural Support for Programming Langauges and Operating Systems, pages
224{234. ACM, April 1991.

7. P. Fraigniaud and C. Gavoille. Memory requirement for universal routing schemes.
In Proceedings of the 13th Annual ACM Symposium on Principles of Distributed

Computing, pages 223{243. acm, August 1995.
8. D. Ginat. Adaptive ordering of condending processes in distributed systems. Tech-

nical Report CS-TR-2335, University of Maryland, Computer Science, October 89.
9. G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory mul-

tiprocessors. IEEE Computer, 23(6):60{70, June 1990.
10. M.P. Herlihy. The Aleph toolkit: Platform-independent distributed shared memory

(preliminary report). www.cs.brown.edu/~mph/aleph.
11. M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for con-

current objects. ACM Transactions On Programming Languages and Systems,
12(3):463{492, July 1990.

12. K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-Performance All-
Software Distributed Shared Memory. In Proc. of the 15th ACM Symp. on Oper-

ating Systems Principles, pages 213{228, December 1995.
13. P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Dis-

tributed Shared Memory on Standard Workstations and Operating Systems. In
Proc. of the Winter 1994 USENIX Conference, pages 115{131, January 1994.

14. U. Legedza, D. Wetherhall, and J. Guttag. Improving the performance of dis-
tributed applications using active networks. Submitted to IEEE INFOCOMM,
San Francisco, April 1998.

15. K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems, 7(4):321{359, November 1987.

16. N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. Technical Report MIT/LCS/TM-387, MIT Laboratory For Computer
Science, April 1987.

17. N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. Techni-
cal Report MIT/LCS/TM-373, MIT Laboratory For Computer Science, November
1988.

18. M. Na��mi, M. Tr�ehel, and A. Arnold. A log(n) distributed mutual exclusion al-
gorithm based on path reveral. Journal of Parallel and Distributed Computing,
34:1{13, 1996.

19. R. S. Nikhil. Cid: A Parallel, \Shared Memory" C for Distributed-Memory Ma-
chines. In Proc. of the 7th Int'l Workshop on Languages and Compilers for Parallel

Computing, August 1994.
20. D. Peleg. Distance-dependent distributed directories. Information and Computa-

tion, 103(2):270{298, April 1993.
21. D. Peleg and E. Upfal. A trade-o� between space and eÆciency for routing tables.

Journal of the ACM, 36:43{52, July 1989.
22. C.G. Plaxton, R. Rajaman, and A.W. Richa. Accessing nearby copies of replicated

objects in a distributed environment. In Proceedings of the 9th Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 311{321, June 1997.

This article was processed using the LATEX macro package with LLNCS style

