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Abstract

We develop a framework for learning generic, expressive
image priors that capture the statistics of natural scenes
and can be used for a variety of machine vision tasks.
The approach extends traditional Markov Random Field
(MRF) models by learning potential functions over ex-
tended pixel neighborhoods. Field potentials are modeled
using a Products-of-Experts framework that exploits non-
linear functions of many linear filter responses. In contrast
to previous MRF approaches all parameters, including the
linear filters themselves, are learned from training data. We
demonstrate the capabilities of this Field of Experts model
with two example applications, image denoising and image
inpainting, which are implemented using a simple, approx-
imate inference scheme. While the model is trained on a
generic image database and is not tuned toward a specific
application, we obtain results that compete with and even
outperform specialized techniques.

1. Introduction

The need for prior models of image structure occurs in
many machine vision problems including stereo, optical
flow, denoising, super-resolution, and image-based render-
ing to name a few. Whenever one has “noise” or uncer-
tainty, prior models of images (or depth maps, flow fields,
etc.) come into play. Here we develop a method for learning
rich Markov random field (MRF) image priors by exploit-
ing ideas from sparse image coding. The resulting Field
of Experts (FOE) models the prior probability of an image
in terms of a random field with overlapping cliques, whose
potentials are represented as a Product of Experts [11].

We show how the model is trained on a standard database
of natural images [16] and develop a diffusion-like scheme
that exploits the prior for approximate Bayesian inference.
To demonstrate the modeling power of the FOE model, we
use it in two different applications: image denoising and
image inpainting [3]. Despite the generic nature of the prior
and the simplicity of the approximate inference, we obtain
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Figure 1. Image reconstruction using a Field of Experts. (a)
Example image with additive Gaussian noise (¢ = 20, PSNR =
22.51dB). (b) Denoised image. (PSNR = 28.79dB). (c) Photo-
graph with scratches. (d) Image inpainting using the FoE model.

state of the art results that, until now, were not possible with
MREF approaches. Figure 1 illustrates the application of the
FoE model for image denoising and image inpainting. Be-
low we provide a detailed quantitative analysis of the per-
formance in these tasks with respect to the state of the art.

Modeling image priors is challenging due to the high-
dimensionality of images, their non-Gaussian statistics, and
the need to model correlations in image structure over ex-
tended image neighborhoods. It has been often observed
that, for a wide variety of linear filters, the marginal filter
responses are non-Gaussian, and that the responses of dif-
ferent filters are usually not independent [13, 20].

Sparse coding approaches attempt to address some of
the issues in modeling complex image structure. In par-
ticular, they model structural properties of images in terms
of a set of linear filter responses. Starting from a vari-
ety of simple assumptions, numerous authors have obtained
sparse representations of local image structure in terms of
the statistics of filters that are local in position, orientation,
and scale [18, 24]. These methods, however, focus on image
patches and provide no direct way of modeling the statistics
of whole images.

Markov random fields on the other hand have been
widely used in machine vision but exhibit serious limita-



tions. In particular, MRF priors typically exploit hand-
crafted clique potentials and small neighborhood systems
[9], which limit the expressiveness of the models and only
crudely capture the statistics of natural images. Typi-
cal models consider simple nearest neighbor relations and
model first derivative filter responses. There is a sharp con-
trast between the rich, patch-based priors obtained by sparse
coding methods and the extremely local (e. g. first order)
priors employed by most MRF methods.

Zhu and Mumford took a step toward more practical
MRFs with the introduction of the FRAME model [27],
which allowed MREF priors to be learned from training data.
This method, however, still relies on a hand-selected set of
image filters from which an image prior is built. The ap-
proach is complicated by its use of discrete filter histograms
and the reported image reconstruction results appear to fall
well below the current state of the art. Another line of work
modeled more complex spatial properties using multiple,
non-local pairwise pixel interactions [10, 25]. These models
have so far only been exploited for texture synthesis rather
than for modeling generic image priors.

To model more complex local statistics a number of au-
thors have turned to empirical probabilistic models captured
by a database of image patches. Freeman et al. [7] propose
an MRF model that uses example image patches and a mea-
sure of consistency between them to model scene structure.
This idea has recently been exploited as a prior model for
image based rendering [6] and is related to example-based
texture synthesis [5]. Other MRF models used the Parzen
window approach [19] to define the field potentials. Jojic
et al. [14] use a miniature version of an image or a set of
images, called the epitome, to describe an image. While it
may be possible to use this method as a generic image prior,
this possibility has not yet been explored.

The goal of the current paper is to develop a framework
for learning rich, generic prior models of natural images
(or any class of images). In contrast to example-based ap-
proaches, we develop a parametric representation that uses
examples for training, but does not rely on examples as
part of the representation. Such a parametric model has
advantages over example-based methods in that it gener-
alizes better beyond the training data and allows for more
elegant computational techniques. The key idea is to extend
Markov random fields beyond FRAME by modeling the lo-
cal field potentials with learned filters. To do so, we exploit
ideas from the Products-of-Experts (PoE) framework [11].
Previous efforts to model images using Products of Experts
[24] were patch-based and hence inappropriate for learning
generic priors for images of arbitrary size. We extend these
methods, yielding a translation-invariant prior. The Field-
of-Experts framework provides a principled way to learn
MRFs from examples and the greatly improved modeling
power makes them practical for complex tasks.

2. Sparse Coding and Product of Experts

The statistics of small image patches have received ex-
tensive treatment in the literature. In particular, sparse cod-
ing methods [18] represent an image patch in terms of a
linear combination of learned filters, or “bases”, J; € R",
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where x(/) € R™ are vectorized image patches and S(a;, ;)
is a sparseness prior that penalizes non-zero coefficients,
a;,;. Variations of this formulation lead to principal compo-
nents, independent components, or more specialized filters.

Independent component analysis (ICA) [2] can be used
to define a probabilistic model for images patches. Since
the components found by ICA are by assumption indepen-
dent, one can simply multiply their marginal distributions to
obtain a prior model. However, in case of image patches of
n pixels it is generally impossible to find n fully indepen-
dent linear components, which makes the ICA model only
an approximation.

Welling et al. [24] went beyond this limitation with a
model based on the Products-of-Experts framework [11].
The idea behind the PoE framework is to model high-
dimensional probability distributions by taking the product
of several expert distributions, where each expert works on
a low-dimensional subspace that is relatively easy to model.
Usually, experts are defined on linear one-dimensional sub-
spaces (corresponding to the basis vectors in sparse coding
models). Notice that projecting an image patch onto a linear
component (JTx) is equivalent to filtering the patch with a
linear filter described by J;. Based on the observation that
responses of linear filters applied to natural images typically
exhibit highly kurtotic marginal distributions that resemble
a Student-t distribution, Welling et al. [24] propose the use
of Student-t experts. The full Product of t-distribution (PoT)
model can be written as
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where 6; = {«;,J;} and the experts ¢; have the form
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and Z(O) is the normalizing, or partition, function. The
«; are assumed to be positive, which is needed to make the
¢; proper distributions, but note that the experts themselves
are not assumed to be normalized. It will later be convenient
to rewrite the probability density in Gibbs form as p(x) =
%@) exp(—Epog(x, ©)) with

N
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Figure 2. Selection of the 5 x 5 filters obtained by training the
Products-of-Experts model on an generic image database.

One important property of this model is that all parameters
can be automatically learned from training data, i.e., both
the a; and the image filters J;. The advantage of the PoE
model over the ICA model is that the number of experts
N is not necessarily equal to the number of dimensions n
(i.e. pixels). The PoE model permits fewer experts than
dimensions (under-complete), equally many (complete), or
more experts than dimensions (over-complete). The over-
complete case is particularly interesting because it allows
dependencies between filters to be modeled and conse-
quently is more expressive than ICA.

The procedure for training the PoT model will be de-
scribed in the following section in the context of our gener-
alization to the FOE model. Figure 2 shows a selection of
the 24 filters obtained by training this POE model on 5 x 5
image patches. The training data contains about 60000 im-
age patches randomly cropped from the Berkeley Segmen-
tation Benchmark [16] and converted to grayscale. The fil-
ters learned by this model are the same kinds of Gabor-like
filters obtained using a non-parametric ICA technique or
standard sparse coding approaches. It is possible to train
models that are several times over-complete [18, 24]; the
characteristics of the filters remain the same.

A key characteristic of these methods is that they focus
on the modeling of small image patches rather than defining
a prior model over an entire image. Despite that, Welling
et al. [24] suggest an algorithm for denoising images of
arbitrary size. The resulting algorithm, however, does not
easily generalize to other image reconstruction problems.

Some effort has gone into extending sparse coding mod-
els to full images [21]. Inference with this model requires
Gibbs sampling, which makes it somewhat less attractive
for many machine vision applications.

3. Fields of Experts
3.1. Basic model

While the model described in the preceding section pro-
vides an elegant and powerful way of learning prior distri-
butions on small image patches, the results do not general-
ize immediately to give a prior model for the whole image.
For several reasons simply making the patches bigger is not
a viable solution: (1) the number of parameters to learn
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Figure 3. Selection of the 5 x 5 filters obtained by training the
Fields-of-Experts model on a generic image database.

would be too large; (2) the model would only work for one
specific image size and would not generalize to other image
sizes; and (3) the model would not be translation invariant,
which is a desirable property for generic image priors.

The key insight here is that we can overcome these prob-
lems by combining ideas from sparse coding with Markov
random field models. To that end, let the pixels in an image
be represented by nodes V' in a graph G = (V, E), where
E are the edges connecting nodes. We define a neighbor-
hood system that connects all nodes in an m X m rectan-
gular region. Every such neighborhood centered on a node
(pixel) k = 1,..., K defines a maximal clique Xy in the
graph. The Hammersley-Clifford theorem establishes that
we can write the probability density of this graphical model
as a Gibbs distribution p(x) = £ exp (— >, Vi(xx))).
where x is an image and Vj(x(y)) is the potential function
for clique x(;). We make the additional assumption that
the MRF is homogeneous; i. e., the potential function is the
same for all cliques (or in other terms Vi, (x(x)) = V (x()))-
This property gives rise to translation-invariance of an MRF
model'. Without loss of generality we assume the maximal
cliques in the MRF are square pixel patches of a fixed size;
other, non-square, neighborhoods could be used [8].

Instead of defining the potential function V' by hand, we
learn it from training images. To enable that, we repre-
sent the MRF potentials as a Product of Experts with the
same basic form as in (1). More formally, we use the en-
ergy term from (2) to define the potential function, i.e.,
V(X)) = Epoe(X(x), ©). Overall, we thus write the prob-
ability density of a full image under the FoE model as
p(x) = % exp(— Erop(x, ©)) with
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or equivalently
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where ¢; and 6, are defined as before. The important dif-
ference with respect to the PoE model in (1) is that we here

I'When we talk about translation-invariance, we disregard the fact that
the finite size of the image will make this property hold only approxi-
mately.



take the product over all neighborhoods k.

This model overcomes all the problems we cited above:
The number of parameters is only determined by the size of
the maximal cliques in the MRF and the number of filters
defining the potential. Furthermore, the model applies to
images of arbitrary size and is translation invariant because
of the homogeneity of the potential functions.

Note that computing the partition function Z(©) is in-
tractable. Nevertheless, most inference algorithms, such as
the ones proposed in Section 4, do not the require this nor-
malization term to be known. What distinguishes this model
from that of [24] is that it explicitly models the overlap of
image patches. These overlapping patches are highly cor-
related and the learned filters, J;, as well as the parameters
«; must account for this correlation. We refer to the re-
sulting translation-invariant Product-of-Experts model as a
Field of Experts to emphasize how the probability density
of an entire image involves the combination of overlapping
local experts.

3.2. Contrastive divergence learning

The parameters «; as well as the linear filters J;
can be learned from a set of D training images X =
{xM, ..., x(P)} by maximizing its likelihood. Maximiz-
ing the likelihood for the PoE and the FoE model is equiv-
alent to minimizing the Kullback-Leibler divergence be-
tween the model and the data distribution, and so guaran-
tees the model distribution to be as close to the data distri-
bution as possible. Since there is no closed form solution
for the parameters, we perform a gradient ascent on the log-
likelihood. This leads to the parameters being updated with
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where 7 is a user-defined learning rate, (-)x denotes the
average over the training data X, and (-), the expectation
value with respect to the model distribution p(x). While the
average over the training data is easy to compute, there is
no general closed form solution for the expectation over the
model distribution. However, it can be computed approxi-
mately using Monte Carlo integration by repeatedly draw-
ing samples from p(x) using MCMC sampling. In our im-
plementation, we use a hybrid Monte Carlo (HMC) sampler
[17], which is more efficient than many standard sampling
techniques such as Metropolis sampling. The advantage of
the HMC sampler stems from the fact that it uses the gradi-
ent of the log-density to explore the space more effectively.
Despite using efficient MCMC sampling strategies,
training such a model in this way is still not very practical,
because it may take a very long time until the Markov chain
approximately converges. Instead of running the Markov
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chain until convergence we use the idea of contrastive di-
vergence [12] to initialize the sampler at the data points and
only run it for a small, fixed number of steps. If we de-
note the data distribution as p° and the distribution after j
MCMC iterations as p’, the contrastive divergence parame-
ter update is written as

< aEjFoE > o < a-EF()E >
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The intuition here is that running the MCMC sampler for
just a few iterations starting from the data distribution will
draw the samples closer to the target distribution, which is
enough to estimate the parameter updates. Hinton [12] jus-
tifies this more formally and shows that contrastive diver-

gence learning is typically a good approximation to a max-
imum likelihood estimation of the parameters.

3.3. Implementation details

In order to correctly capture the spatial dependencies of
neighboring cliques (or image patches), the size of the im-
ages in the training data set should be substantially larger
than the clique size. On the other hand, large images would
make the required MCMC sampling inefficient. We train
this model on 2000 randomly cropped image regions that
have 3 times the width and height of the maximal cliques
(i.e., in case of 5 x 5 cliques we train on 15 x 15 images).
Our training data again is taken from fifty images from the
Berkeley Segmentation Database (natural scenes, people,
buildings, etc.) [16]. Welling et al. [24] noted that in their
PoE model the filter learning usually benefits from whiten-
ing the data distribution, since this removes potential scal-
ing issues due to the very non-spherical covariance of image
patches. To avoid similar problems in our model, we apply
a whitening transform to all the clique pixels before com-
puting the update for the filters. The transform furthermore
ignores any changes to the average gray level in the clique,
which reduces the number of dimensions of the filters by 1.
We enforce the positivity of the «; by updating their loga-
rithm. However, we found that the learning algorithm also
works without this constraint. In our experiments we used
contrastive divergence with a single step of HMC sampling.
Each HMC step consisted of 30 leaps; the leap size was ad-
justed automatically, so that the acceptance rate was near
90%. We performed 3000 update steps with n = 0.01. We
found the result to not be very sensitive to the exact value of
the learning rate nor the number of contrastive divergence
steps. Figure 3 shows a selection of the 24 filters learned
by training the FOE model on 5 x 5 pixel cliques. These fil-
ters respond to various edge and texture features at multiple
orientations and scales and, as demonstrated below, capture
important structural properties of images. They appear to



o/PSNR | Lena Barbara Boats House Peppers

1/48.13 | 47.84 47.86 47.69  48.32 47.81

2/42.11 | 42.92 4292 4228  44.01 42.96

5/34.15 | 38.12 37.19 36.27  38.23 37.63
10/28.13 | 35.04 32.83 33.05 35.06 34.28
15/24.61 | 33.27 3022 31.22 3348 32.03
20/22.11 | 31.92 28.32  29.85  32.17 30.58
25/20.17 | 30.82 27.04 2872 31.11 29.20
50/14.15 | 26.49 23.15 2453  26.74 24.52
75/10.63 | 24.13 21.36 2248 24.13 21.68
100/8.13 | 21.87 19.77 20.80 21.66 19.60

Table 1. Peak signal-to-noise ratio (PSNR) in dB for images
(from [1]) denoised with FoE prior.

lack, however, the clearly interpretable structure of the fil-
ters learned using the standard PoE model (cf. Figure 2).
This may result from the filters having to account for the
correlated image structure in overlapping patches.

Training the FOE model is computationally intensive but
occurs off-line. As we will see, there are relatively efficient
algorithms for approximate inference that make the use of
the FoE model practical.

4. Applications and Experiments

There are many computational methods for exploiting
MRF models in image denoising and other applications.
The methods include Gibbs sampling [9], deterministic an-
nealing, mean-field methods, belief propagation, non-linear
diffusion, as well as many related PDE methods [23]. While
a Gibbs sampler has formal convergence properties, it is
computationally intensive. Instead we derive a gradient
ascent-based method for approximate inference that per-
forms well in practice.

4.1. Image denoising

Currently, the most accurate denoising methods in the lit-
erature fall within the category of wavelet “coring” in which
the image is 1) decomposed using a large set of wavelets at
different orientations and scales; 2) the wavelet coefficients
are modified based on their prior probability; and 3) the im-
age is reconstructed by inverting the wavelet transform. For
an excellent review and quantitative evaluation of the state
of the art see [20]. The most accurate of these methods
model the fact that the marginal statistics of the wavelet
coefficients are non-Gaussian and that neighboring coeffi-
cients in space or scale are not independent. Portilla er al.
[20] model these dependencies using a Gaussian scale mix-
ture and derive a Bayesian decoding algorithm that appears
to be the most accurate of this class of methods. They use a
pre-determined set of filters and hand select a few neighbor-
ing coefficients (e. g. across adjacent scales) that intuition

and empirical evidence suggest are statistically dependent.

In contrast to the above schemes we focus on a Bayesian
formulation with a spatial prior term. Given an observed
image y, our goal is to find the true image x that maxi-
mizes the posterior probability p(x|y) « p(y|x) - p(x). As
is common in the denoising literature, our experiments as-
sume that the true image has been corrupted by additive,
i.1.d. Gaussian noise with zero mean and known standard
deviation o. We thus write the likelihood as

plylx) o [T exp (2}7(3';' - Xj)z) ,

where j ranges over the pixels in the image. Our method
generalizes to other kinds of noise distributions, as long as
the noise distribution is known (and its logarithm is differ-
entiable).

Maximizing the posterior probability of a graphical
model such as the FoE is generally hard. In order to empha-
size the practicality of the proposed model, we refrain from
using expensive inference techniques. Instead we perform a
gradient ascent on the logarithm of the posterior probability.
The gradient of the log-likelihood is written as

1
Vi log p(y|x) = poit A X).

Fortunately, the gradient of the log-prior is also simple to
compute [26]:

N
Vxlogp(x) = ZJ; x 1 (J; % x),
i=1

where J; * x denotes the convolution of image x with filter
J;. We also define ¢;(y) = 0/0y log ¢;(y; ;) and let I
denote the filter obtained by mirroring J; around its cen-
ter pixel [26]. Note that — log ¢; is a standard robust error
function when ¢; has heavy tails, and that v); is proportional
to its influence function [4].

By introducing an iteration index ¢, an update rate 7, and
an optional weight A, we can write the gradient ascent de-
noising algorithm as:

N
A
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As observed by Zhu and Mumford [26], this is related to
non-linear diffusion methods. If we had only two filters (x-
and y-derivative filters) then this equation is similar to stan-
dard non-linear diffusion filtering with a data term. Even
though denoising proceeds in very similar ways in both
cases, our prior model uses many more filters than non-
linear diffusion. The key advantage of the FOE model is
that it tells us how to build richer prior models that combine
more filters over larger neighborhoods in a principled way.



Figure 4. Denoising results. (a) Original noiseless image. (b) Image with additive Gaussian noise (¢ = 25); PSNR = 20.29dB. (c)
Denoised image using a Field of Experts; PSNR = 28.72dB. (d) Denoised image using the approach from [20]; PSNR = 28.90dB. (e)
Denoised image using standard non-linear diffusion; PSNR = 27.18dB.

Denoising experiments

Using the FoE model trained as in the previous section on
the Berkeley database we perform a number of denoising
experiments. The experiments conducted here assume a
known noise distribution. The extension of our exposition
to “blind” denoising, for example using robust data terms
or automatic stopping criteria, will remain the subject of fu-
ture work. We used an FoE prior with 24 filters of 5 X 5
pixels. We chose the update rate n to be between 0.02 and
1 depending only on the amount of noise added, and per-
formed 2500 iterations. While potentially speeding up con-
vergence, large update rates may result in numerical insta-
bilities, which experimentally disappear for n < 0.02. We
found, however, that running with large step sizes and sub-
sequently “cleaning up” the image with 250 iterations with
1 = 0.02 shows no worse results than performing the de-
noising only with = 0.02. Experimentally, we found that
the best results are obtained with an additional weight A
for the likelihood term, which furthermore depends on the
amount of noise added. We automatically learn the optimal
A value for each noise level using the same training data
set that was used to train the FOE model. This is done by
choosing the best value from a small candidate set of \’s.

Results are obtained for two sets of images. The first
set consists of images commonly used in denoising experi-
ments [20]. Table 1 provides the peak signal-to-noise ratio
(PSNR = 201log;,(255/0.)) for this set with various levels
of additive Gaussian noise and denoised with the FoE model
(cf. [20]). Portilla et al. [20] report the most accurate results
on these test images and their method is tuned to perform
well on this dataset. We obtain signal-to-noise ratios that
are close to their results (mostly within 0.5dB), and in some
cases even surpass their results (by about 0.3dB). To the best
of our knowledge, no other MRF approach has so far been
able to closely compete with such wavelet-based methods
on this dataset. Also note that the prior is not trained on,
or tuned to these examples. Our expectation is that the use

of more and/or larger filters, and of better MAP estimation
techniques will improve these results further.

To test more varied and realistic images we denoised a
second test set consisting of 68 images from the test section
of the Berkeley data set. For various noise levels we de-
noised the images using the FOE model, the method from
[20] (using the software and default settings provided at
[1]), simple Wiener filtering (using MATLAB’s wiener?2),
and a standard non-linear diffusion scheme [23] with a data
term. This last method employed a robust Huber func-
tion and can be viewed as an MRF model using only local
first derivative filters. For this standard non-linear diffu-
sion scheme, a A weight for the prior term was trained as in
the FoE case and the stopping time was selected to produce
the optimal denoising result (in terms of PSNR). Figure 4
shows the performance of each of these methods (except for
the Wiener filter) for one of the test images. Visually and
quantitatively, the FOE model outperforms both Wiener fil-
tering and non-linear diffusion and nearly matches the per-
formance of the specialized Wavelet technique.

Figure 5 shows a performance comparison of the men-
tioned denoising techniques over all 68 images from the
test set at various noise levels. In addition to PSNR we
also computed a more perceptually-based similarity mea-
sure (SSIM) [22]. The FoE model consistently outper-
forms both Wiener filtering and standard non-linear diffu-
sion, while closely matching the performance of the current
state of the art in image denoising [20]. A signed rank test
shows that the performance differences between the FoE
and the other methods are statistically significant at a 95%
confidence level (except for the SSIM of non-linear diffu-
sion at the highest noise level).

4.2. Image inpainting

In image inpainting [3], the goal is to remove certain
parts of an image, for example scratches on a photograph
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Figure 5. Denoising results on Berkeley database. Horizontal
axis: PSNR (dB) of the noisy images. Error bars correspond to one
standard deviation. (left) PSNR in dB for the following models
(from left to right): Wiener filter, standard non-linear diffusion,
FoE model, and the two variants of [20]. (right) Similarity index
from [22] for these techniques.

or unwanted occluding objects, without disturbing the over-
all visual appearance. Typically, the user supplies a mask
of pixels that are to be inpainted. Past approaches, such
as [3], use a form of diffusion to fill in the masked pixels.
This suggests that the diffusion technique we proposed for
denoising may also be suitable for this task. In contrast to
denoising, we only modify the subset of the pixels specified
by the mask. At these pixels there is no observation and
hence no likelihood term is used. Our simple inpainting al-
gorithm propagates information using only the FoE prior:

N
xtD = x® 4 M ZJ; « (e x) Lo (5)
i=1

In this update scheme, the mask M sets the gradient to zero
for all pixels outside of the masked region. In contrast to
other algorithms, we make no explicit use of the local gra-
dient direction; local structure information only comes from
the responses of the learned filter bank. The filter bank as
well as the «; are the same as in the denoising experiments.

Levin et al. [15] have a similar motivation in that they
exploit learned models of image statistics for inpainting.
Their approach however relies on a small number of hand-
selected features, which are used to train the model on the
image to be inpainted. We instead use a generic prior and
combine information from many more automatically deter-
mined features.

Figure 6 shows the result of applying this inpainting
scheme in a text removal application in which the mask cor-
responds to all the pixels that were occluded by the text. The
color image was converted to the YCbCr color model, and
the algorithm was independently applied to all 3 channels.
Since the prior was trained only on gray scale images, this is
obviously suboptimal, but nevertheless gives good results.
In order to speed up convergence we ran 500 iterations of
(5) with n = 10. Since such a large step size may lead to
some numerical instabilities, we “clean up” the image by
applying 250 more iterations with = 0.01.

The inpainted result (Figure 6 (b)) is very similar to the

original and qualitatively superior to those in [3]. Quan-
titatively, our method improves the PSNR by about 1.5dB
(29.06dB compared to 27.56dB); the image similarity met-
ric from [22] shows a significant improvement as well
(0.9371 compared to 0.9167; where higher is better). The
advantage of the rich prior can be seen in the continuity of
edges which is better preserved compared with [3]. Figure 6
(c) shows a few detail regions comparing our method (cen-
ter) with [3] (right). Similar qualitative differences can be
seen in many parts of the reconstructed image.

S. Summary and Conclusions

While Markov random fields are popular in machine vi-
sion for their formal properties, their ability to model com-
plex natural scenes has been limited. To make it practical
to model rich image priors we have extended approaches
for the sparse coding of image patches to model the poten-
tials of a homogeneous Markov random field capturing lo-
cal image statistics. The resulting Fields-of-Experts model
is based on a rich set of learned filters, and is trained on
a generic image database using contrastive divergence. In
contrast to previous approaches that use a pre-determined
set of filters, all parameters of the model, including the
filters, are learned from data. The resulting probabilistic
model can be used in any Bayesian inference method requir-
ing a spatial image prior. We have demonstrated the useful-
ness of the FOE model with applications to denoising and
inpainting. The denoising algorithm is straightforward (ap-
proximately 20 lines of MATLAB code), yet achieves per-
formance close to the best special-purpose wavelet-based
denoising algorithms. The advantage over the wavelet-
based methods lies in the generality of the prior and its ap-
plicability across different vision problems. We believe the
results here represent an important step forward for the util-
ity of MRF models and will be widely applicable.

There are many avenues for future work. By making
MRF models much richer, many problems can be revisited
with an expectation of improved results. Our current efforts
are focused on learning prior models of optical flow, scene
depth, color images, and object boundaries. The results here
are applicable to image super-resolution, image sharpening,
and graphics applications such as image based rendering [6]
and others.

There are many avenues along which the FoE model it-
self can be studied in more detail, such as how the size of
the cliques as well as the number of filters influence the
quality of the prior. Furthermore, it would be interesting
to explore an FoE model using fixed filters (e.g. standard
derivative filters or even random filters) in which only the
expert parameters «; are learned from data. The Student-t
expert distribution might also be replaced by another, more
suitable form. Finally, the convergence and related prop-



Figure 6. Inpainting with a Field of Experts. (a) Original image with overlaid text. (b) Inpainting result from diffusion using the FoE
prior. (¢) Close-up comparison between a (left), b (middle), and the results from [3] (right).

erties of the diffusion-like algorithm that we propose for
inference should be further studied.
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