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Abstract

Blind image deconvolution, i.e., estimating a blur kernel
k and a latent image x from an input blurred image y, is
a severely ill-posed problem. In this paper we introduce a
new patch-based strategy for kernel estimation in blind de-
convolution. Our approach estimates a “trusted” subset of
x by imposing a patch prior specifically tailored towards
modeling the appearance of image edge and corner primi-
tives. To choose proper patch priors we examine both sta-
tistical priors learned from a natural image dataset and a
simple patch prior from synthetic structures. We show that
our patch prior prefers sharp image content to blurry ones.
Based on the patch priors, we iteratively recover the par-
tial latent image x and the blur kernel k. A comprehensive
evaluation shows that our approach achieves state-of-the-
art results for uniformly blurred images.

1. Introduction
Image blur caused by camera shake is a common prob-

lem in consumer photography. A motion blurred image y
capturing a static scene is often modeled as:

y = k ∗ x+ n, (1)

where k is the blur kernel, x is the latent image, n is noise,
and ∗ is the convolution operator. For blind deconvolution,
the goal is to recover both x and k from y, which is an ill-
posed problem.

To overcome the ill-posedness of blind deconvolution,
previous works place strong assumptions or prior knowl-
edge on k and x. Regarding k, it is often assumed that k
should be sparse [7, 16] and continuous [3]. For x, it is
often assumed that image gradients are heavy-tailed [7, 16,
13, 14, 11]. However, we argue that this popular family of
sparsity priors is not suitable for the task of kernel estima-
tion for the following reasons. First, sparsity priors prefer
blurry images to sharp ones [13], because blur reduces over-
all gradient magnitude. Hence, sparsity priors have limited
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capacity to steer the latent image towards a sharp solution.
Second, they fundamentally suffer from the fact that the
unit of representation is extremely limited: gradient filters
often consider two or three pixels, hence ignoring longer-
range dependencies which give rise to the most salient im-
age structures and geometry. This is also why state-of-the-
art image restoration methods often involve larger neighbor-
hoods or image patches [2, 15, 18, 20].

Another family of blind deconvolution algorithms ex-
plicitly exploits edges for kernel estimation. Joshi et al. [8]
and Cho et al. [5] directly restore sharp edges from blurry
edges and rely on them to estimate the blur kernel. While
these methods work well for small scale blur, they have dif-
ficulty dealing with large blur kernels, as directly restoring
sharp edges from a severely blurred image is non-trivial.
To handle large blur kernels, Cho and Lee [4] introduce
an edge-based approach, which alternates between restor-
ing sharp edges and estimating the blur kernel in a coarse-
to-fine fashion. This framework has been further extended
by Xu and Jia [19] and has proven to be effective [9]. How-
ever, these approaches heavily rely on heuristic image fil-
ters such as shock and bilateral filtering for restoring sharp
edges, which are often unstable, as we will show in Sec. 3.3.

In this paper, we propose a new edge-based approach us-
ing patch priors on edges of the latent image x. Patches can
model image structures better than filter responses. In our
approach, we estimate a “trusted” subset of x by imposing
patch priors specifically tailored towards modeling the ap-
pearance of image edge and corner primitives. We only re-
store these primitives since other image regions, e.g. flat or
highly-textured ones, do not carry much useful blur infor-
mation for kernel estimation. Furthermore, restoring tex-
tures often results in hallucinated high frequency content,
which corrupts the subsequent kernel estimation steps. We
illustrate how to incorporate the patch prior into an edge-
based iterative blind deconvolution framework through an
optimization process, where we iteratively recover the par-
tial latent image x and the blur kernel k. Experimental
results show that our approach achieves state-of-the-art re-
sults (Sec. 5).

The main question we address in this paper is what is
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Figure 1. Algorithm pipeline. Our algorithm iterates between x-step and k-step with the help of a patch prior for edge refinement process.
In particular, we coerce edges to become sharp and increase local contrast for edge patches. The blur kernel is then updated using the
strong gradients from the restored latent image. After kernel estimation, the method of [20] is used for final non-blind deconvolution.

the right prior for x in blind deconvolution. Intuitively, the
image prior used for blind deconvolution should not be too
expressive, i.e., the prior should not be allowed to express
a wide range of visual phenomena, such as motion blur and
defocus blur, which are natural and frequent in professional
photographs. A prior that is overly expressive, such as the
GMM model proposed by Zoran and Weiss [20], will in-
evitably accommodate blur and hinder the the convergence
of the solution pair. With this in mind, our patch-based prior
is specifically tailored towards modeling particular image
primitives [6]– atomic elements that form the structural part
of the image, namely, edges, corners, T-junctions, etc. To
choose proper patch priors, we examine both statistical pri-
ors learned from a natural image dataset and a simple patch
prior from synthetic structures. Experimental results show
that, surprisingly, the simple synthetic patch prior can gen-
erate the same quality or even better results than the learned
statistical prior.

2. Algorithm Overview

Our algorithm builds upon the coarse-to-fine, iterative
optimization framework commonly used in recent meth-
ods [16, 4, 19, 11], as shown in Fig. 1. In particular, at each
level s, we initialize ks by upsampling ks−1 from the pre-
vious level, followed by a latent recovery step to solve for
xs (x-step). However, our x-step only attempts to partially
restore xs, i.e. edge primitives, which we deem as the only
reliable image regions for both x-step and k-step. Given
a newly updated xs, ks is updated (k-step) by comparing
restored gradients and the blurred image. This procedure is
carried out iteratively until convergence and the resulting ks
is propagated to the next level to initialize ks+1. Unlike [4],
we do not rely on heuristic image filtering steps to “guess”
the ground truth gradients in the x-step. Instead, we intro-
duce a nonparametric patch prior to coerce image primitives
in x to be sharp and noise-free. This also avoids the problem
of falsely penalizing large gradients, which may happen if a
sparsity prior is applied over image gradients [13].

We will first introduce our patch prior formulation in
Sec. 3, then describe how to incorporate the patch prior for
kernel estimation in Sec. 4.

3. Nonparametric Patch Priors
Most iterative deblurring methods are carefully engi-

neered to drive the latent image towards a sharper solution
during the optimization process, and avoid the degenerate
case of a δ PSF and a blurry x. To achieve this, we in-
troduce two sets of independent auxiliary variables, namely
{Zi} and {σi}, for each pixel location i considered as an
edge primitive. Zi is a particular example patch assigned
to location i, and σi is the target local contrast we wish the
latent image patch to have. Together they provide strong
constraints over desired structural shapes and sharpness for
primitive patches in the latent image. Note that we model
patches in the normalized space: subtracting its mean and
dividing by standard deviation.

We would like our patch prior to be sufficiently expres-
sive, i.e., any edge patch P in natural images can be approx-
imated by P = σZ+µ+ ε, where σ is the patch contrast, µ
is the patch intensity, ε is a small error term. However, this
prior cannot be overly expressive, i.e., it should not be al-
lowed to express high frequency textures or gradual changes
in image gradients, otherwise it will start to accommodate
blur and noise in the latent image, hence losing its power to
restore sharpness. Since our prior is only applied to a sub-
set of pixels in the latent image, it should be distinguished
from existing generic natural image priors such as the sim-
ple sparsity prior [13] and the complex GMM-based patch
prior from Zoran and Weiss [20], which are applied over the
whole image.

We will first examine how we learn a set of representative
natural edge patches {Znat}. We then introduce a set of
synthetic patches {Zsynth} as an alternative solution.

3.1. Learning a Natural Edge Patch Prior

To model image primitives, a natural approach is to learn
a prior from a training set of patches extracted along image
contours. We first downsample all 500 images (grayscale)
from the BSDS500 dataset [1] by half in each dimension
to reduce noise and compression artifacts, then compute a
mask (see Sec. 4 for more details) based on gradient magni-
tude. The mask is then intersected (AND operator) with
human annotated ground truth contours provided by the
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Figure 2. The generative process from our natural prior (left) and
synthetic patch prior (right). (a) 32 of the 2560 learned centroids,
with decreasing cluster size in scan-line order. (b) four basic struc-
ture seed patches we use as bases for our synthetic prior. (c) 64
random patch samples generated from {Znat}. (d) 64 random
patch samples generated from {Zsynth}.

dataset to produce a final mask. We extract all 5×5 patches
centered within the mask, resulting in approximately 220k
patches from 500 images. We normalize each patch by re-
moving its DC and dividing by its standard deviation (local
contrast). Finally, we apply a standard k-means algorithm
to learn the representative primitive patches: {Znat} is the
set of centroids. For our experiments, we use k = 2560.
In Fig. 2(a), we show 32 such centroids, which are regu-
larly sampled from the 2560 centroids after sorting them by
cluster size. Note that we expect to have enough training
patches such that the cluster centroids encode the appropri-
ate variations in orientation and translation, hence we do not
apply such transformations to {Znat} during the optimiza-
tion process.

We also learn the distribution of local contrast encoded
by σ for such primitive patches. The empirical distribution
of σ is shown in Fig. 3, which will be used in our framework
to restore diminished/blurred image gradients in Sec. 4.

We make the following observations about our learned
patch priors:

1. Patch complexity is correlated with cluster size. In
particular, simple edge structures such as horizon-
tal/vertical step edges make up the largest clusters,
and the patch samples within these clusters exhibit lit-
tle variation. On the other hand, the smallest clusters

Figure 3. The empirical distribution of local constrasts from the
220k patches collected from BSDS500 [1]. The distribution is
asymmetric and heavy-tailed, indicating a fair amount contrast in
image primitives should be large.

capture complex textures and noisy structures, and the
patch samples within these clusters can be significantly
different from each other. This is consistent with re-
cent findings from Levin et al. [12].

2. The overall complexity of image primitives is surpris-
ingly limited. Using k = 2560, there is already a good
amount of redundancy in the clusters: some centroids
appear almost identical to each other. Furthermore,
most of the clusters capture simple step edges with
varying profiles, orientations and translations. Some
smaller clusters represent corners and other rare struc-
tures.

3.2. A Synthetic Edge Patch Prior

The learned natural edge patches are relatively simple,
but contain slight blur and noise as a result of averaging real
image patches with slight misalignment. For this reason, we
design a synthetic patch prior that is hopefully comparable
in terms of expressiveness, while being cleaner and sharper.

To generate a set of synthetic patches {Zsynth}, we use
four seed patches as shown in Fig. 2(b). These seed patches
are one step edge, one corner and two bars of different
widths. We consider two kinds of transformations: ro-
tations (every 3 degrees from 0 to 360), and translations
(up to ±1, 2 pixels in each direction). The set of exam-
ple patches {Zsynth} is generated by applying all possible
combinations of these transformations to each seed patch.
All patches are then normalized by subtracting its mean and
dividing by its standard deviation. Fig. 2(d) provides a vi-
sualization of 64 random samples from this synthetic patch
prior.

In this work we demonstrate that this synthetic prior
{Zsynth} works roughly as well as {Znat}, indicating that
the complexity of 5 × 5 edge patches is limited, and that
most properties of image primitives are intuitive: sharp,
noise-free and geometrically simple. Nonetheless, they are
still a powerful prior for deblurring.



Figure 4. Restoring edges using heuristic image filtering [4] is
sensitive to noise and can lead to ringing artifacts, whereas our
patch-based optimization can avoid such issues by modeling larger
neighborhoods.

3.3. Behavior Comparison

Cho and Lee [4] restore sharpness via a so called predic-
tion step involving heuristic image filtering. Specifically,
bilateral filtering is used to reduce noise and shock filtering
is used to sharpen edges, both are applied after solving for
x under a Gaussian prior over image gradients. However,
such filtering procedures often fail in the presence of dense
image structures and noise along edges. In contrast, we re-
place these steps by a more principled formulation that is
robust to noise (more so than bilateral filtering) and pro-
duces sharp edges (more so than shock filtering).

In Fig. 4 we provide an illustration of how our approach
can efficiently remove blur via restoring both the patch
shape (Z) and patch contrast (σ). It shows the before/after
comparison for an intermediate latent image x under one
iteration of optimization using Cho and Lee’s method, and
ours. The comparison suggests that our method generates
higher quality intermediate latent image x, which naturally
leads to a higher quality kernel estimation in the k-step.

4. Kernel Estimation using Patch Priors

Like the deblurring framework from Cho and Lee [4],
our kernel estimation approach iterates between x- and k-
steps, in a coarse-to-fine manner. We will discuss these two
steps separately. At the coarsest level, we initialize k by a
small 3× 3 Gaussian.

4.1. x-step

Given the current estimate of the blur kernel k, the goal
of x-step is to produce a latent image x (or some trusted sub-
set) that is sharp and free of artifacts (ringing, halos, etc). To
estimate x we minimize the following energy function:

fx(x) =
∑
D∗

ω∗‖KD∗x−D∗y‖2

+ α‖Dhx‖2 + α‖Dvx‖2

+
β

|M |
∑
i∈M

ρ
(
Pix− qi

)
+ γ

∑
i∈M

(
σi − F−1ref (Fσ,x(σ

i))
)2
, (2)

where K, y and x represent the matrix form of the blur ker-
nel k, the blurred input image y, and the latent image x,
respectively. D∗ is the matrix form of the partial deriva-
tive operator in different directions and ω∗ represents the
corresponding scalar weight. As done in [16, 4], we also
use zero-th, first, and second order derivatives for D∗. We
borrow the weights used in [16] for ω∗. Dh and Dv are
the first order differentiation operators along the horizontal
and vertical axes. Pi is a binary matrix extraction operator,
extracting the patch at location i in the latent image x. In
this work, we fix the patch size at 5 × 5. qi is defined as
qi = σiZi + µi where Zi is a vector representing Zi, the
example patch assigned to location i.

We maintain a binary maskM to indicate pixel locations
classified as edge primitives, and only apply the patch prior
to such locations to encourage sharpness. The other regions
in x are weakly regularized by a Gaussian prior over im-
age derivatives. The use of such “edge” masks is adopted in
[8] as well. |M | is the number of non-zero elements in M .
ρ() is a robust penalty function. In particular, we use the
Lorentzian loss function, defined as ρ(r) = log

(
1 + r2

2ε2

)
.

Finally, Fσ,x is the empirical cumulative distribution of
{σi} in the current latent image x, Fref is the reference cu-
mulative distribution of local contrasts, based on the learned
distribution in Fig. 3.

Intuitively, the first term is the data term, enforcing the
blur model. The second and third term yield a weak Gaus-
sian prior to regularize image smoothness. Note that while
regions outside the maskM do not participate in the k-step,
we only use this term to weakly regularize the energy func-
tion so that optimization becomes stable. The last two terms
encode our patch prior involving Zi and σi, providing two
strong constraints: (1) edge primitive patches in x should
be similar to some example patch (after normalization), (2)
the distribution of σ’s in x should be similar to a reference
distribution.

Directly optimizing Eqn. (2) is hard. We present an iter-
ative approximation procedure to update the variables M ,
{Zi}, {σi} and x below. For the first iteration, we set
M = ∅, meaning that we use only the Gaussian prior to
initialize an intermediate latent image x, then the following
procedures are applied until convergence:



1. Update M : We first obtain a binary mask by keeping
the top 2% of pixel locations with the largest filter re-
sponses from a filter bank consisting of derivatives of
elongated Gaussians in eight orientations. We morpho-
logically thin this mask and then remove small isolated
components. This step chooses the right locations to
apply our edge patch prior.

2. Update σi: Fixing M , Zi and x, we use an iterative
reweighted least squares (IRLS) method to optimize
Eqn. (2) with respect to σ. We present the full deriva-
tion in the supplementary material1, but the main steps
for IRLS are as follows:

a. Let ri = Pix − qi, compute weights wi given
current σi by:

wi =
(
2ε2 + rTi ri

)−1
, (3)

b. Update σi by solving a weighted least square
problem:

σi ←
wiβ
|M |Z

iT
(
Pix− µi

)
− γF−1ref (Fσ,x(σ

i))

wiβ
|M |Z

iTZi − γ
.

(4)

3. Update Zi: Holding other variables constant, we find
example patch Zi that is most similar to Pix−µi

σi , for
each location i.

4. Update x: Holding other variables constant, x is up-
dated by solving the following for x:

F−1 (A�F(x)) + β

|M |
∑
i∈M

2

2ε2 + rTi ri
PTi Pix

= F−1(B) +
β

|M |
∑
i∈M

2

2ε2 + rTi ri
PTi (σ

iZi + µi),

where

A =

(∑
δ∗

ω∗F(δ∗)�F(δ∗)

)
�F(k)�F(k)

+ α
∑
δx,δy

F(δ∗)�F(δ∗),

and

B =

(∑
δ∗

ω∗F(δ∗)�F(δ∗)

)
�F(k)�F(y).

We use F to represent the Fourier transform and F for
its complex conjugate. � is the element-wise multiply

1Please refer to our project page: http://cs.brown.edu/

˜lbsun/deblur2013iccp.html

operator. Note that this equation is no longer linear in
x because ri involves x as well. Hence, we use IRLS
to iteratively optimize x, where the diagonal weighting
matrix has entries wii = 2

2ε2+rTi ri
∀i ∈M .

4.2. k-step

In this step, we hold x constant and optimize with respect
to k only. We adopt the method of [4], with the following
objective function:

fk(k) =
∑
δ∗

ω∗‖k ∗ δ∗x− δ∗y‖2 + β‖k‖2, (5)

where ω∗ are as introduced in Sec. 4.1, and δ∗ represent par-
tial derivatives corresponding to D∗. To speed up computa-
tion, FFT is used as derived in [4]. One important difference
is that we set the gradients δ∗x outside of M to zero since
we only allow edges to participate in the kernel estimation
process.

5. Experimental Results
We first test our algorithm on the widely used 32-image

test set introduced in [13], and further establish a synthet-
ically blurred test set of 640 images of our own. Finally
we show comparisons on blurred photographs with real un-
known camera shakes.

To ensure fair comparison for evaluating estimated ker-
nels from competiting methods, we standardize the final
non-blind deconvolution step by using sparse deconvolu-
tion2 for Sec. 5.1, and the state-of-the-art method of Zoran
and Weiss [20]3 for Sec. 5.2. Note that the use of [20] as
the final step is a strict improvement compared to the de-
fault non-blind deconvolution step from all of the methods
considered.

We make use of three measurements for quantitative
analysis: mean PSNR, mean SSIM, and the geometric mean
of error ratios, which is introduced in [13].

5.1. Existing Test Set from Levin et al.

The 32 test images in [13] were produced from 4 images
and 8 different kernels. The blurred images and ground
truth kernels were captured simultaneously by carefully
controlling the camera shake and locking the Z-axis rota-
tion handle of the tripod. We test our algorithm using both
the natural and synthetic priors on this test set and compare
with results provided by [14].

Fig. 5 shows a test image from this dataset deblurred by
various methods. Note that kernels estimated by previous

2We use the MATLAB code provided by [14] at: http:
//www.wisdom.weizmann.ac.il/˜levina/papers/
LevinEtalCVPR2011Code.zip

3We use the MATLAB code from: http://www.cs.huji.ac.
il/˜daniez/epllcode.zip
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Figure 5. Comparison of results on one test image from [13]. Our kernels are less noisy and better resemble the ground truth (leftmost
column). Sparse deconvolution with identical parameters are applied to all compared methods except Cho and Lee [4].

Figure 6. Performance comparison using the error ratio measure
as in Levin et al. [13, 14]. The geometric mean of error ratios is
shown in the legend for each algorithm. A ratio larger than 3 is
deemed visually unacceptable, whereas a ratio less than 1 means
the estimated kernel can do better than the ground truth kernel
under the given sparse deconvolution method. It is worth men-
tioning that several estimated kernels from [4] appear better than
the ground truth kernels. This could be due to the fact that Cho
and Lee used a different deconvolution method to produce the fi-
nal latent image x.

PSNR SSIM Error Ratio
Known k 33.8197 0.9286 1.0000

Levin et al. [14] 31.1372 0.8960 1.8546
Fergus et al. [7] 29.4629 0.8451 2.7270
Cho & Lee [4] 30.7927 0.8837 2.0077

Our-Nat 32.3842 0.9108 1.3917
Our-Synth 32.1042 0.9033 1.4844

Table 1. Quantitative comparison for each method: mean PSNR,
mean SSIM, and geometric mean for error ratio, computed over
the 32 test images from [13, 14].

methods may contain trailing noise in certain directions. In
contrast, our method produces a kernel that is most similar
to the ground truth in shape, and the recovered latent images
contain the least amount of artifacts.

In Fig. 6, we report the cumulative error ratio perfor-
mance, which suggests that our method outperforms all
competing methods on this test set. Finally, we aggregate

Figure 7. Performance on our synthetic test set of 640 images.
Top: comparison of success rate vs error ratio for all competit-
ing methods. Our methods (thicker lines) significantly outperform
all others on this test set. Bottom: a bar plot for the success rates
at an error ratio of 3, which is deemed as the threshold for visually
plausible deblurred results by Levin et al. [14].

performance over the 32 images and report the mean PSNR,
mean SSIM and geometric mean error ratio for each method
in Table 1.

It is interesting to note the level of saturation in perfor-
mance: our method is able to achieve an error ratio of 2
for approximately 90% of the images, and the method of
Cho and Lee [4] can produce several kernels that are bet-
ter than the ground truth. The reasons are two-fold. First,
the images are small and easy to deblur, because they con-
tain plenty simple step edges, e.g., one of the images is an
illustration and contains only clean and uninterrupted step
edges. Second, the final non-blind deconvolution method–
sparse deconvolution–can only achieve limited restoration
performance in terms of PSNR. As a result, it’s relatively
easy to obtain low error ratios on these test images.
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Figure 8. Qualitative comparison on four image regions from our synthetic data set. Note that previous methods tend to introduce oriented
trailing noises in the estimated kernels, which could lead to low-frequency ringing artifacts in the deconvolved latent image x. The method
of Zoran and Weiss [20] is used as the final non-blind step for all algorithms.

5.2. A New Synthetic Test Set of 640 Images

The 32 test images in [13] are only 255 × 255 in size,
and limited in terms of diversity. To further test the limits
of leading algorithms, and characterize the performance gap
among them, we develop a synthetic test set of 640 high-
resolution natural images of diverse scenes. We start with
the 80 high quality natural images used in [17], and synthet-
ically blur each of them with the 8 blur kernels from [13].
Finally, we add 1% additive Gaussian noise to the blurred
images to model sensor noise. The same noise level is used
in [10, 13, 20]. We present a comprehensive evaluation via
both qualitative and quantitative comparisons for the meth-
ods from [4, 5, 14, 11, 19], as well as our results using the
natural and synthetic priors.

Fig. 7 presents the cumulative distribution of error ratios.
Our method outperforms all other methods, with [4, 19] be-
ing the most competitive. However, even with some param-
eter tuning, we are unable to obtain good results with the
online MATLAB code packages from [14, 11, 5] on this test
dataset. Fig. 8 shows a qualitative comparison of cropped
results from different algorithms. Table 2 shows a quantita-
tive evaluation of each method.

5.3. Deblurring Real Photographs

In Fig. 9 and Fig. 10 we show two comparisons on real
photos with unknown camera shakes. Again for fair com-

PSNR SSIM Error Ratio
Input 24.7822 0.6429 5.8598

Known k 32.4610 0.8820 1.0000
Cho & Lee [4] 26.2353 0.8138 4.1934
Cho et al. [5] 20.1700 0.5453 18.1437

Krishnan et al. [11] 23.2158 0.7554 8.3673
Levin et al. [14] 24.9410 0.7952 5.6493
Xu & Jia [19] 28.3135 0.8492 2.5987

Our-Nat 29.5279 0.8533 1.9647
Our-Synth 29.5585 0.8546 1.9510

Table 2. Quantitative comparison on our synthetic test set of 640
images. Our method significantly outperforms existing methods.

parison we use different algorithms– [11, 4, 19] and ours–to
estimate the kernel, followed by Zoran and Weiss [20] for
the final non-blind deconvolution. However, such images
often exhibit spatially varying blur, so a kernel might only
explain (hence sharpen) some regions of the image. Overall
our method is robust and generates results that are compa-
rable to, if not better, than the state-of-the-art methods.

6. Conclusion
We explore a new approach for kernel estimation from

a single image via modeling image edge primitives using
patch priors. Two type of priors are proposed, including a
statistical prior learned from natural images, and a simple
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Figure 9. An example photos with unknown camera shake. Our method produces competitive results.

Xu & Jia Our-Synth

Figure 10. An example photo with unknown camera shake taken
from Xu and Jia [19]. Our method produces sharper edges around
the texts and less ringing in densely textured regions.

synthetic prior. We further show how to incorporate the pri-
ors into a deblurring objective to significantly improve the
state-of-the-art performance. As future work, we would like
to extend our image formation model to handle more severe
noise and other outliers to make it more robust on low qual-
ity inputs. We would also like to improve the computational
efficiency to make the system more practical.
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[9] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and
S. Harmeling. Recording and playback of camera
shake: benchmarking blind deconvolution with a real-world
database. In ECCV, 2012.

[10] D. Krishnan and R. Fergus. Fast image deconvolution using
hyper-laplacian priors. In NIPS, 2009.

[11] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution
using a normalized sparsity measure. In CVPR, 2011.

[12] A. Levin, B. Nadler, F. Durand, and W. T. Freeman. Patch
complexity, finite pixel correlations and optimal denoising.
In ECCV, 2012.

[13] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Under-
standing and evaluating blind deconvolution algorithms. In
CVPR, 2009.

[14] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient
marginal likelihood optimization in blind deconvolution. In
CVPR, 2011.

[15] S. Roth and M. J. Black. Fields of experts. IJCV, 2009.
[16] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-

blurring from a single image. ACM Transactions on Graph-
ics, 27(3), 2008.

[17] L. Sun and J. Hays. Super-resolution from internet-scale
scene matching. In ICCP, 2012.

[18] Y. Weiss and W. T. Freeman. What makes a good model of
natural images? In CVPR, 2007.

[19] L. Xu and J. Jia. Two-phase kernel estimation for robust
motion deblurring. In ECCV, 2010.

[20] D. Zoran and Y. Weiss. From learning models of natural
image patches to whole image restoration. In ICCV, 2011.


