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Abstract

We give an algorithm requiringO(c1/ε2n) time to find anε-optimal traveling salesman tour in the

metric defined by a planar graph with nonnegative edge-lengths.

1 Introduction

The traveling salesman problem is often the first problem researchers use to test a new optimization

technique. [21] In a metric, atour is a cycle(v0 v2 . . . vn−1) of the points on the metric, and the weight of

the tour is the sum
∑n

i=0 dist(vi, v(i+1) mod n), where dist(u, v) is the distance betweenu andv. The goal

is to find the minimum-weight tour. The problem is MAXSNP-hard [23, 24] in arbitrary metrics, and the

best approximation ratio known, that proved by Christofides[10], is 1.5. For the metric of an unweighted

planar graph (one in which every edge has weight one), Grigni, Koutsoupias, and Papadimitriou [16]

gave an algorithm that requiresnO(1/ε) to find anε-optimal tour. Arora, Grigni, Karger, Klein, and

Woloszyn [5] subsequently gave an approximation scheme forthe more general problem in which the

planar graph’s edges have arbitrary nonnegative weights. Their algorithm requiresnO(ε−2) time. Both

algorithms are somewhat complicated, and involve a recursive decomposition using new planar-separator

lemmata. The latter paper introduced the idea of using aspannerresult to handle edge-weights.

In parallel development, Arora [3] and Mitchell [20] showedthat a PTAS also exists forEuclidean TSP

(i.e., the subcase in which the points lie in<2 and distance is measured using the Euclidean metric). This

PTAS finds anε-optimal tour innO(1/ε) time. Arora [4, 2] improved the running time of his algorithm

to O(n · (log n)O(1/ε)), using randomization. Finally, Rao and Smith [25] gave a PTAS for the two-

dimensional Euclidean case that takes timeO(ε−O(ε)n + n log n).

In view of the fact that anε-optimal tour can be found in the Euclidean case in time that is polynomial

with a fixed degree, independent ofε, it seems natural to ask whether the same holds true for the planar
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case. In this paper, we answer this question. Our algorithm finds anε-optimal tour in time that is

O(c1/ε2n) wherec is a constant.

1.1 Other related work

Grigni and Sissokho ([17], building on [18]) have given a quasipolynomial approximation scheme

for weighted TSP in minor-excluded graphs. This paper proved a spanner result for minor-excluded

graphs. Berger, Czumaj, Grigni, and Zhao ([7], building on [12]) give a PTAS for the problem of

finding a minimum-weight 2-edge-connected spanning sub-multigraph of an edge-weighted planar graph

(duplicate edges are allowed), and a quasipolynomial approximation scheme for finding a minimum-

weight 2-edge-connected or biconnected spanning subgraphof an edge-weighted planar graph. This

paper introduced a new spanner construction.

Baker [6] gives a method for obtaining PTASs for a variety of optimization problems in planar graphs,

e.g. maximum-weight independent set and minimum-weight vertex cover. The resulting algorithms are

linear time (for fixedε). The key idea (interpreted in modern parlance) is to turn a problem in a planar

graph to a problem in a graph with bounded treewidth. The technique can handleweightson nodes/edges

but the problems it can address are quite local in nature.

Demaine and Hajiaghayi [13] describe a framework for PTASs that is based on the notion ofbidi-

mensionality. They derive approximation schemes for subclasses of minor-excluded graphs that involve

turning the input graph into a low-treewidth graph. Their results apply to graphs that are not planar.

Their framework can be viewed as a way to generalize Baker’s approach so as to derive algorithms for

nonlocal problems, such as feedback vertex set and connected dominating set. For planar graphs in par-

ticular, they derive EPTASs for several (unweighted) problems. In relation to their framework, our result

is an example of how one can more thoroughly exploit planarity to derive a fast and simple EPTAS.

1.2 The framework

In this paper, we present a simple framework for deriving PTASs for planar graphs. A key step of the

framework is a simple technique we callthinning, adapted from Baker’s method. Given a planar graph

G whose edge-weights sum toW and given a parameterk, thethinningprocedure selects a weight-W/k

subsetS of G’s edges such thatG − S = H − S for some planar graphH of radius1 at mostk.

The framework can give rise to two forms of algorithm, depending on whether thinning is performed

in the planar dual or the primal. (To our knowledge, this paper represents the first use of thinning in the

dual.) If the former, the algorithm has the following four steps:

Spanner step: Delete some edges of the input graph while approximately preserving the optimal value.2

1Theradiusof an undirected graph is the minimum height of any rooted spanning tree of the graph.
2This was the also the first step in [5] and subsequently in, e.g., [17] and one of the algorithms of [7].
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Thinning step: Apply thinning to the planar dual, effectively contractingsome edges, which should not

increase the optimal value.

Dynamic-programming step: Use dynamic programming to find the optimal solution in the dual of

the thinned graph.

Lifting step: Convert the optimal solution found in the previous step to a solution for the pre-thinned

graph by incorporating some of the edges contracted during thinning.

This is the form of the TSP algorithm. For TSP, edge deletion can increase the optimal value but we

ensure in the spanner step that the increase is small. Edge contraction (in the thinning step) can only

decrease the optimal value. The dynamic-programming step operates on a graph whose dual has bounded

radius. This form is appropriate for connectivity problemssuch as TSP and minimum-weight two-edge-

connected-sub-multigraph.

In the alternative form, the spanner stepcontractsedges; the thinning step is applied to the primal and

hencedeletesedges; the dynamic-programming step operates on a graph of bounded radius. This form

is appropriate for cut problems such as multiterminal cut.

We show that the thinning step produces a graph that has constant branch-width, and consequently

low tree-width. The dynamic-programming step can consequently be performed in linear time. In

Section 4 we review the definition of branch-width and its relation to tree-width. In Section 6, we give a

dynamic-programming algorithm that exploits planarity toobtain a better bound than is achievable using

branchwidth alone.

The spanner step requires an algorithm that, given an-node planar graphG0 with edge-weights and

given a parameterε, deletes [alternatively, contracts] edges so as to obtain agraphG such that

S1: OPT(G) ≤ (1 + ε)OPT(G0), and

S2: weight(G) ≤ ρε · OPT(G0)

where OPT(G) is the value of the optimum for input graphG, and weight(G) is the sum of weights

of edges inG. Since the running time of the dynamic-programming step is at least exponential inρε,

obtaining a polynomial running time depends onρε beingO(log n) for fixed ε, and obtaining a linear

running time depends onρε beingO(1). For TSP,ρε = O(1), as we discuss in Section 3.

A trivial spanner result holds for problems in which weight(G0) ≤ ρεOPT(G0), e.g. unweighted TSP.

For such a problem, our approach can potentially yield algorithms that run inO(c1/εn) time.

The lifting step should increase the cost by at most

c · weight of edges eliminated during thinning (1)

for some constantc. In the case of TSP, we show in Section 4 that this holds withc = 2.

Now we consider in more quantitative detail an algorithm in the framework. Given ann-node input

graphG0 and parameterε, the spanner step eliminates edges to obtain a graphG with properties S1
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and S2 above. The elimination must be such that a solution forG is a solution forG0. The thinning step,

applied withk := cε−1 · ρ(ε, n), eliminates a set of edges having weight(1/k) · weight(G), obtaining

a graphH whose dual has radiusk and such that OPT(H) ≤ OPT(G). The dynamic-programming

step solves the problem optimally in time that is exponential in the radius boundk and linear inn. The

lifting step turns the optimal solution forH into a solution forG (and hence forG0) while increasing the

weight of the solution by (1), which by choice ofk is at mostε ·OPT(G0). Since OPT(H) ≤ OPT(G) ≤

(1+ε)OPT(G0), it follows that the solution obtained forG has weight≤ (1+ε)OPT(G0)+ε ·OPT(G0).

This analysis is done more formally for TSP in Section 5.

2 Preliminaries

In this section, we describe the basic definitions and results on planar embeddings and planar duals.

Most of the material is standard, but we also introduce a variant of contraction that we callcompression,

and state some related results. In Subsection 2.1, we give some definitions and results that help us

reformulate the TSP.

The traditional geometric definition of planar embeddings involves drawings of a graph on the plane.

Proofs and algorithms become simpler when one uses an alternative definition of embedded planar

graphs, a combinatorial definition. See [22].

For any given finite setE, we can interpretE as a set of edges, and we defineE × {±1} to be the

corresponding set ofdarts. For each edgee, the darts ofe, namely〈e, 1〉 and〈e,−1〉, represent the two

opposite orientations ofe. We define rev(·) to be the function that takes each dart to the corresponding

dart in the opposite direction: rev(〈e, i〉) = 〈e,−i〉.

We define an embedded graph onE to be a pairG = 〈π, E〉 whereπ is a permutation of the darts

of E. The permutation cycles ofπ are called thenodes3 of G. Each nodev is a permutation cycle

(d1 d2 . . . dk), and we useD(v) to denote the set{d1, d2, . . . , dk}. We useE(G) andV (G) to denote,

respectively, the set of edges and the set of nodes of a graphG.

For a dartd of G, we define tailG(d) to be the orbit ofπ containingd. We define headG(d) =

tailG(rev(d)). For an edgee of G, we define endsG(e) = {headG(〈e, 1〉), tailG(〈e, 1〉)}.

A walkof darts inG is a sequenced1 . . . dk of darts such that, fori = 2, . . . , k, headG(di−1) = tail(di).

Thestartof the walk is tailG(d1) and theendis headG(dk). It is aclosedwalk if in addition headG(dk) =

tailG(d1). It is a simple path/cycle if no node occurs twice as the head of a dart (cycle if closed, path if

not). The walk, path, or cycle is said to contain an edgee if it contains a dart ofe. It is said to contain a

nodev if v is the head or tail of some dart in the sequence. We define rev(d1 . . . dk) = rev(dk) . . . rev(d1).

We denote byE(P ) andV (P ) respectively the set of edges contained byP and the set of nodes

contained byP . A walk/path whose start isu and whose end isv is called au-to-v walk/path.

3Note that nodes are defined in terms of edges, rather than the other way round. This definition precludes isolated nodes.
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To define the faces of the embedded graph, we define another permutationπ∗ of the set of darts by

composingπ with rev: π∗ = π ◦ rev. Then thefacesof the embedded graph〈π, E〉 are defined to be the

permutation cycles ofπ∗. Note that a face ofG can be interpreted as a closed walk inG.

We say that an embeddingπ of a graphG is planar if it satisfies Euler’s formula:n − m + φ =

2κ, wheren=number of nodes,m=number of arcs,φ=number of faces, andκ=number of connected

components. In this case, we sayG = 〈π, E〉 is aplanar embedded graph.

The dual of a connected embedded graphG = 〈π, E〉 is defined to be the embedded graphG∗ =

〈π∗, E〉. Since rev◦ rev is the identity, we obtain the following.

Proposition 1 G∗∗ = G.

It can be shown that the dual of a connected graph is connected. It follows that the connected components

of G∗ correspond one-to-one with the connected components ofG. Hence ifG satisfies Euler’s formula

then so doesG∗. Thus the dual of a planar embedded graph is a planar embeddedgraph.4

Let T be a spanning tree ofG. For an edgee 6∈ T whose endpoints are inS, there is a unique simple

cycle consisting ofe and the unique path inT between the endpoints ofe. This cycle is called the

elementary cycleof e with respect toT in G.

For a spanning treeT of G, we denote byT ∗ the set of edges ofG that are not inT . The following is

a classical result.

Proposition 2 If G is a planar embedded graph andT is a spanning tree ofG, thenT ∗ is a spanning

tree ofG∗.

We refer toT ∗ as the tree dual toT .

If S ⊂ V (G), we useΓG(S) to denote the set of edgese such that inG the edgee has one endpoint in

S and one endpoint not inS. A set of this form is called acutof G. Note thatΓG(S) = ΓG(V (G)− S).

If S is connected inG andV (G) − S is connected inG, we callΓG(S) abond.

Proposition 3 If G is a planar embedded graph, the edges of a bond inG form a simple cycle inG∗ and

vice versa.

It follows from Proposition 3 that every simple cycleC in G defines a bipartition of the faces ofG;

namely the bipartition(S, V (G) − S) whereE(C) = ΓG∗(S).

Let f∞ be a face ofG. We call f∞ the infinite faceby analogy to geometric embeddings. For

combinatorial embeddings, the choice is arbitrary. We say the simple cycleC enclosesa facef with

respect tof∞ if f belongs to the setS such thatE(C) = ΓG(S) andf∞ 6∈ S. We say thatC strictly

encloses an edge with respect tof∞ if the edge belongs to a face enclosed byC but does not belong to

C.
4For disconnected graphs, this definition of dual diverges from the geometric definition in that it assigns multiple dual

nodes to a single region of the sphere/plane. According to the geometric definition, the dual of a graph is always connected.

However, choosing that definition means giving up, for example, the nice property thatG∗∗

= G.
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Corollary 4 LetG be a connected plane graph, letT be a rooted spanning tree ofG, let v be a nonroot

node ofG, and lete be the parent edge ofv. Then the elementary cycle ofe in G∗ with respect toT ∗

consists of the edges ofΓG(descendents ofv in T )

Proposition 5 An edgee is a self-loop ofG iff it is a cut-edge ofG∗.

We discuss two ways of removing edges from an embedded graph,deleting and compressing, both of

which preserve planarity.

Deletingan edgee of an embedded graphG = 〈π, E〉 is an operation that produces the graphG′ =

〈π′, E ′〉 whereE ′ = E − {e} and, for each dart ofE ′,

π′[d] =







π[π[d]] if π[d] is a dart ofe

π[d] otherwise

For a setS of edges, we denote byG − S the embedded graph obtained by deleting the edges ofS.

The order of deletion does not affect the final embedded graph. It is easy to see that deletion preserves

planarity.

We define edgecompressionto be deletion in the dual. That is, compressing an edgee of G is an

operation that produces the graph(G∗ −{e})∗. We denote the result asG/{e}. Since deletion preserves

planarity and the dual of a plane graph is a plane graph, compression preserves planarity. The operations

of deletion and compression commute.

Figure 1 illustrates the effect of edge compression on the underlying graph in three examples. Ife is

not a self-loop inG then the effect of compressinge in G is to contracte as shown in the top left diagram.

The thick line represents the edge to compress. Ife is a self-loop inG, so a cut-edge inG∗, and is not

the only edge incident to either of its endpoints then the effect to duplicatev, as shown in the bottom left

diagram; one copy has as its incident edges those edges that in G are incident tov and strictly enclosed

by e (with respect to some designated facef∞) and the other copy has as its incident edges those edges

that inG are incident tov and not enclosed bye (and not equal toe). If e is a self-loop inG and is the

only edge incident to one of its endpoints inG∗, the effect is to deletee.

2.1 Preliminaries related to TSP

If G is a connected graph with edge-weights, atour for G is a closed walk that contains all nodes

of G. If G is a graph that is not necessarily connected, we define amultitour of G to be a sequence

W of darts such that, for each connected component ofG, the (not necessarily consecutive) subse-

quence of darts ofW belonging to that component is a tour of that component. For amultitour W

and a setS of edges, defineW − S to be the subsequence ofW in which elements ofS are omitted.

For an assignment weight(·) of nonnegative weights to the edges ofG and a setS of edges, define

weight(S) =
∑

{weight(e) : e ∈ S}. For a subgraphH, define weight(H) = weight(E(H)). Define
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Figure 1. Three examples of compression.

OPT(G, weight(·)) to be the minimum weight of a multitour ofG. We omit the second argument when

doing so creates no ambiguity.

Lemma 6 Let G be an embedded graph, letS be a set of edges ofG, and letW be a multitour ofG.

ThenW − S is a multitour ofG/S.

Proof: By induction, it suffices to consider a singleton setS = {e}. Supposee is not a self-loop inG.

In this case,G/{e} is the graph obtained by contractinge. Since the endpoints ofe in G are coalesced

in G/{e}, if e belongs toW then removinge from W preserves the multitour property. Ife does not

belong toW , then clearlyW is a multitour ofG/{e}.

Supposee is a self-loop inG with endpointv. Thene is a cut-edge inG∗. If in G∗ the edgee is the

only edge incident to one of its endpoints thenG/{e} = G − {e}. In this case, ife belongs toW then

removinge from W preserves the mulitour property; ife does not belong toW , thenW is a multitour

of G/{e}.

If in G∗ the edgee is not the only edge incident to either endpoint, thenG/{e} is the graph obtained

from G − {e} by splittingv into two copies,v1 andv2, and reattaching each edge incident tov in G to

eitherv1 or v2. An edge strictly enclosed bye in G is attached tov1 and an edge not enclosed bye is

attached tov2. This splits the component ofG containingv into two componentsK1 andK2. Observe

that inG every path betweenK1 andK2 must pass throughv.

LetW ′ be the subsequence ofW−{e} consisting of darts belonging to the component ofG containing

e. Write W ′ = A0 ◦ A1 ◦ · · · ◦ Ak−1 where eachAi is a nonempty maximal consecutive subsequence

of darts of one of the two componentsK1, K2 of G/{e}. By the observation, sinceW ′ is a tour, the end

node of eachAi is v. It follows thatW ′ has the multitour property for the graph consisting ofK1 and

K2, soW is a multitour forG/{e}.
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Lemma 6 shows that OPT(G/S) ≤ OPT(G).

For a walkW of darts, define the multiplicity of an edgee in W , denoted multi(e, W ), to be the

number of occurences of darts ofe in W .

Lemma 7 LetW be a tour inG, and suppose some dartd occurs at least twice inW . Then there exists

a tourŴ in G such that, for each edgee,

multi(e, Ŵ ) =







multi(e, W ) − 2 if d is a dart ofe

multi(e, W ) otherwise

Proof: Write W = W1 ◦ d ◦ W2 ◦ d. ThenW1 ◦ rev(W2) is a tour ofG.

Lemma 7 shows that, in seeking the minimum-weight walk containing a given set of nodes, we can

restrict ourselves to considering walks using each dart at most once.

We define anEulerian multisubgraphof a graphG to be a multisetE of edges ofG such that

• the edges ofE within each connected component ofG are themselves connected, and

• for every nodev of G, the number of edges ofE incident tov is even.

The weight of an Eulerian multisubgraph is the sum of the weights of the edges, counting multiplicities.

We call it abisubgraphif the maximum multiplicity is two.

Note that for a closed walkW in a graphG, for each nodev, |{d ∈ W : tailG(d) = v}| = |{d ∈

W : headG(d) = v}|. This observation together with Lemma 7 implies that for theminimum-weight

walk W there is an Eulerian bisubgraph with the same multiplicities. Conversely,

Proposition 8 (Euler) There is a linear-time algorithm that, given a graphG and an Eulerian bisub-

graphE of G, outputs a walk inG with the same multiplicities.

Proposition 8 shows that the problem of finding a minimum-weight walk containing a given set of

nodes is equivalent to the problem of finding a minimum-weight Eulerian bisubgraph containing a given

set of nodes.

Proposition 9 For any edge-weighted planar embedded graph there exists anminimum-weight multi-

tour that uses each dart at most once and does not cross itself.

3 Spanner

Althöffer, Das, Dobkin, Joseph, and Soares [1] considereda simple and general procedure for pro-

ducing a spanner in a (not necessarily planar) graphG0: start with an empty graphG, consider the edges

of G0 in increasing order of weight, and add an edge toG if the edge’s weight was much smaller than

the minimum-weight path inH between its endpoints. They did not address the exact running time

of the procedure, but it clearly consists ofO(n) iterations, each involving a shortest-path computation.
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For planar graphs, therefore, it runs inO(n2) time [19]. They proved several results about the size and

weight of the resulting spanner, including the following result that is specific to planar graphs.

Theorem 1 (Althöffer et al.) For any planar graphG0 with edge-weights and anyε > 0, there is an

edge subgraphG such that

S1: weight(G) ≤ (1 + 2ε−1)MST (G0), whereMST (G0) is the weight of the minimum spanning tree

of G0, and

S2: for every pair of nodesu andv,

minimum weight of au-to-v path inG (2)

≤ (1 + ε) · minimum weight of au-to-v path inG0

By exploiting planarity, we can give an algorithm that runs in linear time but that can be shown (using

the same analysis technique used by Althöffer et al.) to achieve the same properties.

defineSPANNER(G0 , ε):

let x[·] be an array of numbers, indexed by edges

find a minimum spanning treeT of G0

assignx[e] := weight(e) for each edgee of T

let T ∗ be the dual tree, rooted at the infinite face

for each edgee of T ∗, in order from leaves to root

let fe be the face ofG0 whose parent edge inT ∗ is e

let e=e0, e1, . . . , es be the sequence of edges comprisingfe

xomit :=
∑s

i=1 x[ei]

x[e] := if xomit ≤ (1 + ε)weight(e) thenxomit

else weight(e)

return the set of edgese such thatx[e] = weight(e)

The minimum spanning tree ofG0 can be found in linear time using the algorithm of Cheriton and

Tarjan [9].

Now we address correctness of the procedure. Say an edgee is acceptedwhen x[e] is assigned

weight(e), andrejectedotherwise.

Lemma 10 In the for-loop iteration in whiche is considered, for every other edgeei of f , x[ei] has been

assigned a number.

Proof: The facefe has only one parent edge inT ∗, and it ise. For every other edgeei of fe, eitherei

belongs toT or ei is a child edge offe in T ∗.

For any edgee of G0 not inT ,
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Figure 2. Diagram showing part of dual tree (in light edges) and primal tree (in dark edges) and primal

nontree edges (dashed): e2 and e4 are child edges of e in the dual tree. The face fe is indicated.

• let Ĝe denote the subgraph ofG0 consisting of accepted edges together withe,

• let f̂e denote the face of̂Ge that containse and enclosesfe,

• let Ŵe denote the walk formed by the sequence of edges comprisingf̂e not includinge itself, and

• let Pe =







e if e is accepted

Ŵe otherwise

Note that each of̂We andPe has the same endpoints ase. For an edgee of T , definePe = e.

Lemma 11 For any edgee of G0, not inT ,

1. every edge of̂fe is either inT or is a descendent ofe in T ∗, and

2. Ŵe = Pe1
◦ · · · ◦ Pes

, wheree1 . . . es is the walk consisting of the edges comprisingfe other than

e.

Proof: by induction. Consider the case in whiche is a leaf-edge ofT ∗. Let f be the corresponding

leaf-node inG∗
0. Becausef is a leaf, the only incident edge that is inT ∗ is e itself, soe1, . . . , es belong

to T . All these edges are accepted, proving Part 1. To prove Part 2, note thatWe = e1 · · · es and that

Pei
= ei for i = 1, . . . , s. Thus the lemma holds fore.

Consider the case wheree is not a leaf. LetĜe+ be the subgraph ofG0 consisting of accepted edges

together withe, e1, . . . , es. For eachei, recall thatf̂ei
is the face ofĜei

that containsei and enclosesfei
.

We claim thatf̂ei
is also a face of̂Ge+. To prove the claim, note that̂Gei

can be obtained from̂Ge+ by

deleting a subset of{e, e1, . . . , es} − {ei}. None of these edges are edges ofT or descendents inT ∗ of

ei, so, by Part 1 of the inductive hypothesis, none belongs tof̂ei
.
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Note thatĜe can be obtained from̂Ge+ by deleting those edges amonge1, . . . , es that are rejected. By

the claim, each such deletion replaces a rejected edgeei in fe with the walkŴei
. This together with the

definition ofPei
proves Part 2. By Part 1 of the inductive hypothesis, every edge in eachŴei

is an edge

of T or a descendent ofei in T and hence a descendent ofe as well. This proves Part 1.

Lemma 12 In the for-loop iteration that considerse,

• the value assigned toxomit is weight(Ŵe), and

• the value assigned tox[e] is weight(Pe).

Proof: The proof is by induction. By Lemma 10, the edgese1, . . . , es are considered beforee. By the

inductive hypothesis,x[ei] = weight(Pe). By Lemma 11, weight(Ŵe) =
∑s

i=1 x[e], which proves the

first statement. The second statement follows by definition of Pe.

Corollary 13 For each edgee, weight(Pe) ≤ (1 + ε)weight(e).

Proof: If e is accepted,Pe = e so the statement holds trivially. Supposee is rejected. By the conditional

in the algorithm, in the iteration consideringe, the value assigned toxomit was at most(1 + ε)weight(e).

By the first part of Lemma 12, weight(Ŵe) and therefore weight(Pe) are at most(1 + ε)weight(e).

Corollary 14 The graph of accepted edges satisfies Property S2.

Proof: For any pair of nodesu and v, let P be the shortestu-to-v path in G0. For each edgee

of P ,there is a walkPe consisting of accepted edges between the endpoints ofe. By Corollary 13,

weight(Pe) ≤ (1 + ε)weight(e). Replacing each edgee of P with Pe therefore yields a walk of weight

at most
∑

e∈P (1 + ε)weight(e), which is at most(1 + ε)weight(P ).

Lemma 15 At any time during the algorithm’s execution, the weight of the infinite face in the graph

consisting of accepted edges is at most

2 · MST (G0) − ε · weight(accepted edges not inT )

Proof: The proof is by induction. Before the for-loop commences, the graph of accepted edges is

T , the minimum spanning tree ofG0. Hence the weight of the infinite face is exactly2 · MST (G0),

so the lemma’s statement holds for this time. Consider a for-loop iteration, and lete be the edge being

considered. Ife is not accepted, there is no change to the set of accepted edges, so the lemma’s statement

continues to hold.
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Supposee is accepted. LetGafter be the subgraph consisting of edges accepted so far, and letGbefore =

Gafter − {e}. Note thatGafter can be obtained fromGe by deleting edges that will be accepted in the

future. By the leaves-to-root ordering, none of the deletededges are descendents ofe in T ∗. By Part 1

of Lemma 11, therefore,̂fe is a face ofGafter. Let g be the other face ofGafter that containse.

We claim thatg is the infinite face ofGafter. To prove the claim, note thatGafter can be obtained from

G0 by deleting edges that have already been rejected and edges not yet considered. By the leaves-to-root

ordering,e’s proper ancestors inT ∗ have not yet been considered, so they are among the edges deleted.

These deletions are contractions in the dual. The root ofT ∗ is the infinite face, so the contractions result

in g being the infinite face.

Note thatGbefore can be obtained fromGafter by deletinge. This deletion replacese in the faceg with

Ŵe. This shows that

weight of infinite face inGbefore− weight of infinite face inGafter

= weight(Ŵe) − weight(e)

> (1 + ε)weight(e) − weight(e) becausee was accepted

= ε · weight(e)

which shows that the lemma’s statement continues to hold.

Corollary 16 The graphG of accepted edges satisfies Property S1.

Proof: By Lemma 15, the weight of the infinite face in the graph consisting of all accepted edges is at

most

2 · MST (G0) − ε · weight(accepted edges not inT )

so weight(accepted edges not inT ) ≤ 2ε−1 · MST (G0). Since weight(T ) = MST (G0), it follows that

the weight of all accepted edges is at most(1 + 2ε−1)MST (G0).

4 Thinning

In this section we describe how to remove a low-weight set of edges from a planar graph (by deletion

or contraction) so as to obtain a graph in which it is simple tosolve optimization problems.

The following lemma is implicit in Baker’s approach [6].

Lemma 17 (Thinning Algorithm) There is a linear-time algorithm that, for any planar embedded

graph G, edge-weight assignment weight(·), and integerk, returns an edge-setS of weight at most

(1/k)weight(G) and a planar embedded graphH with a spanning tree of height at mostk such that

H − S = G − S and |V (H)| = |V (G)| and|E(H)| = |E(G)|.

12



Proof: Assume without loss of generality thatG is connected. The algorithm is as follows. Carry out

breadth-first search onG from some noder, obtaining a breadth-first search treeT and a labeling of the

nodes with their distances fromr in G. (Breadth-first search interprets each edge as having length 1.)

Define thelevel of an edgee to bei if one endpoint has distancei from r and the other endpoint has

distancei − 1.

For i = 0, 1, . . . , k − 1, let Si denote the set of edgese whose levels are congruent toi modk. Let

t = minargiweight(Si).

For j = 0, 1, 2, . . ., let Ĥj be the graph obtained fromG by deleting all nodes at distances greater

than(j + 1)k + t, and contracting every edgee of the breadth-first search treeT whose level is less than

jk + t. The contractions coalesce into a single root all nodes at distances less thanjk + t. (In the case in

which jk + t = 0, there are no nodes at distance less thanjk + t, but in this casêHj is rooted atr, and

we taker to be the root.) Combine the planar embedded graphsĤ1, Ĥ2, . . . to form the planar embedded

graphH by identifying the roots to form a single noder̂.

Now we prove the correctness of the algorithm. Every edge is in at most one of the setsS0, . . . , Sk−1,

so
∑k

i=1 weight(Si) ≤ weight(G). Hence weight(St) ≤ (1/k)weight(G).

Now we showH has a spanning treeT ′ of heightk. First, forj = 0, 1, . . ., defineTj to be the spanning

tree ofĤj consisting of all edges ofT remaining inĤj . Every node ofĤj except the root had distance

from the root at most(j + 1)k + t in T so has distance at mostk from the supernode inTj . By merging

the treesT1, T2, . . . at the roots, we get a tree that has heightk and spans all the nodes inH.

For j = 0, 1, . . ., let Hj denote the subgraph ofG induced by the set of nodes at distance in[jk +

t, (j + 1)k + t]. The connected components ofG− S are the subgraphsH1, H2, . . .. Each graphHj can

also be obtained from the corresponding graphĤj by deleting edges ofS. This showsG− S = H − S.

A tree decompositionof a graphG is a pair(T, φ) whereT is a tree andφ is a function fromV (T ) to

subsets ofV (G), such that the following conditions are satisfied.

• V (G) =
⋃

x∈V (T ) φ(x),

• for every edgee of G, there is a nodex ∈ V (T ) such thatφ(x) contains both endpoints ofe, and

• for every nodev ∈ V (G), the set of nodes{x : v ∈ φ(x)} is connected inT .

Thewidth of (T, φ) is maxx∈V (T ) |φ(x)| − 1.

The following result is implicit in Baker’s work, [6] and explicit in [26]. See also [15].

Lemma 18 A planar graph of radiusk has treewidth at most3k.

The following simple corollary, used by Baker [6], is not used in obtaining the TSP result but it could

be useful in applying the framework to cut problems such as multiterminal cut.
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Corollary 19 (Edge Deletion) There is a linear-time algorithm that, for any planar embedded graphG,

edge-weight assignment weight(·), and integerk, returns an edge-setS of weight at most(1/k)weight(G),

a planar embedded graphH such thatH − S = G− S, and a tree decomposition ofH having width at

most3k.

We next review the definition of branch-width given by Seymour and Thomas [29]. For a graphG

and a setX of edges,∂(X) denotes the set of nodesv of G such that at least one edge incident tov is in

X and at least one is not.

For a finite setX , acarvingof X is a familyC of subsets ofX such that

• ∅,X 6∈ C,

• no two members ofC cross, and

• C is maximal subject to 1 and 2.

Let G be a graph. The width of a carvingC of E(G) is maxX∈C |∂(X)|. Thebranch-widthof G is the

minimum, over all carvingsC of E(G), of the width ofC.

In Section 6, for the sake of simplicity of presentation, we make direct use of the fact that thinning

produces a planar embedded graph of bounded radius. However, for the purpose of supporting future

use of the framework, we give a lemma bounding the branch-width of planar embedded graphs with

bounded radius, and a corollary combining this lemma with Lemma 17.

Lemma 20 LetG be a planar graph and letT be a spanning tree ofG such that every simple path inT

has length at most̀. Then the branch-width of the dualG∗ is at most̀ + 2.

A bound ofd(3/2)(`+2)e on the tree-width ofG∗ follows because Robertson and Seymour [27] show

that the tree-width of a graph is at mostd3
2
βe − 1, whereβ is the branch-width of the graph. The proof

of Lemma 20 will be given in Section 8.

Corollary 21 (Edge Compression)There is a linear-time algorithm that, for any planar embedded

graph G, edge-weight assignment weight(·), and integerk, returns an edge-setS of weight at most

(1/k)weight(G) and a planar embedded graphH of branch-width at most2(k + 1) such thatH/S =

G/S, |V (H)| = O(|V (G)| + |E(G)|) and|E(H)| = |E(G)|.

Proof: Apply Lemma 17 toG∗ to find a setS of edges of weight at most(1/k)weight(G) and a planar

graphH∗ such thatH∗−S = G∗−S andH∗ has a spanning treeT ∗ of height at mostk. By duality and

definition of compression,H/S = G/S. Every simple path in the spanning tree has at most2k edges,

so by Lemma 20,H has branch-width at most2k + 2.

The proof of Lemma 20 gives an algorithm to construct the corresponding carving.

14



5 TSP algorithm

Now we describe the TSP algorithm.

Let G0 be the input planar embedded graph, and let weight(·) be the input edge-weight assignment.

Step 1 (Spanner Step): Let ε0 be the desired accuracy. Defineε = ε0/2. Apply the algorithm of

Section 3 toG0 and weight(·) with parameterε to get an edge subgraphG.

Step 2 (Thinning step): Apply the algorithm of Corollary 21 toG and weight(·) with k = 2ε−1(1 +

2ε−1) to get a setS of edges of weight at most(1/k)weight(G), a planar embedded graphH such that

H/S = G/S, and a spanning tree ofH having height at mostk.

Step 3 (Dynamic programming): Let weightS(·) be the edge-weight assignment obtained from weight(·)

by changing the weights of edges ofS to zero. Find a tourT of H that is optimal with respect to

weightS(·).

Step 4 (Lifting): InterpretingT −S as an Eulerian bisubgraph ofG/S, use the procedure of Section 7

to obtain an Eulerian bisubgraph ofG.

Step 5: Use Proposition 8 to turn the Eulerian bisubgraph ofG into a tour ofG.

5.1 Running time

Assume the input graphG0 hasn nodes and no parallel edges, so it hasO(n) edges. Each step of the

TSP algorithm except Step 3 requiresO(n) time. Because the graphH has branch-width at most2k +2,

the optimal tour ofH can be computed using dynamic programming inO(ck log kn) time for a constantc.

Cook and Seymour [11] use such a dynamic-programming algorithm to solve TSP in graphs of bounded

branch-width. In Section 6, we give a more direct algorithm that exploits planarity to achieveO(ckn)

time for a constantc. The choice ofk yieldsO(d1/ε2n) time for a constantd.

5.2 Correctness

Lemma 22 LetH be an edge-weighted graph and letS be a set of edges each having weight zero. Then

OPT(H) = OPT (H/S).

Proof: By Lemma 6, OPT(H/S) ≤ OPT(H). Conversely, by Lemma 7 the optimum tour ofH/S

defines an Eulerian bisubgraphB of H/S that by Theorem 4 can be lifted to obtain a Eulerian bisubgraph

B′ of H such thatB = B′ − S. Since the edges ofS have zero weight, weight(B′) = weight(B). By

Proposition 8,B′ defines a tour ofH having the same weight.
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Theorem 2 The algorithm finds a tour of weight at most(1 + ε̄)OPT(G).

Proof: First we show OPT(G) ≤ (1 + ε)OPT(G0). (This argument was used in [5].) LetT0 be an

optimal tour ofG0. For each edgeuv of T0 that is not inG, there is au-to-v path inG of weight at most

(1 + ε)weight(uv); replaceuv in T0 with that path. The result of all the replacements is a tourT1 whose

weight is at most1 + ε times that ofT0.

By correctness of the algorithm of Section 6 (Theorem 3),

weight(T ) = OPT(H ′)

= OPT(H/S) by Lemma 22

= OPT(G/S) becauseH/S = G/S

≤ OPT(G) by Lemma 6

≤ (1 + ε)OPT(G0)

The lifting procedure increases the weight of the tour by at most

2 · weight(S)

≤ (2/k) · weight(G) by Lemma 17

≤ ε(1 + 2ε−1)−1weight(G) by choice ofk

≤ ε · MST (G0) by Property S1 of Theorem 1

≤ ε · OPT(G0)

since a tour contains a spaning tree. Thus the Eulerian bisubgraph resulting from lifting has weight at

most

(1 + ε)OPT(G0) + ε · OPT(G0).

6 Solving TSP in a planar graph with bounded dual radius

In this section we describe an algorithm that, given an edge-weighted planar embedded graphH such

thatH∗ has radiusk, and given a setR of nodes, finds an minimum weight walkW such thatR ⊂ V (W ).

To find an optimal multitour,R is set toV (H). Rather than describe the algorithm for this special case,

we describe the algorithm for the more general case because doing so requires very little change.

Theorem 3 There is an algorithm that, given a planar embedded graphH , an edge-weight assignment

for H, a subsetR of nodes ofH, and a spanning treeT ∗ of H∗ in which every simple path has length

at most`, finds an minimum-weight walk inH that visits all nodes inR. The algorithm takes time

O(c`(|V (H)| + |E(H)|)) for some constantc.
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6.1 Reduction to degree three

First we show how to reduce the problem to the case in which thedegree of the input graph is bounded

by three. Then we show how to solve this case using dynamic programming.

Step 1: Triangulate the faces ofH∗ by adding zero-weight artificial edges until every face has size at most

three. LetA be the set of artificial edges added. LetĤ∗ be the resulting planar embedded graph.

Step 2: H can be obtained from̂H by contracting the artificial edges, which merges some nodes. Let

R̂ =
⋃

v∈R{nodes ofĤ merged to formv}.

Step 3: Let W be a minimum-weight walk of̂H that visits all nodes of̂R.

Step 4: ReturnW − A.

Lemma 23 W − A is a tour such that weight(W − A) = OPT(H).

Proof: We haveH∗ = Ĥ∗ − A, soH = Ĥ/A. By Lemma 6,W − A is a tour ofĤ/A. Furthermore,

weight(W − A)

= weight(W ) since edges ofA have weight 0

= OPT(Ĥ) sinceW is an optimal tour ofĤ

= OPT(Ĥ/A) by Lemma 22

= OPT(H) becauseH = Ĥ/A

6.2 Overview of dynamic program

Now we describe how to find an optimal tour ofĤ visiting all nodes ofR̂. The graphH∗ has a rooted

spanning treeT ∗ in which every simple path has at most` edges, and̂H∗ is obtained fromH∗ by adding

edges, soT ∗ is also a spanning tree of̂H. Because every face of̂H∗ is a triangle,Ĥ has degree at most

three. LetT̂ be the set of edges of̂H not inT ∗. ThenT̂ is a spanning tree of̂H and hence has degree at

most three. Root̂T at a noder of degree 1 inT . The dynamic program will work up̂T from the leaves to

the root. For each edge of̂T , the dynamic program will construct a table. The value of OPT(Ĥ) will be

be computed from the table associated with the edge connecting the root to its child. Once the value of

OPT(Ĥ) is known, the tour itself can be constructed in a post-processing phase by working down from

the root to the leaves. (The post-processing is straightforward, and we do not describe it here.)

6.3 Terminology

Before giving a detailed description of the tables, we need to introduce some terminology.
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Traversals Let ΓĤ(S) be a cut. We say a nonempty, dart-disjoint setP of walks inĤ is atraversal of

S in Ĥ if

• the start node and end node of each path are not inS,

• the internal nodes of each path are inS.

It follows that the first and last edges of each path belong toΓĤ(S). Define

κ(P) = {{first edge ofP, last edge ofP} : P ∈ P}

Define

weight(P) =
∑

{weight(d) : d ∈ P, d not a dart ofΓĤ(S)}

+
1

2

∑

{weight(d) : d ∈ P, d a dart ofΓĤ(S)}

Configurations A configurationK of a cutΓĤ(S) is a nonempty multiset of unordered pairs{ei, ej}

such that each edge ofΓĤ(S) occurs at most twice. The number of configurations is at mostm!, where

m = |ΓĤ(S)|.

If S is connected inĤ then the embedding determines a cyclic ordering of the edgesof ΓĤ(S), say

(e1 · · · em). In this case, we say that a configuration iscrossingif it includes pairs(ep, eq) and(er, es)

such thatp < r < q < s. A Catalan bound shows that the number of noncrossing configurations is

2O(m). This is where planarity is used in the dynamic program.5

For a configurationK, define weight(K) to be the sum of the weights of the edges inK, counting

multiplicities.

6.4 Definition of the tables

In this subsection we describe the tables produced by the dynamic program. For each edgee of T̂ , let

ve denote the child endpoint ofe, and letDe denote the descendents ofve. By Corollary 4, the edges

comprisingΓĤ(De) are exactly the edges comprising the elementary cycle ofe in Ĥ∗ with respect to

T ∗. (See Figure 3.) That elementary cycle consists ofe together with a simple path inT ∗ between the

endpoints ofe. The cycle therefore contains at most` + 1 edges. This shows|ΓĤ(De)| ≤ ` + 1.

For a cutΓĤ(S) of Ĥ whereS is connected in̂H, for a configurationK of ΓĤ(S), define

MS(K) = min{weight(P) : κ(P) = K,

P is a traversal ofS, and

S ∩ R̂ ⊂ V (P)}

We show in Corollary 27 that, for each edgee of T , the dynamic program will construct a table TABe,

indexed by the noncrossing configurationsK of ΓĤ(De), such that TABe[K] = MDe
(K).

5Noncrossing configurations and a Catalan bound were used in adynamic program for TSP by Arora et. al [5]. Concurrent
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e1 2e

ev

v v

Figure 3. A subgraph arising in the dynamic program. The edge e, the child node v, and the child

edges e1 and e2 are labeled. The dark edges are tree edges. On the right is the same subgraph

with some edges of the dual graph also shown. Note that the edges of Γ({descendents of ev})

form an elementary cycle in the dual, as do the edges of Γ({descendents of e1}) and the edges of

Γ({desecendents of e2}).

For the root edgêe of T (the edge ofT incident tor), each edge ofΓĤ(Dê) is incident to the rootr.

It follows that every traversal ofDê defines a tour of̂H using each dart at most once, and vice versa. By

Proposition 9, there is an optimal tour that is noncrossing.Hence

OPT(Ĥ)

= min{Mê(K) +
1

2
weight(K) : K a configuration ofCê}

because only half the weight of each edge ofK is counted inMê(K). Sincer has degree at most three,

Cê hasO(1) configurations. Thus OPT(Ĥ) can be computed inO(1) time from the tableTAB ê.

6.5 The recurrence relation

Let e be an edge of the treêT , and lete1, . . . , es be its child edges (s ≤ 2). Let D0 = {ve}. For

i = 1, . . . , s, let Di = Dei
. Note thatDe is the disjoint union

⋃s
i=0 Di.

A traversalP of De inducesa traversalPi of Di for i = 0, 1 . . . , s as follows: for each pathP ∈ P,

breakP into subpaths at the nodes ofP that are not inDi, and retain only those dartsd such that at least

one endpoint ofd is in Di. The remaining subpaths form a traversal ofDi.

with the appearance of a preliminary version of this paper, Dorn et al. [14] published an extended abstract discussing planar-

graph algorithms that also exploited Catalan-type bounds and noncrossing matchings.
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Lemma 24 LetP be a traversal ofDe, and letP0, . . . ,Ps be the traversals thatP induces forD0, . . . , Ds.

Then

weight(P) =
s

∑

i=0

weight(Pi)

Let K, K0, K1, . . . , Ks be configurations ofCe, C0, C1, . . . , Cs respectively. We say that these config-

urations areconsistentif every edge occurs zero or two times.

Lemma 25 For traversalsP0, . . . ,Ps ofD0, . . . , Ds, if K is a configuration ofCe such thatK, κ(P0), . . . , κ(Ps)

are consistent then there is a traversalP of Ce that inducesP0, . . . ,Ps.

Proof: By gluing together paths from differentPi’s that have a common edge, one constructs paths

whose start and edge edges are inΓ(De).

Corollary 26 For any configurationK of Ce,

Me(K) = min{
k

∑

i=0

MDi
(Ki) : K, K0, . . . , Ks are consistent}

6.6 The dynamic program

We now give a recursive algorithm TSP-DP(e) that for each edgee of T populates the table TABe.
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define TSP-DP(e):

1 lete1, . . . , es be the child edges ofe (s ≤ 2)

2 for i = 1, . . . , s,

3 recursively call TSP-DP(ei).

4 letC0 :=the cycle inĤ∗ formed byΓĤ({ve})

5 initialize each entry of TABe to ∞.

6 for each tuple(K0, K1, . . . , Ks)

of configurations ofΓ({ve}), Γ(De0
), . . . , Γ(Des

)

7 letK be the configuration ofΓ(De) induced byK0, K1, . . . , Ks

8 TABe[K] := min{TABe[K] ,
∑k

i=0 TABei
[Ki]}

Corollary 27 (Correctness ofTSP-DP) For each edgee of T , for each noncrossing configurationK

of Ce, TABe[K] = MDe
(K).

6.7 Analysis of the dynamic program

In Step 6, each of the cutsΓ(De1
), . . . , Γ(Des

) has size at most̀+1, so hasO(c`) configurations for a

constantc. The cutΓ({ve}) has size at most three, ands ≤ 2, so the number of tuples in Step 6 isO(d`)

for a constantd. Thus each invocation of TSP-DP requiresO(d`) time. The number of invocations is

|V (Ĥ)| − 1, so the entire dynamic program takes timeO(d`|V (Ĥ)|). Combined with the reduction of

Subsection 6.1, this completes the proof of Theorem 3.

7 Lifting

7.1 Lifting with respect to one compression

We give a procedure LIFT-ONE(G, e, B) that, given an Eulerian bisubgraphB of G/{e}, returns an

Eulerian bisubgraphB′ of G such thatB′ − {e} = B. (See Figure 4.)

define LIFT-ONE(G, e, B):

ife is a self-loop ofG then returnB

if the endpoints ofe in G have even degree inB ∪ {e}

then returnB ∪ {e}

else returnB ∪ {e} ∪ {e}

Lemma 28 (Correctness ofL IFT-ONE) If B is an Eulerian bisubgraph ofG/{e} thenL IFT-ONE(G, e, B)

returns an Eulerian bisubgraph ofG.
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Figure 4. Examples of lifting. The Eulerian bisubgraph is indicated with light lines. In the top diagram,

only one copy of the formerly compressed edge (the bold line) must be incorporated. In the second

diagram, no copies are needed. In the third diagram, two copies are needed.
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Proof: If e is a self-loop ofG thenG − {e} is obtained fromG/{e} by merging two nodesu and

v belonging to different components. SinceB consists of a connected Eulerian bisubgraph for each

connected component ofG/{e}, u andv have even degree inB (so the merged node has even degree)

andB is a connected Eulerian bisubgraph for the combined component.

Supposee is not a self-loop ofG. ThenG/{e} is obtained fromG by contractinge. SinceB is an

Eulerian bisubgraph ofG/{e}, it must contain at least one edge incident to at least one endpoint ofe in

G. ThereforeB ∪ {e} connects each connected component ofG. Since inG/{e} the degree inB of

each node is even, inG every node has even degree inB except possibly the endpoints ofe. If even the

endpoints have even degree thenB∪{e} is an Eulerian bisubgraph ofG. If not, then both endpoints must

have odd degree inB since the sum of their degrees is the degree of the node resulting from contracting

e. HenceB ∪ {e} ∪ {e} is an Eulerian bisubgraph.

7.2 Lifting with respect to many compressions

Theorem 4 There is a linear-time algorithm that, given an Eulerian bisubgraphB of G/S, returns an

Eulerian bisubgraphB′ of G such thatB′ − S = B.

We give the procedure below. Its correctness follows by induction from the correctness of LIFT-ONE.

define LIFT-MANY (G, S, B):

if S = ∅ then returnB

else

let e be an edge ofS

return LIFT-MANY (G, S − {e}, L IFT-ONE(G/{e}, e, B))

8 Low-diameter planar graphs have small branch-width

We restate and prove Lemma 20. The proof uses the ideas used informulating the dynamic program.

Lemma 20LetG be a planar graph and letT be a spanning tree ofG such that every simple path inT

has length at most̀. Then the branch-width of the dualG∗ is at most̀ + 2.

Proof: Let Ĝ be the planar embedded graph obtained fromG by adding artificial edges until each face

has at most three edges. Note thatT is a spanning tree of̂G. LetT ∗ be the spanning tree of̂G∗ consisting

of the edges of̂G∗ not inT . Since every face of̂G has at most three edges,Ĝ∗ has degree at most three,

soT ∗ has degree at most three. RootT ∗ at a leafr. For each nodev of Ĝ∗ other thanr, let Xv denote

the set of descendents ofv in T ∗, and letYv denote the set of proper descendents ofv (i.e. excludingv

itself). LetC = {Xv : v 6= r} ∪ {Yv : v 6= r} ∪ {{v} : v 6= r}. ThenC is a carving ofĜ∗’s node-set

V (Ĝ∗).

For anyv 6= r, let ev denote the edge ofT ∗ betweenv and its parent. Thene is not an edge ofT .
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By Corollary 4,

ΓG∗(Xv) = E(elementary cycle ofe with respect toT )

The elementary cycle ofe with respect toT consists ofe together with the simple path inT betweene’s

endpoints. Since every simple path inT has length at most̀, it follows that |ΓĜ∗(Xv)| ≤ ` + 1. (See

Figure 3.)

LetD be the set of edges betweenv andYv. Because the other endpoint ofev is the parent ofv, ev 6∈ D.

Becausev has degree at most three, therefore,|D| ≤ 2. Note thatΓĜ∗(Yv) = ΓG∗(Xv)− {ev} ∪ ∪D, so

|ΓĜ∗(Yv)| ≤ ` + 2.

Next, we define a carving of̂G∗’s edge-setE(G)

C′ = {E(G[X]) : X ∈ C}

whereG[X] denotes the subgraph ofG induced by the nodes ofX.

For eachX ∈ C, a nodev of G is in ∂(E(G[X])) only if v ∈ X and there is an edgee ∈ Γ(X) one of

whose endpoints isv. Thus|∂(E(G[X]))| ≤ |Γ(X)|. This proves thatC′ has width at most̀ + 2.

We have shown that̂G∗ has branch-width at most` + 2. It is easy to see (and shown in [28]) that

edge contraction does not increase branch-width. SinceG∗ can be obtained from̂G∗ by contracting the

artificial edges, it follows that the branchwidth ofG∗ is at most̀ + 2.

The proof of the lemma makes clear that a tree representationof the carving ofE(G∗) can be obtained

in linear time fromG andT .

9 Final remarks

The framework we have presented can be used to obtain approximation schemes for other problems.

For example, a similar approach yields a linear-time approximation scheme for the following problem.

• input: a connected planar embedded graphG, and an edge-weight assignment

• output: a minimum-weight multisubgraph ofG in which there are two edge-disjoint paths between

every pair of nodes.

In particular, the same spanner result can be used.

Another related problem is TSP in asub-metric spaceof that defined by a planar graph with edge-

weights, i.e. the following problem.

• input: a connected planar embedded graphG, an edge-weight assignment, and a subsetR of

nodes,

• output: a minimum-weight closed walk visiting all nodes inR.
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Applying the framework to this problem requires a new spanner result: that there exists a subgraph ofG

that approximately preserves all distances between nodes of R and that has weightO(1) times that of a

minimum-weight Steiner tree forR. We have recently obtained such a result.
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