A linear-time approximation scheme for TSP in planar graphswith
edge-weights

Philip N. Klein
Brown University

Abstract

We give an algorithm requiring)(cl/52n) time to find ane-optimal traveling salesman tour in the
metric defined by a planar graph with nonnegative edge-lengt

1 Introduction

The traveling salesman problem is often the first probleraaehers use to test a new optimization
technique. [21] In a metric,®uris a cycle(v vs . .. v,_1) Of the points on the metric, and the weight of
the tour is the sunY_?"_, dist(v;, V(i 1) mod n), Where distu, v) is the distance betweenandv. The goal
is to find the minimum-weight tour. The problem is MAXSNP-#§23, 24] in arbitrary metrics, and the
best approximation ratio known, that proved by Christofitief is 1.5. For the metric of an unweighted
planar graph (one in which every edge has weight one), Grigmitsoupias, and Papadimitriou [16]
gave an algorithm that requires’/¢) to find ane-optimal tour. Arora, Grigni, Karger, Klein, and
Woloszyn [5] subsequently gave an approximation scheméh®®more general problem in which the
planar graph’s edges have arbitrary nonnegative weightsir Blgorithm requires® > time. Both
algorithms are somewhat complicated, and involve a regeics@composition using new planar-separator
lemmata. The latter paper introduced the idea of usiggaanerresult to handle edge-weights.

In parallel development, Arora [3] and Mitchell [20] showtbdt a PTAS also exists f&uclidean TSP
(i.e., the subcase in which the points ligith and distance is measured using the Euclidean metric). This
PTAS finds are-optimal tour inn©(/9) time. Arora [4, 2] improved the running time of his algorithm
to O(n - (logn)°(/9), using randomization. Finally, Rao and Smith [25] gave a 8TAr the two-
dimensional Euclidean case that takes tite=°“'n + nlogn).

In view of the fact that am-optimal tour can be found in the Euclidean case in time thpblynomial
with a fixed degree, independent®ft seems natural to ask whether the same holds true for gmapl

case. In this paper, we answer this question. Our algorithosfane-optimal tour in time that is
O(c'/<*n) wherec is a constant.

1.1 Other related work

Grigni and Sissokho ([17], building on [18]) have given a sjpalynomial approximation scheme
for weighted TSP in minor-excluded graphs. This paper mtavespanner result for minor-excluded
graphs. Berger, Czumaj, Grigni, and Zhao ([7], building 4&]] give a PTAS for the problem of
finding a minimum-weight 2-edge-connected spanning sultignaph of an edge-weighted planar graph
(duplicate edges are allowed), and a quasipolynomial aqupedion scheme for finding a minimum-
weight 2-edge-connected or biconnected spanning subgraph edge-weighted planar graph. This
paper introduced a new spanner construction.

Baker [6] gives a method for obtaining PTASSs for a variety ptimization problems in planar graphs,
e.g. maximum-weight independent set and minimum-weigtiexecover. The resulting algorithms are
linear time (for fixede). The key idea (interpreted in modern parlance) is to turnodlem in a planar
graph to a problem in a graph with bounded treewidth. Theniecie can handieeightson nodes/edges
but the problems it can address are quite local in nature.

Demaine and Hajiaghayi [13] describe a framework for PTA®# ts based on the notion bfdi-
mensionality They derive approximation schemes for subclasses of reixcuded graphs that involve
turning the input graph into a low-treewidth graph. Thesuks apply to graphs that are not planar.
Their framework can be viewed as a way to generalize Bakppsaach so as to derive algorithms for
nonlocal problems, such as feedback vertex set and comhé@oteinating set. For planar graphs in par-
ticular, they derive EPTASSs for several (unweighted) peats. In relation to their framework, our result
is an example of how one can more thoroughly exploit plapaoiderive a fast and simple EPTAS.

1.2 The framework

In this paper, we present a simple framework for deriving B3Aor planar graphs. A key step of the
framework is a simple technique we ctlinning adapted from Baker’'s method. Given a planar graph
G whose edge-weights sumiB and given a parametér thethinningprocedure selects a weighit7 k
subsetS of G’s edges such that — S = H — S for some planar grapH of radius at mostk.

The framework can give rise to two forms of algorithm, depegan whether thinning is performed
in the planar dual or the primal. (To our knowledge, this pappresents the first use of thinning in the
dual.) If the former, the algorithm has the following fouegs:

Spanner step: Delete some edges of the input graph while approximatekgouing the optimal valug.

1Theradiusof an undirected graph is the minimum height of any rootedsjvay tree of the graph.
2This was the also the first step in [5] and subsequently in, [L.g] and one of the algorithms of [7].

Thinning step: Apply thinning to the planar dual, effectively contractisgme edges, which should not
increase the optimal value.

Dynamic-programming step: Use dynamic programming to find the optimal solution in thaldof
the thinned graph.

Lifting step: Convert the optimal solution found in the previous step tolatson for the pre-thinned
graph by incorporating some of the edges contracted duninging.

This is the form of the TSP algorithm. For TSP, edge deletiam increase the optimal value but we
ensure in the spanner step that the increase is small. Edgeacion (in the thinning step) can only
decrease the optimal value. The dynamic-programming gtefates on a graph whose dual has bounded
radius. This form is appropriate for connectivity problesash as TSP and minimum-weight two-edge-
connected-sub-multigraph.

In the alternative form, the spanner stamtractsedges; the thinning step is applied to the primal and
hencedeletessdges; the dynamic-programming step operates on a grapduafled radius. This form
is appropriate for cut problems such as multiterminal cut.

We show that the thinning step produces a graph that hasasdmsanch-width and consequently
low tree-width. The dynamic-programming step can consetiyde performed in linear time. In
Section 4 we review the definition of branch-width and itatieln to tree-width. In Section 6, we give a
dynamic-programming algorithm that exploits planarityptiain a better bound than is achievable using
branchwidth alone.

The spanner step requires an algorithm that, givemade planar graphyr, with edge-weights and
given a parametet, deletes [alternatively, contracts] edges so as to obtgmphG such that
S1: OPT(G) < (1 + €)OPT(Gy), and
S2: weightG) < p. - OPT(Gy)
where OPTG) is the value of the optimum for input gragh, and weightG) is the sum of weights
of edges inGG. Since the running time of the dynamic-programming step isast exponential ip,,
obtaining a polynomial running time depends @rbeingO(logn) for fixed ¢, and obtaining a linear
running time depends gn beingO(1). For TSPy, = O(1), as we discuss in Section 3.

A trivial spanner result holds for problems in which weighg) < p.OPT(Gy), e.g. unweighted TSP.
For such a problem, our approach can potentially yield élgms that run inD(c/<n) time.

The lifting step should increase the cost by at most

¢ - weight of edges eliminated during thinning (2)

for some constant In the case of TSP, we show in Section 4 that this holds with2.
Now we consider in more quantitative detail an algorithmha framework. Given an-node input
graphG, and parametet, the spanner step eliminates edges to obtain a gtaphth properties S1

3

and S2 above. The elimination must be such that a solutiofd fera solution forG,. The thinning step,
applied withk := ce~! - p(e, n), eliminates a set of edges having weightk) - weightG), obtaining
a graphH whose dual has radius and such that OR[H) < OPT((G). The dynamic-programming
step solves the problem optimally in time that is exponéirithe radius bound and linear imn. The
lifting step turns the optimal solution fd¥ into a solution forG (and hence fo€) while increasing the
weight of the solution by (1), which by choice bis at mosk - OPT(Gy). Since OPTH) < OPT(G) <
(14+¢)OPT(GY), it follows that the solution obtained faf has weight< (1+¢)OPT(Gg) +¢-OPT(Gy).
This analysis is done more formally for TSP in Section 5.

2 Preliminaries

In this section, we describe the basic definitions and resuitplanar embeddings and planar duals.
Most of the material is standard, but we also introduce awanf contraction that we catbmpression
and state some related results. In Subsection 2.1, we give siefinitions and results that help us
reformulate the TSP.

The traditional geometric definition of planar embeddiny®lves drawings of a graph on the plane.
Proofs and algorithms become simpler when one uses an alterrdefinition of embedded planar
graphs, a combinatorial definition. See [22].

For any given finite sef/, we can interpref’ as a set of edges, and we defiiex {11} to be the
corresponding set afarts For each edge, the darts ot, namely(e, 1) and(e, —1), represent the two
opposite orientations af. We define rey) to be the function that takes each dart to the corresponding
dart in the opposite direction: réie, i)) = (e, —i).

We define an embedded graph Brto be a paitG = (7, E) wherer is a permutation of the darts
of E. The permutation cycles of are called thenodes$ of G. Each nodey is a permutation cycle
(dy dy ... dy), and we useéD(v) to denote the seftd;, ds, . . ., di}. We useE(G) andV (G) to denote,
respectively, the set of edges and the set of nodes of a gfaph

For a dartd of GG, we define tail(d) to be the orbit ofr containingd. We define heag(d) =
tail(rev(d)). For an edge of G, we define ends(e) = {head;((e, 1)), tails({e, 1))}.

A walkof darts inG' is a sequencé, . . . d;, of darts such that, far= 2, ..., k, head;(d;_;) = tail(d;).
Thestartof the walk is taik;(d;) and theendis head;(dy.). Itis aclosedwalk if in addition head(d;) =
tail(dy). Itis a simple path/cycle if no node occurs twice as the hdaddart (cycle if closed, path if
not). The walk, path, or cycle is said to contain an edgat contains a dart ot. It is said to contain a
nodev if v is the head or tail of some dart in the sequence. We defiriérev. di.) = rev(dy) ... rev(d;).

We denote byF(P) and V' (P) respectively the set of edges contained®ynd the set of nodes
contained byP. A walk/path whose start is and whose end is is called au-to-v walk/path.

3Note that nodes are defined in terms of edges, rather tharitbeway round. This definition precludes isolated nodes.

To define the faces of the embedded graph, we define anotheufagion=* of the set of darts by
composingr with rev: 7* = 7 o rev. Then thdacesof the embedded graplr, £) are defined to be the
permutation cycles of*. Note that a face ofr can be interpreted as a closed wallGn

We say that an embeddingof a graphG is planar if it satisfies Euler's formulan — m + ¢ =
2k, Wheren=number of nodes;=number of arcsp=number of faces, and=number of connected
components. In this case, we sdy= (7, £) is aplanar embedded graph

The dual of a connected embedded graph= (7, E) is defined to be the embedded gragh =
(r*, E). Since rew rev is the identity, we obtain the following.

Proposition 1 G** = G.

It can be shown that the dual of a connected graph is conndtfetlows that the connected components
of G* correspond one-to-one with the connected componerts bfence ifG satisfies Euler’s formula
then so doe&*. Thus the dual of a planar embedded graph is a planar embegdaiglt

LetT" be a spanning tree @f. For an edge ¢ 1" whose endpoints are i, there is a unique simple
cycle consisting ok and the unique path i’ between the endpoints ef This cycle is called the
elementary cyclef e with respect tdl”" in G.

For a spanning tre€ of GG, we denote by the set of edges a¥ that are not iri". The following is
a classical result.

Proposition 2 If G is a planar embedded graph arfdis a spanning tree ofr, thenT™ is a spanning
tree ofG*.

We refer tol™ as the tree dual t@'.

If S C V(G), we usd's(5) to denote the set of edgesuch that inG the edge: has one endpoint in
S and one endpoint not ifi. A set of this form is called autof G. Note thatl'(S) = I'¢(V(G) — 5).

If S'is connected iz andV (G) — S is connected iz, we calll'¢(.S) abond

Proposition 3 If GG is a planar embedded graph, the edges of a bor@ farm a simple cycle 6 and
vice versa.

It follows from Proposition 3 that every simple cydlein G defines a bipartition of the faces 6f,
namely the bipartitions, V(G) — S) whereE(C) = I'g-(.5).

Let f, be a face ofG. We call f,, the infinite faceby analogy to geometric embeddings. For
combinatorial embeddings, the choice is arbitrary. We baysimple cycle”' encloses face f with
respect tof, if f belongs to the sef such thatt/(C) = I'¢(S) and f, ¢ S. We say that” strictly
encloses an edge with respectftg if the edge belongs to a face enclosed®¥put does not belong to
C.

“4For disconnected graphs, this definition of dual divergemfthe geometric definition in that it assigns multiple dual
nodes to a single region of the sphere/plane. Accordingeag@#ometric definition, the dual of a graph is always conmkcte
However, choosing that definition means giving up, for exaybe nice property that** = G.

5

Corollary 4 LetG be a connected plane graph, [Etbe a rooted spanning tree 6f, letv be a nonroot
node ofGG, and lete be the parent edge of Then the elementary cycle ofn G* with respect tdl™
consists of the edges Bf;(descendents afin T')

Proposition 5 An edgee is a self-loop of7 iff it is a cut-edge of7*.

We discuss two ways of removing edges from an embedded gilafgting and compressing, both of
which preserve planarity.

Deletingan edge: of an embedded graphi = (r, E') is an operation that produces the graph=
(', E') whereE’ = E — {e} and, for each dart of’,

dl — m[x[d]] if 7[d] is a dart ofe
Tl = 7|d] otherwise

For a setS of edges, we denote by — S the embedded graph obtained by deleting the edgés of
The order of deletion does not affect the final embedded grih easy to see that deletion preserves
planarity.

We define edgeompressiorio be deletion in the dual. That is, compressing an edgéG is an
operation that produces the gra@h* — {e})*. We denote the result &/{e}. Since deletion preserves
planarity and the dual of a plane graph is a plane graph, cessfn preserves planarity. The operations
of deletion and compression commute.

Figure 1 illustrates the effect of edge compression on thliketiying graph in three examples.dfs
not a self-loop irG then the effect of compressimgn G is to contract as shown in the top left diagram.
The thick line represents the edge to compress.idfa self-loop inG, so a cut-edge id6-*, and is not
the only edge incident to either of its endpoints then theattio duplicate, as shown in the bottom left
diagram; one copy has as its incident edges those edges thare incident ta» and strictly enclosed
by e (with respect to some designated fgtg) and the other copy has as its incident edges those edges
that inG are incident taw and not enclosed by (and not equal te). If e is a self-loop inG and is the
only edge incident to one of its endpointsifi, the effect is to delete.

2.1 Preliminaries related to TSP

If G is a connected graph with edge-weightdpar for GG is a closed walk that contains all nodes
of G. If G is a graph that is not necessarily connected, we defimeléitour of GG to be a sequence
W of darts such that, for each connected componern® othe (not necessarily consecutive) subse-
guence of darts of’ belonging to that component is a tour of that component. Fawéitour W/
and a sefS of edges, definél’ — S to be the subsequence @f in which elements of are omitted.
For an assignment weight of nonnegative weights to the edges®@fand a setS of edges, define
weight(S) = > {weighte) : e € S}. For a subgrapl#, define weightd) = weight{ £(H)). Define

6

Figure 1. Three examples of compression.

OPT(G, weight(-)) to be the minimum weight of a multitour @f. We omit the second argument when
doing so creates no ambiguity.

Lemma 6 Let G be an embedded graph, |18tbe a set of edges ¢f, and letlV be a multitour ofG.
ThenW — S is a multitour ofG/S.

Proof: By induction, it suffices to consider a singleton et {e}. Suppose is not a self-loop irG.
In this case(7/{e} is the graph obtained by contractingSince the endpoints efin G are coalesced
in G/{e}, if e belongs toll’ then removing: from W preserves the multitour property. dfdoes not
belong tolV/, then clearlyiV is a multitour ofG /{e}.

Suppose: is a self-loop inG with endpointv. Thene is a cut-edge irG*. If in G* the edge: is the
only edge incident to one of its endpoints thép{e} = G — {e}. In this case, it belongs tdV then
removinge from W preserves the mulitour property;dfdoes not belong tdl’, theniV is a multitour
of G/{e}.

If in G* the edge: is not the only edge incident to either endpoint, tiiéH{ e} is the graph obtained
from G — {e} by splittingv into two copiesp; andwv,, and reattaching each edge incidentto G to
eitherv; or v,. An edge strictly enclosed hyin G is attached ta;, and an edge not enclosed bys
attached ta,. This splits the component ¢f containingv into two componenté’; and K,. Observe
that inG every path betweeR’; and K> must pass through

Let W’ be the subsequenceldéf—{e} consisting of darts belonging to the componentafontaining
e. Write W' = Ay o Ay o --- 0 A,_1 Where eachd; is a nonempty maximal consecutive subsequence
of darts of one of the two components, K, of G/{e}. By the observation, sindé” is a tour, the end
node of eachd; is v. It follows that1”’ has the multitour property for the graph consistingiaf and
K5, soW is a multitour forG /{e}. 0

Lemma 6 shows that OR®/S) < OPT(G).
For a walkWW of darts, define the multiplicity of an edgein W, denoted multie, W), to be the
number of occurences of darts«oin 1.

Lemma 7 LetWW be a tour in(G, and suppose some datbccurs at least twice ifl”. Then there exists
atour IV in G such that, for each edge

s multi(e, W) — 2 if d is a dart ofe
multi(e, W) = . .
multi(e, W) otherwise
Proof: Write W = W; od o W5 od. ThenW; o rev(Vs) is a tour ofG. 0

Lemma 7 shows that, in seeking the minimum-weight walk doirig a given set of nodes, we can
restrict ourselves to considering walks using each dartost iwnce.

We define arEulerian multisubgraplof a graphG to be a multisef of edges of7 such that
¢ the edges of within each connected component®fare themselves connected, and
¢ for every node of GG, the number of edges @éfincident tov is even.
The weight of an Eulerian multisubgraph is the sum of the Wsigf the edges, counting multiplicities.
We call it abisubgraphf the maximum multiplicity is two.

Note that for a closed wall’ in a graphG, for each node, |{d € W : tailg(d) = v}| = |{d €
W . head;(d) = v}|. This observation together with Lemma 7 implies that fornfiaimum-weight
walk W there is an Eulerian bisubgraph with the same multiplisiti@onversely,

Proposition 8 (Euler) There is a linear-time algorithm that, given a graghand an Eulerian bisub-
graph& of GG, outputs a walk irG with the same multiplicities.

Proposition 8 shows that the problem of finding a minimumghiewalk containing a given set of
nodes is equivalent to the problem of finding a minimum-wekgkierian bisubgraph containing a given
set of nodes.

Proposition 9 For any edge-weighted planar embedded graph there existainimum-weight multi-
tour that uses each dart at most once and does not cross itself

3 Spanner

Althoffer, Das, Dobkin, Joseph, and Soares [1] considerstnple and general procedure for pro-
ducing a spanner in a (not necessarily planar) gi@iphstart with an empty grapfy, consider the edges
of GGy in increasing order of weight, and add an edgé&:td the edge’s weight was much smaller than
the minimum-weight path i{ between its endpoints. They did not address the exact rgrtimre
of the procedure, but it clearly consists@fn) iterations, each involving a shortest-path computation.

8

For planar graphs, therefore, it runsarin?) time [19]. They proved several results about the size and
weight of the resulting spanner, including the followinguk that is specific to planar graphs.

Theorem 1 (Althoffer et al.) For any planar graphiz, with edge-weights and any> 0, there is an
edge subgraplt’ such that

S1: weightlG) < (1426 ') MST(Gy), whereM ST (G,) is the weight of the minimum spanning tree
of Gy, and

S2: for every pair of nodes andwv,

minimum weight of a-to-v path inG (2)
< (1 + €) - minimum weight of a-to-v path inG|,

By exploiting planarity, we can give an algorithm that rundinear time but that can be shown (using
the same analysis technique used by Althoffer et al.) teeaelthe same properties.

definesSPANNER Gy, €):

let z[-] be an array of numbers, indexed by edges

find a minimum spanning treg of G

assigne[e| := weight(e) for each edge of T

let 7* be the dual tree, rooted at the infinite face

for each edge of 7™, in order from leaves to root
let f. be the face of7, whose parent edge if* ise
lete=eq, €1, ..., e, be the sequence of edges comprising
Tomit := D i1 l’[ez]
xle] = 1f zomit < (1 + €)weight(e) thenzomi

else weighte)
return the set of edgessuch thatce] = weight(e)

The minimum spanning tree @f, can be found in linear time using the algorithm of Cheritod an
Tarjan [9].

Now we address correctness of the procedure. Say an edgacceptedwhen z[e] is assigned
weight(e), andrejectedotherwise.

Lemma 10 In the for-loop iteration in whicle is considered, for every other edgeof f, x[e;] has been
assigned a number.

Proof: The facef. has only one parent edgeTrf, and it ise. For every other edge of f., eithere;
belongs tdl” or ¢; is a child edge off, in 7. 0

For any edge of Gy notinT,

Figure 2. Diagram showing part of dual tree (in light edges) and primal tree (in dark edges) and primal

nontree edges (dashed): e; and e4 are child edges of e in the dual tree. The face f, is indicated.

let G, denote the subgraph 6f, consisting of accepted edges together with

let fe denote the face af, that containg and encloseg.,

let 1V, denote the walk formed by the sequence of edges comprisingt includinge itself, and

if e is accepted
let P, = ° c _ P
W, otherwise

Note that each ofl/, and P, has the same endpointsad-or an edge of 7', defineP, = e.

Lemma 11 For any edge: of G, notinT,

1. every edge of. is either in7 or is a descendent efin 7%, and

2. W, = P, o---0 P, ,wheree; ... e,isthe walk consisting of the edges comprisfa@ther than

€.

Proof: by induction. Consider the case in whiehs a leaf-edge of™*. Let f be the corresponding
leaf-node inG. Becausef is a leaf, the only incident edge that is’#ii is e itself, soey, .. ., e; belong
toT. All these edges are accepted, proving Part 1. To prove Padt@ thatil, = e; --- e, and that
P, =e;fori=1,...,s. Thusthe lemma holds far

Consider the case wheess not a leaf. Le(G,. be the subgraph af, consisting of accepted edges
together withe, ¢y, . . ., e,. For eache;, recall thatf,, is the face of7., that containg; and encloseg,..
We claim thatf,, is also a face of7... To prove the claim, note th&t., can be obtained frord, . by
deleting a subset dfe, ey, ..., e,} — {e;}. None of these edges are edge§'ajr descendents " of
e;, SO, by Part 1 of the inductive hypothesis, none belong%ito

10

Note that(7, can be obtained fror@., by deleting those edges among. . ., ¢, that are rejected. By
the claim, each such deletion replaces a rejected edgef. with the waIkWei. This together with the
definition of P,, proves Part 2. By Part 1 of the inductive hypothesis, evegeead eacH/T/ei is an edge
of T"or a descendent ef in 7" and hence a descendenteads well. This proves Part 1. 0

Lemma 12 In the for-loop iteration that consideks

e the value assigned taym; is Weigh(We), and

e the value assigned tge] is weight P.).

Proof: The proof is by induction. By Lemma 10, the edggs. . ., ¢, are considered before By the
inductive hypothesisg[e;] = weight P,). By Lemma 11, weighi?,) = >>%_, z[e], which proves the
first statement. The second statement follows by definitfoR.o 0

Corollary 13 For each edge, weight P,) < (1 + ¢)weighte).

Proof: If e is acceptedP, = e so the statement holds trivially. Suppess rejected. By the conditional
in the algorithm, in the iteration consideriagthe value assigned tQ,;; was at most1 + ¢)weight(e).
By the first part of Lemma 12, weigti’,) and therefore weighP,) are at most1 + e)weightie).

Corollary 14 The graph of accepted edges satisfies Property S2.

Proof: For any pair of nodes andv, let P be the shortest-to-v path inG,. For each edge
of P,there is a walkP, consisting of accepted edges between the endpoinés &y Corollary 13,
weight P.) < (1 + e)weighte). Replacing each edgeof P with P. therefore yields a walk of weight
at mosty_..p(1 + ¢)weight(e), which is at most1 + ¢)weight(P). O

Lemma 15 At any time during the algorithm’s execution, the weightr@ infinite face in the graph
consisting of accepted edges is at most

2- MST(Gy) — € - weightaccepted edges not i)

Proof: The proof is by induction. Before the for-loop commenceg, ghaph of accepted edges is
T, the minimum spanning tree @f,. Hence the weight of the infinite face is exaclly M ST (G)),

so the lemma’s statement holds for this time. Consider dofgp-iteration, and let be the edge being
considered. It is not accepted, there is no change to the set of accepted,edgbe lemma’s statement
continues to hold.

11

Suppose is accepted. Letr ;e be the subgraph consisting of edges accepted so far, afiglgt =
Gaer — {€}. Note thatGaner can be obtained frond/. by deleting edges that will be accepted in the
future. By the leaves-to-root ordering, none of the deletdges are descendentsedgh 7. By Part 1
of Lemma 11, thereforqfe is a face ofG e L€t g be the other face aF ¢, that containg.

We claim thaty is the infinite face of74¢e. TO prove the claim, note thaét,q, can be obtained from
(G by deleting edges that have already been rejected and edggsticonsidered. By the leaves-to-root
ordering,e’s proper ancestors iih* have not yet been considered, so they are among the edgesidele
These deletions are contractions in the dual. The ro@ta$ the infinite face, so the contractions result
in g being the infinite face.

Note thatGpetore Can be obtained frort¥ 4er by deletinge. This deletion replacesin the faceg with
.. This shows that

weight of infinite face iNGpetore — Welight of infinite face ING afer
= weightIV,) — weight(e)
> (1+ ¢)weighte) — weighte) because was accepted

= ¢-weighte)

which shows that the lemma’s statement continues to hold. 0

Corollary 16 The graphG of accepted edges satisfies Property S1.

Proof: By Lemma 15, the weight of the infinite face in the graph cdirgsof all accepted edges is at
most
2- MST(Gy) — € - weightaccepted edges not i)

so weightaccepted edges not) < 2¢7! - MST(Gy). Since weightl’) = M ST(G,), it follows that
the weight of all accepted edges is at mdst- 2¢ 1) M ST (Gy).]

4 Thinning

In this section we describe how to remove a low-weight setigks from a planar graph (by deletion
or contraction) so as to obtain a graph in which it is simpledive optimization problems.
The following lemma is implicit in Baker’s approach [6].

Lemma 17 (Thinning Algorithm) There is a linear-time algorithm that, for any planar embedd
graph G, edge-weight assignment weight and integerk, returns an edge-set of weight at most
(1/k)weigh{G) and a planar embedded grapth with a spanning tree of height at mastsuch that
H-S=G-Sand|V(H)|=|V(G)|and|E(H)| = |E(G)|.

12

Proof: Assume without loss of generality th@tis connected. The algorithm is as follows. Carry out
breadth-first search oA from some node, obtaining a breadth-first search tfBend a labeling of the
nodes with their distances fromin GG. (Breadth-first search interprets each edge as havinghenyt
Define thelevel of an edgee to bei if one endpoint has distanggrom r and the other endpoint has
distance — 1.

Fori =0,1,...,k — 1, let S; denote the set of edges~vhose levels are congruentionod k. Let
t = minargweight(S;).

Forj =0,1,2,..., let ﬁ[j be the graph obtained froi@ by deleting all nodes at distances greater
than(j + 1)k + ¢, and contracting every edgef the breadth-first search trédewhose level is less than
jk +t. The contractions coalesce into a single root all nodessétiices less thajit + ¢. (In the case in
which jk + t = 0, there are no nodes at distance less tjian t, but in this caséd; is rooted at, and
we taker to be the root.) Combine the planar embedded graph#s. . . . to form the planar embedded
graphH by identifying the roots to form a single node

Now we prove the correctness of the algorithm. Every edgeas most one of the sefg, ..., Si_1,
soY ¥ weight S;) < weightG). Hence weightS,) < (1/k)weightG).

Now we showH has a spanning tre€ of heightk. First, forj = 0,1, ..., definel} to be the spanning
tree ofﬁ[j consisting of all edges d&f remaining inﬁ[j. Every node ofﬁj except the root had distance
from the root at mostj + 1)k + ¢ in 7" so has distance at masfrom the supernode ifi;. By merging
the treedl, 15, . . . at the roots, we get a tree that has heighhd spans all the nodes ih.

Forj = 0,1,..., let H; denote the subgraph ¢f induced by the set of nodes at distancejih +
t,(j + 1)k +t]. The connected components@f- S are the subgraphd,, H,, Each graplf; can
also be obtained from the corresponding grafi)rby deleting edges of. Thisshowsy — S = H — S.

O

A tree decompositioof a graphG is a pair(7, ¢) whereT is a tree an@ is a function fromV/ (7T') to
subsets of/(G), such that the following conditions are satisfied.

o V(G) = Usev(r) ¢(2),
o for every edge of GG, there is a node € V(T') such that(z) contains both endpoints ef and
e for every node € V(G), the set of nodeéx : v € ¢(x)} is connected iff".

Thewidthof (T, ¢) is max,cv(r) |¢(x)] — 1.
The following result is implicit in Baker’s work, [6] and ekpit in [26]. See also [15].

Lemma 18 A planar graph of radiug has treewidth at mostk.

The following simple corollary, used by Baker [6], is not ds$e obtaining the TSP result but it could
be useful in applying the framework to cut problems such alsiteuminal cut.

13

Corollary 19 (Edge Deletion) There is a linear-time algorithm that, for any planar embeddjraph(,
edge-weight assignment weight and integett, returns an edge-sét of weight at most1 / k)weight{ &),
a planar embedded grapH such thatd — S = G — S, and a tree decomposition &f having width at
most3k.

We next review the definition of branch-width given by Seymand Thomas [29]. For a graph
and a sefX of edgesg(X) denotes the set of node®f G such that at least one edge incident s in
X and at least one is not.

For a finite setY’, acarvingof X' is a familyC of subsets oft’ such that

e)X &C,
e no two members of cross, and
e Cis maximal subjectto 1 and 2.

Let G be a graph. The width of a carvirtgof E(G) is maxxec |0(X)|. Thebranch-widthof G is the
minimum, over all carving€ of E(G), of the width ofC.

In Section 6, for the sake of simplicity of presentation, waken direct use of the fact that thinning
produces a planar embedded graph of bounded radius. Howeréne purpose of supporting future
use of the framework, we give a lemma bounding the branchiwaél planar embedded graphs with
bounded radius, and a corollary combining this lemma withnirea 17.

Lemma 20 Let G be a planar graph and I€f’ be a spanning tree @ such that every simple path i
has length at most Then the branch-width of the du@t is at most/ + 2.

A bound of[(3/2)(¢+2)] on the tree-width of7* follows because Robertson and Seymour [27] show
that the tree-width of a graph is at md%tm — 1, whereg is the branch-width of the graph. The proof
of Lemma 20 will be given in Section 8.

Corollary 21 (Edge Compression) There is a linear-time algorithm that, for any planar embedd
graph G, edge-weight assignment weight and integerk, returns an edge-set of weight at most
(1/k)weigh{G) and a planar embedded graph of branch-width at mos2(k + 1) such thatH /S =
G/S, [V(H)| = O(V(G)| + |E(G)]) and |E(H)| = |E(G)].

Proof: Apply Lemma 17 taG* to find a setS of edges of weight at mo$t /k)weight G) and a planar
graphH* such thatH* — S = G* — S andH* has a spanning trég* of height at mosk. By duality and
definition of compressiont/ /S = G/S. Every simple path in the spanning tree has at méstdges,
so by Lemma 20/7 has branch-width at mo8t: + 2. 0

The proof of Lemma 20 gives an algorithm to construct theesgonding carving.

14

5 TSP algorithm

Now we describe the TSP algorithm.
Let G, be the input planar embedded graph, and let wéighe the input edge-weight assignment.

Step 1 (Spanner Step): Let ¢, be the desired accuracy. Define= ¢,/2. Apply the algorithm of
Section 3 ta7y and weight-) with parametet to get an edge subgragh

Step 2 (Thinning step): Apply the algorithm of Corollary 21 t6: and weight:) with & = 2¢7(1 +
2¢71) to get a sefS of edges of weight at most /k)weightG), a planar embedded gragh such that
H/S = G/S, and a spanning tree éf having height at most.

Step 3 (Dynamic programming): Letweight,(-) be the edge-weight assignment obtained from weéight
by changing the weights of edges 6fto zero. Find a toufl’ of H that is optimal with respect to

weighty(-).

Step 4 (Lifting): Interpretingl’ — S as an Eulerian bisubgraph &f/ S, use the procedure of Section 7
to obtain an Eulerian bisubgraph Gt

Step 5: Use Proposition 8 to turn the Eulerian bisubgraplizahto a tour ofG.
5.1 Running time

Assume the input grapfi, hasn nodes and no parallel edges, so it i4%) edges. Each step of the
TSP algorithm except Step 3 requi@én) time. Because the gragh has branch-width at mo8t: + 2,
the optimal tour offf can be computed using dynamic programmin@ia”'°¢*n) time for a constant.
Cook and Seymour [11] use such a dynamic-programming diigotio solve TSP in graphs of bounded
branch-width. In Section 6, we give a more direct algorittat texploits planarity to achiev@(cn)
time for a constant. The choice of: yieldsO(d"/<*n) time for a constand.

5.2 Correctness

Lemma 22 Let H be an edge-weighted graph and kebe a set of edges each having weight zero. Then
OPT(H) = OPT(H/S).

Proof: By Lemma 6, OPTH/S) < OPT(H). Conversely, by Lemma 7 the optimum tour &S
defines an Eulerian bisubgraphof H/S that by Theorem 4 can be lifted to obtain a Eulerian bisublgrap
B’ of H such thatB = B’ — S. Since the edges df have zero weight, weighB’) = weight B). By
Proposition 8,8’ defines a tour off having the same weight. 0

15

Theorem 2 The algorithm finds a tour of weight at mdst+ €)OPT(G).

Proof: First we show OPTG) < (1 4 €)OPT(Gy). (This argument was used in [5].) L& be an
optimal tour ofG,. For each edgev of Tj that is not inG, there is au-to-v path inGG of weight at most
(1 + e)weightuv); replaceuwv in T, with that path. The result of all the replacements is a luvhose
weight is at mosl + ¢ times that off.

By correctness of the algorithm of Section 6 (Theorem 3),

weigh{T) = OPT(H')
= OPT(H/S) by Lemma 22
= OPT(G/S) becausdi/S = G/S
< OPT(G) by Lemma 6
< (14 ¢)OPT(Gy)

The lifting procedure increases the weight of the tour by asim

2 - weight(S)
< (2/k) - weightG) by Lemma 17
< e(1+ 2 weight G) by choice ofk
< e-MST(Gy) by Property S1 of Theorem 1
< €-OPT(Gy)

since a tour contains a spaning tree. Thus the Eulerian dpigph resulting from lifting has weight at
most
(14 €)OPT(Gg) + € - OPT(GY).

6 Solving TSP in a planar graph with bounded dual radius

In this section we describe an algorithm that, given an edgghted planar embedded grafihsuch
that H* has radiug;, and given a sek of nodes, finds an minimum weight wallk such that? C V' (IW).
To find an optimal multitourR is set toV (H). Rather than describe the algorithm for this special case,
we describe the algorithm for the more general case becausg sb requires very little change.

Theorem 3 There is an algorithm that, given a planar embedded graphan edge-weight assignment
for H, a subset? of nodes off/, and a spanning tre&™ of H* in which every simple path has length
at most/, finds an minimum-weight walk iff that visits all nodes inR. The algorithm takes time
O(c(|V(H)| + |E(H)|)) for some constant.

16

6.1 Reduction to degree three

First we show how to reduce the problem to the case in whicteigeee of the input graph is bounded
by three. Then we show how to solve this case using dynamgraneming.

Step 1: Triangulate the faces df* by adding zero-weight artificial edges until every face has at most
three. Let4 be the set of artificial edges added. &t be the resulting planar embedded graph.

Step 2: H can be obtained front/ by contracting the artificial edges, which merges some notles
R = U,cr{nodes ofA merged to formy}.

Step 3: Let IV be a minimum-weight walk off that visits all nodes of:.

Step 4: ReturnlV — A.

Lemma 23 W — A is a tour such that weightV’ — A) = OPT(H).
Proof: We haveH* = H* — A, soH = H/A. By Lemma 6,/ — A is a tour of H /A. Furthermore,

weight W — A)
= weight) since edges afl have weight 0

A~

= OPT(H) sincelV’ is an optimal tour off
— OPT(H/4) bylLemma22
— OPT(H) because? = H/A

6.2 Overview of dynamic program

Now we describe how to find an optimal tour Efvisiting all nodes ofz. The graphH* has a rooted
spanning tre@™ in which every simple path has at méstdges, and{* is obtained from#* by adding
edges, sd@™* is also a spanning tree éf. Because every face déf* is a triangle, 4 has degree at most
three. Letl’ be the set of edges @f notin7*. ThenT is a spanning tree dff and hence has degree at
most three. Rodt’ at a node- of degree 1ir¥". The dynamic program will work uiﬁ" from the leaves to
the root. For each edge @f the dynamic program will construct a table. The value of Ol?’)l’will be
be computed from the table associated with the edge congétie root to its child. Once the value of

OPT(H) is known, the tour itself can be constructed in a post-prsingsphase by working down from
the root to the leaves. (The post-processing is straighigiat, and we do not describe it here.)

6.3 Terminology
Before giving a detailed description of the tables, we neadttoduce some terminology.

17

Traversals LetI';(S) be a cut. We say a nonempty, dart-disjointBetf walks inH is atraversal of
Sin H if

¢ the start node and end node of each path are ngf in

¢ the internal nodes of each path areSin

It follows that the first and last edges of each path belorig0S). Define

k(P) = {{first edge ofP, last edge ofP} : P € P}
Define
weightP) = > {weightd) : d € P,d notadart of";(S5)}
+% > {weight(d) : d € P,dadartofl';(S)}

Configurations A configuration/ of a cutl';(.S) is a nonempty multiset of unordered pafes, ¢, }
such that each edge bf; (S) occurs at most twice. The number of configurations is at méstvhere
m=[g(S)]. A

If S'is connected i then the embedding determines a cyclic ordering of the edbEg (.5), say
(e1 --- en). Inthis case, we say that a configuratiorigssingif it includes pairs(e,, e,) and(e,, e;)
such thatp < r < ¢ < s. A Catalan bound shows that the number of noncrossing caatigus is
20(m) This is where planarity is used in the dynamic progfam.

For a configurationk’, define weight/X’) to be the sum of the weights of the edgegiin counting
multiplicities.

6.4 Definition of the tables

In this subsection we describe the tables produced by thandigrprogram. For each edg®f 7', let
v, denote the child endpoint ef and letD, denote the descendents«f By Corollary 4, the edges
comprisingl’; (D,) are exactly the edges comprising the elementary cycleiofH* with respect to
T*. (See Figure 3.) That elementary cycle consists wigether with a simple path i* between the
endpoints ok. The cycle therefore contains at mdst 1 edges. This show$'; (D,)| < ¢+ 1.

For a cutl’;(S) of H whereS is connected irff, for a configuration of I';(.S), define

Mg (K) = min{weigh{P) : «(P) =K,
P is a traversal of5, and
SNRcCV(P)}

We show in Corollary 27 that, for each edgef T, the dynamic program will construct a tabled,
indexed by the noncrossing configuratiddif I' ; (D,), such that ®B.[K] = Mp, (K).

SNoncrossing configurations and a Catalan bound were usedlinaanic program for TSP by Arora et. al [5]. Concurrent

18

Figure 3. A subgraph arising in the dynamic program. The edge e, the child node v, and the child
edges e; and e5 are labeled. The dark edges are tree edges. On the right is the same subgraph
with some edges of the dual graph also shown. Note that the edges of I'({descendents of ¢, })
form an elementary cycle in the dual, as do the edges of I'({descendents of e; }) and the edges of
I['({desecendents of e5}).

For the root edgé of 7" (the edge off" incident tor), each edge of ;,(D;) is incident to the root.
It follows that every traversal ab;, defines a tour off using each dart at most once, and vice versa. By
Proposition 9, there is an optimal tour that is noncrossiegnce

~

OPT(H)
= min{M:(K) + %Weighl(K) : K a configuration of”; }

because only half the weight of each edgeiofs counted inV/;(K'). Sincer has degree at most three,
C; hasO(1) configurations. Thus ORT) can be computed i®(1) time from the tablerAB..

6.5 The recurrence relation

Let e be an edge of the treE, and letey, ..., e; be its child edgess(< 2). Let Dy = {ve}. For
i=1,...,sletD;, = D... Note thatD, is the disjoint unionJ;_, D,.

A traversalP of D, inducesa traversalP; of D; fori = 0,1...,s as follows: for each patl? € P,
breakP into subpaths at the nodes Bfthat are not inD;, and retain only those daré#ssuch that at least
one endpoint ofl is in D;. The remaining subpaths form a traversalpf

with the appearance of a preliminary version of this papernizt al. [14] published an extended abstract discussenggpi
graph algorithms that also exploited Catalan-type boundsw@ncrossing matchings.

19

R

/\
\/ .

Lemma 24 LetP be atraversal oD,, and letP,, . . ., P, be the traversals tha®? induces forD,, . . ., D,.
Then

weigh{P) = Z weigh(P;)

=0

Let K, Ky, K1, ..., K, be configurations of’., Cyy, C1, . . ., C, respectively. We say that these config-
urations areconsistentf every edge occurs zero or two times.

Lemma 25 FortraversalsPy, ..., P;of Dy, ..., D, if K is a configuration of”, such thati<, x(Py), . . ., k(Ps)
are consistent then there is a travergalbof C, that inducesP, . . ., P..

Proof: By gluing together paths from differef;’s that have a common edge, one constructs paths
whose start and edge edges ar€ (i,). 0

Corollary 26 For any configurationk of C,,
k
M.(K) =min{>_ Mp,(K;) : K, Ko,..., K, are consisterjt
=0

6.6 The dynamic program

We now give a recursive algorithm TSP-DHP that for each edge of 7" populates the tableAB..

20

define TSP-DFe):
1 letey,..., e, be the child edges af(s < 2)
2fori=1,...,s,
3 recursively call TSP-DR;).
4 letC, :=the cycle inff* formed byl ({v.})
5 initialize each entry of 4B, to oco.
6 for each tuplé Ky, K1, ..., Kj)

of configurations of*({v.}),I'(De,), - .., I'(De,)
7 let K be the configuration df (D.) induced byK,, K1, ..., K
8 TAB K| := min{TAB.[K],

£ TAB, [K/]}

Corollary 27 (Correctness of TSP-DB For each edge: of T, for each noncrossing configuratidii
of C., TAB.[K] = Mp,(K).

6.7 Analysis of the dynamic program

In Step 6, each of the cul¥ D.,), ..., T'(D,,) has size at mogt+ 1, so hag)(c’) configurations for a
constant. The cutl'({v.}) has size at most three, and< 2, so the number of tuples in Step 6(%d*)
for a constantl. Thus each invocation of TSP-DP requi@&d’) time. The number of invocations is
|V(H)| — 1, so the entire dynamic program takes ti&‘|V (H)|). Combined with the reduction of
Subsection 6.1, this completes the proof of Theorem 3.

7 Lifting
7.1 Lifting with respect to one compression

We give a procedure IET-ONE(G, e, B) that, given an Eulerian bisubgraghof G /{e}, returns an
Eulerian bisubgrapis’ of G such thatB’ — {e¢} = B. (See Figure 4.)

define LFT-ONE(G, ¢, B):
ife is a self-loop ofG then returnB
if the endpoints ot in G have even degree iB U {e¢}
then returnB U {e}
else returnB U {e} U {e}

Lemma 28 (Correctness oL IFT-ONE) If Bis an Eulerian bisubgraph @ /{e} thenLIFT-ONE(G, ¢, B)
returns an Eulerian bisubgraph of.

21

Figure 4. Examples of lifting. The Eulerian bisubgraph is indicated with light lines. In the top diagram,
only one copy of the formerly compressed edge (the bold line) must be incorporated. In the second

diagram, no copies are needed. In the third diagram, two copies are needed.

22

Proof: If e is a self-loop ofG thenG — {e} is obtained fromG/{e} by merging two nodes and
v belonging to different components. Sinéeconsists of a connected Eulerian bisubgraph for each
connected component 6f/{e}, v andv have even degree iB (so the merged node has even degree)
andB is a connected Eulerian bisubgraph for the combined comyone

Suppose: is not a self-loop of7. ThenG/{e} is obtained fromG by contractinge. SinceB is an
Eulerian bisubgraph af’/{e}, it must contain at least one edge incident to at least onpantiof e in
G. ThereforeB U {e} connects each connected componentzofSince inG/{e} the degree inB of
each node is even, ifi every node has even degreeRrexcept possibly the endpoints aflf even the
endpoints have even degree thign {e} is an Eulerian bisubgraph 6f. If not, then both endpoints must
have odd degree iB since the sum of their degrees is the degree of the nodeirgsiittim contracting
e. HenceB U {e} U {e} is an Eulerian bisubgraph.]

7.2 Lifting with respect to many compressions

Theorem 4 There is a linear-time algorithm that, given an EuleriandbgraphB of G/S, returns an
Eulerian bisubgraphB’ of G such thatB’ — S = B.

We give the procedure below. Its correctness follows by atida from the correctness ofiET-ONE.

define LFT-MANY (G, S, B):
if S = () then returnB
else
let e be an edge of
return LFT-MANY (G, S — {e}, LIFT-ONE(G/{¢e}, ¢, B))

8 Low-diameter planar graphs have small branch-width

We restate and prove Lemma 20. The proof uses the ideas usmdimating the dynamic program.

Lemma 20Let G be a planar graph and I€f’ be a spanning tree @k such that every simple path i
has length at mogt. Then the branch-width of the du@f* is at most + 2.
Proof: LetG be the planar embedded graph obtained ftéioy adding artificial edges until each face
has at most three edges. Note thas a spanning tree @. LetT* be the spanning tree 6f* consisting
of the edges of:* notin 7. Since every face off has at most three edges* has degree at most three,
soT™* has degree at most three. R@dtat a leafr. For each node of G* other thanr, let X, denote
the set of descendents oin 7%, and letY,, denote the set of proper descendents (fe. excludingy
itself). LetC = {X, : v #7r}U{Y, : v#7r}U{{v} : v#r}. ThenCis a carving ofG*'s node-set
V(G*).

For anyv # r, lete, denote the edge af* betweerv and its parent. Theais not an edge of .

23

By Corollary 4,
'+ (X,) = E(elementary cycle of with respect tdl")

The elementary cycle efwith respect tdl” consists ok together with the simple path ifi betweere’s
endpoints. Since every simple pathZinhas length at mod, it follows that|I' . (X,)| < ¢+ 1. (See
Figure 3.)

Let D be the set of edges betweeandY,,. Because the other endpointafis the parent ob, e, ¢ D.
Because has degree at most three, theref¢f2), < 2. Note thatl's. (Y,) = I'e+(X,) — {e,} UUD, so
|FG*(Y0)‘ </l+2.

Next, we define a carving @i*’s edge-sef(G)

C' = {B(G[X)) : X €C)

whereG[X] denotes the subgraph 6finduced by the nodes of .

For eachX € C, anodev of G isin 9(E(G[X])) only if v € X and there is an edgec I'(X') one of
whose endpoints is. Thus|0(E(G[X]))| < |I'(X)]|. This proves that’ has width at most + 2.

We have shown thaf* has branch-width at most+ 2. It is easy to see (and shown in [28]) that
edge contraction does not increase branch-width. Sitioean be obtained fror* by contracting the
artificial edges, it follows that the branchwidth@Gf is at most’ + 2. O

The proof of the lemma makes clear that a tree representaftibe carving ofF(G*) can be obtained
in linear time fromG andT'.

9 Final remarks

The framework we have presented can be used to obtain appat&n schemes for other problems.
For example, a similar approach yields a linear-time appraon scheme for the following problem.

e input: a connected planar embedded grapland an edge-weight assignment

e output: a minimum-weight multisubgraph@fin which there are two edge-disjoint paths between
every pair of nodes.

In particular, the same spanner result can be used.
Another related problem is TSP insab-metric spacef that defined by a planar graph with edge-
weights, i.e. the following problem.

e input: a connected planar embedded gréghan edge-weight assignment, and a sulisetf
nodes,

e output: a minimum-weight closed walk visiting all nodesfin

24

Applying the framework to this problem requires a new spanesult: that there exists a subgraphtof
that approximately preserves all distances between nddésad that has weigh? (1) times that of a
minimum-weight Steiner tree fak. We have recently obtained such a result.

Acknowledgements

Claire Kenyon and Mikkel Thorup contributed greatly to thality of the presentation through their
criticisms and suggestions. Thanks also to Glencora Bailetbr helpful discussions and suggestions.

References

[1] I. Althofer, G. Das, D. Dobkin, D. Joseph, L. Soares, “Gparse spanners of weighted graphs,”
Discrete and Computational Geomet8yl, 1993.

[2] S. Arora, “Polynomial-time approximation schemes farckdean TSP and other geometric prob-
lems,” Journal of the ACMA5:753-782, 1998.

[3] S. Arora, “Polynomial-time approximation schemes farckdean TSP and other geometric prob-
lems,” Proceedings of the 37th Annual IEEE Symposium on FoundabbiComputer Science
pp. 2-12, 1996.

[4] S. Arora, “Nearly linear time approximation schemesHaorclidean TSP and other geometric prob-
lems,” Proceedings of the 38th Annual IEEE Foundations of Comitéencepp. 554-563, 1997.

[5] S. Arora, M. Grigni, D. R. Karger, P. N. Klein, A. WoloszyhA polynomial-time approximation
scheme for weighted planar graph TI®bceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms pp. 33-41, 1998.

[6] B. Baker. Approximation algorithms for NP-complete plems on planar graphsournal of the
ACM41:153-180, 1994.

[7] Andr Berger, Artur Czumaj, Michelangelo Grigni, and Hmg Zhao. Approximate minimum 2-
connected subgraphs in weighted planar grapheceedings of the 13th Annual European Sympo-
sium on Algorithmgpp. 472-483, 2005.

[8] H. L. Bodlaender, A linear-time algorithm for finding relecompositions of small treewidth,
SIAM Journal on Computing5:1305-1317, 1996.

[9] D. R. Cheriton, R. E. Tarjan, “Finding minimum spannimgds,”’SIAM Journal on Computing:
724-742, 1976.

25

[10] N. Christofides, “Worst-case analysis of a new heuwritr the traveling salesman problem,” In
J.F. Traub, editorSymposium on new directions and recent results in algosthnd complexity
p. 441. Academic Press, NY, 1976.

[11] , W. J. Cook and P. D. Seymour, “Tour Merging via Bran@eamposition, INFORMS Journal
on Computing15:233-248, 2003.

[12] A. Czumaj, M. Grigni, P. Sissokho, and H. Zhao, “Appnaétion schems for minimum 2-edge-
connected and biconnected subgraphs in planar grapnsgeedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithrpg. 489-498, 2004.

[13] E. D. Demain, M. Hajiaghayi, “Bidimensionality: new moections between FPT algorithms and
PTASSs,”Proceedings of the 16th Annual ACM-SIAM Symposium on Deséidgorithms pp. 590—
601, 2005.

[14] F. Dorn, E. Penninkx, H. L. Bodlaender, F. V. Fomin,”Eféint exact algorithms on planar graphs:
exploiting sphere cut branch decompositio&dceedings of the 13th Annual European Sympo-
sium on Algorithmspp. 95-106, 2005

[15] D Eppstein, “ Subgraph isomorphism in planar graphs ratated problems,Journal of Graph
Algorithms and Application3:1-27, 1999.

[16] M. Grigni, E. Koutsoupias, and C. H. Papadimitriou, “Approximation scheme for planar graph
TSP,” Proceedings of the 36th Annual IEEE Symposium on Foundatib@omputer Sciencep
640-645, 1995.

[17] M. Grigni and P. Sissokho, “Light spanners and appra@ten SP,Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithppg. 852—857, 2002.

[18] M. Grigni, “Approximate TSP in graphs with forbidden nairs,” Proceedings of the 27th Interna-
tional Colloquium on Automata, Languages, and Programmpmpg 869-877, 2000.

[19] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramarifigaster shortest-path algorithms for
planar graphs,Journal of Computer and System Sciens&8-23, 1997.

[20] J. S. B. Mitchell, “Guillotine subdivisions approxingapolygonal subdivisions: Part lI- a simple
PTAS for geometridc-MST, TSP, and related problemsS1IAM Journal on Computing8:298—
1309, 1999.

[21] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shys, The traveling salesman problem
John Wiley, 1985.

26

[22] B. Mohar and C. Thomasse@yaphs on Surfaceshe Johns Hopkins University Press, 2001.

[23] C. Papadimitriou and M. Yannakakis. Optimization, apgmation and complexity classe¥our-
nal of Computer and System Sciend82125—-440, 1991.

[24] C. Papadimitriou and M. Yannakakis. The traveling salan problem with distances one and two.
Mathematics of Operations Resead®11-11, 1993.

[25] S. B. Rao and W. D. Smith, “Approximating geometricahpins via 'spanners’ and ‘banyans,
Proceedings of the 30th Annual ACM Symposium on Theory opGtamg, pp. 540-550, 1998.

[26] N. Robertson and P. D. Seymour, “Graph Minor Ill. Plafege-Width,”Journal of Combinatorial
Theory, Series B36:49-63, 1984.

[27] N. Robertson and P. D. Seymour, “Graph minors IV: Tradtivand well-quasi-ordering,Journal
of Combinatorial Theory, Series48::227-254, 1990.

[28] N. Robertson and P. D. Seymour, “Graph minors X. Obsimoas to tree-decompositionJournal
of Combinatorial Theory, Series B2:153-190, 1991.

[29] P. D. Seymour and R. Thomas, “Call routing and the ratwat” Combinatorical4(2):217-241,
1994.

27

