Towards Diagrammability and Efficiency in
Event Sequence Languages

Kathi Fisler

Department of Computer Science
WPI (Worcester, MA, USA)
kfisler@Qcs.wpi.edu

Abstract. Industrial verification teams are actively developing suitable
event sequence languages for hardware verification. Such languages must
be expressive, designer friendly, and hardware specific, as well as efficient
to verify. While the formal verification community has formal models
for assessing the efficiency of an event sequence language, none of these
models also account for designer friendliness. We propose an intermediate
language for event sequences that addresses both concerns. The language
achieves usability through a correlation to timing diagrams; its efficiency
arises from its mapping into deterministic weak automata. We present
the language, relate it to existing event sequence languages, and prove
its relationship to deterministic weak automata. These results indicate
that timing diagrams can become more expressive while remaining more
efficient for symbolic model checking than LTL.

1 Introduction

The increasing adoption of formal verification has led to a flurry of research
into property specification languages for hardware verification. Large-scale ef-
forts include Accellera’s standardization of Sugar [1], Synopsys’ OVA [11], and
Intel’s FTL [3]. Generally speaking, these are event sequence languages: they
allow designers to express sequences of events to monitor and check during ver-
ification. The proliferation of work from industry on event sequence languages
emphasizes that they must be designer friendly, expressive, and specific to the
hardware domain in addition to efficient to verify. Although practical experience
and theoretical results give insights into how to achieve these goals individually,
few formal models attempt to address usability and efficiency simultaneously.
In the space of event sequence languages, timing diagrams provide an ap-
pealing combination of usability and efficiency. Designers have established their
utility by regularly employing them as an informal design tool. Mappings from
formalized timing diagrams to deterministic weak automata [7] provide effec-
tively linear symbolic verification algorithms [4]. That timing diagrams are not
more widely used as event sequence languages suggests that they lack the ex-
pressiveness needed in industrial verification. Their combination of utility and
efficiency, however, raises an interesting question: how expressive can we make
an event sequence language while retaining both diagrammability and efficiency?

a \[\1,3] LTL: —~a A X(a A ((=b A X(b A F(=c A Xc)))V
b X(=b A X(b A F(=c A Xe)))V
N)

XX(=b A X(b A F(=c A Xe))))

C
Sugar: —a & next!(a & next_e![1,3](—b & next! (b & eventually! (—c & next! ¢))))

Fig. 1. Expressing an event sequence in three languages.

This paper explores this question by proposing a (textual) intermediate lan-
guage for capturing event sequence languages. To target diagrammability, we de-
sign the core of the language around timing diagrams. To target expressiveness,
we extend the core language to capture constructs from other event sequence lan-
guages. To target efficiency, we syntactically characterize which expressions in
this language map to deterministic weak automata. The results of this work are
twofold: first, our language provides an framework in which to assess both usabil-
ity and efficiency of other event sequence languages; second, our characterization
proves that timing diagrams can be extended with several new features—such
as partial orders between events, multiple environmental assumptions, escap-
ing conditions, and event clocks—without losing their mapping to deterministic
weak automata. Our long-term goal is to develop formal models that simulta-
neously characterize both usability and efficiency in event sequence languages.
This paper focuses on the efficiency of verifying our proposed language; future
papers will treat formal models of diagrammability as a measure of usability.

2 Preliminaries

2.1 Event Sequences and Timing Diagrams

Event sequences, as their name implies, capture sequences of events on signals in
a design; they express properties for verification or simulation. Regular expres-
sions and linear temporal logic have similar goals, but also some subtle differ-
ences. Event sequences often monitor transitions on signals in the design, rather
than just boolean values of propositions. In addition, event sequences generally
capture timing constraints between events. While both regular expressions and
linear temporal logic can capture these features, the resulting expressions can
be rather cumbersome, especially in contrast to event sequences and timing di-
agrams. Figure 1 shows a simple example of the same event sequence expressed
as a timing diagram, in linear temporal logic (LTL), and in Sugar.

Although timing diagrams present event sequences somewhat intuitively, they
are not as expressive as some other event sequence languages. For example, tex-
tual event sequence languages easily express disjunctions, while diagrams in gen-
eral capture disjunctive information poorly. The mapping from timing diagrams
to weak automata, which does not hold for full LTL, demonstrates benefits to

this limited expressive power. The question, then, is how far we can push timing
diagrams while retaining this mapping. The timing diagram shown in Figure 3,
for example, expresses some disjunction as the order of events is left unspecified
(a partial order rather than a total one). This extension adds expressive power
without sacrificing diagrammability or weakness. We are interested in similar
extensions based on constructs from modern event sequence languages.

2.2 Weak Automata

A Biichi automaton (Q, X, qo, R, L, F) is weak if there exists a partition of the
states @ into disjoint sets Q1, ..., Q, such that (1) each Q; is either contained
in F or is disjoint from it, and (2) the @;’s are partially ordered so that there
is no transition from @; to @; unless Q; < @;; in other words, an automaton is
weak if each of its strongly connected components has either all states fair or all
states non-fair [8]. Weak automata are attractive in the context of verification
because symbolic cycle detection is effectively linear for weak automata, whereas
existing algorithms for full LTL are quadratic [4].

Deterministic weak automata are also interesting in verification for their
properties under complementation. Automata-based verification approaches must
complement automata that capture properties as part of the verification process.
In the general case, complementing a Biichi automaton can blowup its number
of states exponentially. Complementing a deterministic weak automaton with
a single fair set F, however, requires only complementing F; the structure of
an automaton and its complement are otherwise identical. This represents a
substantial savings in construction time, and more importantly, in the size of
automata used to represent complemented properties.

3 An Intermediate Language for Event Sequences

Event sequences define patterns of transitions and values on variables, as well as
constraints on and exceptions to those patterns. This section presents a regular-
expression-like syntax and semantics for event sequences. The semantics captures
one pass over an event sequence, rather than the multiple passes needed to treat
an event sequence as an invariant. The one-pass semantics offers two benefits:
it provides a foundation for defining different multiple pass semantics [6], and
it enables the mapping to weak automata. This limitation is not as serious as
it might seem; in prior work [7], we showed that relabeling fair sets and adding
a few select transitions constructs the automaton for a negated invariant event
sequence (the machine most commonly needed for verification) from a one-pass
(deterministic weak) automaton for that sequence.

3.1 Syntax

Like regular expressions, event chains capture sequences and repetitions of values
on signals. Event chains, however, restrict disjunction to referring to ordering of

events, rather than their occurrence. Nesting event groups within event patterns
restricts underspecified orders to occur within delimited intervals.®

Definition 1 Event chains are defined hierarchically as follows:

— An event is a conjunction of values of and transitions on variables that
contains at least one transition. Propositional literals (p, —¢) denote boolean
values; propositional variables annotated with arrows (p |, p 1) denote falling
and rising transitions, respectively.

— An event group is a nonempty set of events or a set of event groups.

— An event pattern, denoted PM consists of an event group or a sequence of
event patterns (P) and a positive number, *, or + (M). Repetition markers
and + are called unbounded. We denote ordered sequences of event patterns
using semicolons, as in PlMl;P2M2; .- P,iw’“. We omit M when M = 1.

— An event chain is a sequence of event patterns in which the last pattern does
not have an unbounded repetition marker.

The set of all events, event groups, event patterns, and event pattern sequences
in an event chain are called the elements of that chain.

An event sequence augments an event chain with three kinds of modifiers:
holding patterns constrain variable values during event groups, temporal con-
straints restrict the amount of time (as a number of clock ticks) that can
elapse between events, and escape conditions indicate special circumstances un-
der which the chain should be considered rejected or satisfied. Temporal con-
straints may be relative to a designer-specified event clock, as captured by a
Boolean expression (this is a common feature in many events sequence lan-
guages). The following definition formalizes each of these components.

Definition 2 An event sequence is a tuple (E, H,T,S) where F is an event
chain, H (the holding patterns) is a partial function from event groups in E to
propositional formulas, T is a set of temporal constraints and S is a set of escape
conditions.

— A temporal constraint is a tuple (eq, ea, 1, u, c) where e; and ey are (uniquely
identified) events in E, [is a positive integer, u is either a positive integer at
least as large as [or the symbol oo, and ¢ is a boolean expression (the clock
for the constraint; true indicates the system clock). Events e; and es may
lie in different event groups, but if they do, then their nearest containing
patterns may only have repetition markers of value 1.

— An escape condition has one of the following types, where X is a propositional
expression over variable names and transitions on variables (variables need
not be in the chain) and G is an event group:

e “accept if don’t complete G”
e ‘“reject if see X in G”
e “accept if see X in G”

Il
—~
IS
—
—~

+

—~

o>
—

)
—
—
—~~

ISH
—
—

E
H={b1,c1}—a : :
T = {(eT.d1,2,5, true)} L@ @l [o] bidt | ||
S = { | |

= {accept-if-don’t-complete({a 1}7)}

Fig. 2. A sample event sequence and an example of its semantics.

As an example, Figure 2 defines an event sequence comprised of some number
of rising transitions on a, followed by rising transitions on b and ¢ (in either
order), followed by a rising transition on d. In addition, the rising transition on
d must occur between 2 and 5 ticks (inclusive) after the rising transition on ¢
(the timing constraint), signal a must remain true until the rising transition on
d occurs (the holding pattern constraint), and the rest of the sequence is only
checked if a rising transition on a occurs (the escape condition).

3.2 Semantics

The semantics of event sequences is defined in terms of languages over infinite
strings, where each character in a string is an assignment of boolean values to
variables. An infinite word models an event sequence if there exists a mapping
from elements of the event chain to ranges of indices into the word (herein called
windows) such that the windows assigned to each element preserve the element’s
constraints; these mappings are called index assignments.

As an example of the semantics, consider the event sequence and the word
shown in Figure 2. The figure shows how the word is divided into windows
per event pattern (demarcated by solid lines), and subwindows as necessary for
nested elements (demarcated by dashed lines). The definitions in this section
formalize the mappings from event elements to windows.

Definition 3 Given a word W, a window of W is a subword of W; a pair of
indices into W, denoted [i, j] where i < j, defines a window. Furthermore,

— An individual index ¢ defines a trivial window [é, 4].

— Window [iy,42] contains window [i3, 4] iff i1 < i3 and i4 < is.

— Given a window w = [start,end], a sequence [s1,e1],...,[sk,er] forms a
consecutive covering sequence of windows for w if s; = start, e, = end, and
forall 1 <j <k, 6j28j+1—1.

Definition 4 Given an event sequence V and a word W, an index assignment
for V and W is a function from the elements in V' to non-empty sets of windows
of W.

! While this property may not appear important in this paper, it helps maintain a

mapping to reversal bounded counter machines when timing constraints are relaxed
to also include variables, which impacts decidability of verification [6].

A window must meet certain requirements in order to capture the constraints
of an event element. The following two definitions formalize those requirements
for each type of element in an event chain.

Definition 5 Let £ = v; A ... A v, be an expression where each v; is a propo-
sition, its negation, or a rising or falling transition on a propositional variable.
Let W be a word and let ¢ be an index into W. Let W;(q) denote the value of
proposition ¢ at index i into W. Index 4 satisfies F if for every v;, W;(p) = 0
if v, = —p, Wi(p) =11if v; = p, Wi(p) = 0 and W;11(p) = 1 if v; = p T, and
Wi(p) =1 and Wi1(p) =0ifv; =p |.

Definition 6 Let V = (E, T, H,S) be an event sequence, let W be a word, and
let I be an index assignment for V and W. I is valid for V' and W iff all of the
following conditions hold:

1. I is minimal, in that (a) removing any window from (L) for any element L in
E would render I invalid and (b) there exists no valid index assignment I’ and
element L € E such that for some window [w1,ws] € I(L), I'(L) = [wy, w]
for some w) < we and I’ is equivalent to I on all windows that occur before
wy (this requires I to assign the earliest possible matching windows to each
element; it enables the recognizing automaton to be deterministic).?

2. I respects hierarchy, in that for all event elements L in E, if L is a sub-
element of (nested within) event element L’, then for every window w in
I(L), there exists a window w’ in I(L’) such that w’ contains w.

3. I satisfies the structural requirements of V; namely:

— (for event chains) I(E) = {[start,end]} for some indices start and end
into W such that no smaller choice of start or end yields a valid index

assignment.
— (for pattern sequences) For every event pattern sequence P = PlMl; e P,iw"‘
and every w in I(P) there exists sequence wy, . .., wy of covering consec-

utive windows of w such that for all 1 < j < k,w; € I(P;).

— (for event patterns) For every event pattern GM and wp in I(GM) there
exists a sequence wp, ..., wp,, of covering consecutive windows for wp
such that each wp; € I(G) and m is equal to M if M is a number or
some natural (resp. positive) number if M = % (resp +).

— (for nested groups) For every event group G containing nested event
groups G, ...,G and every window w € I(G) there exists a sequence
wy, ..., w, of covering consecutive windows for w and a permutation
GPy,...,GP; of Gi,...,G} such that for all ¢ < j < k,w; € I(GF;).

— (for event groups) For every event group G consisting of aset {E, ..., Ex}
of events and every window w = [start,end] € I(G) there exists a per-
mutation EPy,...,EP; of Fy,..., Ey such that [start, start] € I(EP;)
and for all 1 < j < k, there exists index i; € [start,end] such that
i; € I(EP;), and I(EP;) is the smallest index in [start, end] and larger
than I(EP;_;) that satisfies EP;.

2 Window minimality resembles Sugar’s notion of expressions “holding tightly”.

— (for events) For every event Fv, and every index ¢ such that [i,4] € I(Ev),
i satisfies Ev (Defn 5).

4. I satisfies the holding pattern constraints, in that for every holding pattern
h corresponding to an event group G and every window [wy,ws] € I(G),
every index wy < ¢ < wy satisfies h.

5. I satisfies the timing constraints, in that for every time constraint {ey, es, 1, u, ¢
and every t; € I(e1) and to € I(t2) such that ¢; and ¢5 fall in a common
window for the smallest element containing both e; and ey, the number of
indices satisfying ¢ between ¢; and to (inclusive) is within the range [I, u].

The previous definition formalizes how an index assignment captures an event
sequence without considering escape conditions. The next two definitions handle
escape conditions. The minimality restrictions support a semantics of event se-
quence concatenation, which we omit here for sake of space. Definition 9 relates
words and event sequences based on the existence of index assignments that may
or may not invoke escape conditions.

Definition 7 Let V be an event sequence, W be a word, and I be an index
assignment for V and W. Let C' be an escape condition in V of the form “ac-
cept/reject if see X in G”. Index 4 into W invokes C' under I if i € I(G), i
satisfies X, I is valid for all windows that occur before that for I(G) that con-
tains ¢, and no index into W smaller than 7 invokes an escape condition under
1. If there exists an index ¢ in I that invokes some escape condition C, we say
that I invokes an escape condition of V.

Definition 8 Let V be an event sequence, W be a word, and I be an index
assignment for V and W. I loops under escape condition C € V if C is of the
form “accept if don’t complete G”, I is valid for all windows that occur before
that for I(G) that contains 4, and I is not valid for the prefix of V up to and
including G.

Definition 9 Let V be an event sequence and let W be a word. W |= V if there
exists an index assignment I for V' and W such that I is valid for V', I loops
under some escape condition in V', or I invokes some escape condition in V.

4 Relationship to Existing Event Sequence Languages

To motivate the intersection between our simultaneous goals of diagrammability
and efficiency, this section shows how several features of existing event sequence
languages do or do not map into the proposed intermediate language.

4.1 Timing Diagrams

Timing diagrams map naturally into the intermediate language. Figure 3 shows
a timing diagram and its representation as an event sequence. Mapping the de-
picted transitions into event groups is the only subtle task. Visually, the event

a [39] E={atblclal}i{bl}
m T={(a1,c1,2,5,true),

b (¢T,al,1,00,true),

c (a],b],3,9,true)}

Fig. 3. A timing diagram with partial orders and its mapping into an event sequence.

chain {a 1};{b1};{c1};{a |};{b |} appears appropriate, but is incorrect be-
cause the rising transitions on a and b can occur in any order since no constraint
orders them. The correct event chain respects the partial order in the diagram.

The language presented here extends our previous results on the relationship
between timing diagrams and weak automata [7] in two ways. The previous re-
sult held for timing diagrams with a total order on their transitions and a prefix
of the diagram as an environmental assumption (as in, “if the rising transition
on a occurs, then match the whole diagram”). The results in Section 5 show
that timing diagrams with partial event orders and multiple input assumptions
on the environment also map to deterministic weak automata. We view environ-
ment assumptions as events that are only constrained if they occur [5]; unlike
other events, their failure to occur does not violate the diagram’s requirements.
For the diagram in Figure 3, we could treat the two transitions on a as envi-
ronment assumptions by rewriting the event chain using nested event groups (as
{{a 1}, {b1},{c1},{a l}};{b |}) and adding “accept-if-don’t-complete” escape
conditions on the two groups corresponding to transitions on a.

These examples help illustrate the influence of timing diagrams in the design
of the proposed event sequence language. The language as proposed is, however,
more expressive than our current timing diagram formalization. Consider the
event chain a 7*;b T. The current timing diagram semantics requires all depicted
transitions to occur unless an escape condition matches, so this chain (with-
out escape conditions) is not expressible as a timing diagram. Similar examples
involving repetitions also exist. Enriching the timing diagram notation could
resolve some of these issues; this remains an issue for future work.

4.2 LTL, Sugar, and FTL

Sugar and FTL are similar in that each extends conventional LTL. Since there
exist LTL formulas that cannot be captured by weak automata, certain FTL
and Sugar formulas will not map into our intermediate language. Weakness
primarily characterizes the location of fair sets in automata. In LTL, fairness
constraints arise from combination so of eventualities and cycles (the operators
U and G). Figure 4 shows automata that capture two formulas: (p U ¢) U r and
p U(G(q U r)). The first example a yields a weak automaton and corresponds
to event chain ({p}";{q})*;{r}. The second cannot be captured with a weak
automaton and is not expressible in our language.

o To—0—00 SORSORSGS

Fig. 4. Automata for two LTL formulas.

One key difference between these two formulas is that the second contains
a repetition in its last pattern, while the first does not. This same difference
characterizes the automata for the regular expressions (aa)* and (aa)*b, the
first of which cannot be captured by a deterministic weak automaton while
the second one can. An automaton can recognize a nonrepeating final pattern
without creating a fair set. This explains the restriction in the definition of event
chains that the final pattern not have an unbounded repetition marker.

Certain other features of Sugar and FTL do not adversely impact weakness.
FTL’s change_on and reject_on constructs indicate when a sequence should be
immediately accepted or rejected; escape conditions capture such scenarios in
the proposed intermediate language. Augmenting the chain (p U ¢) U r with an
escape condition “accept if see reset in {g}” would introduce a new state labeled
reset with an incoming edge from the state for ¢; this automaton is also weak.

4.3 OVA

Of the recent event sequence languages discussed in this paper, OVA most closely
matches the proposed language. Unlike Sugar and FTL, OVA does not explicitly
support LTL or CTL operators. The OVA istrue construct maps into holding
patterns, and their non-overlapping event clocks map into ours. Unlike the pro-
posed language, however, OVA can express disjunction among sequences and
negation of sequences. Our language does not support negation because negated
sequences generally cannot be realized diagrammatically. Our language does,
however, still support constructing deterministic weak automata for the nega-
tions of event sequences, as described in the introduction to Section 3.

5 Relationship to Deterministic Weak Automata

This section characterizes which sequences in our language map to determinis-
tic weak automata; almost all do, with the exception of those with particular
interactions between escape conditions and repeated patterns. We construct an
automaton corresponding to the semantics, prove the construction sound, then
characterize when the resulting machine is both weak and deterministic.

Given an event sequence V', we construct a Biichi automaton that accepts
all words with a prefix that models V. The construction proceeds in phases,
building a series of abstract machines, each of which refines the one from the
previous phase. Figure 5 illustrates the intuition behind the phases: phase 1
captures event patterns, phase 2 handles nested event groups, phase 3 expands

— P1 P2+ P3 Final

phase 3 .
L '\ phase2

\ -

.) -
/ * H

Fig. 5. Phases in the state machine construction algorithm.

non-nested event groups into their permutations and phase 4 expands sets of
events into states that reflect timing constraints. Edges in the abstract machines
reflect edges in the actual machine: if there is no edge from one abstract state
to another, then there will be no edge from any state in the expansion of the
first to the expansion of the second. For sake of space, we present the detailed
algorithm only up through phase 3; this is sufficient for the results on weakness.

Phases may add labels and annotations (to denote initial or fair) to states.
Expanding an abstract state copies all such markings to each expanded state.
The construction uses the following definition regarding adjacency of patterns.

Definition 10 Let P; be an event pattern in an event pattern sequence P =
PlMl; - P,iVI’“. The next patterns of P; are defined as follows. If i < k, then the
next patterns of P; is the set of all P; such that ¢ < j < k and for all i such that
1 < h < j, Py has the repetition marker *. If i = k or if P, has repetition marker
*, the next patterns of P; includes the next patterns for the pattern sequence P’
that directly contains P.2 If P; has an unbounded repetition marker, then P; is
a next pattern of itself. The previous patterns are defined similarly.

Ezample: In P1;P2;P§‘;P4Jr , the next patterns of P, are P3 and Pj; the next
patterns of P3 are P are Py. Given sequence Pp; (Pa1; Psy); (Pa1; Pa2)™; P4, the
next patterns of Py are Psy, P31 and Py.

Preprocessing phase: repetition expansion. Expand all event patterns that repeat
a concrete number of times n > 1 with n copies of the pattern. In the resulting
event sequence, all repetition markers are either the number 1 or unbounded.
The remaining phases assume that all event patterns have this format.

3 Such a containing pattern much exist for all sequences other than the overall event
chain, which by definition cannot end with an unbounded pattern.

Phase 1: Capture FEvent Patterns. Let PlMl; cels P,iwk be the event patterns that
form the event chain in V. Create an abstract state for each P; and an edge from
each P; to P41 (for 1 <i < k). Create a final state and mark it as a fair state;
include an edge from Py to the final state and an edge from the final state to
itself. Mark the state for P; as an initial state. For each pattern P; = wa

— If M; is unbounded, add an edge from P; to itself. If M; = %, add an edge
from each previous pattern of P; to each next pattern of P;.

— If G; is a sequence of event patterns PGy;...; PG,, repeat this phase up
to this point to create a chain of states for PGy, ..., PG,; replace the state
for P; with this chain. Any incoming edges to the state for P; other than
self-loops should point to the state for PG1. The outgoing edge from P; to
P;11 becomes an edge from PG, to P;;1. If P; had a self-loop, insert an
edge from PG, to PG;.

Phase 2: Fxpand Nested Event Group States. This phase expands states for
nested event groups into states for simple event groups. The construction relies
on the following definition:

Definition 11 A permutation Gj ...Gj of event groups violates a timing con-
straint (e1, ez, !, u,c) if there exists G; and G such that 1 <i < j <k, e € G;
and e; € Gj.

— For every abstract state Sg corresponding to an event group G that con-
tains a set of event groups G, ..., Gy, and every permutation GPy,...,GPy
of G1,...,G} that does not violate a timing constraint, create a chain of
abstract states GPS1,...,GPSy. For every non-self-loop edge coming into
S, add an edge from the same source to GP;. For every non-self-loop edge
leaving S¢, add an edge from GPS), to the target of the original edge.*

— Eliminate unnecessary nondeterminism by merging states with the same
incoming transitions and labels into single states (this shares common prefix
states across the various permutations).

— If S¢ had an edge to itself, add an edge from each final state in the subgraph
that expands S¢ to each initial state in the subgraph that expands S¢.

— Remove S¢ from the abstract state graph.

— For each holding pattern h for event group G and each abstract state Sg
corresponding to or expanded from G, add h as a propositional label to Sg.

Phase 3: Handle Escape Conditions.

— For each escape condition C' of the form “reject if see X in G”, create a new
abstract state S¢ for C, label S¢ with X, add an edge from each abstract
state corresponding to G to S¢ and add a self-loop at Sc¢.

4 To reduce the machine size, we could perform a bisimilarity minimization on the
subgraph of all states that expanded Sg.

— For each escape condition C' of the form “accept if see X in G”, create a new
abstract state S¢ for C, label S¢ with X, add an edge from each abstract
state corresponding to G to S¢, add a self-loop at S¢, and mark S¢ as fair.

— For each escape condition C' of the form “accept if don’t complete G”, mark
every abstract state corresponding to G as fair.

This machine is not necessarily weak, due to potential escape conditions on
nested repeated patterns. It is, however, the SCC quotient graph for the final
machine, so the characterization theorem for when the algorithm yields a weak
automaton is defined on the abstract machine.

Phase 4: Expand Event Sets. All abstract states now correspond to sets of events.
This phase instantiates abstract states with their actual events and handles tim-
ing constraints. Since the events in an event set may occur in any order, we first
generate all partial orders that are logically consistent within each unordered set
over the events in the group; a partial order is logically consistent if no two un-
ordered events are logically inconsistent.® Eliminate all such orders that violate
a timing constraint. In a previous paper, we presented a technique for generating
Biichi automata for timing diagrams with timing constraints and a total order-
ing on events [7]. The current problem reduces to that one by conjoining events
that are in the same cell of a partial order into a single event. For sake of space,
and since the expansion into events does not affect weakness by construction,
we do not reproduce the details here. Intuitively, the algorithm uses the timing
constraints to generate combinations of time spent in each set of events, then
creates the number of states needed to count out these durations of time.

To handle the event clock ¢ in a timing constraint over events e; and e, this
phase adds a unique label for ¢ to each state between e; and es, and creates
an automaton that outputs this label whenever ¢ is true. The final step cross-
products the core machine with the clock machines; this does not affect weakness.

5.1 Soundness
Lemma 1. One fair set is sufficient for event sequence automata.

Proof Sketch: The automaton only needs to satisfy any one fairness condition
to accept a word, so the argument depends on whether different fair sets could
interact in the same cycle. By construction, the only possible overlap between
fair sets is if two “accept don’t complete” conditions exist for groups G; and G,
where G contains Gs. In this case, a cycle that satisfies G5 satisfies G, so only
one fairness constraint is required.

Theorem 1. Let V' be an event sequence and let M be the automaton con-
structed for V.. Let w be an infinite word. M accepts w iff w = V.

5 Unlike permutations, partial orders allow events to occur simultaneously.

Proof Sketch: Intuitively, the proof develops a correspondence between states
in the abstract machines and the windows in the co-domain of an index assign-
ment for W and V. The theorem follows from an argument that the windows
occurring in accepted (resp. rejected) words correspond to accepting (resp. re-
jecting) paths through the automaton.

Although the mapping is sound, it is not complete; in other words, our lan-
guage does not logically characterize deterministic weak automata. Consider the
regular expression ab* 4 bc*: a deterministic weak automaton accepts it, but it
is not expressible in our language due to the use of disjunction.

5.2 Proof of Determinism

Definition 12 Let PM be an event pattern. The first events of PM is the
set of events in P if P is an event group. If P is an event pattern sequence
PlM R P,iw’“, then let P}, be the first pattern in the sequence with a bounded
repetition marker (or Py if no such pattern exists). The first events of PM is the
union of the first events for all PiMi where 1 < ¢ < h.

Example: Given pattern sequence Py; Py; Ps where P1 = a T and Py = P3| Pao,
the first events of P; is the set {a 1} and the first events of Ps is the union of
the first events of Py and Pss.

Theorem 2. The construction algorithm produces a deterministic automaton if
all of the following conditions are satisfied:

— Fach pair of events contained within any one event group (including nested
event groups) is pairwise logically inconsistent unless a timing constraint
orders the two events.

— For each event pattern PiM" with an unbounded repetition marker in an event
pattern sequence PlMl; cees P,iw’“, the first events of P; are pairwise logically
inconsistent with the first events of each next pattern of P;.

— For each “accept/reject when see X in G” escape condition, X is logically
inconsistent with all holding patterns for G.

Proof Sketch: The machine is deterministic if the choice among multiple next
states is deterministic. In the event group graph, multiple next states arise in
three cases: from event groups, unbounded repetition markers and escape con-
ditions. By construction, transitions into the states that expand event groups or
patterns occur when a first event is recognized for that pattern or group. If these
events are logically inconsistent, then the corresponding transitions must be de-
terministic. Similar arguments cover the transitions to different events within an
event set and to escape condition states.

5.3 Proof of Weakness

Theorem 3. The construction algorithm produces a weak automaton if the se-
quence has mo escape condition of the form “accept if don’t complete G” where
G is strictly contained in a pattern with an unbounded repetition marker.

Proof Sketch: The proof follows from the relationship between the SCC quo-
tient graph of the final automaton and the abstract machine after phase 3.
The final automaton refines the structure of the event-group level automaton
by construction; this means that all SCCs either lie within abstract states of
the event-group machine, or fall within SCCs in the event-group machine. By
construction, fair markers in the abstract machine propagate to the states that
expand on the abstract states. An SCC in the final machine is therefore fair if
and only if its corresponding SCC in the abstract machine is fair. The result
therefore holds if we can show that the restriction in the theorem statement are
sufficient to guarantee that the event-group machine is a weak automaton.

Three kinds of abstract states are marked fair: the final state (which by
construction has no edges to other states and hence forms its own SCC), the
“accept/reject if see” escape condition states (which also have no edges to other
states), and the “accept if don’t complete” escape conditions, which could lie in
cycles with other states. The restriction in the theorem rules out the case which
would lead to a cycle of both fair and non-fair states; the “strictly contained”
requirement forces a non-fair state into the same cycle.

6 Related Work

We are unaware of logical characterizations of weak automata, much less ones
that account for diagrammability or other forms of usability. The original work
on the efficiency of verifying weak automata is due to Bloem, Ravi, and Somenzi [4].
Other timing diagram formalizations have supported some of the language ex-
tensions discussed here [2,5,10], but none related the diagrammatic features of
these languages to efficiency in verification.

7 Conclusions and Future Work

The relationships between timing diagrams and deterministic weak automata
suggest that there exist formal models of event sequences that simultaneously
address both usability and efficiency. A traditional theoretical approach to de-
signing languages towards efficiency would be to find a syntactic (logical) char-
acterization of weak automata. This approach, however, fails to account for the
usability of that logical characterization. This is perhaps justifiable, as ”usabil-
ity” is an inherently informal notion. If we refine our notion of usability to mean
diagrammability, however, formal models become possible. Formal characteri-
zations of diagrammability usually rely on topological or spatial arguments [9];
appropriate characterizations for discrete linear events remain an open problem.

The event sequence language proposed in this paper targets diagrammabil-
ity by allowing only a restricted form of disjunction; in particular, disjunction
governs the ordering of events, but not their occurrence. This is consistent with
our reading of diagrams to imply that all depicted items actually exist (maps,
for example, suggest that all depicted features are actually there). Such nu-
ances in the different ways that we use logical operations are fundamental to

formal models of diagrammability. The language targets efficiency by restricting
repetitions within sequences to forms that yield weak automata. Although the
resulting language does not fully characterize weak automata, it does allow us
to substantially enrich the set of timing diagrams that can be verified efficiently.

Several avenues remain open for future work. Establishing formal relation-
ships between other event sequence languages and the proposed one would iden-
tify subsets of those other languages that could be verified efficiently through a
mapping to weak automata. We would like to prove that the current language
is maximal, in the sense that any further extension would violate either dia-
grammability or weakness. Finally, more general questions remain regarding the
nature of diagrammatic representations and their relationship to computational
concerns such as efficiency and decidability that are so important in verification.

References

1. Accellera Working Group. Property specification language reference manual (ver-
sion 1.0). Available at http://www.eda.org/viv/docs/psl lrm-1.0.pdf, 2003.

2. N. Amla, E. A. Emerson, and K. S. Namjoshi. Efficient decompositional model
checking for regular timing diagrams. In IFIP Conference on Correct Hardware
Design and Verification Methods, 1999.

3. R. Armoni et al. The ForSpec temporal logic: A new temporal property-
specification language. In Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 296211, 2002.

4. R. Bloem, K. Ravi, and F. Somenzi. Efficient decision procedures for model check-
ing of linear time logic properties. In International Conference on Computer-Aided
Verification, number 1633 in Lecture Notes in Computer Science, pages 222-235.
Springer-Verlag, 1999.

5. K. Feyerabend and B. Josko. A visual formalism for real-time requirement specifica-
tions. In M. Bertran and T. Rus, editors, Transformation-Based Reactive Systems
Development, Proc. 4th International AMAST Workshop on Real-Time Systems
and Concurrentand Distributed Software, ARTS’97, volume 1231, pages 156—168.
Springer-Verlag, 1997.

6. K. Fisler. Timing diagrams: Formalization and algorithmic verification. Journal
of Logic, Language, and Information, 8:323-361, 1999.

7. K. Fisler. On tableau constructions for timing diagrams. In NASA Langley Formal
Methods Workshop, 2000.

8. O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: From linear-
time to branching-time. In IEEE Symposium on Logic in Computer Science, 1998.

9. O. Lemon. Comparing the efficacy of visual languages. In D. Barker-Plummer,
D. I. Beaver, J. van Benthem, and P. S. di Luzio, editors, Words, Proofs, and
Diagrams, pages 47-70. CSLI Publications, 2002.

10. Y. Ramakrishna, L. Dillon, L. Moser, P. Melliar-Smith, and G. Kutty. A real-
time interval logic and its decision procedure. In Proc. Thirteenth Conference on
Foundations of Software Technology and Theoretical Computer Science, volume 761
of Lecture Notes in Computer Science, pages 173-192. Springer-Verlag, December
1993.

11. Synopsys, Inc. Openvera assertions. Available online for download at
http://www.open-vera.com/technical/technical.html, 2002.

