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Abstract

A key challenge facing nanotechnologies will be con-
trolling nanoarrays, two orthogonal sets of nanowires that
form a crossbar, using a moderate number of mesoscale
wires. Three methods have been proposed to use mesoscale
wires to control individual nanowires. The first is based
on nanowire differentiation during manufacture, the second
makes random doped connections between nanowires and
mesoscale wires, and the third, a mask-based approach, in-
terposes high-K dielectric regions between nanowires and
mesoscale wires. All three addressing schemes involve a
stochastic step in their implementation. In this paper we
analyze the mask-based approach and show that a large
number of mesoscale control wires is necessary for its re-
alization.

1 Introduction

The crossbar, a simple but well-known connection net-
work, consists of two sets of orthogonal wires. Switches
are positioned at the crosspoints defined by the intersection
of pairs of wires. Crossbars can be used as switching net-
works, memories, and programmed logic arrays.

Chemists have developed methods to assemble
nanowires (NWs) into crossbars [2, 17, 19, 22]. They
have realized switches by placing a thin layer of bistable
molecules, such as rotaxanes or [2]-catenanes, between two
orthogonal sets of NWs [3, 4]. When a large positive or
negative electric field is applied between the NWs forming
a crosspoint, the molecules at the crosspoint become either
conducting or nonconducting. Once the state of these
molecules is set, a smaller electric field can be used to
sense their state without changing it by observing the level
of current flowing through the crosspoint.
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Figure 1. A decoder to address six (vertical) NWs
with four (horizontal) mesoscale wires (MWs). The
(highlighted) lightly doped regions of a NW allow ac-
tivation of any two MWs to activate a unique NW [6].

Several methods have been devised to produce NWs us-
ing laser ablation [18], chemical vapor deposition (CVD)
[5], superlattice NW pattern transfer (SNAP) [17], and
nanolithography [16, 19]. Other methods for producing
NWs are likely to be developed.

Controlling NWs with mesoscale wires (MWs) without
losing the high crosspoint density afforded by small NW
sizes offers an important challenge that can be met by a)
positioning MWs at right angles to the NWs and b) using
MWs to apply electric fields to lightly doped regions of
NWs. The application of an electric field by a MW to an
exposed and doped NW drives the conductance of that NW
low. (See Fig. 1.) That is, NWs combined with MWs form
Field Effect Transistors (FETs). A circuit that causes one
NW to be conductive while the others are non-conductive
by associating each NW with a unique set of active MWs is
called adecoder.

As explained in Section 2, three methods have been pro-
posed to control NWs with MWs. The number,M , of MWs



needed to controlN NWs with probability at least1 − ε
has been determined analytically for the first two methods
[7, 9, 21]. Here we analyze the third. For very reasonable
assumptionsM must be at least2 log2 N + 46. As NW di-
mensions decrease,M could easily grow to2 log2 N +300.

The mask-based decoder, which is explained in detail
in Section 2, is designed [12, 13] to work with undifferen-
tiated NWs of the kind produced in the SNAP process [17].
It uses lithographically defined rectangular regions of high-
K dielectric to shield NWs from the fields associated with
MWs. Because lithography puts a lower limit on the size of
such regions, the smallest regions are shifted randomly to
differentiate NWs with respect to MWs. While this makes
it possible to control NWs with MWs, as indicated above, a
price must be paid in the high number of MWs needed for
this task.

In Section 3 we explore the conditions that must be met
for NWs to be independently addressable. We observe that
these conditions are equivalent to solving variants of the
coupon collector problem. In Section 4 we examine three
models for the random shifting of dielectric regions. These
models capture the essential details of methods proposed for
laying down the smallest dielectric regions. Once regions
have been imposed on NWs, it is possible that not all NWs
will be controllable. In Section 5 we analyze the masked-
based decoder on our three models. Conclusions are given
in Section 6.

2 Three Methods of Addressing Nanowires

Lieberet alhave shown that NWs can be assembled into
crossbars using fluidic methods [15, 20]. When manufac-
tured, NWs are doped in sections along their length [14],
a process known as “modulation doping.” A small number
of NWs is drawn from a large ensemble at random and ar-
ranged in parallel on a chip. The NWs are addressed with
MWs, as in Fig. 1. Thisencoded NW decoderis analyzed
in [7, 9]. Dehonet al [7] show thatN NWs can be uniquely
addressed more than 99% of the time usingM MWs where
M ≥ d2.2 log2 Ne + 11 MWs. A substantial amount of
circuitry is required to map external addresses to internal
ones. Gojmanet al [9] examine the area required for such
circuitry for a variety of decoding strategies.

The NW differentiation-based decoder requires that
NWs be grown with doped regions. Other decoding strate-
gies have been proposed that do not require that NWs be
differentiated at the time of their manufacture. Williams
and Kuekes [21] have proposed arandomized contact de-
coder in whichN NWs are addressed byM MWs by mak-
ing random doped contacts between MWs and NWs with
probability of about 1/2; if a contact is made, it is assumed
that the NW is controlled by the MW by one of some variety
of means including FETs. The authors state that with prob-
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Figure 2. A decoder in which vertical MWs apply
fields to horizontal NWs that are shield by dielectric
regions (dark rectangles). Each NW exposed to a field
becomes non-conducting. For each NW there are four
MWs which, if activated, leave that wire conducting
but cause all other NWs to be nonconducting.

ability at least.99, M ≥ 5 log2 N MWs suffice to provide
unique addresses to allN NWs.

The third decoder [12], called amask-based decoder,
places high-K dielectric regions defined lithographically
(we call them LRs) in between MWs and lightly doped
NWs, as suggested in Fig. 2. Such a region shields a NW
from a field applied by a MW. An ideal mask-based de-
coder forN = 2k NWs hask pairs of LRs. For0 ≤ j ≤
log2 N − 1 the two sets in thejth pair each have2j−1 LRs
that cover complementary halves of the NWs (See Fig. 2).
If a field is applied to one of the two MWs associated with
a pair of LRs, exactly half of the NWs remain conducting.
Because the LRs in a pair identify half of the NWs identi-
fied by the previous pair, an ideal mask-based decoder can
select exactly one NW to remain conducting when a field is
applied to one MW in each of thek pairs of MWs. Thus, an
ideal mask-based decoder assigns a virtual address to each
of the N undifferentiated NWs using2 log2 N MWs.

A problem with this ideal mask-based decoder is that
LRs whose width is the pitch of NWs cannot be lithograph-
ically produced; there is a lower limit,w, on the width
and separation of LRs measured as multiples of the pitch
of NWs. The mask-based decoder uses sets of LRs of width
and separationw in which one LR is offset from the other
by a distance which is either one NW pitch or a small mul-
tiple of a NW pitch. (See Fig. 3.) A set of LRs each offset
from the other by some fixed distance is called acycle.

The mask-based decoder assumes that one or more cy-
cles will be placed on a mask and that one or more copies
of a mask will be used. Taking into account the imprecision
of lithography, we assume that the exact locations of the left
edge of all LRs in a mask will be random variables and that
the exact location of a mask relative to NWs on a chip will
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Figure 3. Smallest dielectric regions uniformly
shifted about their evenly-spaced nominal positions.

also be a random variable. In fact, we assume that the dis-
placement of a mask will be a uniform random variable over
one or more NW pitches.

2.1 The SNAP Process

Although the mask-based decoder has been proposed
to control the long, straight and uniformly-spaced, lightly
doped NWs produced by the superlattice nanowire pattern
transfer (SNAP) method [17], it can be used with NWs pro-
duced by other methods.

SNAP uses molecular beam epitaxy to make a
GaAs/AlGaAs superlattice from which the AlGaAs layer
is etched back, filled with a metal through evaporation, and
then pressed onto an adhesive layer on silicon. (See Fig. 4.)
After the superlattice is removed, metallic NWs remain at-
tached to the silicon [11]. The metallic NWs can be used
as a nanometer-scale mask for a thin silicon layer residing
on top of silicon oxide to produce silicon NWs. Although
this work is experimental, the authors have shown that on
the order of 100 or less of very long (2-3 mm), small (8-10
nm), and largely defect-free NWs having a uniform pitch
(16-60 nm) can be deposited on a chip with each applica-
tion of SNAP.

In E-beam lithography, which is being used to test the
concept of the mask-based decoder, the length of and spac-
ing between LRs are known to within about 10 nms whereas
the offset of a mask producing a set of LRs can vary by 50
to 100 nms [1]. In these tests the NW width and separation
are each about 15nms. E-beam lithography is currently too
expensive for mass production. If photolithography is used,
the uncertainty in the length and separation of LRs can be
four or five times as great.

It is possible that the LRs in a mask-based decoder would

GaAs

AlGaAs

Figure 4. Diagram showing the SNAP process:
The GaAs/AlGaAs superlattice; the superlattice after
etching the AlGaAs layers; metal deposition at36◦;
transfer of metal onto adhesive layer on silicon; re-
lease of metal wires; removal of excess adhesive.

be placed using a stamping process [1]. We believe that
errors introduced by this process can be modeled and ana-
lyzed using our methods.

3 Controllability of NWs

To simplify the discussion of a mask-based decoder, a
region of a NW is said to bedoped if it is fully exposed
to the electric field of one of the MWs that lies across it
andundoped if it is fully covered by a LR. If an LR only
partially covers a NW, it and the corresponding MW are said
to havefailed because the corresponding MW has a partial
effect on the NW in question when it should either have no
effect or completely control the NW. We assume that we can
detect those LRs that partially cover a NW so that they can
be left unused.

A NW is conducting only when its doped regions are
adjacent to MWs that do not carry electric fields. Let A
and B be two NWs and letDA andDB be the set of doped
regions of NWs A and B corresponding to the M MWs.
We show that ifDA ⊆ DB, then NWs A and B cannot
be controlled independently. IfDA = DB, the result is
obvious. IfDA ⊂ DB and the MW fields are such that NW
B is conducting (no fields are applied to its doped regions),
then NW A is also conducting. However, NW A can be
conducting when NW B is non-conducting. Since this leads
to an ambiguous result when reading and writing data, we
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say that NW B is not controllable if there is a NW A such
thatDA ⊆ DB.

Lemma 3.1 All NWs are independently controllable if for
no two NWs A and B isDA ⊆ DB. Equivalently, all NWs
are controllable if each is the rightmost and leftmost NW in
two different LRs.

4 Models for Region Displacement

We consider three models for the location and displace-
ment of the LRs in a mask-based decoder when the smallest
LRs have width and separation ofw NW pitches. We as-
sume that each model uses2 log2(N/2w) MWs to identify a
set of2w NWs that remain conducting. To resolve the con-
trol down to the level of an individual NW, an additionalT
MWs are used for a total ofM = 2 log2(N/2w)+T MWs.
The supplemental number of MWs,T , depends on the as-
sumptions made concerning the uncertainty in the offsets of
masks from NWs and the offsets of LRs within masks.

There is also uncertainty regarding the locations of
boundaries of LRs associated with the first set of
2 log2(N/2w) MWs used to identify sets of2w NWs. For-
tunately, this uncertainty can be dealt with using only the
supplemental set ofT MWs. At the LR boundaries asso-
ciated with the first set of MWs a small number of NWs,
sayq, may be always on or off or fail. To compensate for
this uncertainty, the supplemental MWs can be used to al-
ways turn off theq NWs at each boundary of a set of2w
NWs, thereby reducing the controllable number to2(w−q)
in each group of2w NWs. Thus, instead of controllingN
NWs,N(w− q)/w are controlled. One can compensate for
this by increasingN by a factor ofw/(w − q).

To resolve a set of2w NWs down to one NW, each model
assumes that a)m masks are used, b) each mask containsn
LR cycles where a cycle hasr LRs nominally shifted one
from the other by a distance of2w/r NW pitches (r divides
w), and c) that there is uncertainty in the positions of LRs
within masks and of masks relative to NWs. In the first
model and third models,r = 2w. In the second,r = 1.

Each of the three models assumes that the offsets of the
masks from NWs are statistically independent and identi-
cally distributed (i.i.d.) random variables with a uniform
distribution over either one NW pitch or multiple NW
pitches. In both cases we let−1/2 ≤ θ ≤ 1/2 denote the
fractional displacement of a mask with respect to the range
of the random variable whereθ = 0 corresponds to nominal
position of the left boundary of an LR being in the center of
a NW. Sinceθ has a uniform distribution, the probability
that the nominal position of the left boundary of a LR falls
inside a NW (it fails) is 1/2.

Each model also assumes that the offsets of the left
boundaries of LRs relative to their nominal locations on a

Figure 5. Repeated dielectric regions modeled as
cyclic patterns.

mask are i.i.d. random variables with continuous distribu-
tion poff(x). The value ofpoff (x) depends on the model.

Below we compute the probability that all NWs can be
controlled even when it is possible that some MWs fail.
We determine conditions under which this probability ap-
proaches 1 as the number of MWs (and LRs) increase.

When there is no variation about the nominal position of
each LR and their width and spacing are the same, all the
MWs will fail with probability 1/2. This probability could
be reduced to zero if a mask contains two sets of uniformly
spaced LRs, one offset from the other by half a NW pitch.
We assume that this is not a realistic possibility when pho-
tolithography is used and the NW pitch is under 15-20 nm.

First Model: Our first model is consistent with the
first experimental verification of the mask-based decoder
[1] in which the target width and pitch are about 15nm
and 30nm, respectively, and the uncertainty in an LR off-
set within a mask is about 10 nm. It assumes that the NWs
are large enough relative to the width and separation that
a) LRs in a cycle can be placed to within one NW pitch
(r = 2w), b) poff(x) is uniformly distributed over the in-
terval [−ρ/4, ρ/4] whereρ is the NW pitch, and c) that the
offset of a mask follows a uniform distribution over one NW
pitch centered on the middle of a NW. If the global offset of
a mask places the left boundaries of LRs exactly in the mid-
dle of NWs, all MWs fail. However, this will occur with an
infinitesimal probability.

Second Model:The second model is used primarily to
introduce a key method of probabilistic analysis. It assumes
that a) each mask has one LR (r = 1) and b) the offset of
a mask is equally likely to be anywhere in2w NW pitches.
It is analyzed using the cyclic LR model depicted in Fig. 5.
The probability that a given MW fails (the left boundary of
its corresponding LR falls on a NW) is one half.

Third Model: The third model is the same as the first
except that a) we assume that each mask has one cycle (n =
1), b) the offset of a mask relative to NWs is equally likely
to be anywhere within a NW pitch, and c) the uncertainty in
the location of LRs relative to nominal locations on a mask
is large and follows a potentially non-uniform probability
distributionpoff (x) whose support (interval over which it
is non-zero) can be more than one NW pitch. We expect the
effect of mask offset, denoted byθ, on the probability that
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an LR boundary moves from its current location between
two NWs to thejth space to the right or left is small. We let
this probability be fixed atpj where

∑

j pj = 1/2.

4.1 Variable-Length Lithographic Regions

In Lemma 3.1 we show that NWs are independently con-
trollable if each is both a rightmost and a leftmost NW in an
LR. When LRs have fixed length which is a multiple of a
NW pitch, an LR’s left endpoint falls between two NWs
if and only its right endpoint does as well. Thus, for all
NWs to controllable, it is sufficient to consider only the
left endpoints of LRs as modeled by the coupon collector
problem. If LRs are of variable length, the left and right
endpoints must be considered separately. In the worst case,
they would behave completely independently and the num-
ber of trials to collect all coupons would be doubled.

5 Analysis of the Displacement Models

The goal in each of the displacement models is to deter-
mineT , the supplemental number of MWs required for all
N NWs to be controllable. As shown in Lemma 3.1 this is
equivalent to ensuring that each pair of adjacent NWs has
some LR’s left endpoint between them. This can be mod-
eled by variants of the standardcoupon collector problem,
a classical problem described in [8]. The standard problem
is to determine the number of trialsT needed to collectC
coupons with probability at least1 − ε when each coupon
is equally likely to be drawn on each trial. Here a coupon is
collected when an LR’s left boundary falls between a spe-
cific pair of adjacent NWs. There is one coupon for each
pair of adjacent NWs. In each model additional coupons
are introduced to model each LR failure. It is straightfor-
ward to show thatT must grow asC log C. Variants on the
coupon collector problem also arise in the analysis of the
encoded NW decoder [9].

5.1 Analysis of the First Displacement Model

The first displacement model assumes thatn cycles of
2w LRs are placed on each ofm masks. Offsets of LR left
boundaries from their nominal locations within masks are
i.i.d. random variables with distributionpoff(x) whose sup-
port is a fraction of a NW pitch. Offsets of masks from NWs
are also uniform i.i.d. random variables distributed over a
NW pitch. This model usesT1 = 2w(nm) MWs.

Let Pfirst(T1, C, n, m) be the probability that not all2w
NWs are controllable. We findn andm such that this prob-
ability is largest whennm, the number of cycles, is fixed.

Lemma 3.1 shows that all2w NWs in a cycle can be
controlled if and only if the left boundary of some LR falls
between every pair of NWs. Whenpoff(x) is 0 outside of

the interval[− ρ
4 , ρ

4 ], only one LR in each cycle has a left
endpoint that can fall between any two adjacent NWs. If
there aren cycles on a mask, there aren such LRs. If there
arem masks withn cycles per mask, there aremn LRs that
can fall between any two adjacent NWs. Then candidate
LRs on one mask experience the same mask offset. Those
on different masks may experience different offsets.

Let θ denote the offset of the nominal location of an LR
in a mask relative to a NW and letpfail(θ) denote the con-
ditional probability that it fails by having its left boundary

LR overlap a NW.pfail(θ) =
∫ θ+1/4

θ−1/4 poff(x)dx where
poff = 0 outside of the interval[−ρ/4, ρ/4].

If poff(x)is uniform over [− ρ
4 , ρ

4 ], poff (x) = 2/ρ.
Thus, pfail(0) = 1 (no displacement of the left bound-
ary of an LR relative to its nominal causes it to leave a
NW), at θ = ±1/2, pfail(θ) = 0 (the left boundary of
an LR cannot leave the space between NWs), and in be-
tweenpfail(θ) is monotonically increasing. More gener-
ally, pfail(θ) = |2θ − 1|.

Given adjacent NWs, there aren LRs on one mask
whose left boundaries nominally fall between their mid-
points. Letq(θ) be the conditional probability that these
LRs fail to fall in the space between the NWs when the
mask offset isθ. Then,q(θ) = pn

fail(θ). Let q(θ1, . . . , θm)
be the conditional probability, given offsetsθ1, θ2, . . . , θm

of the m masks, that there arenm LRs in all m masks
that fail to fall in the same space. Then,q(θ1, . . . , θm) =
pn

fail(θ1) · · · pn
fail(θm).

All 2w NWs cannot be controlled unless the left bound-
ary of some non-failing LR falls between each pair of ad-
jacent NWs. Conditioned onθ1, . . . , θm, LRs fail inde-
pendently. Hence the probability all2w NWs are con-
trollable, givenθ1, . . . θn, is (1 − q(θ1, . . . , θm))2w. Av-
eraging this probability over all (uniform)θi gives 1 −
Pfirst(T, C, n, m).

Applying 1 − sx ≤ (1 − x)s ≤ 1 − sx +
(

s
2

)

x2 for

0 ≤ x ≤ 1 to (1 − pfail(θ1)
n · · · pfail(θm)n)

2w and using
(

s
2

)

≤ s2/2, we have the following bounds whereX =

(2w)
(

∫ 1

0 pn
fail(θ)dθ

)m

, Y = (2w2)
(

∫ 1

0 p2n
fail(θ)dθ

)m

,

ands = 2w.

X − Y ≤ Pfirst(T1, C, n, m) ≤ X

Lemma 5.1 When Y ≤ X/2, Pfirst(T1, C, n, m)
is at least X/2 and at most X where X =

(2w)
(

∫ 1

0
pn

fail(θ)dθ
)m

.

The lemma is illustrated by the example ofpoff (x) that
is uniform over[− ρ

4 , ρ
4 ] in which casepfail(θ) = |2θ − 1|.

Through a straightforward change of variables, it is easy to
see thatX = 2w(1/(n+1))m andY = 2w2(1/(2n+1))m.
Thus,Y = w((n + 1)/(2n + 1))mX ≤ w(2/3)mX since

5



n ≥ 1. [(n + 1)/(2n + 1) approaches 1/2 asn increases.]
Thus, if m ≥ ln(2w)/ ln(3/2), Y ≤ X/2. In this case,
X/2 ≤ Pfirst(T1, C, n, m) ≤ X .

Under the conditions of the lemma, we are in a
position to discuss the values ofn and m for which
Pfirst(T1, C, n, m) is smallest under the assumption that
the number of cycles used in all masks,nm, is fixed. We
need only consider the effect of values ofn and m on

X/(2w) =
(

∫ 1

0 pn
fail(θ)dθ

)m

.

Chebyshev’s inequality [10] states that
(

∫ 1

0 pfail(θ)dθ
)n

≤
∫ 1

0 pn
fail(θ)dθ for all integers

n ≥ 1. It follows that X/(2w) ≥
(

∫ 1

0
pfail(θ)dθ

)mn

which means that placing cycles on separate masks
decreasesPfirst(T, C, n, m), at least to the extent that
Pfirst(T, C, n, m) is well approximated byX . We
summarize this result below.

Theorem 5.1 Let (2w)1/m
∫ 1

0
p2n

fail(θ)dθ ≤
∫ 1

0
pn

fail(θ)dθ. Then Pfirst(T1, C, n, m), the proba-
bility that not all NWs can be controlled in the first
model, satisfiesX/2 ≤ Pfirst(T1, C, n, m) ≤ X where

X = 2w
(

∫ 1

0
pn

fail(θ)dθ
)m

.

When the number of cycles used in the model,c = mn, is
fixed, both bounds are maximized under variation ofn and
m whenn = 1. Under this condition,T1, the number of
MWs required to assure that not all NWs can be controlled
with probabilityPfirst(T1, C, n, m) satisfies the following
bounds whereZ1 = (Pfirst(T1, C, 1, m))−1.

(2w) log2(wZ1) ≤ T1 ≤ (2w) log2(2wZ1)

The total number of MWs required under these conditions
is M = 2 log2 N/(2w) + T1.

Proof Under the conditions of the theorem,X/2 ≤
Pfirst(T1, C, n, m) ≤ X . Under the assumption that

NW width and separation are the same,
∫ 1

0 pfail(θ)dθ =
1/2, from which the conclusion follows.

Thus, we arrive at a surprising and counterintuitive re-
sult, namely, the probabilityPfirst(T1, C, n, m) is mini-
mized whenmn is fixed by settingn = 1, that is, by placing
only one cycle on a mask thereby increasing the uncertainty
in the locations of LRs.

Whenpoff(x) is uniform over the interval[−ρ
4 , ρ

4 ] and
Pfirst(T1, C, 1, m) = .01 andw = 3, the number of MWs
M satisfies2 log2 N + 46 ≤ M ≤ 2 log2 N + 53. When
w = 5, 2 log2 N + 86 ≤ M ≤ 2 log2 N + 96.

5.2 Analysis of the Second Displacement Model

The performance of the second region displacement
model is captured by thepartial standard coupon collec-

tor problem , a variant of the coupon collector problem. We
associate one bin with each of the2w NWs and each of the
2w spaces between them. Thus, there areC = 4w bins, or
coupons. On each trial, each bin is equally likely to be filled
with a ball. We associate the firstC/2 bins with spaces be-
tween NWs and the secondC/2 bins with the NWs them-
selves.

In accordance with Lemma 3.1, the goal in the second
displacement model is to have enough LRs so that the left
boundary of some LR falls between every two adjacent
NWs. In the standard coupon collector problem, the goal
is to fill all C bins (collect allC coupons). Here the goal
is to determine the number of trials required to fill the first
C/2 bins with probability at least1 − ε.

Theorem 5.2 The number of trials,T2, necessary to ensure
that the firstC/2 coupons are collected with probability
1 − Ppartial(T2, C) in the partial standard coupon collec-
tor problem satisfies the following bounds whenC ≥ 2 and
Ppartial(T2, C) ≤ 1/3 whereZ2 = (2Ppartial(T2, C))−1.

C

(1 + 1/C)
ln

CZ2

(1 + Ppartial(T2, C))
≤ T2 ≤ C ln(CZ2)

The total number of MWs isM = 2 log2 N/(2w) + T2

whereC = 2w.

Proof Let Ek be the event that a ball does not fall in
bin k in T2 trials when there areC bins. It follows that
Ppartial(T2, C) = P (E0 ∪E1 ∪ . . .∪EC/2−1) The prin-
ciple of inclusion and exclusion, stated below, is used to
derive bounds on this probability. (The sum onk < l has
(

C/2
2

)

terms.)
∑C/2−1

k=0 P (Ek) − ∑

k<l P (Ek ∩ El) ≤
Ppartial(T2, C) ≤

∑C/2−1
k=0 P (Ek) Here P (A) is the

probability of eventA.
For eventEk to occur, a ball (the left boundary of a

LR) must fall in some bin other than bink on each of the
T2 trials. Because the selection of each bin is statistically
independent of all other selections and each outcome is
equally likely,P (Ek) = (1−1/C)T2. For eventsEk and
El to jointly occur on each of theT2 trials, a ball must fall
in a bin other than thekth andlth. By the same reasoning
it follows thatP (Ek ∩El) = (1−2/C)T2 . Using the ad-
ditional facts that(1 − 2/C) ≤ (1 − 1/C)2 and

(

C/2
2

)

≤
(C/2)2/2 we havez(1 − z/2) ≤ Ppartial(T2, C) ≤ z
where z = (C/2)(1 − 1/C)T2 . To solve forC, let
Ppartial(T2, C) = ε. The lower bound implies thatz ≤
(1 −

√
1 − 2ε). Since this bound onz is at mostε(1 + ε)

whenε ≤ 1/3, we have thatz = (C/2)(1 − 1/C)T2 sat-
isfiesε ≤ z ≤ ε(1 + ε). Finally, because−x(1 + x) ≤
ln(1 − x) ≤ −x whenx = 1/C ≤ .5 or C ≥ 2, we
have that(C/2)e−(T2/C)(1+1/C) ≤ z ≤ (C/2)e−(T2/C))

from which the desired conclusion follows.

When Ppartial(T2, C) = .01, w = 5 the number of
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MWs M satisfies2 log2 N + 120 ≤ M ≤ 2 log2 N + 135
and whenw = 10, 2 log2 N +291 ≤ M ≤ 2 log2 N +299.

5.3 Analysis of the Third Displacement Model

The third displacement model, which assumes that the
left boundary of a next LR is nominally shifted to the right
from the previous one by a NW pitch, is captured by the
cyclic coupon collector problem. We assume thatm sets
of 2w LRs located in one mask are deposited on a chip.
Using the same notation as the previous model, the cyclic
coupon collector problem aims balls at the firstC/2 bins
in succession, repeating this processm times for a total of
T3 = m(C/2) trials. Although a ball is aimed at one of the
first C/2 bins, it may also fall into a different bin, including
one of the lastC/2 bins that corresponds to a failure.

We assume that a ball aimed at bini falls in bin (i +
j) mod (C/2), 0 ≤ j ≤ C/2 − 1 with probability pj .
The probability that a ball doesn’t fall in bink on trial r,
0 ≤ r ≤ m(C/2) − 1, is (1 − pi(r,k)) wherei(r, k) sat-
isfies (r + i(r, k)) mod (C/2) = k. We derive bounds
on Pcyclic(T3, C), the probability that not all of the first
C/2 coupons are collected in the cyclic coupon collector
problem inT3 = m(C/2) trials. Thus,Pcyclic(T3, C) =
P (E0, E1, . . . , EC/2−1).

Observe that ifpj = 1/C for all j, this problem is iden-
tical with the partial standard coupon collector problem.

As r ranges from0 to m(C/2) − 1, i(r, k) covers
all values in{0, 1, . . . , C/2 − 1} m times. Because the

trials are i.i.d.,P (Ek) =
(

∏C/2−1
r=0 (1 − pi(r,k))

)m

=
(

∏C/2−1
u=0 (1 − pu)

)m

, which is independent ofk.

Since we use the principle of inclusion and exclusion to
boundPcyclic(T3, C), we also need to compute the proba-
bility P (Ek ∩ El) that binsk andl do not contain balls at
the end ofT3 trials.

On therth trial balls fall into bins other thank and l
with probability (1 − pi(r,k) − pi(r,l)) where i(r, k) and
i(r, l) satisfy (r + i(r, k)) mod (C/2) = k and (r +
i(r, l)) mod (C/2) = l. Observe thati(r, k) and i(r, l)
are cyclic, that is,i(r, k) and i(r, l) range over all val-
ues in the set{0, 1, . . . , C/2 − 1} as r ranges from0 to
C/2 − 1. Because the trials are statistically independent,

P (Ek ∩ El) =
(

∏C/2−1
r=0 (1 − pi(r,k) − pi(r,l))

)m

.

We use the inequality(1 − p − q) ≤ (1 − p)(1 − q),
0 ≤ p, q ≤ 1, to overboundP (Ek ∩ El) and underbound
Pcyclic(T3, C). Because{pi(r,k) | 0 ≤ r ≤ C − 1} =
{p0, p2, . . . , pC/2−1}, the upper bound can be further sim-

plified to P (Ek ∩ El) ≤
(

∏C/2−1
r=0 (1 − pu)

)2m

, which is

the square ofP (Ek).
The displacement probabilities{p0, p1, . . . , pC/2−1} de-

termine the accuracy with which the edge boundaries fall

between particular NWs.

Theorem 5.3 Letγ = −∑C/2−1
j=0 ln(1 − pj). The number

of trials, T3, necessary to ensure that the firstC/2 coupons
are collected with probability1 − Pcyclic(T3, C) ≥ 2/3 in
the cyclic coupon collector problem satisfies the following
bounds where

∑

i pi = 1/2 andZ3 = (2Pcyclic(T3, C))−1

C

γ
ln

(

CZ3

(1 + Pcyclic(T3, C))

)

≤ T3 ≤ C

γ
ln (CZ3)

Here1 + σ/2 ≤ γ ≤ 1 + σ whereσ =
∑C−1

i=0 p2
i ≤ .25.

The total number of MWs required under these conditions
is M = 2 log2 N/(2w) + T3.

Proof To boundPcyclic(T3, C), we apply the principle of
inclusion/exclusion described above. Given the expres-
sions derived forP (Ek) andP (Ek ∩ El) the following
bounds apply wherez = (C/2)e−γm andm = T3/C.

z(1 − z/2) ≤ Pcyclic(T3, C) ≤ z

Following the proof of Theorem 5.2, we have thatz
satisfiesPcyclic(T3, C) ≤ z ≤ Pcyclic(T3, C)(1 +
Pcyclic(T3, C)) whenPcyclic(T3, C) ≤ 1/3. The bounds
onT3 follow from these observations.

Bounds on the functionγ can be derived using the
inequality ln(1 − x) ≤ −x(1 + x/2), which holds for
all values ofx, and ln(1 − x) ≥ −x(1 + x), which
holds for 0 ≤ x ≤ .65. Thus, it follows thatγ sat-
isfies1 + σ/2 ≤ γ ≤ 1 + σ becausepj ≤ .5 where
σ =

∑C−1
i=0 p2

i . Finally, σ is largest under the constraint
∑

j pj = .5 when all the mass of the distribution is placed
on one value ofj, that is,σ = .25.

Since1 ≤ γ ≤ .125, whenPcyclic(T3, C) = .01 and
w = 5 the number of MWs is between2 log2 N + 109 and
2 log2 N +137. Whenw = 10, it is between2 log2 N +238
and2 log2 N + 299.

It is of interest to know how sensitive the bounds on
T3 are to the probability distribution{p0, p1, . . . , pC−1}.
When all probabilities are the same, the second and third
models are the same. In this case,γ = −(C/2) ln(1−2/C).
If C ≥ 2, the bounds for the two coupon collector problems
are essentially the same.

It is also of interest to determine the nature of the bounds
on T3 when the mass of the distribution is concentrated on
just a couple of points. For example, when the mass is
centered equally on two points, that is,p0 = p1 = 1/4,
γ = 2 ln 4/3 and the bounds onT3 continue to grow as
C ln (C/Pcyclic(T3, C)).

This last observation demonstrates that it will be very
difficult to collect all coupons when it is possible to accu-
rately target balls in bins but still leave some small uncer-
tainty regarding their actual locations, as shown for the first
model.
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6 Conclusions

We have examined three models for the placement of
high-K dielectric regions in the mask-based decoder when
w is the minimal width and separation of these regions mea-
sured in the pitch of NWs. The first model assumes that
lithographic regions have a small amount of random varia-
tion in their relative locations on masks and large displace-
ment of each mask. The second model has random place-
ment of region boundaries. The third assigns a constant
number of boundaries to the space between every two NWs
but perturbs their nominal location to obtain their actual lo-
cation.

The number of MWs,M , needed to controlN NWs with
probability1 − ε is smallest for the first model for which
M = 2 log2 N −2 log2 w +(2w) log2(w/(1− ε)). We find
it surprising that in this modelM is minimized by choosing
to place LRs on separate masks rather than aggregate them
on one mask. Whenw = 3, between2 log2 N + 46 and
2 log2 N + 53 are required.

As NW sizes continue to shrink, the third model better
illustrates the number of MWs needed to controlN undif-
ferentiated NWs. In this case the number of MWs is at least
2 log2 N + C

γ ln
(

C
2ε(1+ε)

)

where1 ≤ γ ≤ 1.25.

As these numbers suggest, the mask-based decoder is
impractical unless the NWs on which it is used are very long
allowing forN , the number of NWs, to be very large. Each
NW in anN × N crossbar must be long enough to accom-
modateN perpendicular NWs as well asM MWs. For-
tunately, SNAP NWs can be millimeters in length, which
would allow for large values ofN .
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