
C H A P T E R

Logic Circuits

Many important functions are naturally computed with straight-line programs, programs
without loops or branches. Such computations are conveniently described with circuits, di-
rected acyclic graphs of straight-line programs. Circuit vertices are associated with program
steps, whereas edges identify dependencies between steps. Circuits are characterized by their
size, the number of vertices, and their depth, the length (in edges) of their longest path.
Circuits in which the operations are Boolean are called logic circuits, those using algebraic
operations are called algebraic circuits, and those using comparison operators are called com-
parator circuits. In this chapter we examine logic circuits. Algebraic and comparator circuits
are examined in Chapter 6.

Logic circuits are the basic building blocks of real-world computers. As shown in Chap-
ter 3, all machines with bounded memory can be constructed of logic circuits and binary
memory units. Furthermore, machines whose computations terminate can be completely sim-
ulated by circuits.

In this chapter circuits are designed for a large number of important functions. We begin
with a discussion of circuits, straight-line programs, and the functions computed by them.
Normal forms, a structured type of circuit, are examined next. They are a starting point for
the design of circuits that compute functions. We then develop simple circuits that combine
and select data. They include logical circuits, encoders, decoders, multiplexers, and demulti-
plexers. This is followed by an introduction to prefix circuits that efficiently perform running
sums. Circuits are then designed for the arithmetic operations of addition (in which prefix
computations are used), subtraction, multiplication, and division. We also construct efficient
circuits for symmetric functions. We close with proofs that every Boolean function can be
realized with size and depth exponential and linear, respectively, in its number of inputs, and
that most Boolean functions require such circuits.

The concept of a reduction from one problem to a previously solved one is introduced in
this chapter and applied to many simple functions. This important idea is used later to show
that two problems, such as different NP-complete problems, have the same computational
complexity. (See Chapters 3 and 8.)

35

36 Chapter 2 Logic Circuits Models of Computation

2.1 Designing Circuits
The logic circuit, as defined in Section 1.4.1, is a directed acyclic graph (DAG) whose vertices
are labeled with the names of Boolean functions (logic gates) or variables (inputs). Each logic
circuit computes a binary function f : Bn !→ Bm that is a mapping from the values of its n
input variables to the values of its m outputs.

Computer architects often need to design circuits for functions, a task that we explore in
this chapter. The goal of the architect is to design efficient circuits, circuits whose size (the
number of gates) and/or depth (the length of the longest path from an input to an output
vertex) is small. The computer scientist is interested in circuit size and depth because these
measures provide lower bounds on the resources needed to complete a task. (See Section 1.5.1
and Chapter 3.) For example, circuit size provides a lower bound on the product of the
space and time needed for a problem on both the random-access and Turing machines (see
Sections 3.6 and 3.9.2) and circuit depth is a measure of the parallel time needed to compute
a function (see Section 8.14.1).

The logic circuit also provides a framework for the classification of problems by their com-
putational complexity. For example, in Section 3.9.4 we use circuits to identify hard compu-
tational problems, in particular, the P-complete languages that are believed hard to parallelize
and the NP-complete languages that are believed hard to solve on serial computers. After more
than fifty years of research it is still unknown whether NP-complete problems have polynomial-
time algorithms.

In this chapter not only do we describe circuits for important functions, but we show that
most Boolean functions are complex. For example, we show that there are so many Boolean
functions on n variables and so few circuits containing C or fewer gates that unless C is large,
not all Boolean functions can be realized with C gates or fewer.

Circuit complexity is also explored in Chapter 9. The present chapter develops methods
to derive lower bounds on the size and depth of circuits. A lower bound on the circuit size
(depth) of a function f is a value for the size (depth) below which there does not exist a circuit
for f . Thus, every circuit for f must have a size (depth) greater than or equal to the lower
bound. In Chapter 9 we also establish a connection between circuit depth and formula size,
the number of Boolean operations needed to realize a Boolean function by a formula. This
allows us to derive an upper bound on formula size from an upper bound on depth. Thus, the
depth bounds of this chapter are useful in deriving upper bounds on the size of the smallest
formulas for problems. Prefix circuits are used in the present chapter to design fast adders.
They are also used in Chapter 6 to design fast parallel algorithms.

2.2 Straight-Line Programs and Circuits
As suggested in Section 1.4.1, the mapping between inputs and outputs of a logic circuit can
be described by a binary function. In this section we formalize this idea and, in addition,
demonstrate that every binary function can be realized by a circuit. Normal-form expansions
of Boolean functions play a central role in establishing the latter result. Circuits were defined
informally in Section 1.4.1. We now give a formal definition of circuits.

To fix ideas, we start with an example. Figure 2.1 shows a circuit that contains two AND

gates, one OR gate, and two NOT gates. (Circles denote NOT gates, AND and OR gates are
labeled ∧ and ∨, respectively.) Corresponding to this circuit is the following functional de-

c©John E Savage 2.2 Straight-Line Programs and Circuits 37

g3g4

g5 g6

yx

g2g1

g7

Figure 2.1 A circuit is the graph of a Boolean straight-line program.

scription of the circuit, where gj is the value computed by the jth input or gate of the circuit:

g1 := x;

g2 := y;

g3 := g1;

g4 := g2;

g5 := g1 ∧ g4;

g6 := g3 ∧ g2;

g7 := g5 ∨ g6;
(2.1)

The statement g1 := x; means that the external input x is the value associated with the first
vertex of the circuit. The statement g3 := g1; means that the value computed at the third
vertex is the NOT of the value computed at the first vertex. The statement g5 := g1 ∧ g4;
means that the value computed at the fifth vertex is the AND of the values computed at the
first and fourth vertices. The statement g7 := g5 ∨ g6; means that the value computed at the
seventh vertex is the OR of the values computed at the fifth and sixth vertices. The above is
a description of the functions computed by the circuit. It does not explicitly specify which
function(s) are the outputs of the circuit.

Shown below is an alternative description of the above circuit that contains the same infor-
mation. It is a straight-line program whose syntax is closer to that of standard programming
languages. Each step is numbered and its associated purpose is given. Input and output
steps are identified by the keywords READ and OUTPUT, respectively. Computation steps
are identified by the keywords AND, OR, and NOT.

(1 READ x)

(2 READ y)

(3 NOT 1)

(4 NOT 2)

(5 AND 1 4)

(6 AND 3 2)

(7 OR 5 6)

(8 OUTPUT 5)

(9 OUTPUT 7)

(2.2)

The correspondence between the steps of a straight-line program and the functions computed
at them is evident.

Straight-line programs are not limited to describing logic circuits. They can also be used to
describe algebraic computations. (See Chapter 6.) In this case, a computation step is identified
with a keyword describing the particular algebraic operation to be performed. In the case of

38 Chapter 2 Logic Circuits Models of Computation

logic circuits, the operations can include many functions other than the basic three mentioned
above.

As illustrated above, a straight-line program can be constructed for any circuit. Similarly,
given a straight-line program, a circuit can be drawn for it as well. We now formally define
straight-line programs, circuits, and characteristics of the two.

DEFINITION 2.2.1 A straight-line program is set of steps each of which is an input step, de-
noted (s READ x), an output step, denoted (s OUTPUT i), or a computation step, denoted
(s OP i . . . k). Here s is the number of a step, x denotes an input variable, and the keywords
READ, OUTPUT, and OP identify steps in which an input is read, an output produced, and the
operation OP is performed. In the sth computation step the arguments to OP are the results produced
at steps i, . . . , k. It is required that these steps precede the sth step; that is, s ≥ i, . . . , k.

A circuit is the graph of a straight-line program. (The requirement that each computation
step operate on results produced in preceding steps insures that this graph is a DAG.) The fan-in
of the circuit is the maximum in-degree of any vertex. The fan-out of the circuit is the maximum
outdegree of any vertex. A gate is the vertex associated with a computation step.

The basis Ω of a circuit and its corresponding straight-line program is the set of operations
that they use. The bases of Boolean straight-line programs and logic circuits contain only Boolean
functions. The standard basis, Ω0, for a logic circuit is the set {AND, OR, NOT}.

2.2.1 Functions Computed by Circuits
As stated above, each step of a straight-line program computes a function. We now define the
functions computed by straight-line programs, using the example given in Eq. (2.2).

DEFINITION 2.2.2 Let gs be the function computed by the sth step of a straight-line pro-
gram. If the sth step is the input step (s READ x), then gs = x. If it is the computation
step (s OP i . . . k), the function is gs = OP(gi, . . . , gk), where gi, . . . , gk are the functions
computed at steps on which the sth step depends. If a straight-line program has n inputs and m
outputs, it computes a function f : Bn !→ Bm. If s1, s2, . . . , sm are the output steps, then
f = (gs1 , gs2 , . . . , gsm). The function computed by a circuit is the function computed by the
corresponding straight-line program.

The functions computed by the logic circuit of Fig. 2.1 are given below. The expression
for gs is found by substituting for its arguments the expressions derived at the steps on which
it depends.

g1 := x;

g2 := y;

g3 := x;

g4 := y;

g5 := x ∧ y;

g6 := x ∧ y;

g7 := (x ∧ y) ∨ (x ∧ y);

The function computed by the above Boolean straight-line program is f(x, y) = (g5, g7).
The table of values assumed by f as the inputs x and y run through all possible values is shown
below. The value of g7 is the EXCLUSIVE OR function.

c©John E Savage 2.2 Straight-Line Programs and Circuits 39

x y g5 g7

0 0 0 0
0 1 0 1
1 0 1 1
1 1 0 0

We now ask the following question: “Given a circuit with values for its inputs, how can the
values of its outputs be computed?” One response it to build a circuit of physical gates, supply
values for the inputs, and then wait for the signals to propagate through the gates and arrive at
the outputs. A second response is to write a program in a high-level programming language to
compute the values of the outputs. A simple program for this purpose assigns each step to an
entry of an array and then evaluates the steps in order. This program solves the circuit value
problem; that is, it determines the value of a circuit.

2.2.2 Circuits That Compute Functions
Now that we know how to compute the function defined by a circuit and its corresponding
straight-line program, we ask: given a function, how can we construct a circuit (and straight-
line program) that will compute it? Since we presume that computational tasks are defined by
functions, it is important to know how to build simple machines, circuits, that will solve these
tasks. In Chapter 3 we show that circuits play a central role in the design of machines with
memory. Thus, whether a function or task is to be solved with a machine without memory (a
circuit) or a machine with memory (such as the random-access machine), the circuit and its
associated straight-line program play a key role.

To construct a circuit for a function, we begin by describing the function in a table. As
seen earlier, the table for a function f (n,m) : Bn !→ Bm has n columns containing all 2n

possible values for the n input variables of the function. Thus, it has 2n rows. It also has
m columns containing the m outputs associated with each pattern of n inputs. If we let
x1, x2, . . . , xn be the input variables of f and let y1, y2, . . . , ym be its output variables,

f (3,2)
example

x1 x2 x3 y1 y2

0 0 0 1 1
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 1 1 1

Figure 2.2 The truth table for the function f (3,2)
example.

40 Chapter 2 Logic Circuits Models of Computation

then we write f(x1, x2, . . . , xn) = (y1, y2, . . . , ym). This is illustrated by the function

f (3,2)
example(x1, x2, x3) = (y1, y2) defined in Fig. 2.2 on page 39.

A binary function is one whose domain and codomain are Cartesian products of B =
{0, 1}. A Boolean function is a binary function whose codomain consists of the set B. In
other words, it has one output.

As we see in Section 2.3, normal forms provide standard ways to construct circuits for
Boolean functions. Because a normal-form expansion of a function generally does not yield
a circuit of smallest size or depth, methods are needed to simplify the algebraic expressions
produced by these normal forms. This topic is discussed in Section 2.2.4.

Before exploring the algebraic properties of simple Boolean functions, we define the basic
circuit complexity measures used in this book.

2.2.3 Circuit Complexity Measures
We often ask for the smallest or most shallow circuit for a function. If we need to compute
a function with a circuit, as is done in central processing units, then knowing the size of the
smallest circuit is important. Also important is the depth of the circuit. It takes time for
signals applied to the circuit inputs to propagate to the outputs, and the length of the longest
path through the circuit determines this time. When central processing units must be fast,
minimizing circuit depth becomes important.

As indicated in Section 1.5, the size of a circuit also provides a lower bound on the space-
time product needed to solve a problem on the random-access machine, a model for modern
computers. Consequently, if the size of the smallest circuit for a function is large, its space-time
product must be large. Thus, a problem can be shown to be hard to compute by a machine
with memory if it can be shown that every circuit for it is large.

We now define two important circuit complexity measures.

DEFINITION 2.2.3 The size of a logic circuit is the number of gates it contains. Its depth is the
number of gates on the longest path through the circuit. The circuit size, CΩ(f), and circuit
depth, DΩ(f), of a Boolean function f : Bn !→ Bm are defined as the smallest size and smallest
depth of any circuit, respectively, over the basis Ω for f .

Most Boolean functions on n variables are very complex. As shown in Sections 2.12 and
2.13, their circuit size is proportional to 2n/n and their depth is approximately n. Fortunately,
most functions of interest have much smaller size and depth. (It should be noted that the circuit
of smallest size for a function may be different from that of smallest depth.)

2.2.4 Algebraic Properties of Boolean Functions
Since the operations AND (∧), OR (∨), EXCLUSIVE OR (⊕), and NOT (¬ or) play a vital
role in the construction of normal forms, we simplify the subsequent discussion by describing
their properties.

If we interchange the two arguments of AND, OR, or EXCLUSIVE OR, it follows from their
definition that their values do not change. This property, called commutativity, holds for all
three operators, as stated next.

c©John E Savage 2.2 Straight-Line Programs and Circuits 41

COMMUTATIVITY

x1 ∨ x2 = x2 ∨ x1

x1 ∧ x2 = x2 ∧ x1

x1 ⊕ x2 = x2 ⊕ x1

When constants are substituted for one of the variables of these three operators, the expression
computed is simplified, as shown below.

SUBSTITUTION OF CONSTANTS

x1 ∨ 0 = x1

x1 ∨ 1 = 1
x1 ∧ 0 = 0

x1 ∧ 1 = x1

x1 ⊕ 0 = x1

x1 ⊕ 1 = x1

Also, when one of the variables of one of these functions is replaced by itself or its negation,
the functions simplify, as shown below.

ABSORPTION RULES

x1 ∨ x1 = x1

x1 ∨ x1 = 1
x1 ⊕ x1 = 0
x1 ⊕ x1 = 1

x1 ∧ x1 = x1

x1 ∧ x1 = 0
x1 ∨ (x1 ∧ x2) = x1

x1 ∧ (x1 ∨ x2) = x1

To prove each of these results, it suffices to test exhaustively each of the values of the arguments
of these functions and show that the right- and left-hand sides have the same value.

DeMorgan’s rules, shown below, are very important in proving properties about circuits
because they allow each AND gate to be replaced by an OR gate and three NOT gates and vice
versa. The rules can be shown correct by constructing tables for each of the given functions.

DEMORGAN’S RULES

(x1 ∨ x2) = x1 ∧ x2

(x1 ∧ x2) = x1 ∨ x2

The functions AND, OR, and EXCLUSIVE OR are all associative; that is, all ways of combining
three or more variables with any of these functions give the same result. (An operator (is
associative if for all values of a, b, and c, a ((b (c) = (a (b) (c.) Again, proof by
enumeration suffices to establish the following results.

ASSOCIATIVITY

x1 ∨ (x2 ∨ x3) = (x1 ∨ x2) ∨ x3

x1 ∧ (x2 ∧ x3) = (x1 ∧ x2) ∧ x3

x1 ⊕ (x2 ⊕ x3) = (x1 ⊕ x2) ⊕ x3

Because of associativity it is not necessary to parenthesize repeated uses of the operators ∨, ∧,
and ⊕.

Finally, the following distributive laws are important in simplifying Boolean algebraic
expressions. The first two laws are the same as the distributivity of integer multiplication over
integer addition when multiplication and addition are replaced by AND and OR.

42 Chapter 2 Logic Circuits Models of Computation

DISTRIBUTIVITY

x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3)
x1 ∧ (x2 ⊕ x3) = (x1 ∧ x2) ⊕ (x1 ∧ x3)
x1 ∨ (x2 ∧ x3) = (x1 ∨ x2) ∧ (x1 ∨ x3)

We often write x∧y as xy. The operator ∧ has precedence over the operators ∨ and ⊕, which
means that parentheses in (x ∧ y) ∨ z and (x ∧ y) ⊕ z may be dropped.

The above rules are illustrated by the following formula:

(x ∧ (y ⊕ z)) ∧ (x ∨ y) = (x ∨ (y ⊕ z)) ∧ (x ∨ y)

= (x ∨ (y ⊕ z)) ∧ (x ∨ y)

= x ∨ (y ∧ (y ⊕ z))

= x ∨ ((y ∧ y) ⊕ (y ∧ z))

= x ∨ (0 ⊕ y ∧ z)

= x ∨ (y ∧ z)

DeMorgan’s second rule is used to simplify the first term in the first equation. The last
rule on substitution of constants is used twice to simplify the second equation. The third
distributivity rule and commutativity of ∧ are used to simplify the third one. The second
distributivity rule is used to expand the fourth equation. The fifth equation is simplified by
invoking the third absorption rule. The final equation results from the commutativity of ⊕
and application of the rule x1 ⊕ 0 = x1. When there is no loss of clarity, we drop the operator
symbol ∧ between two literals.

2.3 Normal-Form Expansions of Boolean Functions
Normal forms are standard ways of constructing circuits from the tables defining Boolean
functions. They are easy to apply, although the circuits they produce are generally far from
optimal. They demonstrate that every Boolean function can be realized over the standard basis
as well as the basis containing AND and EXCLUSIVE OR.

In this section we define five normal forms: the disjunctive and conjunctive normal forms,
the sum-of-products expansion, the product-of-sums expansion, and the ring-sum expansion.

2.3.1 Disjunctive Normal Form
A minterm in the variables x1, x2, . . . , xn is the AND of each variable or its negation. For
example, when n = 3, x1 ∧ x2 ∧ x3 is a minterm. It has value 1 exactly when each variable
has value 0. x1 ∧ x2 ∧ x3 is another minterm; it has value 1 exactly when x1 = 1, x2 = 0 and
x3 = 1. It follows that a minterm on n variables has value 1 for exactly one of the 2n points
in its domain. Using the notation x1 = x and x0 = x, we see that the above minterms can
be written as x0

1x
0
2x

0
3 and x1x0

2x3, respectively, when we drop the use of the AND operator ∧.
Thus, x0

1x
0
2x

0
3 = 1 when x = (x1, x2, x3) = (0, 0, 0) and x1

1x
0
2x

1
3 = 1 when x = (1, 0, 1).

That is, the minterm x(c) = xc1
1 ∧ xc2

2 ∧ · · · ∧ xcn
n has value 1 exactly when x = c where c =

(c1, c2, . . . , cn). A minterm of a Boolean function f is a minterm x(c) that contains all the
variables of f and for which f(c) = 1.

The word “disjunction” is a synonym for OR, and the disjunctive normal form (DNF) of
a Boolean function f : Bn !→ B is the OR of the minterms of f . Thus, f has value 1 when

c©John E Savage 2.3 Normal-Form Expansions of Boolean Functions 43

x1 x2 x3 f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

x1 x2 x3 f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

(a) (b)

Figure 2.3 Truth tables illustrating the disjunctive and conjunctive normal forms.

exactly one of its minterms has value 1 and has value 0 otherwise. Consider the function whose
table is given in Fig. 2.3(a). Its disjunctive normal form (or minterm expansion) is given by
the following formula:

f(x1, x2, x3) = x0
1x

0
2x

0
3 ∨ x0

1x
1
2x

0
3 ∨ x1

1x
0
2x

0
3 ∨ x1

1x
0
2x

1
3 ∨ x1

1x
1
2x

1
3

The parity function f (n)
⊕ : Bn !→ B on n inputs has value 1 when an odd number of

inputs is 1 and value 0 otherwise. It can be realized by a circuit containing n − 1 instances of

the EXCLUSIVE OR operator; that is, f (n)
⊕ (x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn. However, the

DNF of f (n)
⊕ contains 2n−1 minterms, a number exponential in n. The DNF of f (3)

⊕ is

f (3)
⊕ (x, y, z) = x y z ∨ x y z ∨ x y z ∨ xyz

Here we use the standard notation for a variable and its complement.

2.3.2 Conjunctive Normal Form
A maxterm in the variables x1, x2, . . . , xn is the OR of each variable or its negation. For
example, x1 ∨ x2 ∨ x3 is a maxterm. It has value 0 exactly when x1 = x2 = 0 and x3 = 1.
x1 ∨ x2 ∨ x3 is another maxterm; it has value 0 exactly when x1 = 0 and x2 = x3 = 1.
It follows that a maxterm on n variables has value 0 for exactly one of the 2n points in its
domain. We see that the above maxterms can be written as x1

1 ∨ x1
2 ∨ x0

3 and x1
1 ∨ x0

2 ∨ x0
3,

respectively. Thus, x1
1 ∨x1

2 ∨x0
3 = 0 when x = (x1, x2, x3) = (0, 0, 1) and x1

1 ∨x0
2 ∨x1

3 = 0
when x = (0, 1, 0). That is, the maxterm x(c) = xc1

1 ∨ xc2
2 ∨ · · · ∨ xcn

n has value 0 exactly
when x = c. A maxterm of a Boolean function f is a maxterm x(c) that contains all the
variables of f and for which f(c) = 0.

The word “conjunction” is a synonym for AND, and the conjunctive normal form (CNF)
of a Boolean function f : Bn !→ B is the AND of the maxterms of f . Thus, f has value 0
when exactly one of its maxterms has value 0 and has value 1 otherwise. Consider the function
whose table is given in Fig. 2.3(b). Its conjunctive normal form (or maxterm expansion) is
given by the following formula:

f(x1, x2, x3) = (x1
1 ∨ x1

2 ∨ x0
3) ∧ (x1

1 ∨ x0
2 ∨ x0

3) ∧ (x0
1 ∨ x0

2 ∨ x1
3)

44 Chapter 2 Logic Circuits Models of Computation

An important relationship holds between the DNF and CNF representations for Boolean
functions. If DNF(f) and CNF(f) are the representations of f in the DNF and CNF expan-
sions, then the following identity holds (see Problem 2.6):

CNF(f) = DNF(f)

It follows that the CNF of the parity function f (n)
⊕ has 2n−1 maxterms.

Since each function f : Bn !→ Bm can be expanded to its CNF or DNF and each can be
realized with circuits, the following result is immediate.

THEOREM 2.3.1 Every function f : Bn !→ Bm can be realized by a logic circuit.

2.3.3 SOPE and POSE Normal Forms
The sum-of-products and product-of-sums normal forms are simplifications of the disjunctive
and conjunctive normal forms, respectively. These simplifications are obtained by using the
rules stated in Section 2.2.4.

A product in the variables xi1 , xi2 , . . . , xik is the AND of each of these variables or their
negations. For example, x2 x5 x6 is a product. A minterm is a product that contains each of
the variables of a function. A product of a Boolean function f is a product in some of the
variables of f . A sum-of-products expansion (SOPE) of a Boolean function is the OR (the
sum) of products of f . Thus, the DNF is a special case of the SOPE of a function.

A SOPE of a Boolean function can be obtained by simplifying the DNF of a function
using the rules given in Section 2.2.4. For example, the DNF given earlier and shown below
can be simplified to produce a SOPE.

y1(x1, x2, x3) = x1 x2 x3 ∨ x1 x2 x3 ∨ x1 x2 x3 ∨ x1 x2 x3 ∨ x1 x2 x3

It is easy to see that the first and second terms combine to give x1x3, the first and third give
x2x3 (we use the property that g ∨ g = g), and the last two give x1x3. That is, we can write
the following SOPE for f :

f = x1 x3 ∨ x1 x3 ∨ x2x3 (2.3)

Clearly, we could have stopped before any one of the above simplifications was used and gen-
erated another SOPE for f . This illustrates the point that a Boolean function may have many
SOPEs but only one DNF.

A sum in the variables xi1 , xi2 , . . . , xik is the OR of each of these variables or their nega-
tions. For example, x3 ∨ x4 ∨ x7 is a sum. A maxterm is a product that contains each of the
variables of a function. A sum of a Boolean function f is a sum in some of the variables of
f . A product-of-sum expansion (POSE) of a Boolean function is the AND (the product) of
sums of f . Thus, the CNF is a special case of the POSE of a function.

A POSE of a Boolean function can be obtained by simplifying the CNF of a function
using the rules given in Section 2.2.4. For example, the conjunction of the two maxterms
x1 ∨ x2 ∨ x3 and x1 ∨ x2 ∨ x3, namely (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3), can be reduced to
x1 ∨ x2 by the application of rules of Section 2.2.4, as shown below:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) =

c©John E Savage 2.3 Normal-Form Expansions of Boolean Functions 45

= x1 ∨ (x2 ∨ x3) ∧ (x2 ∨ x3) {3rd distributivity rule}
= x1 ∨ x2 ∨ (x3 ∧ x3) {3rd distributivity rule}
= x1 ∨ x2 ∨ 0 {6th absorption rule}
= x1 ∨ x2 {1st rule on substitution of constants}

It is easily shown that the POSE of the parity function is its CNF. (See Problem 2.8.)

2.3.4 Ring-Sum Expansion
The ring-sum expansion (RSE) of a function f is the EXCLUSIVE OR (⊕) of a constant
and products (∧) of unnegated variables of f . For example, 1 ⊕ x1x3 ⊕ x2x4 is an RSE.
The operations ⊕ and ∧ over the set B = {0, 1} constitute a ring. (Rings are examined in
Section 6.2.1.) Any two instances of the same product in the RSE can be eliminated since they
sum to 0.

The RSE of a Boolean function f : Bn !→ B can be constructed from its DNF, as we
show. Since a minterm of f has value 1 on exactly one of the 2n points in its domain, at
most one minterm in the DNF for f has value 1 for any point in its domain. Thus, we
can combine minterms with EXCLUSIVE OR instead of OR without changing the value of the
function. Now replace xi with xi ⊕ 1 in each minterm containing xi and then apply the
second distributivity rule. We simplify the resulting formula by using commutativity and the
absorption rule xi ⊕ xi = 0. For example, since the minterms of (x1 ∨ x2)x3 are x1x2x3,
x1x2x3, and x1x2x3, we construct the RSE of this function as follows:

(x1 ∨ x2)x3 = x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3

= (x1 ⊕ 1)x2x3 ⊕ (x1 ⊕ 1)(x2 ⊕ 1)x3 ⊕ x1x2x3

= x2x3 ⊕ x1x2x3 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x1x2x3

= x3 ⊕ x1x3 ⊕ x1x2x3

The third equation follows by applying the second distributivity rule and commutativity. The
fourth follows by applying xi ⊕ xi = 0 and commutativity. The two occurrences of x2x3 are
canceled, as are two of the three instances of x1x2x3.

As this example illustrates, the RSE of a function f : Bn !→ B is the EXCLUSIVE OR of
a Boolean constant c0 and one or more products of unnegated variables of f . Since each of
the n variables of f can be present or absent from a product, there are 2n products, including
the product that contains no variables; that is, a constant whose value is 0 or 1. For example,
1 ⊕ x3 ⊕ x1x3 ⊕ x1x2x3 is the RSE of the function (x1 ∨ x2) x3.

2.3.5 Comparison of Normal Forms
It is easy to show that the RSE of a Boolean function is unique (see Problem 2.7). However, the
RSE is not necessarily a compact representation of a function. For example, the RSE of the OR

of n variables, f (n)
∨ , includes every product term except for the constant 1. (See Problem 2.9.)

It is also true that some functions have large size in some normal forms but small size in
others. For example, the parity function has exponential size in the DNF and CNF normal

forms but linear size in the RSE. Also, f (n)
∨ has exponential size in the RSE but linear size in

the CNF and SOPE representations.

46 Chapter 2 Logic Circuits Models of Computation

A natural question to ask is whether there is a function that has large size in all five normal
forms. The answer is yes. This is true of the Boolean function on n variables whose value is 1
when the sum of its variables is 0 modulo 3 and is 0 otherwise. It has exponential-size DNF,
CNF, and RSE normal forms. (See Problem 2.10.) However, its smallest circuit is linear in n.
(See Section 2.11.)

2.4 Reductions Between Functions
A common way to solve a new problem is to apply an existing solution to it. For example, an
integer multiplication algorithm can be used to square an integer by supplying two copies of
the integer to the multiplier. This idea is called a “reduction” in complexity theory because we
reduce one problem to a previously solved problem, here squaring to integer multiplication. In
this section we briefly discuss several simple forms of reduction, including subfunctions. Note
that the definitions given below are not limited to binary functions.

DEFINITION 2.4.1 A function f : An !→ Am is a reduction to the function g : Ar !→ As

through application of the functions p : As !→ Am and q : An !→ Ar if for all x ∈ An:

f(x) = p(g(q(x)))

As suggested in Fig. 2.4, it follows that circuits for q, g and p can be cascaded (the output
of one is the input to the next) to form a circuit for f . Thus, the circuit size and depth of f ,
C(f) and D(f), satisfy the following inequalities:

C(f) ≤ C(p) + C(g) + C(q)

D(f) ≤ D(p) + D(g) + D(q)

A special case of a reduction is the subfunction, as defined below.

DEFINITION 2.4.2 Let g : An !→ Am. A subfunction f of g is a function obtained by assigning
values to some of the input variables of g, assigning (not necessarily unique) variable names to the
rest, deleting and/or permuting some of its output variables. We say that f is a reduction to g via
the subfunction relationship.

pq g

f

f(x) = p(g(q(x)))

x

Figure 2.4 The function f is reduced to the function g by applying functions p and q to prepare
the input to g and manipulate its output.

c©John E Savage 2.5 Specialized Circuits 47

a

b

f(a, b)

1
g

Figure 2.5 The subfunction f of the function g is obtained by fixing some input variables,
assigning names to the rest, and deleting and/or permuting outputs.

This definition is illustrated by the function f (3,2)
example(x1, x2, x3) = (y1, y2) in Fig. 2.2.

We form the subfunction y1 by deleting y2 from f (3,2)
example and fixing x1 = a, x2 = 1, and

x3 = b, where a and b are new variables. Then, consulting (2.3), we see that y1 can be written
as follows:

y1 = (a b) ∨ (a b) ∨ (1 b)

= a b ∨ a b

= a ⊕ b ⊕ 1

That is, y1 contains the complement of the EXCLUSIVE OR function as a subfunction. The
definition is also illustrated by the reductions developed in Sections 2.5.2, 2.5.6, 2.9.5, and
2.10.1.

The subfunction definition derives its importance from the following lemma. (See Fig. 2.5.)

LEMMA 2.4.1 If f is a subfunction of g, a straight-line program for f can be created from one
for g without increasing the size or depth of its circuit.

As shown in Section 2.9.5, the logical shifting function (Section 2.5.1) can be realized
by composing the integer multiplication and decoder functions (Section 2.5). This type of
reduction is useful in those cases in which one function is reduced to another with the aid of
functions whose complexity (size or depth or both) is known to be small relative to that of
either function. It follows that the two functions have the same asymptotic complexity even if
we cannot determine what that complexity is. The reduction is a powerful idea that is widely
used in computer science. Not only is it the essence of the subroutine, but it is also used to
classify problems by their time or space complexity. (See Sections 3.9.3 and 8.7.)

2.5 Specialized Circuits
A small number of special functions arise repeatedly in the design of computers. These include
logical and shifting operations, encoders, decoders, multiplexers, and demultiplexers. In the
following sections we construct efficient circuits for these functions.

48 Chapter 2 Logic Circuits Models of Computation

Figure 2.6 A balanced binary tree circuit that combines elements with an associative operator.

2.5.1 Logical Operations
Logical operations are not only building blocks for more complex operations, but they are
at the heart of all central processing units. Logical operations include “vector” and “asso-
ciating” operations. A vector operation is the component-wise operation on one or more
vectors. For example, the vector NOT on the vector x = (xn−1, . . . , x1, x0) is the vector
x = (xn−1, . . . , x1, x0). Other vector operations involve the application of a two-input func-
tion to corresponding components of two vectors. If ! is a two-input function, such as AND

or OR, and x = (xn−1, . . . , x1, x0) and y = (yn−1, . . . , y1, y0) are two n-tuples, the vector
operation x ! y is

x ! y = (xn−1 ! yn−1, . . . , x1 ! y1, x0 ! y0)

An associative operator (over a A satisfies the condition (a(b)(c = a((b(c) for all
a, b, c ∈ A. A summing operation on an n-tuple x with an associative two-input operation
(produces the “sum” y defined below.

y = xn−1 (· · · (x1 (x0

An efficient circuit for computing y is shown in Fig. 2.6. It is a binary tree whose leaves are
associated with the variables xn−1, . . . , x1, x0. Each level of the tree is full except possibly
the last. This circuit has smallest depth of those that form the associative combination of the
variables, namely ,log2 n-.

2.5.2 Shifting Functions
Shifting functions can be used to multiply integers and generally manipulate data. A cyclic
shifting function rotates the bits in a word. For example, the left cyclic shift of the 4-tuple
(1, 0, 0, 0) by three places produces the 4-tuple (0, 1, 0, 0).

The cyclic shifting function f (n)
cyclic : Bn+$log2 n% !→ Bn takes as input an n-tuple x =

(xn−1, . . . , x1, x0) and cyclically shifts it left by |s| places, where |s| is the integer associated
with the binary k-tuple s = (sk−1, . . . , s1, s0), k = ,log2 n-, and

|s| =
k−1∑

j=0

sj2j

The n-tuple that results from the shift is y = (yn−1, . . . , y1, y0), denoted as follows:

y = f (n)
cyclic(x, s)

c©John E Savage 2.5 Specialized Circuits 49

x1 x0

y7 y6 y5 y4

x2

y0

x3

y3 y2 y1

x4x6x7

Shift by 22

Shift by 20

x5

Shift by 21

s2

s1

s0

Figure 2.7 Three stages of a cyclic shifting circuit on eight inputs.

A convenient way to perform the cyclic shift of x by |s| places is to represent |s| as a sum
of powers of 2, as shown above, and for each 0 ≤ j ≤ k − 1, shift x left cyclically by sj2j

places, that is, by either 0 or 2j places depending on whether sj = 0 or 1. For example,
consider cyclically shifting the 8-tuple u = (1, 0, 1, 1, 0, 1, 0, 1) by seven places. Since 7 is
represented by the binary number (1, 1, 1), that is, 7 = 4+2+1, to shift (1, 0, 1, 1, 0, 1, 0, 1)
by seven places it suffices to shift it by one place, by two places, and then by four places. (See
Fig. 2.7.)

For 0 ≤ r ≤ n − 1, the following formula defines the value of the rth output, yr, of a
circuit on n inputs that shifts its input x left cyclically by either 0 or 2j places depending on
whether sj = 0 or 1:

yr = (xr ∧ sj) ∨ (x(r−2j) mod n ∧ sj)

Thus, yr is xr in the first case or x(r−2j) mod n in the second. The subscript (r − 2j) mod n
is the positive remainder of (r − 2j) after division by n. For example, if n = 4, r = 1, and
j = 1, then (r − 2j) = −1, which is 3 modulo 4. That is, in a circuit that shifts by either 0
or 21 places, y1 is either x1 or x3 because x3 moves into the second position when shifted left
cyclically by two places.

A circuit based on the above formula that shifts by either 0 or 2j places depending on
whether sj = 0 or 1 is shown in Fig. 2.8 for n = 4. The circuit on n inputs has 3n + 1 gates
and depth 3.

It follows that a circuit for cyclic shifting an n-tuple can be realized in k = ,log2 n- stages
each of which has 3n+1 gates and depth 3, as suggested by Fig. 2.7. Since this may be neither

the smallest nor the shallowest circuit that computes f (n)
cyclic : Bn+$log2 n%, its minimal circuit

size and depth satisfy the following bounds.

50 Chapter 2 Logic Circuits Models of Computation

y3 y2 y1 y0

x0x1x2x3

s1

Figure 2.8 One stage of a circuit for cyclic shifting four inputs by 0 or 2 places depending on
whether s1 = 0 or 1.

LEMMA 2.5.1 The cyclic shifting function f (n)
cyclic : Bn+$log2 n% !→ Bn can be realized by a

circuit of the following size and depth over the basis Ω0 = {∧,∨,¬}:

CΩ0

(
f (n)
cyclic

)
≤ (3n + 1),log2 n-

DΩ0

(
f (n)
cyclic

)
≤ 3,log2 n-

The logical shifting function f (n)
shift : Bn+$log2 n% !→ Bn shifts left the n-tuple x by

a number of places specified by a binary ,log n--tuple s, discarding the higher-index com-
ponents, and filling in the lower-indexed vacated places with 0’s to produce the n-tuple y,
where

yj =

{
xj−|s| for |s| ≤ j ≤ n − 1

0 otherwise

REDUCTIONS BETWEEN LOGICAL AND CYCLIC SHIFTING The logical shifting function f (n)
shift :

Bn+$log2 n% !→ Bn on the n-tuple x is defined below in terms of f (2n)
cyclic and the “projection”

function π(n)
L : B2n !→ Bn that deletes the n high order components from its input 2n-tuple.

Here 0 denotes the zero binary n-tuple and 0 ·x denotes the concatenation of the two strings.
(See Figs. 2.9 and 2.10.)

f (n)
shift(x, s) = π(n)

L

(
f (2n)
cyclic(0 · x, s)

)

0 0 0 0 0 0x7 x6 x5 x4 x3 x2 x1 x0 00

Figure 2.9 The reduction of f (8)
shift to f (8)

cyclic obtained by cyclically shifting 0 ·x by three places
and projecting out the shaded components.

c©John E Savage 2.5 Specialized Circuits 51

x

f (n)
cyclic

f (2n)
shift

x

Figure 2.10 The function f (n)
cyclic is obtained by computing f (2n)

shift on xx and truncating the n
low-order bits.

LEMMA 2.5.2 The function f (2n)
cyclic contains f (n)

shift as a subfunction and the function f (2n)
shift con-

tains f (n)
cyclic as a subfunction.

Proof The first statement follows from the above argument concerning f (n)
shift. The second

statement follows by noting that

f (n)
cyclic(x, s) = π(n)

H

(
f (2n)
shift(x · x, s)

)

where π(n)
H deletes the n low-order components of its input.

This relationship between logical and cyclic shifting functions clearly holds for variants
of such functions in which the amount of a shift is specified with some other notation. An
example of such a shifting function is integer multiplication in which one of the two arguments
is a power of 2.

2.5.3 Encoder
The encoder function f (n)

encode : B2n !→ Bn has 2n inputs, exactly one of which is 1. Its
output is an n-tuple that is a binary number representing the position of the input that has
value 1. That is, it encodes the position of the input bit that has value 1. Encoders are used in
CPUs to identify the source of external interrupts.

Let x = (x2n−1, . . . , x2, x1, x0) represent the 2n inputs and let y = (yn−1, . . . , y1, y0)

represent the n outputs. Then, we write f (n)
encode(x) = y.

When n = 1, the encoder function has two inputs, x1 and x0, and one output, y0, whose
value is y0 = x1 because if x0 = 1, then x1 = 0 and y0 = 0 is the binary representation of
the input whose value is 1. Similar reasoning applies when x0 = 0.

When n ≥ 2, we observe that the high-order output bit, yn−1, has value 1 if 1 falls among
the variables x2n−1, . . . , x2n−1+1, x2n−1 . Otherwise, yn−1 = 0. Thus, yn−1 can be computed
as the OR of these variables, as suggested for the encoder on eight inputs in Fig. 2.11.

The remaining n − 1 output bits, yn−2, . . . , y1, y0, represent the position of the 1 among
variables x2n−1−1, . . . , x2, x1, x0 if yn−1 = 0 or the 1 among variables x2n−1, . . . , x2n−1+1,
x2n−1 if yn−1 = 1. For example, for n = 3 if x = (0, 0, 0, 0, 0, 0, 1, 0), then y2 = 0 and

52 Chapter 2 Logic Circuits Models of Computation

f (2)
encode

x7 x6 x5 x4 x3 x2 x1 x0

y0y1y2
f (3)
encode

Figure 2.11 The recursive construction of an encoder circuit on eight inputs.

(y1, y0) = (0, 1), whereas if x = (0, 0, 1, 0, 0, 0, 0, 0), then y2 = 1 and (y1, y0) = (0, 1).
Thus, after computing yn−1 as the OR of the 2n−1 high-order inputs, the remaining output
bits can be obtained by supplying to an encoder on 2n−1 inputs the 2n−1 low-order bits if
yn−1 = 0 or the 2n−1 high-order bits if yn−1 = 1. It follows that in both cases we can
supply the vector δ = (x2n−1 ∨ x2(n−1)−1, x2n−2 ∨ x2(n−1)−2, . . . , x2(n−1) ∨ x0) of 2(n−1)

components to the encoder on 2(n−1) inputs. This is illustrated in Fig. 2.11.

Let’s now derive upper bounds on the size and depth of the optimal circuit for f (n)
encode.

Clearly CΩ0

(
f (1)
encode

)
= 0 and DΩ0

(
f (1)
encode

)
= 0, since no gates are needed in this case.

From the construction described above and illustrated in Fig. 2.11, we see that we can construct

a circuit for f (n)
encode in a two-step process. First, we form yn−1 as the OR of the 2n−1 high-

order variables in a balanced OR tree of depth n using 2n−1 − 1 OR’s. Second, we form
the vector δ with a circuit of depth 1 using 2n−1 OR’s and supply it to a copy of a circuit

for f (n−1)
encode. This provides the following recurrences for the circuit size and depth of f (n)

encode
because the depth of this circuit is no more than the maximum of the depth of the OR tree and

1 more than the depth of a circuit for f (n−1)
encode:

CΩ0

(
f (n)
encode

)
≤ 2n − 1 + CΩ0(f

(n−1)
encode) (2.4)

DΩ0

(
f (n)
encode

)
≤ max(n − 1, DΩ0(f

(n−1)
encode) + 1) (2.5)

The solutions to these recurrences are stated as the following lemma, as the reader can show.
(See Problem 2.14.)

LEMMA 2.5.3 The encoder function f (n)
encode has the following circuit size and depth bounds:

CΩ0

(
f (n)
encode

)
≤ 2n+1 − (n + 3)

DΩ0

(
f (n)
encode

)
≤ n − 1

c©John E Savage 2.5 Specialized Circuits 53

2.5.4 Decoder
A decoder is a function that reverses the operation of an encoder: given an n-bit binary address,
it generates 2n bits with a single 1 in the position specified by the binary number. Decoders
are used in the design of random-access memory units (see Section 3.5) and of the multiplexer
(see Section 2.5.5).

The decoder function f (n)
decode : Bn !→ B2n

has n input variables x = (xn−1, . . . , x1, x0)

and 2n output variables y = (y2n−1, . . . , y1, y0); that is, f (n)
decode(x) = y. Let c be a binary

n-tuple corresponding to the integer |c|. All components of the binary 2n-tuple y are zero
except for the one whose index is |c|, namely y|c|. Thus, the minterm functions in the variables

x are computed as the output of f (n)
decode.

A direct realization of the function f (n)
decode can be obtained by realizing each minterm

independently. This circuit uses (2n − 1)2n gates and has depth ,log2 n- + 1. Thus we have
the following bounds over the basis Ω0 = {∧,∨,¬}:

CΩ0

(
f (n)
decode

)
≤ (2n − 1)2n

DΩ0

(
f (n)
decode

)
≤ ,log2 n- + 1

A smaller upper bound on circuit size and depth can be obtained from the recursive con-
struction of Fig. 2.12, which is based on the observation that a minterm on n variables is the
AND of a minterm on the first n/2 variables and a minterm on the second n/2 variables. For
example, when n = 4, the minterm x3 ∧ x2 ∧ x1 ∧ x0 is obviously equal to the AND of the
minterm x3∧x2 in the variables x3 and x2 and the minterm x1∧x0 in the variables x1 and x0.

Thus, when n is even, the minterms that are the outputs of f (n)
decode can be formed by ANDing

x0x1x2x3

u0u1u2u3v0v1v2v3

f (2)
decodef (2)

decode

f (4)
decode

y15 y14 y13 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0y12

Figure 2.12 The construction of a decoder on four inputs from two copies of a decoder on two
inputs.

54 Chapter 2 Logic Circuits Models of Computation

every minterm generated by a circuit for f (n/2)
decode on the variables xn/2−1, . . . , x0 with every

minterm generated by a circuit for f (n/2)
decode on the variables xn−1, . . . , xn/2, as suggested in

Fig. 2.12.

The new circuit for f (n)
decode has a size that is at most twice that of a circuit for f (n/2)

decode
plus 2n for the AND gates that combine minterms. It has a depth that is at most 1 more than

the depth of a circuit for f (n/2)
decode. Thus, when n is even we have the following bounds on the

circuit size and depth of f (n)
decode:

CΩ0

(
f (n)
decode

)
≤ 2CΩ0

(
f (n/2)
decode

)
+ 2n

DΩ0

(
f (n)
decode

)
≤ DΩ0

(
f (n/2)

decode

)
+ 1

Specializing the first bounds given above on the size and depth of a decoder circuit to one on
n/2 inputs, we have the bound in Lemma 2.5.4. Furthermore, since the output functions are

all different, CΩ0

(
f (n)
decode

)
is at least 2n.

LEMMA 2.5.4 For n even the decoder function f (n)
decode has the following circuit size and depth

bounds:

2n ≤ CΩ0

(
f (n)
decode

)
≤ 2n + (2n − 2)2n/2

DΩ0

(
f (n)
decode

)
≤ ,log2 n- + 1

The circuit size bound is linear in the number of outputs. Also, for n ≥ 12, the exact value of

CΩ0

(
f (n)
decode

)
is known to within 25%. Since each output depends on n inputs, we will see

in Chapter 9 that the upper bound on depth is exactly the depth of the smallest depth circuit
for the decoder function.

2.5.5 Multiplexer

The multiplexer function f (n)
mux : B2n+n !→ B has two vector inputs, z = (z2n−1, . . . , z1,

z0) and x = (xn−1, . . . , x1, x0), where x is treated as an address. The output of f (n)
mux is

v = zj , where j = |x| is the integer represented by the binary number x. This function is
also known as the storage access function because it simulates the access to storage made by a
random-access memory with one-bit words. (See Section 3.5.)

The similarity between this function and the decoder function should be apparent. The
decoder function has n inputs, x = (xn−1, . . . , x1, x0), and 2n outputs, y = (y2n−1, . . . , y1,
y0), where yj = 1 if j = |x| and yj = 0 otherwise. Thus, we can form v = zj as

v = (z2n−1 ∧ y2n−1) ∨ · · · ∨ (z1 ∧ y1) ∨ (z0 ∧ y0)

This circuit uses a circuit for the decoder function f (n)
decode plus 2n AND gates and 2n − 1

OR gates. It adds a depth of n + 1 to the depth of a decoder circuit. Lemma 2.5.5 follows
immediately from these observations.

c©John E Savage 2.6 Prefix Computations 55

LEMMA 2.5.5 The multiplexer function f (n)
mux : B2n+n !→ B can be realized with the following

circuit size and depth over the basis Ω0 = {∧,∨,¬} :

CΩ0

(
f (n)
mux

)
≤ 3 · 2n + 2(n − 1)2n/2 − 1

DΩ0

(
f (n)
mux

)
≤ n + ,log2 n- + 2

Using the lower bound of Theorem 9.3.3, one can show that it is impossible to reduce
the upper bound on circuit size to less than 2n+1 − 2. At the cost of increasing the depth by

1, the circuit size bound can be improved to about 2n+1. (See Problem 2.15.) Since f (n)
mux

depends on 2n + n variables, we see from Theorem 9.3.1 that it must have depth at least
log2(2

n + n) ≥ n. Thus, the above depth bound is very tight.

2.5.6 Demultiplexer

The demultiplexer function f (n)
demux : Bn+1 !→ B2n

is very similar to a decoder. It has n + 1
inputs consisting of n bits, x, that serve as an address and a data bit e. It has 2n outputs y all
of which are 0 if e = 0 and one output that is 1 if e = 1, namely the output specified by the
n address bits. Demultiplexers are used to route a data bit (e) to one of 2n output positions.

A circuit for the demultiplexer function can be constructed as follows. First, form the AND

of e with each of the n address bits xn−1, . . . , x1, x0 and supply this new n-tuple as input to
a decoder circuit. Let z = (z2n−1, . . . , z1, z0) be the decoder outputs. When e = 0, each of
the decoder inputs is 0 and each of the decoder outputs except z0 is 0 and z0 = 1. If we form
the AND of z0 with e, this new output is also 0 when e = 0. If e = 1, the decoder input is the
address x and the output that is 1 is in the position specified by this address. Thus, a circuit

for a demultiplexer can be constructed from a circuit for f (n)
decode to which are added n AND

gates on its input and one on its output. This circuit has a depth that is at most 2 more than
the depth of the decoder circuit. Since a circuit for a decoder can be constructed from one
for a demultiplexer by fixing e = 1, we have the following bounds on the size and depth of a

circuit for f (n)
demux.

LEMMA 2.5.6 The demultiplexer function f (n)
demux : Bn+1 !→ B2n

can be realized with the
following circuit size and depth over the basis Ω0 = {∧,∨,¬}:

0 ≤ CΩ0

(
f (n)
demux

)
− CΩ0

(
f (n)
decoder

)
≤ n + 1

0 ≤ DΩ0

(
f (n)
demux

)
− DΩ0

(
f (n)
decoder

)
≤ 2

2.6 Prefix Computations
The prefix computation first appeared in the design of logic circuits, the goal being to paral-
lelize as much as possible circuits for integer addition and multiplication. The carry-lookahead
adder is a fast circuit for integer addition that is based on a prefix computation. (See Sec-
tion 2.7.) Prefix computations are now widely used in parallel computation because they
provide a standard, optimizable framework in which to perform computations in parallel.

The prefix function P(n)
& : An !→ An on input x = (x1, x2, . . . , xn) produces as

output y = (y1, y2, . . . , yn), which is a running sum of its n inputs x using the operator

56 Chapter 2 Logic Circuits Models of Computation

(as the summing operator. That is, yj = x1 (x2 (· · · (xj for 1 ≤ j ≤ n. Thus, if

the set A is , the natural numbers, and (is the integer addition operator +, then P(n)
+

on the input x = (x1, x2, . . . , xn) produces the output y, where y1 = x1, y2 = x1 + x2,
y3 = x1 + x2 + x3, . . . , yn = x1 + x2 + · · · + xn. For example, shown below is the prefix
function on a 6-vector of integers under integer addition.

x = (2, 1, 3, 7, 5, 1)

P(6)
+ (x) = (2, 3, 6, 13, 18, 19)

A prefix function is defined only for operators (that are associative over the set A. An
operator over A is associative if a) for all a and b in A, a(b is in A, and b) for all a, b, and
c in A, (a(b)(c = a((b(c)—that is, if all groupings of terms in a sum with the operator
(have the same value. A pair (A,() in which (is associative is called a semigroup. Three
semigroups on which a prefix function can be defined are

• (, +) where are the natural numbers and + is integer addition.

• ({0, 1}∗, ·) where {0, 1}∗ is the set of binary strings and · is string concatenation.

• (A,(copy) where A is a set and (copy is defined by a (copy b = a.

It is easy to show that the concatenation operator · on {0, 1}∗ and (copy on a set A are
associative. (See Problem 2.20.) Another important semigroup is the set of matrices under
matrix multiplication (see Theorem 6.2.1).

Summarizing, if (A,() is a semigroup, the prefix function P(n)
& : An !→ An on input

x = (x1, x2, . . . , xn) produces as output y = (y1, y2, . . . , yn), where yj = x1(x2(· · ·(xj

for 1 ≤ j ≤ n.
Load balancing on a parallel machine is an important application of prefix computation.

A simple example of load balancing is the following: We assume that p processors, numbered
from 0 to p − 1, are running processes in parallel. We also assume that processes are born
and die, resulting in a possible imbalance in the number of processes active on processors.
Since it is desirable that all processors be running the same number of processes, processes
are periodically redistributed among processors to balance the load. To rebalance the load, a)
processors are given a linear order, and b) each process is assigned a Boolean variable with value
1 if it is alive and 0 otherwise. Each processor computes its number of living processes, ni. A
prefix computation is then done on these values using the linear order among processors. This
computation provides the jth processor with the sum nj + nj−1 + · · · + n1 which it uses to
give each of its living processes a unique index. The sum n = np + · · ·+ n1 is then broadcast
to all processors. When the processors are in balance all have ,n/p- processes except possibly
one that has fewer processes. Assigning the sth process to processor (s mod p) insures that
the load is balanced.

Another important type of prefix computation is the segmented prefix computation. In
this case two n-vectors are given, a value vector x and a flag vector φ. The value of the ith
entry yi in the result vector y is xi if φi is 1 and otherwise is the associative combination with
(of xi and the values between it and the first value xj to the left of xi for which the flag
φj = 1. The first bit of φ is always 1. An example of a segmented prefix computation is shown
below for integer values and integer addition as the associative operation:

x = (2, 1, 3, 7, 5, 1)

c©John E Savage 2.6 Prefix Computations 57

φ = (1, 0, 0, 1, 0, 1)

y = (2, 3, 6, 7, 12, 1)

As shown in Problem 2.21, a segmented prefix computation is a special case of a general prefix
computation. This is demonstrated by defining a new associative operation ⊗ on value-flag
pairs that returns another value-flag pair.

2.6.1 An Efficient Parallel Prefix Circuit
A circuit for the prefix function P(n)

& can be realized with O(n2) instances of (if for each
1 ≤ j ≤ n we naively realize yj = x1 (x2 (· · ·(xj with a separate circuit containing j −1
instances of (. If each such circuit is organized as a balanced binary tree, the depth of the

circuit for P(n)
& is the depth of the circuit for yn, which is ,log2 n-. This is a parallel circuit

for the prefix problem but uses many more operators than necessary. We now describe a much
more efficient circuit for this problem; it uses O(n) instances of (and has depth O(log n).

To describe this improved circuit, we let x[r, r] = xr and for r ≤ s let x[r, s] = xr (
xr+1 (· · · (xs. Then we can write P(n)

& (x) = y where yj = x[1, j].
Because (is associative, we observe that x[r, s] = x[r, t] (x[t + 1, s] for r ≤ t < s.

We use this fact to construct the improved circuit. Let n = 2k. Observe that if we form the
(n/2)-tuple (x[1, 2], x[3, 4], x[5, 6], . . . , x[2k − 1, 2k]) using the rule x[i, i + 1] = x[i, i] (
x[i + 1, i + 1] for i odd and then do a prefix computation on it, we obtain the (n/2)-tuple
(x[1, 2], x[1, 4], x[1, 6], . . . , x[1, 2k]). This is almost what is needed. We must only compute
x[1, 1], x[1, 3], x[1, 5], . . . , x[1, 2k − 1], which is easily done using the rule x[1, 2i + 1] =
x[1, 2i] (x2i+1 for 1 ≤ i ≤ 2k−1 − 1. (See Fig. 2.13.) The base case for this construction is
that of n = 1, for which y1 = x1 and no operations are needed.

If C(k) is the size of this circuit on n = 2k inputs and D(k) is its depth, then C(0) = 0,
D(0) = 0 and C(k) and D(k) for k ≥ 1 satisfy the following recurrences:

C(k) = C(k − 1) + 2k − 1

D(k) = D(k − 1) + 2

As a consequence, we have the following result.

THEOREM 2.6.1 For n = 2k, k an integer, the parallel prefix function P(n)
& : An !→ An on an

n-vector with associative operator (can be implemented by a circuit with the following size and
depth bounds over the basis Ω = {(}:

CΩ

(
P(n)
&

)
≤ 2n − log2 n − 2

DΩ

(
P(n)
&

)
≤ 2 log2 n

Proof The solution to the recurrence on C(k) is C(k) = 2k+1 − k − 2, as the reader can
easily show. It satisfies the base case of k = 0 and the general case as well. The solution to
D(k) is D(k) = 2k.

When n is not a power of 2, we can start with a circuit for the next higher power of 2 and
then delete operations and edges that are not used to produce the first n outputs.

58 Chapter 2 Logic Circuits Models of Computation

x1 x2 x3 x4 x5 x6 x7 x8

x[1, 1] x[1, 3] x[1, 5] x[1, 7]

x[1, 2] x[1, 4] x[1, 6] x[1, 8]

P (n)
&P (n/2)

&

P (n/4)
&

Figure 2.13 A simple recursive construction of a prefix circuit when n = 2k = 8. The gates
used at each stage of the construction are grouped into individual shaded regions.

2.7 Addition
Addition is a central operation in all general-purpose digital computers. In this section we
describe the standard ripple adder and the fast carry-lookahead addition circuits. The ripple
adder mimics the elementary method of addition taught to beginners but for binary instead of
decimal numbers. Carry-lookahead addition is a fast addition method based on the fast prefix
circuit described in the preceding section.

Consider the binary representation of integers in the set {0, 1, 2, . . . , 2n − 1}. They are
represented by binary n-tuples u = (un−1, un−2, . . . , u1, u0) and have value

|u| =
n−1∑

j=0

uj2j

where
∑

denotes integer addition.

The addition function f (n)
add : B2n !→ Bn+1 computes the sum of two binary n-bit

numbers u and v, as shown below, where + denotes integer addition:

|u| + |v| =
n−1∑

j=0

(uj + vj)2
j

The tuple ((un−1 +vn−1), (un−2 +vn−2), . . . , (u0 +v0)) is not a binary number because the
coefficients of the powers of 2 are not Boolean. However, if the integer u0 + v0 is converted to

c©John E Savage 2.7 Addition 59

a binary number (c1, s0), where c121 + s020 = u0 + v0, then the sum can be replaced by

|u| + |v| =
n−1∑

j=2

(uj + vj)2
j + (u1 + v1 + c1)2

1 + s020

where the least significant bit is now Boolean. In turn, the sum u1 +v1 +c1 can be represented
in binary by (c2, s1), where c22 + s1 = u1 + v1 + c1. The sum |u|+ |v| can then be replaced
by one in which the two least significant coefficients are Boolean. Repeating this process on all
coefficients, we have the ripple adder shown in Fig. 2.14.

In the general case, the jth stage of a ripple adder combines the jth coefficients of each
binary number, namely uj and vj , and the carry from the previous stage, cj , and represents
their integer sum with the binary notation (cj+1, sj), where

cj+12 + sj = uj + vj + cj

Here cj+1, the number of 2’s in the sum uj + vj + cj , is the carry into the (j + 1)st stage
and sj , the number of 1’s in the sum modulo 2, is the external output from the jth stage.
The circuit performing this mapping is called a full adder (see Fig. 2.15). As the reader can
easily show by constructing a table, this circuit computes the function fFA : B3 !→ B2, where
fFA(uj , vj , cj) = (cj+1, sj) is described by the following formulas:

pj = uj ⊕ vj

gj = uj ∧ vj

cj+1 = (pj ∧ cj) ∨ gj

sj = pj ⊕ cj

(2.6)

Here pj and gj are intermediate variables with a special significance. If gj = 1, a carry is
generated at the jth stage. If pj = 1, a carry from the previous stage is propagated through
the jth stage, that is, a carry-out occurs exactly when a carry-in occurs. Note that pj and gj

cannot both have value 1.
The full adder can be realized with five gates and depth 3. Since the first full adder has

value 0 for its carry input, three gates can be eliminated from its circuit and its depth reduced
by 2. It follows that a ripple adder can be realized by a circuit with the following size and
depth.

v4 u3u4

c1

v3 v0

c3c4c5

s4 s3

u1v2 v1 u0

c2

s2 s1

u2

s0

0FA4 FA3 FA2 FA1 FA0

Figure 2.14 A ripple adder for binary numbers.

60 Chapter 2 Logic Circuits Models of Computation

pj

vj uj cj

gj

sj

cj+1

cj+1

vj uj

cj

sj

FAj

Figure 2.15 A full adder realized with gates.

THEOREM 2.7.1 The addition function f (n)
add : B2n !→ Bn+1 can be realized with a ripple adder

with the following size and depth bounds over the basis Ω = {∧,∨,⊕}:

CΩ

(
f (n)
add

)
≤ 5n − 3

DΩ

(
f (n)
add

)
≤ 3n − 2

(Do the ripple adders actually have depth less than 3n − 2?)

2.7.1 Carry-Lookahead Addition
The ripple adder is economical; it uses a small number of gates. Unfortunately, it is slow. The
depth of the circuit, a measure of its speed, is linear in n, the number of bits in each integer.
The carry-lookahead adder described below is considerably faster. It uses the parallel prefix
circuit described in the preceding section.

The carry-lookahead adder circuit is obtained by applying the prefix operation to pairs
in B2 using the associative operator / : (B2)2 !→ B2 defined below. Let (a, b) and (c, d) be
arbitrary pairs in B2. Then / is defined by the following formula:

(a, b) / (c, d) = (a ∧ c, (b ∧ c) ∨ d)

To show that / is associative, it suffices to show by straightforward algebraic manipulation that
for all values of a, b, c, d, e, and f the following holds:

((a, b) / (c, d)) / (e, f) = (a, b) / ((c, d) / (e, f))

= (a c e, b c e ∨ d e ∨ f)

Let π[j, j] = (pj , gj) and, for j < k, let π[j, k] = π[j, k−1]/π[k, k]. By induction it is
straightforward to show that the first component of π[j, k] is 1 if and only if a carry propagates
through the full adder stages numbered j, j + 1, . . . , k and its second component is 1 if and
only if a carry is generated at the rth stage, j ≤ r ≤ k, and propagates from that stage through
the kth stage. (See Problem 2.26.)

The prefix computation on the string (π[0, 0], π[1, 1], . . . , π[n − 1, n − 1]) with the op-
erator / produces the string (π[0, 0], π[0, 1], π[0, 2], . . . , π[0, n− 1]). The first component of

c©John E Savage 2.8 Subtraction 61

π[0, j] is 1 if and only if a carry generated at the zeroth stage, c0, is propagated through the
jth stage. Since c0 = 0, this component is not used. The second component of π[0, j], cj+1,
is 1 if and only if a carry is generated at or before the jth stage. From (2.6) we see that the
sum bit generated at the jth stage, sj , satisfies sj = pj ⊕ cj . Thus the jth output bit, sj , is
obtained from the EXCLUSIVE OR of pj and the second component of π[0, j − 1].

THEOREM 2.7.2 For n = 2k, k an integer, the addition function f (n)
add : B2n !→ Bn+1 can

be realized with a carry-lookahead adder with the following size and depth bounds over the basis
Ω = {∧,∨,⊕}:

CΩ

(
f (n)
add

)
≤ 8n

DΩ

(
f (n)
add

)
≤ 4 log2 n + 2

Proof The prefix circuit uses 2n − log2 n − 3 instances of / and has depth 2 log2 n. Since
each instance of / can be realized by a circuit of size 3 and depth 2, each of these bounds is
multiplied by these factors. Since the first component of π[0, j] is not used, the propagate
value computed at each output combiner vertex can be eliminated. This saves one gate per
result bit, or n gates. However, for each 0 ≤ j ≤ n − 1 we need two gates to compute pj

and qj and one gate to compute sj , 3n additional gates. The computation of these three
sets of functions adds depth 2 to that of the prefix circuit. This gives the desired bounds.

The addition function f (n)
add is computed by the carry-lookahead adder circuit with 1.6

times as many gates as the ripple adder but in logarithmic instead of linear depth.
When exact addition is expected and every number is represented by n bits, a carry-out of

the last stage of an adder constitutes an overflow, an error.

2.8 Subtraction
Subtraction is possible when negative numbers are available. There are several ways to repre-
sent negative numbers. To demonstrate that subtraction is not much harder than addition, we
consider the signed two’s complement representation for positive and negative integers in the
set (n) = {−2n, . . . ,−2,−1, 0, 1, 2, . . . , 2n − 1}. Each signed number u is represented by
an (n + 1)-tuple (σ, u), where σ is its sign and u = (un−1, . . . , u0) is a binary number that
is either the magnitude |u| of the number u, if positive, or the two’s complement 2n − |u| of
it, if negative. The sign σ is defined below:

σ =

{
0 the number u is positive or zero

1 the number u is negative

The two’s complement of an n-bit binary number v is easily formed by adding 1 to t =
2n −1−|v|. Since 2n −1 is represented as the n-tuple of 1’s, t is obtained by complementing
(NOTing) every bit of v. Thus, the two’s complement of u is obtained by complementing every
bit of u and then adding 1. It follows that the two’s complement of the two’s complement of
a number is the number itself. Thus, the magnitude of a negative number (1, u) is the two’s
complement of u.

62 Chapter 2 Logic Circuits Models of Computation

This is illustrated by the integers in the set (4) = {−16, . . . ,−2,−1, 0, 1, 2, . . . , 15}.
The two’s complement representation of the decimal integers 9 and −11 are

9 = (0, 1, 0, 0, 1)

−11 = (1, 0, 1, 0, 1)

Note that the two’s complement of 11 is 16 − 11 = 5, which is represented by the four-tuple
(0, 1, 0, 1). The value of the two’s complement of 11 can be computed by complementing all
bits in its binary representation (1, 0, 1, 1) and adding 1.

We now show that to add two numbers u and v in two’s complement notation (σu, u)
and (σv, v), we add them as binary (n + 1)-tuples and discard the overflow bit, that is, the
coefficient of 2n+1. We now show that this procedure provides a correct answer when no
overflow occurs and establish conditions on which overflow does occur.

Let |u| and |v| denote the magnitudes of the two numbers. There are four cases for their
sum u + v:

Case u v u + v

I ≥ 0 ≥ 0 |u| + |v|
II ≥ 0 < 0 2n+1 + |u| −| v|
III < 0 ≥ 0 2n+1 − |u| + |v|
IV < 0 < 0 2n+1 + 2n+1 − |u| −| v|

In the first case the sum is positive. If the coefficient of 2n is 1, an overflow error is detected.
In the second case, if |u|−|v| is negative, then 2n+1 + |u|−|v| = 2n + 2n −||u|−|v|| and
the result is in two’s complement notation with sign 1, as it should be. If |u| −| v| is positive,
the coefficient of 2n is 0 (a carry-out of the last stage has occurred) and the result is a positive
number with sign bit 0, properly represented. A similar statement applies to the third case.
In the fourth case, if |u| + |v| is less than 2n, the sum is 2n+1 + 2n + (2n − (|u| + |v|)),
which is 2n + (2n − (|u| + |v|)) when the coefficient of 2n+1 is discarded. This is a proper
representation for a negative number. However, if |u| + |v| ≥ 2n, a borrow occurs from the
(n + 1)st position and the sum 2n+1 + 2n + (2n − (|u| + |v|)) has a 0 in the (n + 1)st
position, which is not a proper representation for a negative number (after discarding 2n+1);
overflow has occurred.

The following procedure can be used to subtract integer u from integer v: form the two’s
complement of u and add it to the representation for v. The negation of a number is obtained
by complementing its sign and taking the two’s complement of its binary n-tuple. It follows
that subtraction can be done with a circuit of size linear in n and depth logarithmic in n. (See
Problem 2.27.)

2.9 Multiplication
In this section we examine several methods of multiplying integers. We begin with the stan-
dard elementary integer multiplication method based on the binary representation of numbers.
This method requires O(n2) gates and has depth O(log2 n) on n-bit numbers. We then ex-
amine a divide-and-conquer method that has the same depth but much smaller circuit size.
We also describe fast multiplication methods, that is, methods that have circuits with smaller
depths. These include a circuit whose depth is much smaller than O(log n). It uses a novel

c©John E Savage 2.9 Multiplication 63

representation of numbers, namely, the exponents of numbers in their prime number decom-
position.

The integer multiplication function f (n)
mult : B2n !→ B2n can be realized by the standard

integer multiplication algorithm, which is based on the following representation for the
product of integers represented as binary n-tuples u and v:

|u||v| =
n−1∑

i=0

n−1∑

j=0

uivj2i+j (2.7)

Here |u| and |v| are the magnitudes of the integers represented by u and v. The standard
algorithm forms the products uivj individually to create n binary numbers, as suggested below.
Here each row corresponds to a different number; the columns correspond to powers of 2 with
the rightmost column corresponding to the least significant component, namely the coefficient
of 20.

26 25 24 23 22 21 20

u0v3 u0v2 u0v1 u0v0 = z0

u1v3 u1v2 u1v1 u1v0 0 = z1

u2v3 u2v2 u2v1 u2v0 0 0 = z2

u3v3 u3v2 u3v1 u3v0 0 0 0 = z3

(2.8)

Let the ith binary number produced by this multiplication operation be zi. Since each of
these n binary numbers contains at most 2n − 1 bits, we treat them as if they were (2n − 1)-
bit numbers. If these numbers are added in the order shown in Fig. 2.16(a) using a carry-
lookahead adder at each step, the time to perform the additions, measured by the depth of a
circuit, is O(n log n). The size of this circuit is O(n2). A faster circuit containing about the
same number of gates can be constructed by adding z0, . . . , zn−1 in a balanced binary tree
with n leaves, as shown in Fig. 2.16(b). This tree has n − 1 (2n − 1)-bit adders. (A binary
tree with n leaves has n− 1 internal vertices.) If each of the adders is a carry-lookahead adder,
the depth of this circuit is O(log2 n) because the tree has O(log n) adders on every path from
the root to a leaf.

z3z2z1z0

z1 z2 z3 z4 z5

z5z4

z6 z6

(b)(a)

z0

Figure 2.16 Two methods for aggregating the binary numbers z0, . . . , zn−1.

64 Chapter 2 Logic Circuits Models of Computation

2.9.1 Carry-Save Multiplication
We now describe a much faster circuit obtained through the use of the carry-save adder. Let
u, v, and w be three binary n-bit numbers. Their sum is a binary number t. It follows that
|t| can be represented as

|t| = |u| + |v| + |w|

=
n−1∑

i=0

(ui + vi + wi)2
i

With a full adder the sum (ui + vi + wi) can be converted to the binary representation
ci+12 + si. Making this substitution, we have the following expression for the sum:

|t| = |u| + |v| + |w|

=
n−1∑

i=0

(2ci+1 + si)2
i

= |c| + |s|

Here c with c0 = 0 is an (n + 1)-tuple and s is an n-tuple. The conversion of (ui, vi, wi) to
(ci+1, si) can be done with the full adder circuit shown in Fig. 2.15 of size 5 and depth 3 over
the basis Ω = {∧,∨,⊕}.

The function f (n)
carry-save : B3n !→ B2n+2 that maps three binary n-tuples, u, v, and w,

to the pair (c, s) described above is the carry-save adder. A circuit of full adders that realizes
this function is shown in Fig. 2.17.

THEOREM 2.9.1 The carry-save adder function f (n)
carry-save : B3n !→ B2n+2 can be realized with

the following size and depth over the basis Ω = {∧,∨,⊕}:

CΩ

(
f (n)
carry-save

)
≤ 5n

DΩ

(
f (n)
carry-save

)
≤ 3

Three binary n-bit numbers u, v, w can be added by combining them in a carry-save
adder to produce the pair (c, s), which are then added in an (n + 1)-input binary adder. Any
adder can be used for this purpose.

vn−1wn−1

...

sn−1

cn
FAn−1

un−1

s1

c2

v1w1

FA1

u1

s0

c1

v0w0

u0
FA0

Figure 2.17 A carry-save adder realized by an array of full adders.

c©John E Savage 2.9 Multiplication 65

A multiplier for two n-bit binary can be formed by first creating the n (2n− 1)-bit binary
numbers shown in (2.8) and then adding them, as explained above. These n numbers can be
added in groups of three, as suggested in Fig. 2.18.

Let’s now count the number of levels of carry-save adders in this construction. At the
zeroth level there are m0 = n numbers. At the jth level there are

mj = 20mj−1/31 + mj−1 − 30mj−1/31 = mj−1 − 0mj−1/31

binary numbers. This follows because there are 0mj−1/31 groups of three binary numbers and
each group is mapped to two binary numbers. Not combined into such groups are mj−1 −
0mj−1/31 binary numbers, giving the total mj . Since (x − 2)/3 ≤ 0x/31 ≤ x/3, we have

(
2

3

)
mj−1 ≤ mj ≤

(
2

3

)
mj−1 +

(
2

3

)

from which it is easy to show by induction that the following inequality holds:

(
2

3

)j

n ≤ mj ≤
(

2

3

)j

n + 2

(
1 −

(
2

3

)j
)

≤
(

2

3

)j

n + 2

Let s be the number of stages after which ms = 2. Since ms−1 ≥ 3, we have

log2(n/2)

log2(3/2)
≤ s ≤ log2 n

log2(3/2)
+ 1

The number of carry-save adders used in this construction is n− 2. This follows from the
observation that the number of carry-save adders used in one stage is equal to the decrease in
the number of binary numbers from one stage to the next. Since we start with n and finish
with 2, the result follows.

After reducing the n binary numbers to two binary numbers through a series of carry-save
adder stages, the two remaining binary numbers are added in a traditional binary adder. Since
each carry-save adder operates on three (2n−1)-bit binary numbers, they use at most 5(2n−1)
gates and have depth 3. Summarizing, we have the following theorem showing that carry-save
addition provides a multiplication circuit of depth O(log n) but of size quadratic in n.

p1

p2

p3

p4

p5

p6

p7

p8

p0

Figure 2.18 Schema for the carry-save combination of nine 18-bit numbers.

66 Chapter 2 Logic Circuits Models of Computation

THEOREM 2.9.2 The binary multiplication function f (n)
mult : B2n !→ B2n for n-bit binary

numbers can be realized by carry-save addition by a circuit of the following size and depth over
the basis Ω = {∧,∨,⊕}:

CΩ

(
f (n)
mult

)
≤ 5(2n − 1)(n − 2) + CΩ

(
f (2n)
add

)

DΩ

(
f (n)
mult

)
≤ 3s + DΩ

(
f (2n)
add

)

where s, the number of carry-save adder stages, satisfies

s ≤ log2 n

log2(3/2)
+ 1

It follows from this theorem and the results of Theorem 2.7.2 that two n-bit binary num-
bers can be multiplied by a circuit of size O(n2) and depth O(log n).

2.9.2 Divide-and-Conquer Multiplication

We now examine a multiplier of much smaller circuit size but depth O(log2 n). It uses a
divide-and-conquer technique. We represent two positive integers by their n-bit binary num-
bers u and v. We assume that n is even and decompose each number into two (n/2)-bit
numbers:

u = (uh, ul), v = (vh, vl)

where uh, ul, vh, vl are the high and low components of the vectors u and v, respectively.
Then we can write

|u| = |uh|2n/2 + |ul|
|v| = |vh|2n/2 + |vl|

from which we have

|u||v| = |ul||vl| + (|uh||vh| + (|vh| −| vl|)(|ul| −| uh|) + |ul||vl|)2n/2 + |uh||vh|2n

It follows from this expression that only three integer multiplications are needed, namely
|ul||ul|, |uh||uh|, and (|vh| −| vl|)(|ul| −| uh|); multiplication by a power of 2 is done by
realigning bits for addition. Each multiplication is of (n/2)-bit numbers. Six additions and
subtractions of 2n-bit numbers suffice to complete the computation. Each of the additions
and subtractions can be done with a linear number of gates in logarithmic time.

If C(n) and D(n) are the size and depth of a circuit for integer multiplication realized
with this divide-and-conquer method, then we have

C(n) ≤ 3C(n/2) + cn (2.9)

D(n) ≤ D(n/2) + d log2 n (2.10)

where c and d are constants of the construction. Since C(1) = 1 and D(1) = 1 (one use
of AND suffices), we have the following theorem, the proof of which is left as an exercise (see
Problem 2.28).

c©John E Savage 2.9 Multiplication 67

THEOREM 2.9.3 If n = 2k, the binary multiplication function f (n)
mult : B2n !→ B2n for n-bit

binary numbers can be realized by a circuit for the divide-and-conquer algorithm of the following
size and depth over the basis Ω = {∧,∨,⊕}:

CΩ

(
f (n)
mult

)
= O

(
3log2 n

)
= O

(
nlog2 3

)

DΩ

(
f (n)
mult

)
= O(log2

2 n)

The size of this divide-and-conquer multiplication circuit is O(n1.585), which is much
smaller than the O(n2) bound based on carry-save addition. The depth bound can be reduced
to O(log n) through the use of carry-save addition. (See Problem 2.29.) However, even faster
multiplication algorithms are known for large n.

2.9.3 Fast Multiplication
Schönhage and Strassen [302] have described a circuit to multiply integers represented in
binary that is asymptotically small and shallow. Their algorithm for the multiplication of n-bit
binary numbers uses O(n log n log log n) gates and depth O(log n). It illustrates the point
that a circuit can be devised for this problem that has depth O(log n) and uses a number of
gates considerably less than quadratic in n. Although the coefficients on the size and depth
bounds are so large that their circuit is not practical, their result is interesting and motivates
the following definition.

DEFINITION 2.9.1 Mint(n, c) is the size of the smallest circuit for the multiplication of two n-bit
binary numbers that has depth at most c log2 n for c > 0.

The Schönhage-Strassen circuit demonstrates that Mint(n, c) = O(n log n log log n) for
all n ≥ 1. It is also clear that Mint(n, c) = Ω(n) because any multiplication circuit must
examine each component of each binary number and no more than a constant number of
inputs can be combined by one gate. (Chapter 9 provides methods for deriving lower bounds
on the size and depth of circuits.)

Because we use integer multiplication in other circuits, it is convenient to make the follow-
ing reasonable assumption about the dependence of Mint(n, c) on n. We assume that

Mint(dn, c) ≤ dMint(n, c)

for all d satisfying 0 ≤ d ≤ 1. This condition is satisfied by the Schönhage-Strassen circuit.

2.9.4 Very Fast Multiplication
If integers in the set {0, 1, . . . , N − 1} are represented by the exponents of primes in their
prime factorization, they can be multiplied by adding exponents. The largest exponent on a
prime in this range is at most log2 N . Thus, exponents can be represented by O(log log N)
bits and integers multiplied by circuits with depth O(log log log N). (See Problem 2.32.)
This depth is much smaller than O(log log N), the depth of circuits to add integers in any
fixed radix system. (Note that if N = 2n, log2 log2 N = log2 n.) However, addition is very
difficult in this number system. Thus, it is a fast number system only if the operations are
limited to multiplications.

68 Chapter 2 Logic Circuits Models of Computation

2.9.5 Reductions to Multiplication

The logical shifting function f (n)
shift can be reduced to integer multiplication function f (n)

mult, as
can be seen by letting one of the two n-tuple arguments be a power of 2. That is,

f (n)
shift(x, s) = π(n)

L

(
f (n)
mult(x, y)

)

where y = f (m)
decode(s) is the value of the decoder function (see Section 2.5) that maps a binary

m-tuple, m = ,log2 n-, into a binary 2m-tuple containing a single 1 at the output indexed

by the integer represented by s and π(n)
L is the projection operator defined on page 50.

LEMMA 2.9.1 The logical shifting function f (n)
shift can be reduced to the binary integer multipli-

cation function f (n)
mult through the application of the decoder function f (m)

decode on m = ,log2 n-
inputs.

As shown in Section 2.5, the decoder function f (m)
decode can be realized with a circuit of size

very close to 2m and depth ,log2 m-. Thus, the shifting function has circuit size and depth
no more than constant factors larger than those for integer multiplication.

The squaring function f (n)
square : Bn !→ B2n maps the binary n-tuple x into the binary

2n-tuple y representing the product of x with itself. Since the squaring and integer multipli-
cation functions contain each other as subfunctions, as shown below, circuits for one can be
used for the other.

LEMMA 2.9.2 The integer multiplication function f (n)
mult contains the squaring function f (n)

square

as a subfunction and f (3n+1)
square contains f (n)

mult as a subfunction.

Proof The first statement follows by setting the two n-tuple inputs of f (n)
mult to be the input

to f (n)
square. The second statement follows by examining the value of f (3n+1)

square on the (3n+1)-
tuple input (xzy), where x and y are binary n-tuples and z is the zero binary (n+1)-tuple.
Thus, (xzy) denotes the value a = 22n+1|x| + |y| whose square b is

b = 24n+2|x|2 + 22n+2|x||y| + |y|2

The value of the product |x||y| can be read from the output because there is no carry
into 22n+2|x||y| from |y|2, nor is there a carry into 24n+2|x|2 from 22n+2|x||y|, since
|x|, |y| ≤ 2n − 1.

2.10 Reciprocal and Division
In this section we examine methods to divide integers represented in binary. Since the division
of one integer by another generally cannot be represented with a finite number of bits (consider,
for example, the value of 2/3), we must be prepared to truncate the result of a division. The
division method presented in this section is based on Newton’s method for finding a zero of a
function.

Let u = (un−1, . . . , u1, u0) and v = (vn−1, . . . , v1, v0) denote integers whose magni-
tudes are u and v. Then the division of one integer u by another v, u/v, can be obtained as the

c©John E Savage 2.10 Reciprocal and Division 69

result of taking the product of u with the reciprocal 1/v. (See Problem 2.33.) For this reason,
we examine only the computation of reciprocals of n-bit binary numbers. For simplicity we
assume that n is a power of 2.

The reciprocal of the n-bit binary number u = (un−1, . . . , u1, u0) representing the in-
teger u is a fractional number r represented by the (possibly infinite) binary number r =
(r−1, r−2, r−3, . . .), where

|r| = r−12−1 + r−22−2 + r−32−3 + · · ·

Some numbers, such as 3, have a binary reciprocal that has an infinite number of digits, such as
(0, 1, 0, 1, 0, 1, . . .), and cannot be expressed exactly as a binary tuple of finite extent. Others,
such as 4, have reciprocals that have finite extent, such as (0, 1).

Our goal is to produce an (n + 2)-bit approximation to the reciprocal of n-bit binary
numbers. (It simplifies the analysis to obtain an (n + 2)-bit approximation instead of an n-bit
approximation.) We assume that each such binary number u has a 1 in its most significant po-
sition; that is, 2n−1 ≤ u < 2n. If this is not true, a simple circuit can be devised to determine
the number of places by which to shift u left to meet this condition. (See Problem 2.25.) The
result is shifted left by an equal amount to produce the reciprocal.

It follows that an (n+2)-bit approximation to the reciprocal of an n-bit binary number u
with un−1 = 1 is represented by r = (r−1, r−2, r−3, . . .), where the first n− 2 digits of r are
zero. Thus, the value of the approximate reciprocal is represented by the n + 2 components
(r−(n−1), r−(n), . . . , r−(2n)). It follows that these components are produced by shifting r left

by 2n places and removing the fractional bits. This defines the function f (n)
recip:

f (n)
recip(u) =

⌊
22n

u

⌋

The approximation described below can be used to compute reciprocals.
Newton’s approximation algorithm is a method to find the zero x0 of a twice contin-

uously differentiable function h : !→ on the reals (that is, h(x0) = 0) when h has
a non-zero derivative h′(x) in the neighborhood of x0. As suggested in Fig. 2.19, the slope
of the tangent to the curve at the point yi, h′(yi), is equal to h(yi)/(yi − yi+1). For the
convex increasing function shown in this figure, the value of yi+1 is closer to the zero x0 than

yi+1x0 yi

h(x)

x

h′(yi)

Figure 2.19 Newton’s method for finding the zero of a function.

70 Chapter 2 Logic Circuits Models of Computation

is yi. The same holds for all twice continuously differentiable functions whether increasing,
decreasing, convex, or concave in the neighborhood of a zero. It follows that the recurrence

yi+1 = yi −
h(yi)

h′(yi)
(2.11)

provides values increasingly close to the zero of h as long as it is started with a value sufficiently
close to the zero.

The function h(y) = 1 − 22n/uy has zero y = 22n/u. Since h
′
(y) = 22n/uy2, the

recurrence (2.11) becomes

yi+1 = 2yi − uy2
i /22n

When this recurrence is modified as follows, it converges to the (n + 2)-bit binary reciprocal
of the n-bit binary number u:

yi+1 =

⌊
22n+1yi − uy2

i

22n

⌋

The size and depth of a circuit resulting from this recurrence are O(Mint(n, c) log n) and
O(log2 n), respectively. However, this recurrence uses more gates than are necessary since it
does calculations with full precision at each step even though the early steps use values of yi

that are imprecise. We can reduce the size of the resulting circuit to O(Mint(n, c)) if, instead
of computing the reciprocal with n + 2 bits of accuracy at every step we let the amount of
accuracy vary with the number of stages, as in the algorithm recip(u, n) of Fig. 2.20. The
algorithm recip is called 1 + log2 n times, the last time when n = 1.

We now show that the algorithm recip(u, n) computes the function f (n)
recip(u) = r =

022n/u1. In other words, we show that r satisfies ru = 22n − s for some 0 ≤ s < u. The
proof is by induction on n.

The inductive hypothesis is that the algorithm recip(u, m) produces an (m + 2)-bit
approximation to the reciprocal of the m-bit binary number u (whose most significant bit is
1), that is, it computes r = 022m/u1. The assumption applies to the base case of m = 1 since
u = 1 and r = 4. We assume it holds for m = n/2 and show that it also holds for m = n.

Algorithm recip(u, n)
if n = 1 then

r := 4;
else begin

t := recip(0u/2n/21, n/2);
r :=

⌊
(23n/2 + 1t − ut2)/2n

⌋
;

for j := 3 downto 0 do
if (u(r + 2j) ≤ 22n) then r := r + 2j ;

end;
return(r);

Figure 2.20 An algorithm to compute r, the (n+2)-bit approximation to the reciprocal of the

n-bit binary number u representing the integer u, that is, r = f (n)
recip(u).

c©John E Savage 2.10 Reciprocal and Division 71

Let u1 and u0 be the integers corresponding to the most and least significant n/2 bits
respectively of u, that is, u = u12n/2 + u0. Since 2n−1 ≤ u < 2n, 2n/2−1 ≤ u1 <
2n/2. Also, 0 u

2n/2 1 = u1. By the inductive hypothesis t = 02n/u11 is the value returned by

recip(u1, n/2); that is, u1t = 2n − s′ for some 0 ≤ s′ < u1. Let w = 23n/2 + 1t − ut2.
Then

uw = 22n+1u1t + 23n/2 + 1u0t − [t(u12n/2 + u0)]
2

Applying u1t = 2n − s′, dividing both sides by 2n, and simplifying yields

uw

2n
= 22n −

(
s′ − tu0

2n/2

)2

(2.12)

We now show that

uw

2n
≥ 22n − 8u (2.13)

by demonstrating that (s′ − tu0/2n/2)2 ≤ 8u. We note that s′ < u1 < 2n/2, which implies
(s′)2 < 2n/2u1 ≤ u. Also, since u1t = 2n − s′ or t ≤ 2n/u1 we have

(
tu0

2n/2

)2

<

(
2n/2u0

u1

)2

<
(

2n/2+1
)2

≤ 8u

since u1 ≥ 2n/2−1, u0 < 2n/2, and 2n−1 ≤ u. The desired result follows from the observation
that (a − b)2 ≤ max (a2, b2).

Since r = 0w/2n1, it follows from (2.13) that

ur = u
⌊ w

2n

⌋
> u

(w

2n
− 1

)
=

uw

2n
− u ≥ 22n − 9u

It follows that r > (22n/u) − 9. Also from (2.12), we see that r ≤ 22n/u. The three-step
adjustment process at the end of recip(u, m) increases ur by the largest integer multiple of
u less than 16u that keeps it less than or equal to 22n. That is, r satisfies ur = 22n − s for
some 0 ≤ s < u, which means that r is the reciprocal of u.

The algorithm for recip(u, n) translates into a circuit as follows: a) recip(u, 1) is
realized by an assignment, and b) recip(u, n), n > 1, is realized by invoking a circuit for
recip(0 u

2n/2 1, n/2) followed by a circuit for
⌊
(23n/2 + 1t − ut2)/2n

⌋
and one to implement

the three-step adjustment. The first of these steps computes 0 u
2n/2 1, which does not require

any gates, merely shifting and discarding bits. The second step requires shifting t left by 3n/2
places, computing t2 and multiplying it by u, subtracting the result from the shifted version
of t, and shifting the final result right by n places and discarding low-order bits. Circuits for
this have size cMint(n, c) for some constant c > 0 and depth O(log n). The third step can be
done by computing ur, adding u2j for j = 3, 2, 1, or 0, and comparing the result with 22n.
The comparisons control whether 2j is added to r or not. The one multiplication and the
additions can be done with circuits of size c′Mint(n, c) for some constant c′ > 0 and depth
O(log n). The comparison operations can be done with a constant additional number of gates
and constant depth. (See Problem 2.19.)

It follows that recip can be realized by a circuit whose size Crecip(n) is no more than a
multiple of the size of an integer multiplication circuit, Mint(n, c), plus the size of a circuit for

72 Chapter 2 Logic Circuits Models of Computation

the invocation of recip(0 u
2n/2 1,n/2). That is,

Crecip(n) ≤ Crecip(n/2) + cMint(n, c)

Crecip(1) = 1

for some constant c > 0. This inequality implies the following bound:

Crecip(n) ≤ c
log n∑

j=0

Mint

(n

2j
, c

)
≤ cMint(n, c)

log n∑

j=0

1

2j

= O(Mint(n, c))

which follows since Mint(dn, c) ≤ dMint(n, c) when d ≤ 1.
The depth Drecip(n) of the circuit produced by this algorithm is at most c log n plus the

depth Drecip(n/2). Since the circuit has at most 1 + log2 n stages with a depth of at most
c log n each, Drecip(n) ≤ 2c log2 n when n ≥ 2.

THEOREM 2.10.1 If n = 2k, the reciprocal function f (n)
recip : Bn !→ Bn+2 for n-bit binary

numbers can be realized by a circuit with the following size and depth:

CΩ

(
f (n)
recip

)
≤ O(Mint(n, c))

DΩ

(
f (n)
recip

)
≤ c log2

2 n

VERY FAST RECIPROCAL Beame, Cook, and Hoover [33] have given an O(log n) circuit for
the reciprocal function. It uses a sequence of about n2/ log n primes to represent an n-bit
binary number x, .5 ≤ x < 1, using arithmetic modulo these primes. The size of the circuit
produced is polynomial in n, although much larger than Mint(n, c). Reif and Tate [324] show
that the reciprocal function can be computed with a circuit that is defined only in terms of n
and has a size proportional to Mint (and thus nearly optimal) and depth O(log n log log n).
Although the depth bound is not quite as good as that of Beame, Cook, and Hoover, its size
bound is very good.

2.10.1 Reductions to the Reciprocal
In this section we show that the reciprocal function contains the squaring function as a sub-
function. It follows from Problem 2.33 and the preceding result that integer multiplication
and division have comparable circuit size. We use Taylor’s theorem [314, p. 345] to establish
the desired result.

THEOREM 2.10.2 (Taylor) Let f(x) : !→ be a continuous real-valued function defined
on the interval [a, b] whose kth derivative is also continuous for k ≤ n + 1 over the same interval.
Then for a ≤ x0 ≤ x ≤ b, f(x) can be expanded as

f(x) = f(x0) + (x − x0)f
[1](x0) +

(x − x0)2

2
f [2](x0) + · · · + (x − x0)n

n!
f [n](x0) + rn

where f [n] denotes the nth derivative of f and the remainder rn satisfies

rn =

∫ x

x0

f [n+1](t)
(x − t)n

n!
dt

c©John E Savage 2.10 Reciprocal and Division 73

=
(x − x0)n+1

(n + 1)!
f [n+1](ψ)

for some ψ satisfying x0 ≤ ψ ≤ x.

Taylor’s theorem is used to expand 022n−1/|u|1 by applying it to the function f(w) =
(1 + w)−1 on the interval [0, 1]. The Taylor expansion of this function is

(1 + w)−1 = 1 − w + w2 − w3(1 + ψ)−4

for some 0 ≤ ψ ≤ 1. The magnitude of the last term is at most w3.
Let n ≥ 12, k = 0n/21, l = 0n/121 and restrict |u| as follows:

|u| = 2k + |a| where

|a| = 2l|b| + 1 and

|b| ≤ 2l−1 − 1

It follows that |a| ≤ 22l−1 − 2l + 1 < 22l−1 for l ≥ 1. Applying the Taylor series expansion
to (1 + |a|/2k)−1, we have

⌊
22n−1

(2k + |a|)

⌋
=

⌊
22n−1−k

(
1 − |a|

2k
+

(
|a|
2k

)2

−
(
|a|
2k

)3

(1 + ψ)−4

)⌋
(2.14)

for some 0 ≤ ψ ≤ 1. For the given range of values for |u| both the sum of the first two terms
and the third term on the right-hand side have the following bounds:

22n−1−k(1 − |a|/2k) > 22n−1−k
(
1 − 22l−1/2k

)

22n−1−k(|a|/2k)2 < 22n−1−k
(
22l−1/2k

)2

Since 22l−1/2k < 1/2, the value of the third term, 22n−1−k(|a|/2k)2, is an integer that does
not overlap in any bit positions with the sum of the first two terms.

The fourth term is negative; its magnitude has the following upper bound:

22n−1−4k|a|3(1 + ψ)−4 < 23(2l−1)+2n−1−4k

Expanding the third term, we have

22n−1−3k(|a|)2 = 22n−1−3k(22l|b|2 + 2l+1|b| + 1)

Because 3(2l − 1) ≤ k, the third term on the right-hand side of this expansion has value
22n−1−3k and is larger than the magnitude of the fourth term in (2.14). Consequently the
fourth term does not affect the value of the result in (2.14) in positions occupied by the binary
representation of 22n−1−3k(22l|b|2 + 2l+1|b|). In turn, 2l+1|b| is less than 22l, which means
that the binary representation of 22n−1−3k(22l|b|2) appears in the output shifted but otherwise
without modification. This provides the following result.

LEMMA 2.10.1 The reciprocal function f (n)
recip contains as a subfunction the squaring function

f (m)
square for m = 0n/121 − 1.

Proof The value of the l-bit binary number denoted by b appears in the output if l =
0n/121 ≥ 1.

Lower bounds similar to those derived for the reciprocal function can be derived for special
fractional powers of binary numbers. (See Problem 2.35.)

74 Chapter 2 Logic Circuits Models of Computation

2.11 Symmetric Functions
The symmetric functions are encountered in many applications. Among the important sym-
metric functions is binary sorting, the binary version of the standard sorting function. A
surprising fact holds for binary sorting, namely, that it can be realized on n inputs by a cir-
cuit whose size is linear in n (see Problem 2.17), whereas non-binary sorting requires on the
order of n log n operations. Binary sorting, and all other symmetric functions, can be realized
efficiently through the use of a counting circuit that counts the number of 1’s among the n
inputs with a circuit of size linear in n. The counting circuit uses AND, OR, and NOT. When
negations are disallowed, binary sorting requires on the order of n log n gates, as shown in
Section 9.6.1.

DEFINITION 2.11.1 A permutation π of an n-tuple x = (x1, x2, . . . , xn) is a reordering
π(x) = (xπ(1), xπ(2), . . . , xπ(n)) of the components of x. That is, {π(1), π(2), . . . , π(n)} =

{1, 2, 3, . . . , n}. A symmetric function f (n) : Bn !→ Bm is a function for which f (n)(x) =
f (n)(π(x)) for all permutations π. Sn,m is the set of all symmetric functions f (n) : Bn !→ Bm

and Sn = Sn,1 is the set of Boolean symmetric functions on n inputs.

If f (3) is symmetric, then f (3)(0, 1, 1) = f (3)(1, 0, 1) = f (3)(1, 1, 0).
The following are symmetric functions:

1. Threshold functions τ (n)
t : Bn !→ B, 1 ≤ t ≤ n:

τ (n)
t (x) =

{
1

∑n
j=1 xj ≥ t

0 otherwise

2. Elementary symmetric functions e(n)
t : Bn !→ B, 0 ≤ t ≤ n:

e(n)
t (x) =

{
1

∑n
j=1 xj = t

0 otherwise

3. Binary sorting function f (n)
sort : Bn !→ Bn sorts an n-tuple into descending order:

f (n)
sort(x) = (τ (n)

1 , τ (n)
2 , . . . , τ (n)

n)

Here τ (n)
t is the tth threshold function.

4. Modulus functions f (n)
c, mod m : Bn !→ B, 0 ≤ c ≤ m − 1:

f (n)
c, mod m(x) =

{
1

∑n
j=1 xj = c mod m

0 otherwise

The elementary symmetric functions et are building blocks in terms of which other sym-
metric functions can be realized at small additional cost. Each symmetric function f (n) is
determined uniquely by its value vt, 0 ≤ t ≤ n, when exactly t of the input variables are 1. It
follows that we can write f (n)(x) as

f (n)(x) =
∨

0≤t≤n

vt ∧ e(n)
t (x) =

∨

t | vt=1

e(n)
t (x) (2.15)

c©John E Savage 2.11 Symmetric Functions 75

Thus, efficient circuits for the elementary symmetric functions yield efficient circuits for gen-
eral symmetric functions.

An efficient circuit for the elementary symmetric functions can be obtained from a circuit

for counting the number of 1’s among the variables x. This counting function f (n)
count :

Bn !→ B$log2(n+1)% produces a ,log2(n + 1)--bit binary number representing the number of
1’s among the n inputs x1, x2, . . . , xn.

A recursive construction for the counting function is shown in Fig. 2.21 (b) when m =
2l+1 − 1. The m inputs are organized into three groups, the first 2l − 1 Boolean variables u,
the second 2l − 1 variables v, and the last variable xm. The sum is represented by l “sum bits”

s(l+1)
j , 0 ≤ j ≤ l − 1, and the “carry bit” c(l+1)

l−1 . This sum is formed by adding in a ripple

adder the outputs s(l)
j , 0 ≤ j ≤ l − 2, and c(l+1)

l from the two counting circuits, each on

2l − 1 inputs, and the mth input xm. (We abuse notation and use the same variables for the
outputs of the different counting circuits.) The counting circuit on 22 − 1 = 3 inputs is the
full adder of Fig. 2.21(a). From this construction we have the following theorem:

LEMMA 2.11.1 For n = 2k − 1 , k ≥ 2, the counting function f (n)
count : Bn !→ B$log2(n+1)%

can be realized with the following circuit size and depth over the basis Ω = {∧,∨,⊕}:

CΩ

(
f (n)
count

)
≤ 5(2k − k − 1)

DΩ

(
f (n)
count

)
≤ 4k − 5

Proof Let C(k) = CΩ

(
f (n)
count

)
and D(k) = DΩ

(
f (n)
count

)
when n = 2k − 1. Clearly,

C(2) = 5 and D(2) = 3 since a full adder over Ω = {∧,∨,⊕} has five gates and depth 3.
The following inequality is immediate from the construction:

C(k) ≤ 2C(k − 1) + 5(k − 1)

c(l+1)
j

c(l+1)
l

s(l+1)
0s(l+1)

js(l+1)
l−2s(l+1)

l−1

v

c(l+1)
j+1 c(l+1)

1

u

c(l+1)
l−1

s(l)
l−2 s(l)

j s(l)
0s(l)

l−2 s(l)
j s(l)

0

c(l)
l−1 c(l)

l−1

c(l+1)
j

s(l)
j

2

1

2

3

(a) (b)

Full Adder

f ((m−1)/2)
count

s(l+1)
j

s(l)
j

f ((m−1)/2)
count

xm

c(l+1)
j+1

FA FA FA FA

Figure 2.21 A recursive construction for the counting function f (m)
count, m = 2l+1 − 1.

76 Chapter 2 Logic Circuits Models of Computation

The size bound follows immediately. The depth bound requires a more careful analysis.
Shown in Fig. 2.21(a) is a full adder together with notation showing the amount by

which the length of a path from one input to another is increased in passing through it
when the full-adder circuit used is that shown in Fig. 2.14 and described by Equation 2.6.
From this it follows that

DΩ

(
c(l+1)
j+1

)
= max

(
DΩ

(
c(l+1)
j

)
+ 2, DΩ

(
s(l)

j

)
+ 3

)

DΩ

(
s(l+1)

j

)
= max

(
DΩ

(
c(l+1)
j

)
+ 1, DΩ

(
s(l)

j

)
+ 2

)

for 2 ≤ l and 0 ≤ j ≤ l − 1, where s(l)
l−1 = c(l)

l−1. It can be shown by induction that

DΩ

(
c(k)
j

)
= 2(k+j)−3, 1 ≤ j ≤ k−1, and DΩ

(
s(k)

j

)
= 2(k+j)−2, 0 ≤ j ≤ k−2,

both for 2 ≤ k. (See Problem 2.16.) Thus, DΩ

(
f (n)
count

)
= DΩ

(
c(k)
k−1

)
= (4k − 5).

We now use this bound to derive upper bounds on the size and depth of symmetric func-
tions in the class Sn,m.

THEOREM 2.11.1 Every symmetric function f (n) : Bn !→ Bm can be realized with the following
circuit size and depth over the basis Ω = {∧,∨,⊕} where φ(k) = 5(2k − k − 1):

CΩ

(
f (n)

)
≤ m,(n + 1)/2- + φ(k) + 2(n + 1) + (2,log2(n + 1)- − 2)

√
2(n + 1)

DΩ

(
f (n)

)
≤ 5,log2(n + 1)- + ,log2,log2(n + 1)-- − 4

for k = ,log2(n + 1)- even.

Proof Lemma 2.11.1 establishes bounds on the size and depth of the function f (n)
count for

n = 2k − 1. For other values of n, let k = ,log2(n + 1)- and fill out the 2k − 1 − n
variables with 0’s.

The elementary symmetric functions are obtained by applying the value of f (n)
count as

argument to the decoder function. A circuit for this function has been constructed that has
size 2(n + 1) + (2,log2(n + 1)- − 2)

√
2(n + 1) and depth ,log2,log2(n + 1)-- + 1.

(See Lemma 2.5.4. We use the fact that 2$log2 m% ≤ 2m.) Thus, all elementary symmetric
functions on n variables can be realized with the following circuit size and depth:

CΩ

(
e(n)

0 , e(n)
1 , . . . , e(n)

n

)
≤ φ(k) + 2(n + 1) + (2,log2(n + 1)- − 2)

√
2(n + 1)

DΩ

(
e(n)

0 , e(n)
1 , . . . , e(n)

n

)
≤ 4k − 5 + ,log2,log2(n + 1)-- + 1

The expansion of Equation (2.15) can be used to realize an arbitrary Boolean symmetric
function. Clearly, at most n OR gates and depth ,log2 n- suffice to realize each one of m
arbitrary Boolean symmetric functions. (Since the vt are fixed, no ANDs are needed.) This
number of ORs can be reduced to (n− 1)/2 as follows: if ,(n + 1)/2- or more elementary
functions are needed, use the complementary set (of at most 0(n + 1)/21 functions) and
take the complement of the result. Thus, no more than ,(n+1)/2-−1 ORs are needed per
symmetric function (plus possibly one NOT), and depth at most ,log20((n + 1)/2)1- + 1
≤ ,log2(n + 1)-.

c©John E Savage 2.12 Most Boolean Functions Are Complex 77

This theorem establishes that the binary sorting f (n)
sort : Bn !→ Bn has size O(n2). In fact,

a linear-size circuit can be constructed for it, as stated in Problem 2.17.

2.12 Most Boolean Functions Are Complex
As we show in this section, the circuit size and depth of most Boolean functions f : Bn !→ B
on n variables are at least exponential and linear in n, respectively. Furthermore, we show in
Section 2.13 that such functions can be realized with circuits whose size and depth are at most
exponential and linear, respectively, in n. Thus, the circuit size and depth of most Boolean
functions on n variables are tightly bounded. Unfortunately, this result says nothing about the
size and depth of a specific function, the case of most interest.

Each Boolean function on n variables is represented by a table with 2n rows and one
column of values for the function. Since each entry in this one column can be completed in
one of two ways, there are 22n

ways to fill in the column. Thus, there are exactly 22n
Boolean

functions on n variables. Most of these functions cannot be realized by small circuits because
there just are not enough small circuits.

THEOREM 2.12.1 Let 0 < ε < 1. The fraction of the Boolean functions f : Bn !→ B that
have size complexity CΩ0(f) satisfying the following lower bound is at least 1 − 2−(ε/2)2n

when
n ≥ 2[(1 − ε)/ε] log2[(3e)2(1 − ε/2)]. (Here e = 2.71828 . . . is the base of the natural
logarithm.)

CΩ0(f) ≥ 2n

n
(1 − ε) − 2n2

Proof Each circuit contains some number, say g, of gates and each gate can be one of the
three types of gate in the standard basis. The circuit with no gates computes the constant
functions with value of 1 or 0 on all inputs.

An input to a gate can either be the output of another gate or one of the n input variables.
(Since the basis Ω0 is {AND, OR, NOT}, no gate need have a constant input.) Since each
gate has at most two inputs, there are at most (g − 1 + n)2 ways to connect inputs to one
gate and (g − 1 + n)2g ways to interconnect g gates. In addition, since each gate can be
one of three types, there are 3g ways to name the gates. Since there are g! orderings of
g items (gates) and the ordering of gates does not change the function they compute, at
most N(g) = 3g(g + n)2g/g! distinct functions can be realized with g gates. Also, since
g! ≥ gge−g (see Problem 2.2) it follows that

N(g) ≤ (3e)g[(g2 + 2gn + n2)/g]g ≤ (3e)g(g + 2n2)g

The last inequality follows because 2gn + n2 ≤ 2gn2 for n ≥ 2. Since the last bound is an
increasing function of g, N(0) = 2 and G + 1 ≤ (3e)G for G ≥ 1, the number M(G) of
functions realizable with between 0 and G gates satisfies

M(G) ≤ (G + 1)(3e)G(G + 2n2)G ≤ [(3e)2(G + 2n2)]G ≤ (xx)1/a

where x = a(G + 2n2) and a = (3e)2. With base-2 logarithms, it is straightforward to
show that xx ≤ 2x0 if x ≤ x0/ log2 x0 and x0 ≥ 2.

If M(G) ≤ 2(1−δ)2n

for 0 < δ < 1, at most a fraction 2(1−δ)2n

/22n

= 2−δ2n

of the
Boolean functions on n variables have circuits with G or fewer gates.

78 Chapter 2 Logic Circuits Models of Computation

Let G < 2n(1 − ε)/n − 2n2. Then x = a(G + 2n2) ≤ a2n(1 − ε)/n ≤ x0/ log2 x0

for x0 = a2n(1 − ε/2) when n ≥ 2[(1 − ε)/ε] log2[(3e)2(1 − ε/2)], as can be shown

directly. It follows that M(G) ≤ (xx)1/a ≤ 2x0 = 22n(1−ε/2).

To show that most Boolean functions f : Bn !→ B over the basis Ω0 require circuits with
a depth linear in n, we use a similar argument. We first show that for every circuit there is a
tree circuit (a circuit in which either zero or one edge is directed away from each gate) that
computes the same function and has the same depth. Thus when searching for small-depth
circuits it suffices to look only at tree circuits. We then obtain an upper bound on the number
of tree circuits of depth d or less and show that unless d is linear in n, most Boolean functions
on n variables cannot be realized with this depth.

LEMMA 2.12.1 Given a circuit for a function f : Bn !→ Bm, a tree circuit can be constructed of
the same depth that computes f .

Proof Convert a circuit to a tree circuit without changing its depth as follows: find a vertex
v with out-degree 2 or more at maximal distance from an output vertex. Attach a copy of the
tree subcircuit with output vertex v to each of the edges directed away from v. This reduces
by 1 the number of vertices with out-degree greater than 1 but doesn’t change the depth or
function computed. Repeat this process on the new circuit until no vertices of outdegree
greater than 1 remain.

We count the number of tree circuits of depth d as follows. First, we determine T (d), the
number of binary, unlabeled, and unoriented trees of depth d. (The root has two descendants
as does every other vertex except for leaves which have none. No vertex carries a label and we
count as one tree those trees that differ only by the exchange of the two subtrees at a vertex.)
We then multiply T (d) by the number of ways to label the internal vertices with one of at
most three gates and the leaves by at most one of n variables or constants to obtain an upper
bound on N(d), the number of distinct tree circuits of depth d. Since a tree of depth d has at

most 2d − 1 internal vertices and 2d leaves (see Problem 2.3), N(d) ≤ T (d)32d
(n + 2)2d

.

LEMMA 2.12.2 When d ≥ 4 the number T (d) of depth-d unlabeled, unoriented binary trees

satisfies T (d) ≤ (56)2d−4

.

Proof There is one binary tree of depth 0, a tree containing a single vertex, and one of
depth 1. Let C(d) be the number of unlabeled, unoriented binary trees of depth d or less,
including depth 0. Thus, C(0) = 1, T (1) = 1, and C(1) = 2. This recurrence for C(d)
follows immediately for d ≥ 1:

C(d) = C(d − 1) + T (d) (2.16)

We now enumerate the unoriented, unlabeled binary trees of depth d + 1. Without loss of
generality, let the left subtree of the root have depth d. There are T (d) such subtrees. The
right subtree can either be of depth d− 1 or less (there are C(d− 1) such trees) or of depth
d. In the first case there are T (d)C(d−1) trees. In the second, there are T (d)(T (d)−1)/2
pairs of different subtrees (orientation is not counted) and T (d) pairs of identical subtrees.
It follows that

T (d + 1) = T (d)C(d − 1) + T (d)(T (d) − 1)/2 + T (d) (2.17)

c©John E Savage 2.13 Upper Bounds on Circuit Size 79

Thus, T (2) = 2, C(2) = 4, T (3) = 7, C(3) = 11, and T (4) = 56. From this recurrence
we conclude that T (d+1) ≥ T 2(d)/2. We use this fact and the inequality y ≥ 1/(1−1/y),
which holds for y ≥ 2, to show that (T (d + 1)/T (d)) + T (d)/2 ≤ T (d + 1)/2. Since
T (d) ≥ 4 for d ≥ 3, it follows that T (d)/2 ≥ 1/(1 − 2/T (d)). Replacing T (d)/2 by this
lower bound in the inequality T (d+ 1) ≥ T 2(d)/2, we achieve the desired result by simple
algebraic manipulation. We use this fact below.

Solving the equation (2.17) for C(d − 1), we have

C(d − 1) =
T (d + 1)

T (d)
− (T (d) + 1)

2
(2.18)

Substituting this expression into (2.16) yields the following recurrence:

T (d + 2)

T (d + 1)
=

T (d + 1)

T (d)
+

(T (d + 1) + T (d))

2

Since (T (d + 1)/T (d)) + T (d)/2 ≤ T (d + 1)/2, it follows that T (d + 2) satisfies the
inequality T (d + 2) ≤ T 2(d + 1) when d ≥ 3 or T (d) ≤ T 2(d − 1) when d ≥ 5 and

d − 1 ≥ 4. Thus, T (d) ≤ T 2j
(d − j) for d − j ≥ 4 or T (d) ≤ (56)2d−4

for d ≥ 4.

Combine this with the early upper bound on N(d) for the number of tree circuits over Ω0

of depth d and we have that N(d) ≤ c2d

for d ≥ 4, where c = 3((56)1/16)(n+2). (Note that

3(56)1/16 ≤ 4.) The number of such trees of depth 0 through d is at most N(d + 1) ≤ c2d+1

.

But if c2D0+1

is at most 22n(1−δ), then a fraction of at most 2−δ2n
of the Boolean functions on

n variables have depth D0 or less. But this holds when

D0 = n − 1 − δ log2 e − log2 log24(n + 2) = n − log log n − O(1)

since ln(1 − x) ≤ −x. Note that d ≥ 4 implies that n ≥ d + 1.

THEOREM 2.12.2 For each 0 < δ < 1 a fraction of at least 1 − 2−δ2n
of the Boolean functions

f : Bn !→ B have depth complexity DΩ0(f) that satisfies the following bound when n ≥ 5:

DΩ0(f) ≥ n − log log n − O(1)

As the above two theorems demonstrate, most Boolean functions on n variables require
circuits whose size and depth are approximately 2n/n and n, respectively. Fortunately, most
of the useful Boolean functions are far less complex than these bounds suggest. In fact, we
often encounter functions whose size is polynomial in n and whose depth is logarithmic in or
a small polynomial in the logarithm of the size of its input. Functions that are polynomial in
the logarithm of n are called poly-logarithmic.

2.13 Upper Bounds on Circuit Size
In this section we demonstrate that every Boolean function on n variables can be realized with
circuit size and depth that are close to the lower bounds derived in the preceding section.
We begin by stating the obvious upper bounds on size and depth and then proceed to obtain
stronger (that is, smaller) upper bounds on size through the use of refined arguments.

80 Chapter 2 Logic Circuits Models of Computation

As shown in Section 2.2.2, every Boolean function f : Bn !→ B can be realized as the OR

of its minterms. As shown in Section 2.5.4, the minterms on n variables are produced by the

decoder function f (n)
decode : Bn !→ B2n

, which has a circuit with 2n + (2n− 2)2n/2 gates and

depth ,log2 n- + 1. Consequently, we can realize f from a circuit for f (n)
decode and an OR tree

on at most 2n inputs (which has at most 2n − 1 two-input OR’s and depth at most n). We
have that every function f : Bn !→ B has circuit size and depth satisfying:

CΩ(f) ≤ CΩ

(
f (n)
decode

)
+ 2n − 1 ≤ 2n+1 + (2n − 2)2n/2 − 1

DΩ(f) ≤ DΩ

(
f (n)
decode

)
+ n ≤ n + ,log2 n + 1- + 1

Thus every Boolean function f : Bn !→ B can be realized with an exponential number of
gates and depth n+,log2 n-+1. Since the depth lower bound of n−O(log log n) applies to
almost all Boolean functions on n variables (see Section 2.12), this is a very good upper bound
on depth. We improve upon the circuit size bound after summarizing the depth bound.

THEOREM 2.13.1 The depth complexity of every Boolean function f : Bn !→ B satisfies the
following bound:

DΩ0(f) ≤ n + ,log2 n- + 1

We now describe a procedure to construct circuits of small size for arbitrary Boolean func-
tions on n variables. By the results of the preceding section, this size will be exponential in n.
The method of approach is to view an arbitrary Boolean function f : Bn !→ B on n input vari-
ables x as a function of two sets of variables, a, the first k variables of x, and b, the remaining
n − k variables of x. That is, x = ab where a = (x1, . . . , xk) and b = (xk+1, . . . , xn).

As suggested by Fig. 2.22, we rearrange the entries in the defining table for f into a rectan-
gular table with 2k rows indexed by a and 2n−k columns indexed by b. The lower right-hand
quadrant of the table contains the values of the function f . The value of f on x is the entry
at the intersection of the row indexed by the value of a and the column indexed by the value
of b. We fix s and divide the lower right-hand quadrant of the table into p − 1 groups of s
consecutive rows and one group of s′ ≤ s consecutive rows where p = ,2k/s-. (Note that
(p − 1)s + s′ = 2k.) Call the ith collections of rows Ai. This table serves as the basis for the
(k, s)-Lupanov representation of f , from which a smaller circuit for f can be constructed.

Let fi : Bn !→ B be f restricted to Ai; that is,

fi(x) =

{
f(x) if a ∈ Ai

0 otherwise.

It follows that f can be expanded as the OR of the fi:

f(x) =
p∨

i=1

fi(x)

We now expand fi. When b is fixed, the values for fi(ab) when a ∈ Ai constitute an
s-tuple (s′-tuple) v for 1 ≤ i ≤ p − 1 (for i = p). Let Bi,v be those (n − k)-tuples b for

c©John E Savage 2.13 Upper Bounds on Circuit Size 81

x4 0 1 0 1 0 1 0 1
x5 0 0 1 1 0 0 1 1
x6 0 0 0 0 1 1 1 1

x1 x2 x3

0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 1 A1

0 1 0 1 0 0 1 0 0 0 1
0 1 1 1 0 1 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 A2

1 0 1 1 1 0 1 1 0 0 0
1 1 0 1 0 1 1 0 1 1 0
1 1 1 0 1 0 0 0 0 1 0 A3

Figure 2.22 The rectangular representation of the defining table of a Boolean function used in
its (k, s)-Lupanov representation.

which v is the tuple of values of fi when a ∈ Ai. (Note that the non-empty sets Bi,v for

different values of v are disjoint.) Let f (c)
i,v (b) : Bn−k !→ B be defined as

f (c)
i,v (b) =

{
1 if b ∈ Bi,v

0 otherwise.

Finally, we let f (r)
i,v (a) : Bk !→ B be the function that has value vj , the jth component of v,

when a is the jth k-tuple in Ai:

f (r)
i,v (a) =

{
1 if a is the jth element of Ai and vj = 1

0 otherwise.

It follows that fi(x) =
∨

v f (r)
i,v (a)f (c)

i,v(b). Given these definitions, f can be expanded in
the following (k, s)-Lupanov representation:

f(x) =
p∨

i=1

∨

v
f (r)

i,v (a) ∧ f (c)
i,v (b) (2.19)

We now bound the number of logic elements needed to realize an arbitrary function f : Bn !→
B in this representation.

Consider the functions f (r)
i,v (a) for a fixed value of v. We construct a decoder circuit for

the minterms in a that has size at most 2k + (k − 2)2k/2. Each of the functions f (r)
i,v can be

realized as the OR of s minterms in a for 1 ≤ i ≤ p − 1 and s′ minterms otherwise. Thus,
(p−1)(s−1)+(s′−1) ≤ 2k two-input OR’s suffice for all values of i and a fixed value of v.

Hence, for each value of v the functions f (r)
i,v can be realized by a circuit of size O(2k). Since

there are at most 2s choices for v, all f (r)
i,v can be realized by a circuit of size O(2k+s).

Consider next the functions f (c)
i,v(b). We construct a decoder circuit for the minterms of

b that has size at most 2n−k + (n − k − 2)2(n−k)/2. Since for each i, 1 ≤ i ≤ p, the sets

82 Chapter 2 Logic Circuits Models of Computation

Bi,v for different values of v are disjoint, f (c)
i,v (b) can be realized as the OR of at most 2n−k

minterms using at most 2n−k two-input OR’s. Thus, all f (c)
i,v (b), 1 ≤ i ≤ p, can be realized

with p2n−k + 2n−k + (n − k − 2)2(n−k)/2 gates.
Consulting (2.19), we see that to realize f we must add one AND gate for each i and tuple

v. We must also add the number of two-input OR gates needed to combine these products.
Since there are at most p2s products, at least p2s OR gates are needed for a total of p2s+1

gates.
Let Ck,s(f) be the total number of gates needed to realize f in the (k, s)-Lupanov repre-

sentation. Ck,s(f) satisfies the following inequality:

Ck,s(f) ≤ O(2k+s) + O(2(n−k)) + p(2n−k + 2s+1)

Since p = ,2k/s-, p ≤ 2k/s + 1, this expands to

Ck,s(f) ≤ O(2k+s) + O(2n−k) +
2n

s
+

2k+s+1

s

Now let k = ,3 log2 n- and s = ,n − 5 log2 n-. Then, k + s ≤ n − log2 n2 + 2 and
n − k ≤ n − log2 n3. As a consequence, for large n, we have

Ck,s(f) ≤ O

(
2n

n2

)
+ O

(
2n

n3

)
+

2n

(n − 5 log2 n)

We summarize the result in a theorem.

THEOREM 2.13.2 For each ε > 0 there exists some N0 > 1 such that for all n ≥ N0 every
Boolean function f : Bn !→ B has a circuit size complexity satisfying the following upper bound:

CΩ0(f) ≤ 2n

n
(1 + ε)

Since we show in Section 2.12 that for 0 < ε < 1 almost all Boolean functions f : Bn !→
B have a circuit size complexity satisfying

CΩ0(f) ≥ 2n

n
(1 − ε) − 2n2

for n ≥ 2[(1 − ε)/ε] log2[(3e)2(1 − ε/2)], this is a good lower bound.

. .
Problems
MATHEMATICAL PRELIMINARIES

2.1 Show that the following identities on geometric series hold:

s∑

j=0

aj =
(as+1 − 1)

(a − 1)

s∑

j=0

ajj =
a

(a − 1)2
(sas+1 − (s + 1)as + 1)

c©John E Savage Problems 83

2.5

2.0

1.5

1.0

0.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12 13

n

log n

log(n + 1)

Figure 2.23 The natural logarithm of the factorial n! is
∑n

k=1 ln k, which is bounded below
by

∫ n

1
lnx dx and above by

∫ n

1
ln(x + 1) dx.

2.2 Derive tight upper and lower bounds on the factorial function n! = n(n−1) · · · 3 2 1.

Hint: Derive bounds on ln n! where ln is the natural logarithm. Use the information
given in Fig. 2.23.

2.3 Let T (d) be a complete balanced binary tree of depth d. T (1), shown in Fig. 2.24(a),
has a root and two leaves. T (d) is obtained by attaching to each of the leaves of T (1)
copies of T (d − 1). T (3) is shown in Fig. 2.24(b).

a) Show by induction that T (d) has 2d leaves and 2d − 1 non-leaf vertices.

b) Show that any binary tree (each vertex except leaves has two descendants) with n
leaves has n − 1 non-leaf vertices and depth at least ,log2 n-.

(a) (b)

Figure 2.24 Complete balanced binary trees a) of depth one and b) depth 3.

84 Chapter 2 Logic Circuits Models of Computation

BINARY FUNCTIONS AND LOGIC CIRCUITS

2.4 a) Write a procedure EXOR in a language of your choice that writes the description
of the straight-line program given in equation (2.2).

b) Write a program in a language of your choice that evaluates an arbitrary straight-
line program given in the format of equation (2.2) in which each input value is
specified.

2.5 A set of Boolean functions forms a complete basis Ω if a logic circuit can be constructed
for every Boolean function f : Bn !→ B using just functions in Ω.

a) Show that the basis consisting of one function, the NAND gate, a gate on two
inputs realizing the NOT of the AND of its inputs, is complete.

b) Determine whether or not the basis {AND, OR} is complete.

2.6 Show that the CNF of a Boolean function f is unique and is the negation of the DNF
of f .

2.7 Show that the RSE of a Boolean function is unique.

2.8 Show that any SOPE (POSE) of the parity function f (n)
⊕ has exponentially many terms.

Hint: Show by contradiction that every term in a SOPE (every clause of a POSE)

of f (n)
⊕ contains every variable. Then use the fact that the DNF (CNF) of f (n)

⊕ has
exponentially many terms to complete the proof.

2.9 Demonstrate that the RSE of the OR of n variables, f (n)
∨ , includes every product term

except for the constant 1.

2.10 Consider the Boolean function f (n)
mod 3 on n variables, which has value 1 when the sum

of its variables is zero modulo 3 and value 0 otherwise. Show that it has exponential-size
DNF, CNF, and RSE normal forms.

Hint: Use the fact that the following sum is even:

∑

0≤j≤k

(
3k

3j

)

2.11 Show that every Boolean function f (n) : Bn !→ B can be expanded as follows:

f(x1, x2, . . . , xn) = x1f(1, x2, . . . , xn) ∨ x1f(0, x2, . . . , xn)

Apply this expansion to each variable of f(x1, x2, x3) = x1x2 ∨ x2x3 to obtain its
DNF.

2.12 In a dual-rail logic circuit 0 and 1 are represented by the pairs (0, 1) and (1, 0), re-
spectively. A variable x is represented by the pair (x, x). A NOT in this representation
(called a DRL-NOT) is a pair of twisted wires.

a) How are AND (DRL-AND) and OR (DRL-OR) realized in this representation? Use
standard AND and OR gates to construct circuits for gates in the new representa-
tion. Show that every function f : Bn !→ Bm can be realized by a dual-rail logic
circuit in which the standard NOT gates are used only on input variables (to obtain
the pair (x, x̄)).

c©John E Savage Problems 85

b) Show that the size and depth of a dual-rail logic circuit for a function f : Bn !→ B
are at most twice the circuit size (plus the NOTs for the inputs) and at most one
more than the circuit depth of f over the basis {AND, OR, NOT}, respectively.

2.13 A function f : Bn !→ B is monotone if for all 1 ≤ j ≤ n, f(x1, . . . , xj−1, 0, xj+1,
. . . , xn) ≤ f(x1, . . . , xj−1, 1, xj+1, . . . , xn) for all values of the remaining variables;
that is, increasing any variable from 0 to 1 does not cause the function to decrease its
value from 1 to 0.

a) Show that every circuit over the basis Ωmon = {AND, OR} computes monotone
functions at every gate.

b) Show that every monotone function f (n) : Bn !→ B can be expanded as follows:

f(x1, x2, . . . , xn) = x1f(1, x2, . . . , xn) ∨ f(0, x2, . . . , xn)

Show that this implies that every monotone function can be realized by a logic circuit
over the monotone basis Ωmon = {AND, OR}.

SPECIALIZED FUNCTIONS

2.14 Complete the proof of Lemma 2.5.3 by solving the recurrences stated in Equation (2.4).

2.15 Design a multiplexer circuit of circuit size 2n+1 plus lower-order terms when n is even.

Hint: Construct a smaller circuit by applying the decomposition given in Section 2.5.4
of the minterms of n variables into minterms on the two halves of the n variables.

2.16 Complete the proof of Lemma 2.11.1 by establishing the correctness of the inductive
hypothesis stated in its proof.

2.17 The binary sorting function is defined in Section 2.11. Show that it can be realized
with a circuit whose size is O(n) and depth is O(log n).

Hint: Consider using a circuit for f (m)
count, a decoder circuit and other circuitry. Is there

a role for a prefix computation in this problem?

LOGICAL FUNCTIONS

2.18 Let f (n)
member : B(n+1)b !→ B be defined below.

f (n)
member(x1, x2, . . . , xn, y) =

{
1 xi = y for some 1 ≤ i ≤ n

0 otherwise

where xi, y ∈ Bb and xi = y if and only if they agree in each position.

Obtain good upper bounds to CΩ

(
f (n)
member

)
and DΩ

(
f (n)
member

)
by constructing a

circuit over the basis Ω = {∧,∨,¬,⊕}.

2.19 Design a circuit to compare two n-bit binary numbers and return the value 1 if the first
is larger than or equal to the second and 0 otherwise.

Hint: Compare each pair of digits of the same significance and generate three out-
comes, yes, maybe, and no, corresponding to whether the first digit is greater than,
equal to or less than the second. How can you combine the outputs of such a compar-
ison circuit to design a circuit for the problem? Does a prefix computation appear in
your circuit?

86 Chapter 2 Logic Circuits Models of Computation

PARALLEL PREFIX

2.20 a) Let (copy : S2 !→ S be the operation

a (copy b = a

Show that (S,(copy) is a semigroup for S an arbitrary non-empty set.

b) Let · denote string concatenation over the set {0, 1}∗ of binary strings. Show that
it is associative.

2.21 The segmented prefix computation with the associative operation (on a “value” n-
vector x over a set S, given a “flag vector” φ over B, is defined as follows: the value
of the ith entry yi of the “result vector” y is xi if its flag is 1 and otherwise is the
associative combination with (of xi and the entries to its left up to and including the
first occurrence of a 1 in the flag array. The leftmost bit in every flag vector is 1. An
example of a segmented prefix computation is given in Section 2.6.

Assuming that (S,() is a semigroup, a segmented prefix computation over the set
S ×B of pairs is a special case of general prefix computation. Consider the operator ⊗
on pairs (xi,φi) of values and flags defined below:

((x1,φ1) ⊗ (x2,φ2)) =

{
(x2, 1) φ2 = 1

(x1 (x2,φ1) φ2 = 0

Show that ((S,B),⊗) is a semigroup by proving that (S,B) is closed under the oper-
ator ⊗ and that the operator ⊗ is associative.

2.22 Construct a logic circuit of size O(n log n) and depth O(log2 n) that, given a binary n-
tuple x, computes the n-tuple y containing the running sum of the number of 1’s in x.

2.23 Given 2n Boolean variables organized as pairs 0a or 1a, design a circuit that moves pairs
of the form 1a to the left and the others to the right without changing their relative
order. Show that the circuit has size O(n log2 n).

2.24 Linear recurrences play an important role in many problems including the solution
of a tridiagonal linear system of equations. They are defined over “near-rings,” which
are slightly weaker than rings in not requiring inverses under the addition operation.
(Rings are defined in Section 6.2.1.)

A near-ring (R, ·, +) is a set R together with an associative multiplication operator ·
and an associative and commutative addition operator +. (If + is commutative, then
for all a, b ∈ R, a + b = b + a.) In addition, · distributes over +; that is, for all
a, b, c ∈ R, a · (b + c) = a · b + a · c.

A first-order linear recurrence of length n is an n-tuple x = (x1, x2, . . . , xn) of vari-
ables over a near-ring (R, ·, +) that satisfies x1 = b1 and the following set of identities
for 2 ≤ j ≤ n defined in terms of elements {aj , bj ∈ R| 2 ≤ j ≤ n}:

xj = aj · xj−1 + bj

Use the ideas of Section 2.7 on carry-lookahead addition to show that xj can be written

xj = cj · x1 + dj

where the pairs (cj , dj) are the result of a prefix computation.

c©John E Savage Problems 87

ARITHMETIC OPERATIONS

2.25 Design a circuit that finds the most significant non-zero position in an n-bit binary
number and logically shifts the binary number left so that the non-zero bit is in the most
significant position. The circuit should produce not only the shifted binary number but
also a binary representation of the amount of the shift.

2.26 Consider the function π[j, k] = π[j, k− 1] / π[k, k] for 1 ≤ j < k ≤ n− 1, where /
is defined in Section 2.7.1. Show by induction that the first component of π[j, k] is 1
if and only if a carry propagates through the full adder stages numbered j, j + 1, . . . , k
and its second component is 1 if and only if a carry is generated at one of these stages,
propagates through subsequent stages, and appears as a carry out of the kth stage.

2.27 Give a construction of a circuit for subtracting one n-bit positive binary integer from
another using the two’s-complement operation. Show that the circuit has size O(n)
and depth O(log n).

2.28 Complete the proof of Theorem 2.9.3 outlined in the text. In particular, solve the
recurrence given in equation (2.10).

2.29 Show that the depth bound stated in Theorem 2.9.3 can be improved from O(log2 n)
to O(log n) without affecting the size bound by using carry-save addition to form the
six additions (or subtractions) that are involved at each stage.

Hint: Observe that each multiplication of (n/2)-bit numbers at the top level is ex-
panded at the next level as sums of the product of (n/4)-bit numbers and that this type
of replacement continues until the product is formed of 1-bit numbers. Observe also
that 2n-bit carry-save adders can be used at the top level but that the smaller carry-save
adders can be used at successively lower levels.

2.30 Residue arithmetic can be used to add and subtract integers. Given positive relatively
prime integers p1, p2, . . . , pk (no common factors), an integer n in the set {0, 1, 2, . . . ,
N − 1}, N = p1p2 · · · pk, can be represented by the k -tuple n = (n1, n2, . . . , nk),
where nj = n mod pj . Let n and m be in this set.

a) Show that if n 3= m, n 3= m.

b) Form n + m by adding corresponding jth components modulo pj . Show that
n + m uniquely represents (n + m) mod N .

c) Form n × m by multiplying corresponding jth components of n and m modulo
pj . Show that n × m is the unique representation for (nm) mod N .

2.31 Use the circuit designed in Problem 2.19 to build a circuit that adds two n-bit binary
numbers modulo an arbitrary third n-bit binary number. You may use known circuits.

2.32 In prime factorization an integer n is represented as the product of primes. Let p(N)
be the largest prime less than N . Then, n ∈ {2, . . . , N − 1} is represented by the
exponents (e2, e3, . . ., ep(N)), where n = 2e2 3e3 . . . p(N)ep(N) . The representation
for the product of two integers in this system is the sum of the exponents of their
respective prime factors. Show that this leads to a multiplication circuit whose depth
is proportional to log log log N . Determine the size of the circuit using the fact that
there are O(N/ log N) primes in the set {2, . . . , N − 1}.

88 Chapter 2 Logic Circuits Models of Computation

2.33 Construct a circuit for the division of two n-bit binary numbers from circuits for the

reciprocal function f (n)
recip and the integer multiplication function f (n)

mult. Determine
the size and depth of this circuit and the accuracy of the result.

2.34 Let f : Bn !→ Bkn be an integer power of x; that is, f(x) = xk for some integer k.

Show that such functions contain the shifting function f (m)
shift as a subfunction for some

integer m. Determine m dependent on n and k.

2.35 Let f : Bn !→ Bn be a fractional power of x of the form f(x) = ,xq/2k-, 0 <

q < 2k < log2 n. Show that this function contains the shifting function f (m)
shift as a

subfunction. Find the largest value of m for which this holds.

Chapter Notes
Logic circuits have a long history. Early in the nineteenth century Babbage designed me-
chanical computers capable of logic operations. In the twentieth century logic circuits, called
switching circuits, were constructed of electromechanical relays. The earliest formal analysis of
logic circuits is attributed to Claude Shannon [305]; he applied Boolean algebra to the analysis
of logic circuits, the topic of Section 2.2. Reduction between problems, a technique central
to computer science, is encountered whenever one uses an existing program to solve a new
problem by pre-processing inputs and post-processing outputs. Reductions also provide a way
to identify problems with similar complexity, an idea given great importance by the work of
Cook [74], Karp [158], and Levin [198] on NP-completeness. (See also [334].) This topic is
explored in depth in Chapter 8.

The upper bound on the size of ripple adder described in Section 2.7 cannot be improved,
as shown by Red’kin [275] using the gate elimination method of Section 9.3.2. Prefix compu-
tations, the subject of Section 2.6, were first used by Ofman [233]. He constructed the adder
based on carry-lookahead addition described in Section 2.7. Krapchenko [172] and Brent
[57] developed adders with linear size whose depth is ,log n-+O(

√
,log n-), asymptotically

almost as good at the best possible depth bound of ,log n-.
Ofman used carry-save addition for fast integer multiplication [233]. Wallace indepen-

dently discovered carry-save addition and logarithmic depth circuits for addition and multipli-
cation [355]. The divide-and-conquer integer multiplication algorithm of Section 2.9.2 is due
to Karatsuba [154]. As mentioned at the end of Section 2.9, Schönhage and Strassen [302]
have designed binary integer multipliers of depth O(log n) whose size is O(n log n log log n).

Sir Isaac Newton around 1665 invented the iterative method bearing his name used in
Section 2.10 for binary integer division. Our treatment of this idea follows that given by Tate
[324]. Reif and Tate [277] have shown that binary integer division can be done with circuit
size O(n log n log log n) and depth O(log n log log n) using circuits whose description is log-
space uniform. Beame, Cook, and Hoover [33] have given an O(log n)-depth circuit for the
reciprocal function, the best possible depth bound up to a constant multiple, but one whose
size is polynomial in n and whose description is not uniform; it requires knowledge of about
n2/ log n primes.

The key result in Section 2.11 on symmetric functions is due to Muller and Preparata
[225]. As indicated, it is the basis for showing that every one-output symmetric function can
be realized by a circuit whose size and depth are linear and logarithmic, respectively.

c©John E Savage Chapter Notes 89

Shannon [306] developed lower bounds for two-terminal switching circuits of the type
given in Section 2.12 on circuit size. Muller [223] extended the techniques of Shannon to
derive the lower bounds on circuit size given in Theorem 2.12.1. Shannon and Riordan [280]
developed a lower bound of Ω(2n/ log n) on the size of Boolean formulas, circuits in which the
fan-out of each gate is 1. As seen in Chapter 9, such bounds readily translate into lower bounds
on depth of the form given Theorem 2.12.2. Gaskov, using the Lupanov representation, has
derived a comparable upper bound [109].

The upper bound on circuit size given in Section 2.13 is due to Lupanov [207]. Shannon
and Riordan [280] show that a lower bound of Ω(2n/ log n) must apply to the formula size
(see Definition 9.1.1) of most Boolean functions on n variables. Given the relationship of
Theorem 9.2.2 between formula size and depth, a depth lower bound of n− log log n−O(1)
follows.

Early work on circuits and circuit complexity is surveyed by Paterson [236] and covered in
depth by Savage [286]. More recent coverage of this subject is contained in the survey article
by Bopanna and Sipser [50] and books by Wegener [359] and Dunne [91].

