
Models of Computation
Exploring the Power of Computing

Models of Computation
Exploring the Power of Computing

John E. Savage
Brown University

To Patricia, Christopher, and Timothy

Preface

Theoretical computer science treats any computational subject for which a good model can be
created. Research on formal models of computation was initiated in the 1930s and 1940s by
Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages,
language translators, and operating systems were under development and therefore became
both the subject and basis for a great deal of theoretical work. The power of computers of
this period was limited by slow processors and small amounts of memory, and thus theories
(models, algorithms, and analysis) were developed to explore the efficient use of computers as
well as the inherent complexity of problems. The former subject is known today as algorithms
and data structures, the latter computational complexity.

The focus of theoretical computer scientists in the 1960s on languages is reflected in the
first textbook on the subject, Formal Languages and Their Relation to Automata by John
Hopcroft and Jeffrey Ullman. This influential book led to the creation of many language-
centered theoretical computer science courses; many introductory theory courses today con-
tinue to reflect the content of this book and the interests of theoreticians of the 1960s and early
1970s.

Although the 1970s and 1980s saw the development of models and methods of analysis
directed at understanding the limits on the performance of computers, this attractive new
material has not been made available at the introductory level. This book is designed to remedy
this situation.

This book is distinguished from others on theoretical computer science by its primary focus
on real problems, its emphasis on concrete models of machines and programming styles, and
the number and variety of models and styles it covers. These include the logic circuit, the finite-
state machine, the pushdown automaton, the random-access machine, memory hierarchies,
the PRAM (parallel random-access machine), the VLSI (very large-scale integrated) chip, and
a variety of parallel machines.

vii

viii Preface Models of Computation

The book covers the traditional topics of formal languages and automata and complexity
classes but also gives an introduction to the more modern topics of space-time tradeoffs, mem-
ory hierarchies, parallel computation, the VLSI model, and circuit complexity. These modern
topics are integrated throughout the text, as illustrated by the early introduction of P-complete
and NP-complete problems. The book provides the first textbook treatment of space-time
tradeoffs and memory hierarchies as well as a comprehensive introduction to traditional com-
putational complexity. Its treatment of circuit complexity is modern and substantative, and
parallelism is integrated throughout.

Plan of the Book
The book has three parts. Part I (Chapter 1) is an overview. Part II, consisting of Chapters 2–7,
provides an introduction to general computational models. Chapter 2 introduces logic circuits
and derives upper bounds on the size and depth of circuits for important problems. The finite-
state, random-access, and Turing machine models are defined in Chapter 3 and circuits are
presented that simulate computations performed by these machines. From such simulations
arise results of two kinds. First, computational inequalities of the form C(f) ≤ κST are
derived for problems f run on the random-access machine, where C(f) is the size of the
smallest circuit for f , κ is a constant, and S and T are storage space and computation time.
If ST is too small relative to C(f), the problem f cannot be solved. Second, the same circuit
simulations are interpreted to identify P-complete and NP-complete problems. P-complete
problems can all be solved in polynomial time but are believed hard to solve fast on parallel
machines. The NP-complete problems include many important scheduling and optimization
problems and are believed not solvable in polynomial time on serial machines.

Part II also contains traditional material on formal languages and automata. Chapter 4
explores the connection between two machine models (the finite-state machine and the push-
down automaton) and language types in the Chomsky hierarchy. Chapter 5 examines Turing
machines. It shows that the languages recognized by them are the phrase-structure languages,
the most expressive of the language types in the Chomsky hierarchy. This chapter also exam-
ines universal Turing machines, reducibility, unsolvable problems, and the functions computed
by Turing machines.

Finally, Part II contains Chapters 6 and 7 which introduce algebraic and combinatorial
circuits and parallel machine models, respectively. Algebraic and combinatorial circuits are
graphs of straight-line programs of the kind typically used for matrix multiplication and in-
version, solving linear systems of equations, computing the fast Fourier transform, performing
convolutions, and merging and sorting. Chapter 6 contains reference material on problems
used in later chapters to illustrate models and lower-bound arguments. Parallel machine mod-
els such as the PRAM and networks of computers organized as meshes and hypercubes are
studied in Chapter 7. A framework is given for the design of algorithms and derivation of
lower bounds on performance.

Part III, a comprehensive treatment of computational complexity, consists of Chapters 8–
12. Chapter 8 provides a comprehensive survey of traditional computational complexity. Using
serial and parallel machine models, it examines time- and space-bounded complexity classes,
including the P-complete, NP-complete and PSPACE-complete languages as well as the circuit
complexity classes NC and P/poly. This chapter also establishes the connections between de-

c©John E Savage Preface ix

terministic and nondeterministic space complexity classes and shows that the nondeterministic
space classes are closed under complements.

Circuit complexity is the topic of Chapter 9. Methods for deriving lower bounds on circuit
size and depth are given for general circuits, formulas, monotone circuits, and bounded-depth
circuits. This modern treatment of circuit complexity complements Chapter 2, which derives
tight upper bounds on circuit size and depth.

Space–time tradeoffs are studied in Chapter 10 using two computational models, the
branching program and the pebble game, which capture the notions of space and time for
many programs for which branching is and is not allowed, respectively. Methods for deriving
lower bounds on the exchange of space for time are presented and applied to a representative
set of problems.

Chapter 11 examines models for memory hierarchy systems. It uses the pebble game with
pebbles of multiple colors to designate storage locations at different levels of a hierarchy, and
also employs block and RAM-based models. Again, lower bounds on performance are derived
and compared with the performance of algorithms. This chapter also has a brief treatment of
the LRU and FIFO memory-management algorithms that uses competitive analysis to com-
pare their performance to that of the optimal algorithm.

The book closes with Chapter 12 on the VLSI model for integrated circuits. In this model
both chip area A and time T are important, and methods are given for deriving lower bounds
on measures such as AT 2. Chip layouts and VLSI algorithms are also exhibited whose perfor-
mance comes close to matching the lower bounds.

Use of the Book
Many different courses can be designed around this book. A core undergraduate computer
science course can be taught using Parts I and II and some material from Chapter 8. The
first course on theoretical computer science for majors at Brown uses most of Chapters 1–5
except for the advanced material in Chapters 2 and 3. It uses a few elementary sections from
Chapters 10 and 11 to emphasize space–time tradeoffs, which play a central role in Chapter 3
and lead into the study of formal languages and automata in Chapter 4. After covering the
material of Chapter 5, a few lectures are given on NP-complete problems from Chapter 8.

This introductory course has four programming assignments in Scheme that illustrate the
ideas embodied in Chapters 2, 3 and 5. The first program solves the circuit-value problem,
that is, it executes a straight-line program, thereby producing the outputs defined by this
program. The second program writes a straight-line program simulating T steps by a finite-
state machine. The third program writes a straight-line program simulating T steps by a
one-tape Turing machine (this is the reduction involved in the Cook-Levin theorem) and the
fourth one simulates a universal Turing machine.

Several different advanced courses can be assembled from the material of Part III and
introductory material of Part II. For example, a course on concrete computational complexity
can be assembled around Chapters 10 and 11, which examine tradeoffs between space and
time in primary and secondary memory. This course would presume or include introductory
material from Chapter 3.

An advanced course emphasizing traditional computational complexity can be based pri-
marily on computability (Chapter 5) and complexity classes (Chapter 8) and some material on
circuit complexity from Chapter 9.

x Preface Models of Computation

An advanced course on circuit complexity can be assembled from Chapter 2 on logic cir-
cuits and Chapter 9 on circuit complexity. The former describes efficient circuits for a variety
of functions while the latter surveys methods for deriving lower bounds to circuit complexity.

The titles of sections containing advanced material carry an asterisk.

Acknowledgments
The raw material for this book is the fruit of the labors of many hundreds of people who have
sought to understand computation. It is a great privilege to have the opportunity to convey
this exciting body of material to a new audience.

Because the writing of a book involves years of solitary work, it is far too easy for authors
to lose sight of their audience. For this reason I am indebted to a number of individuals who
have read my book critically. José G. Castaños, currently a Brown Ph.D. candidate and my
advisee, has been of immense help to me in this regard. He has read many drafts of the book
and has given me the benefit of his keen sense of what is acceptable to my readers. José has
also served as a teaching assistant for the undergraduate theory course for which this book
was used and contributed importantly to the course and the book in this capacity. Dimitrios
Michailidis, also a Brown Ph.D. candidate, has also been a great help; he has read several
drafts of the book and has spotted many errors and lacunae. Bill Smart, a third Brown Ph.D.
candidate, also carefully read the first nine chapters. I have also benefited greatly from the eval-
uations done for my publisher by Richard Chang, University of Maryland, Baltimore County;
Michael A. Keenan, Columbus State University; Philip Lewis, State University of New York,
Stony Brook; George Lukas, University of Massachusetts at Boston; Stephen R. Mahaney, Rut-
gers University; Friedhelm Meyer auf der Heide, University of Paderborn, Germany; Boleslaw
Mikolajczak, University of Massachusetts, Dartmouth; Ramamohan Paturi, University of Cal-
ifornia, San Diego; Professor Gabriel Robins, and Jeffery Westbrook, AT&T Labs–Research.
Others, including Ray Greenlaw of the University of New Hampshire, read an early version of
the manuscript for other publishers and offered valuable advice. Gary Rommel of the Eastern
Connecticut State College and the Hartford Graduate Center provided feedback on classroom
use of the book. Finally, I am indebted to students in my undergraduate and graduate courses
at Brown whose feedback has been invaluable.

I very much appreciate advice on the content and organization of the book provided by
many individuals including my faculty colleagues the late Paris Kanellakis, Philip Klein, and
Franco Preparata as well as Akira Maruoka, a visitor to Brown. Together Franco and I also
produced the brief analysis of circuit depth given in Section 2.12.2. Alan Selman offered
valuable comments on Chapter 8. Akira Maruoka and Johan Håstad read and commented on
the sections of Chapter 9 containing their work. Alan Selman and Ken Regan provided help
in identifying references and Allan Borodin commented on many of the chapter notes. I wish
to thank Jun Tarui for suggesting that I consider rewriting my 1976 book, The Complexity of
Computing, which led to my writing this book. I also extend my sincere thanks to Andy Yao for
his generous comments on the book for the publisher. Many others contributed to this book
in one way or another, including Chuck Fiduccia, Paul Fischer, Bill McColl, Tony Medeiros,
Mike Paterson, Eric Rudder, Elizabeth and Kevin Savage, Mark Snir, and many students in my
courses.

I express my gratitude to Carter Shanklin, Executive Editor for Corporate & Professional
Publishing at Addison Wesley Longman, for his confidence in me and this project. I also thank

c©John E Savage Preface xi

Alwyn Velásquez for his attractive design of the book, Patricia Unubun, Production Editor on
this project, for her secure guidance of the book in its final stages, and Dimitrios Michailidis,
an expert in LATEX, for his preparation of the macros used to typeset the book and his very
close reading of the complete, formatted document, for which I am most appreciative. I offer
my sincere thanks to Katrina Avery for her high-quality copyediting, Rosemary Simpson for
her excellent index which is a great addition to this book, and Cynthia Benn for her careful
proofreading of the manuscript. The attractive cover of this book was designed by Michael
LeGrand and Scott Klemmer, two very talented juniors at Brown University.

Finally, this book would not have been written without the loving support of my wife
Patricia and our young sons, Christopher and Timothy. Their patience and understanding
for my long absences during the four and one-half years this project was in process is deeply
appreciated.

Addendum to the Third Printing
I am very much indebted to Prof. Layne Watson of the Department of Computer Science
at Virginia Tech for carefully and thoroughly reading many chapters of this book. He has
discovered many small and a few important errors. Authors are very fortunate to have readers
such as Layne who generously devote their valuable time to a careful reading of their books
and manuscripts.

I wish to also express my thanks to the following individuals who have sent me corrections:
Robert Altshuler, Geert Janssen, Robert Legenstein, Eli S. Mostrales, Amanda Silver, Volker
Strehl, and Jacobo Toran. Errata pages for the various printings of the book by Addison Wesley
are maintained and are available on the web at http://www.modelsofcomputation.org.

I am very appreciative of the LATEX help Manos Renieris provided to prepare the third
printing of this book.

Addendum to the Electronic Version of the Book
This version of the book, in which all known errors have been corrected, is released under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 United States license.
This license is described at http://creativecommons.org/licenses/by-nc-nd/3.0/us/.

http://www.modelsofcomputation.org
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Contents

Preface vii

I Overview of the Book 1

1 The Role of Theory in Computer Science 3
1.1 A Brief History of Theoretical Computer Science 4

1.1.1 Early Years 4
1.1.2 1950s 5
1.1.3 1960s 5
1.1.4 1970s 5
1.1.5 1980s and 1990s 6

1.2 Mathematical Preliminaries 7
1.2.1 Sets 7
1.2.2 Number Systems 8
1.2.3 Languages and Strings 9
1.2.4 Relations 9
1.2.5 Graphs 10
1.2.6 Matrices 11
1.2.7 Functions 11
1.2.8 Rate of Growth of Functions 13

1.3 Methods of Proof 14

xiii

xiv Contents Models of Computation

1.4 Computational Models 16
1.4.1 Logic Circuits 16
1.4.2 Finite-State Machines 18
1.4.3 Random-Access Machine 19
1.4.4 Other Models 20
1.4.5 Formal Languages 21

1.5 Computational Complexity 23
1.5.1 A Computational Inequality 23
1.5.2 Tradeoffs in Space, Time, and I/O Operations 24
1.5.3 Complexity Classes 26
1.5.4 Circuit Complexity 27

1.6 Parallel Computation 27

Problems 29

Chapter Notes 32

II General Computational Models 33

2 Logic Circuits 35
2.1 Designing Circuits 36

2.2 Straight-Line Programs and Circuits 36
2.2.1 Functions Computed by Circuits 38
2.2.2 Circuits That Compute Functions 39
2.2.3 Circuit Complexity Measures 40
2.2.4 Algebraic Properties of Boolean Functions 40

2.3 Normal-Form Expansions of Boolean Functions 42
2.3.1 Disjunctive Normal Form 42
2.3.2 Conjunctive Normal Form 43
2.3.3 SOPE and POSE Normal Forms 44
2.3.4 Ring-Sum Expansion 45
2.3.5 Comparison of Normal Forms 45

2.4 Reductions Between Functions 46

2.5 Specialized Circuits 47
2.5.1 Logical Operations 48
2.5.2 Shifting Functions 48
2.5.3 Encoder 51
2.5.4 Decoder 53
2.5.5 Multiplexer 54
2.5.6 Demultiplexer 55

2.6 Prefix Computations 55
2.6.1 An Efficient Parallel Prefix Circuit 57

c©John E Savage Contents xv

2.7 Addition 58
2.7.1 Carry-Lookahead Addition 60

2.8 Subtraction 61

2.9 Multiplication 62
2.9.1 Carry-Save Multiplication 64
2.9.2 Divide-and-Conquer Multiplication 66
2.9.3 Fast Multiplication 67
2.9.4 Very Fast Multiplication 67
2.9.5 Reductions to Multiplication 68

2.10 Reciprocal and Division 68
2.10.1 Reductions to the Reciprocal 72

2.11 Symmetric Functions 74

2.12 Most Boolean Functions Are Complex 77

2.13 Upper Bounds on Circuit Size 79

Problems 82

Chapter Notes 88

3 Machines with Memory 91
3.1 Finite-State Machines 92

3.1.1 Functions Computed by FSMs 94
3.1.2 Computational Inequalities for the FSM 95
3.1.3 Circuits Are Universal for Bounded FSM Computations 96
3.1.4 Interconnections of Finite-State Machines 97
3.1.5 Nondeterministic Finite-State Machines 98

3.2 Simulating FSMs with Shallow Circuits* 100
3.2.1 A Shallow Circuit Simulating Addition 105

3.3 Designing Sequential Circuits 106
3.3.1 Binary Memory Devices 109

3.4 Random-Access Machines 110
3.4.1 The RAM Architecture 110
3.4.2 The Bounded-Memory RAM as FSM 111
3.4.3 Unbounded-Memory RAM Programs 112
3.4.4 Universality of the Unbounded-Memory RAM 114

3.5 Random-Access Memory Design 115

3.6 Computational Inequalities for the RAM 117

3.7 Turing Machines 118
3.7.1 Nondeterministic Turing Machines 120

3.8 Universality of the Turing Machine 121

xvi Contents Models of Computation

3.9 Turing Machine Circuit Simulations 124
3.9.1 A Simple Circuit Simulation of TM Computations 124
3.9.2 Computational Inequalities for Turing Machines 127
3.9.3 Reductions from Turing to Circuit Computations 128
3.9.4 Definitions of P-Complete and NP-Complete Languages 130
3.9.5 Reductions to P-Complete Languages 130
3.9.6 Reductions to NP-Complete Languages 132
3.9.7 An Efficient Circuit Simulation of TM Computations* 134

3.10 Design of a Simple CPU 137
3.10.1 The Register Set 138
3.10.2 The Fetch-and-Execute Cycle 139
3.10.3 The Instruction Set 139
3.10.4 Assembly-Language Programming 140
3.10.5 Timing and Control 142
3.10.6 CPU Circuit Size and Depth 146
3.10.7 Emulation 147

Problems 147

Chapter Notes 152

4 Finite-State Machines and Pushdown Automata 153
4.1 Finite-State Machine Models 154

4.2 Equivalence of DFSMs and NFSMs 156

4.3 Regular Expressions 158

4.4 Regular Expressions and FSMs 160
4.4.1 Recognition of Regular Expressions by FSMs 160
4.4.2 Regular Expressions Describing FSM Languages 164
4.4.3 grep—Searching for Strings in Files 168

4.5 The Pumping Lemma for FSMs 168

4.6 Properties of Regular Languages 170

4.7 State Minimization* 171
4.7.1 Equivalence Relations on Languages and States 171
4.7.2 The Myhill-Nerode Theorem 174
4.7.3 A State Minimization Algorithm 175

4.8 Pushdown Automata 177

4.9 Formal Languages 181
4.9.1 Phrase-Structure Languages 182
4.9.2 Context-Sensitive Languages 183
4.9.3 Context-Free Languages 183
4.9.4 Regular Languages 184

4.10 Regular Language Recognition 184

c©John E Savage Contents xvii

4.11 Parsing Context-Free Languages 186

4.12 CFL Acceptance with Pushdown Automata* 192

4.13 Properties of Context-Free Languages 197
4.13.1 CFL Pumping Lemma 197
4.13.2 CFL Closure Properties 198

Problems 200

Chapter Notes 207

5 Computability 209
5.1 The Standard Turing Machine Model 210

5.1.1 Programming the Turing Machine 211

5.2 Extensions to the Standard Turing Machine Model 213
5.2.1 Multi-Tape Turing Machines 213
5.2.2 Nondeterministic Turing Machines 214
5.2.3 Oracle Turing Machines 216
5.2.4 Representing Restricted Models of Computation 217

5.3 Configuration Graphs 218

5.4 Phrase-Structure Languages and Turing Machines 219

5.5 Universal Turing Machines 220

5.6 Encodings of Strings and Turing Machines 222

5.7 Limits on Language Acceptance 223
5.7.1 Decidable Languages 223
5.7.2 A Language That Is Not Recursively Enumerable 224
5.7.3 Recursively Enumerable but Not Decidable Languages 225

5.8 Reducibility and Unsolvability 226
5.8.1 Reducibility 226
5.8.2 Unsolvable Problems 227

5.9 Functions Computed by Turing Machines 230
5.9.1 Primitive Recursive Functions 231
5.9.2 Partial Recursive Functions 232
5.9.3 Partial Recursive Functions are RAM-Computable 233

Problems 233

Chapter Notes 236

6 Algebraic and Combinatorial Circuits 237
6.1 Straight-Line Programs 238

6.2 Mathematical Preliminaries 239

xviii Contents Models of Computation

6.2.1 Rings and Fields 239
6.2.2 Matrices 240

6.3 Matrix Multiplication 244
6.3.1 Strassen’s Algorithm 245

6.4 Transitive Closure 248

6.5 Matrix Inversion 252
6.5.1 Symmetric Positive Definite Matrices 253
6.5.2 Schur Factorization 254
6.5.3 Inversion of Triangular Matrices 255
6.5.4 LDLT Factorization of SPD Matrices 257
6.5.5 Fast Matrix Inversion* 260

6.6 Solving Linear Systems 262

6.7 Convolution and the FFT Algorithm 263
6.7.1 Commutative Rings* 264
6.7.2 The Discrete Fourier Transform 264
6.7.3 Fast Fourier Transform 266
6.7.4 Convolution Theorem 268

6.8 Merging and Sorting Networks 270
6.8.1 Sorting Via Bitonic Merging 271
6.8.2 Fast Sorting Networks 274

Problems 274

Chapter Notes 278

7 Parallel Computation 281
7.1 Parallel Computational Models 282

7.2 Memoryless Parallel Computers 282

7.3 Parallel Computers with Memory 283
7.3.1 Flynn’s Taxonomy 285
7.3.2 The Data-Parallel Model 286
7.3.3 Networked Computers 287

7.4 The Performance of Parallel Algorithms 289
7.4.1 Amdahl’s Law 290
7.4.2 Brent’s Principle 291

7.5 Multidimensional Meshes 292
7.5.1 Matrix-Vector Multiplication on a Linear Array 293
7.5.2 Sorting on Linear Arrays 294
7.5.3 Matrix Multiplication on a 2D Mesh 295
7.5.4 Embedding of 1D Arrays in 2D Meshes 297

7.6 Hypercube-Based Machines 298

c©John E Savage Contents xix

7.6.1 Embedding Arrays in Hypercubes 299
7.6.2 Cube-Connected Cycles 300

7.7 Normal Algorithms 301
7.7.1 Summing on the Hypercube 302
7.7.2 Broadcasting on the Hypercube 303
7.7.3 Shifting on the Hypercube 303
7.7.4 Shuffle and Unshuffle Permutations on Linear Arrays 304
7.7.5 Fully Normal Algorithms on Two-Dimensional Arrays 306
7.7.6 Normal Algorithms on Cube-Connected Cycles 307
7.7.7 Fast Matrix Multiplication on the Hypercube 308

7.8 Routing in Networks 309
7.8.1 Local Routing Networks 309
7.8.2 Global Routing Networks 310

7.9 The PRAM Model 311
7.9.1 Simulating Trees, Arrays, and Hypercubes on the PRAM 313
7.9.2 The Power of Concurrency 314
7.9.3 Simulating the PRAM on a Hypercube Network 315
7.9.4 Circuits and the CREW PRAM 317

7.10 The BSP and LogP Models 317

Problems 318

Chapter Notes 322

III Computational Complexity 325

8 Complexity Classes 327
8.1 Introduction 328

8.2 Languages and Problems 328
8.2.1 Complements of Languages and Decision Problems 329

8.3 Resource Bounds 330

8.4 Serial Computational Models 331
8.4.1 The Random-Access Machine 331
8.4.2 Turing Machine Models 332

8.5 Classification of Decision Problems 334
8.5.1 Space and Time Hierarchies 336
8.5.2 Time-Bounded Complexity Classes 337
8.5.3 Space-Bounded Complexity Classes 338
8.5.4 Relations Between Time- and Space-Bounded Classes 341
8.5.5 Space-Bounded Functions 342

8.6 Complements of Complexity Classes 343

xx Contents Models of Computation

8.6.1 The Complement of NP 347

8.7 Reductions 349

8.8 Hard and Complete Problems 350

8.9 P-Complete Problems 352

8.10 NP-Complete Problems 355
8.10.1 NP-Complete Satisfiability Problems 356
8.10.2 Other NP-Complete Problems 357

8.11 The Boundary Between P and NP 363

8.12 PSPACE-Complete Problems 365
8.12.1 A First PSPACE-Complete Problem 365
8.12.2 Other PSPACE-Complete Problems 369

8.13 The Circuit Model of Computation 372
8.13.1 Uniform Families of Circuits 373
8.13.2 Uniform Circuits Are Equivalent to Turing Machines 374

8.14 The Parallel Random-Access Machine Model 376
8.14.1 Equivalence of the CREW PRAM and Circuits 376
8.14.2 The Parallel Computation Thesis 379

8.15 Circuit Complexity Classes 380
8.15.1 Efficiently Parallelizable Languages 380
8.15.2 Circuits of Polynomial Size 382

Problems 383

Chapter Notes 388

9 Circuit Complexity 391
9.1 Circuit Models and Measures 392

9.1.1 Circuit Models 392
9.1.2 Complexity Measures 393

9.2 Relationships Among Complexity Measures 394
9.2.1 Effect of Fan-Out on Circuit Size 394
9.2.2 Effect of Basis Change on Circuit Size and Depth 396
9.2.3 Formula Size Versus Circuit Depth 396

9.3 Lower-Bound Methods for General Circuits 399
9.3.1 Simple Lower Bounds 399
9.3.2 The Gate-Elimination Method for Circuit Size 400

9.4 Lower-Bound Methods for Formula Size 404
9.4.1 The Nečiporuk Lower Bound 405
9.4.2 The Krapchenko Lower Bound 407

9.5 The Power of Negation 409

c©John E Savage Contents xxi

9.6 Lower-Bound Methods for Monotone Circuits 412
9.6.1 The Path-Elimination Method 413
9.6.2 The Function Replacement Method 417
9.6.3 The Approximation Method 424
9.6.4 Slice Functions 431

9.7 Circuit Depth 436
9.7.1 Communication Complexity 437
9.7.2 General Depth and Communication Complexity 438
9.7.3 Monotone Depth and Communication Complexity 440
9.7.4 The Monotone Depth of the Clique Function 442
9.7.5 Bounded-Depth Circuits 447

Problems 450

Chapter Notes 455

10 Space–Time Tradeoffs 461
10.1 The Pebble Game 462

10.1.1 The Pebble Game Versus the Branching Program 462
10.1.2 Playing the Pebble Game 463

10.2 Space Lower Bounds 464

10.3 Extreme Tradeoffs 466

10.4 Grigoriev’s Lower-Bound Method 468
10.4.1 Flow Properties of Functions 468
10.4.2 The Lower-Bound Method in the Basic Pebble Game 470
10.4.3 First Matrix Multiplication Bound 472

10.5 Applications of Grigoriev’s Method 472
10.5.1 Convolution 473
10.5.2 Cyclic Shifting 474
10.5.3 Integer Multiplication 475
10.5.4 Matrix Multiplication 476
10.5.5 Discrete Fourier Transform 479
10.5.6 Merging Networks 481

10.6 Worst-Case Tradeoffs for Pebble Games* 482

10.7 Upper Bounds on Space* 483

10.8 Lower Bound on Space for General Graphs* 484

10.9 Branching Programs 488
10.9.1 Branching Programs and Other Models 493

10.10 Straight-Line Versus Branching Programs 495
10.10.1 Efficient Branching Programs for Cyclic Shift 496
10.10.2 Efficient Branching Programs for Merging 496

xxii Contents Models of Computation

10.11 The Borodin-Cook Lower-Bound Method 497

10.12 Properties of “nice” and “ok” Matrices* 501

10.13 Applications of the Borodin-Cook Method 504
10.13.1 Convolution 505
10.13.2 Integer Multiplication 506
10.13.3 Matrix-Vector Product 507
10.13.4 Matrix Multiplication* 509
10.13.5 Matrix Inversion 511
10.13.6 Discrete Fourier Transform 513
10.13.7 Unique Elements 514
10.13.8 Sorting 517

Problems 519

Chapter Notes 526

11 Memory-Hierarchy Tradeoffs 529
11.1 The Red-Blue Pebble Game 530

11.1.1 Playing the Red-Blue Pebble Game 532
11.1.2 Balanced Computer Systems 532

11.2 The Memory-Hierarchy Pebble Game 533
11.2.1 Playing the MHG 535

11.3 I/O-Time Relationships 535

11.4 The Hong-Kung Lower-Bound Method 537

11.5 Tradeoffs Between Space and I/O Time 539
11.5.1 Matrix-Vector Product 539
11.5.2 Matrix-Matrix Multiplication 541
11.5.3 The Fast Fourier Transform 546
11.5.4 Convolution 552

11.6 Block I/O in the MHG 555

11.7 Simulating a Fast Memory in the MHG 558

11.8 RAM-Based I/O Models 559
11.8.1 The Block-Transfer Model 559

11.9 The Hierarchical Memory Model 563
11.9.1 Lower Bounds for the HMM 564
11.9.2 Upper Bounds for the HMM 567

11.10 Competitive Memory Management 567
11.10.1 Two-Level Memory-Management Algorithms 568

Problems 569

Chapter Notes 573

c©John E Savage Contents xxiii

12 VLSI Models of Computation 575
12.1 The VSLI Challenge 576

12.1.1 Chip Fabrication 576
12.1.2 Design and Layout 577

12.2 VLSI Physical Models 578

12.3 VLSI Computational Models 579

12.4 VLSI Performance Criteria 580

12.5 Chip Layout 581
12.5.1 The H-Tree Layout 581
12.5.2 Multi-dimensional Mesh Layouts 583
12.5.3 Layout of the CCC Network 584

12.6 Area–Time Tradeoffs 586
12.6.1 Planar Circuit Size 586
12.6.2 Computational Inequalities 587
12.6.3 The Planar Separator Theorem 589

12.7 The Performance of VLSI Algorithms 592
12.7.1 The Performance of VLSI Algorithms on Functions 593
12.7.2 The Performance of VLSI Algorithms on Predicates 595

12.8 Area Bounds 597

Problems 598

Chapter Notes 601

Bibliography 605

Index 623

Models of Computation
Exploring the Power of Computing

Part I
OVERVIEW OF THE BOOK

C H A P T E R

The Role of Theory in
Computer Science

Computer science is the study of computers and programs, the collections of instructions that
direct the activity of computers. Although computers are made of simple elements, the tasks
they perform are often very complex. The great disparity between the simplicity of computers
and the complexity of computational tasks offers intellectual challenges of the highest order. It
is the models and methods of analysis developed by computer science to meet these challenges
that are the subject of theoretical computer science.

Computer scientists have developed models for machines, such as the random-access and
Turing machines; for languages, such as regular and context-free languages; for programs, such
as straight-line and branching programs; and for systems of programs, such as compilers and
operating systems. Models have also been developed for data structures, such as heaps, and for
databases, such as the relational and object-oriented databases.

Methods of analysis have been developed to study the efficiency of algorithms and their
data structures, the expressibility of languages and the capacity of computer architectures to
recognize them, the classification of problems by the time and space required to solve them,
their inherent complexity, and limits that hold simultaneously on computational resources for
particular problems. This book examines each of these topics in detail except for the first,
analysis of algorithms and data structures, which it covers only briefly.

This chapter provides an overview of the book. Except for the mathematical preliminaries,
the topics introduced here are revisited later.

3

4 Chapter 1 The Role of Theory in Computer Science Models of Computation

1.1 A Brief History of Theoretical Computer Science
Theoretical computer science uses models and analysis to study computers and computation.
It thus encompasses the many areas of computer science sufficiently well developed to have
models and methods of analysis. This includes most areas of the field.

1.1.1 Early Years
TURING AND CHURCH: Theoretical computer science emerged primarily from the work of
Alan Turing and Alonzo Church in 1936, although many others, such as Russell, Hilbert, and
Boole, were important precursors. Turing and Church introduced formal computational mod-
els (the Turing machine and lambda calculus), showed that some well-stated computational
problems have no solution, and demonstrated the existence of universal computing machines,
machines capable of simulating every other machine of their type.

Turing and Church were logicians; their work reflected the concerns of mathematical logic.
The origins of computers predate them by centuries, going back at least as far as the abacus, if
we call any mechanical aid to computation a computer. A very important contribution to the
study of computers was made by Charles Babbage, who in 1836 completed the design of his
first programmable Analytical Engine, a mechanical computer capable of arithmetic operations
under the control of a sequence of punched cards (an idea borrowed from the Jacquard loom).
A notable development in the history of computers, but one of less significance, was the 1938
demonstration by Claude Shannon that Boolean algebra could be used to explain the operation
of relay circuits, a form of electromechanical computer. He was later to develop his profound
“mathematical theory of communication” in 1948 as well as to lay the foundations for the
study of circuit complexity in 1949.

FIRST COMPUTERS: In 1941 Konrad Zuse built the Z3, the first general-purpose program-
controlled computer, a machine constructed from electromagnetic relays. The Z3 read pro-
grams from a punched paper tape. In the mid-1940s the first programmable electronic com-
puter (using vacuum tubes), the ENIAC, was developed by Eckert and Mauchly. Von Neu-
mann, in a very influential paper, codified the model that now carries his name. With the
invention of the transistor in 1947, electronic computers were to become much smaller and
more powerful than the 30-ton ENIAC. The microminiaturization of transistors continues
today to produce computers of ever-increasing computing power in ever-shrinking packages.

EARLY LANGUAGE DEVELOPMENT: The first computers were very difficult to program (cables
were plugged and unplugged on the ENIAC). Later, programmers supplied commands by
typing in sequences of 0’s and 1’s, the machine language of computers. A major contribution
of the 1950s was the development of programming languages, such as FORTRAN, COBOL,
and LISP. These languages allowed programmers to specify commands in mnemonic code and
with high level constructs such as loops, arrays, and procedures.

As languages were developed, it became important to understand their expressiveness as
well as the characteristics of the simplest computers that could translate them into machine
language. As a consequence, formal languages and the automata that recognize them became
an important topic of study in the 1950s. Nondeterministic models – models that may have
more than one possible next state for the current state and input – were introduced during this
time as a way to classify languages.

c©John E Savage 1.1 A Brief History of Theoretical Computer Science 5

1.1.2 1950s
FINITE-STATE MACHINES: Occurring in parallel with the development of languages was the
development of models for computers. The 1950s also saw the formalization of the finite-state
machine (also called the sequential machine), the sequential circuit (the concrete realization of
a sequential machine), and the pushdown automaton. Rabin and Scott pioneered the use of
analytical tools to study the capabilities and limitations of these models.

FORMAL LANGUAGES: The late 1950s and 1960s saw an explosion of research on formal lan-
guages. By 1964 the Chomsky language hierarchy, consisting of the regular, context-free,
context-sensitive, and recursively enumerable languages, was established, as was the correspon-
dence between these languages and the memory organizations of machine types recognizing
them, namely the finite-state machine, the pushdown automaton, the linear-bounded au-
tomaton, and the Turing machine. Many variants of these standard grammars, languages,
and machines were also examined.

1.1.3 1960s
COMPUTATIONAL COMPLEXITY: The 1960s also saw the laying of the foundation for compu-
tational complexity with the classification of languages and functions by Hartmanis, Lewis,
and Stearns and others of the time and space needed to compute them. Hierarchies of prob-
lems were identified and speed-up and gap theorems established. This area was to flower and
lead to many important discoveries, including that by Cook (and independently Levin) of
NP-complete languages, languages associated with many hard combinatorial and optimiza-
tion problems, including the Traveling Salesperson problem, the problem of determining the
shortest tour of cities for which all intercity distances are given. Karp was instrumental in
demonstrating the importance of NP-complete languages. Because problems whose running
time is exponential are considered intractable, it is very important to know whether a string in
NP-complete languages can be recognized in a time polynomial in their length. This is called

the P
?= NP problem, where P is the class of deterministic polynomial-time languages. The

P-complete languages were also identified in the 1970s; these are the hardest languages in P to
recognize on parallel machines.

1.1.4 1970s
COMPUTATION TIME AND CIRCUIT COMPLEXITY: In the early 1970s the connection between
computation time on Turing machines and circuit complexity was established, thereby giving

the study of circuits renewed importance and offering the hope that the P
?= NP problem

could be resolved via circuit complexity.

PROGRAMMING LANGUAGE SEMANTICS: The 1970s were a very productive period for formal
methods in the study of programs and languages. The area of programming language seman-
tics was very active; models and denotations were developed to give meaning to the phrase
“programming language,” thereby putting language development on a solid footing. Formal
methods for ensuring the correctness of programs were also developed and applied to program
development. The 1970s also saw the emergence of the relational database model and the

6 Chapter 1 The Role of Theory in Computer Science Models of Computation

development of the relational calculus as a means for the efficient reformulation of database
queries.

SPACE-TIME TRADEOFFS: An important byproduct of the work on formal languages and se-
mantics in the 1970s is the pebble game. In this game, played on a directed acyclic graph,
pebbles are placed on vertices to indicate that the value associated with a vertex is located in
the register of a central processing unit. The game allows the study of tradeoffs between the
number of pebbles (or registers) and time (the number of pebble placements) and leads to
space-time product inequalities for individual problems. These ideas were generalized in the
1980s to branching programs.

VLSI MODEL: When the very large-scale integration (VLSI) of electronic components onto
semiconductor chips emerged in the 1970s, VLSI models for them were introduced and an-
alyzed. Ideas from the study of pebble games were applied and led to tradeoff inequalities
relating the complexity of a problem to products such as AT 2, where A is the area of a chip
and T is the number of steps it takes to solve a problem. In the late 1970s and 1980s the
layout of computers on VLSI chips also became an important research topic.

ALGORITHMS AND DATA STRUCTURES: While algorithms (models for programs) and data struc-
tures were introduced from the beginning of the field, they experienced a flowering in the
1970s and 1980s. Knuth was most influential in this development, as later were Aho, Hopcroft,
and Ullman. New algorithms were invented for sorting, data storage and retrieval, problems on
graphs, polynomial evaluation, solving linear systems of equations, computational geometry,
and many other topics on both serial and parallel machines.

1.1.5 1980s and 1990s
PARALLEL COMPUTING AND I/O COMPLEXITY: The 1980s also saw the emergence of many
other theoretical computer science research topics, including parallel and distributed comput-
ing, cryptography, and I/O complexity. A variety of concrete and abstract models of parallel
computers were developed, ranging from VLSI-based models to the parallel random-access
machine (PRAM), a collection of synchronous processors alternately reading from and writ-
ing to a common array of memory cells and computing locally. Parallel algorithms and data
structures were developed, as were classifications of problems according to the extent to which
they are parallelizable. I/O complexity, the study of data movement among memory units
in a memory hierarchy, emerged around 1980. Memory hierarchies take advantage of the
temporal and spatial locality of problems to simulate fast, expensive memories with slow and
inexpensive ones.

DISTRIBUTED COMPUTING: The emergence of networks of computers brought to light some
hard logical problems that led to a theory of distributed computing, that is, computing with
multiple and potentially asynchronous processors that may be widely dispersed. The prob-
lems addressed in this area include reaching consensus in the presence of malicious adversaries,
handling processor failures, and efficiently coordinating the activities of agents when interpro-
cessor latencies are large. Although some of the problems addressed in distributed computing
were first introduced in the 1950s, this topic is associated with the 1980s and 1990s.

c©John E Savage 1.2 Mathematical Preliminaries 7

CRYPTOGRAPHY: While cryptography has been important for ages, it became a serious con-
cern of complexity theorists in the late 1970s and an active research area in the 1980s and
1990s. Some of the important cryptographic issues are a) how to exchange information se-
cretly without having to exchange a private key with each communicating agent, b) how to
identify with high assurance the sender of a message, and c) how to convince another agent
that you have the solution to a problem without transferring the solution to him or her.

As this brief history illustrates, theoretical computer science speaks to many different com-
putational issues. As the range of issues addressed by computer science grows in sophistication,
we can expect a commensurate growth in the richness of theoretical computer science.

1.2 Mathematical Preliminaries
In this section we introduce basic concepts used throughout the book. Since it is presumed
that the reader has already met most of this material, this presentation is abbreviated.

1.2.1 Sets
A set A is a non-repeating and unordered collection of elements. For example, A50s =
{Cobol, Fortran, Lisp} is a set of elements that could be interpreted as the names of languages
designed in the 1950s. Because the elements in a set are unordered, {Cobol, Fortran, Lisp}
and {Lisp, Cobol, Fortran} denote the same set. It is very convenient to recognize the empty
set ∅, a set that does not have any elements. The set B = {0, 1} containing 0 and 1 is used
throughout this book.

The notation a ∈ A means that element a is contained in set A. For example, Cobol ∈
A50s means that Cobol is a language invented in the 1950s. A set can be finite or infinite. The
cardinality of a finite set A, denoted |A|, is the number of elements in A. We say that a set A
is a subset of a set B, denoted A ⊆ B, if every element of A is an element of B. If A ⊆ B
but B contains elements not in A, we say that A is a proper subset and write A ⊂ B.

The union of two sets A and B, denoted A ∪ B, is the set containing elements that
are in A, B or both. For example, if A0 = {1, 2, 3} and B0 = {4, 3, 5}, then A0 ∪ B0 =
{5, 4, 3, 1, 2}. The intersection of sets A and B, denoted A∩B, is the set containing elements
that are in both A and B. Hence, A0 ∩B0 = {3}. If A and B have no elements in common,
denoted A ∩ B = ∅, they are said to be disjoint sets. The difference between sets A and
B, denoted A − B, is the set containing the elements that are in A but not in B. Thus,
A0 −B0 = {1, 2}. (See Fig. 1.1.)

BA
A ∩B

A −B

Figure 1.1 A Venn diagram showing the intersection and difference of sets A and B. Their
union is the set of elements in both A and B.

8 Chapter 1 The Role of Theory in Computer Science Models of Computation

The following simple properties hold for arbitrary sets A and B and the operations of set
union, intersection, and difference:

A ∪ B = B ∪A

A ∩ B = B ∩A

A ∪ ∅ = A

A ∩ ∅ = ∅
A− ∅ = A

The power set of a set A, denoted 2A, is the set of all subsets of A including the empty
set. For example, 2{2,5,9} = {∅, {2}, {5}, {9}, {2, 5}, {2, 9}, {5, 9}, {2, 5, 9}}. We use 2A

to denote the power set A as a reminder that it has 2|A| elements. To see this, observe that
for each subset B of the set A there is a binary n-tuple (e1, e2, . . . , e|A|) where ei is 1 if the
ith element of A is in B and 0 otherwise. Since there are 2|A| ways to assign 0’s and 1’s to
(e1, e2, . . . , e|A|), 2A has 2|A| elements.

The Cartesian product of two sets A and B, denoted A×B, is another set, the set of pairs
{(a, b) | a ∈ A, b ∈ B}. For example, when A0 = {1, 2, 3} and B0 = {4, 3, 5}, A0 ×B0 =
{(1, 4), (1, 3), (1, 5), (2, 4), (2, 3), (2, 5), (3, 4), (3, 3), (3, 5)}. The Cartesian product of k
sets A1, A2, . . . , Ak, denoted A1×A2×· · ·×Ak, is the set of k-tuples {(a1, a2, . . . , ak) | a1 ∈
A1, a2 ∈ A2, . . . , ak ∈ Ak} whose components are drawn from the respective sets. If for
each 1 ≤ i ≤ k, Ai = A, the k-fold Cartesian product A1 × A2 × · · · × Ak is denoted
Ak. An element of Ak is a k-tuple (a1, a2, . . . , ak) where ai ∈ A. Thus, the binary n-tuple
(e1, e2, . . . , e|A|) of the preceding paragraph is an element of {0, 1}n.

1.2.2 Number Systems
Integers are widely used to describe problems. The infinite set � consisting of 0 and the
positive integers {1, 2, 3, . . .} is called the set of natural numbers. The set of positive and
negative integers and zero, �, consists of the integers {0, 1,−1, 2,−2, . . .}.

In the standard decimal representation of the natural numbers, each integer n is repre-
sented as a sum of powers of 10. For example, 867 = 8 × 102 + 6 × 101 + 7 × 100. Since
computers today are binary machines, it is convenient to represent integers over base 2 instead
of 10. The standard binary representation for the natural numbers represents each integer as
a sum of powers of 2. That is, for some k ≥ 0 each integer n can be represented as a k-tuple
x = (xk−1, xk−2, . . . , x1, x0), where each of xk−1, xk−2, . . . , x1, x0 has value 0 or 1 and n
satisfies the following identity:

n = xk−12k−1 + xk−22k−2 + · · ·+ x121 + x020

The largest integer that can be represented with k bits is 2k−1 + 2k−2 + · · · + 21 + 20 =
2k − 1. (See Problem 1.1.) Also, the k-tuple representation for n is unique; that is, two
different integers cannot have the same representation. When leading 0’s are suppressed, the
standard binary representation for 1, 15, 32, and 97 are (1), (1, 1, 1, 1), (1, 0, 0, 0, 0, 0), and
(1, 1, 0, 0, 0, 0, 1), respectively.

We denote with x + y, x − y, x ∗ y, and x/y the results of addition, subtraction, multi-
plication, and division of integers.

c©John E Savage 1.2 Mathematical Preliminaries 9

1.2.3 Languages and Strings
An alphabet A is a finite set with at least two elements. A string x is an element (a1, a2, . . . , ak)
of the Cartesian product Ak in which we drop the commas and parentheses. Thus, we write
x = a1a2 · · · ak, and say that x is a string over the alphabet A. A string x in Ak is said to
have length k, denoted |x| = k. Thus, 011 is a string of length three over A = {0, 1}.

Consider now the Cartesian product Ak×Al = Ak+l, which is the (k+ l)-fold Cartesian
product of A with itself. Let x = a1a2 · · · ak ∈ Ak and y = b1b2 · · · bl ∈ Al. Then a string
z = c1c2 · · · ck+l ∈ Ak+l can be written as the concatenation of strings x and y of length k
and l, denoted, z = x · y, where

x · y = a1a2 · · · akb1b2 · · · bl

That is, ci = ai for 1 ≤ i ≤ k and ci = bi−k for k + 1 ≤ i ≤ k + l.
The empty string, denoted ε, is a special string with the property that when concatenated

with any other string x it returns x; that is, x · ε = ε ·x = x. The empty string is said to have
zero length. As a special case of Ak, we let A0 denote the set containing the empty string;
that is, A0 = {ε}.

The concatenation of sets of strings A and B, denoted A ·B, is the set of strings formed
by concatenating each string in A with each string in B. For example, {00, 1} · {a, bb} =
{00a, 00bb, 1a, 1bb}. The concatenation of a set A with the empty set ∅, denoted A · ∅, is the
empty set because it contains no elements; that is,

A · ∅ = ∅ ·A = ∅

When no confusion arises, we write AB instead of A ·B.
A language L over an alphabet A is a collection of strings of potentially different lengths

over A. For example, {00, 010, 1110, 1001} is a finite language over the alphabet {0, 1}. (It
is finite because it contains a bounded number of strings.) The set of all strings of all lengths
over the alphabet A, including the empty string, is denoted A∗ and called the Kleene closure
of A. For example, {0}∗ contains ε, the empty string, as well as 0, 00, 000, 0000, Also,
{00 ∪ 1}∗ = {ε, 1, 00, 001, 100, 0000, . . .}. It follows that a language L over the alphabet A
is a subset of A∗, denoted L ⊆ A∗.

The positive closure of a set A, denoted A+, is the set of all strings over A except for
the empty string. For example, 0(0∗10∗)+ is the set of binary strings beginning with 0 and
containing at least one 1.

1.2.4 Relations
A subset R of the Cartesian product of sets is called a relation. A binary relation R is a
subset of the Cartesian product of two sets. Three examples of binary relations are R0 =
{(0, 0), (1, 1), (2, 4), (3, 9), (4, 16)}, R1 = {(red, 0), (green, 1), (blue, 2)}, and R2 =
{(small, short), (medium, middle), (medium, average), (large, tall)}. The relation R0 is a
function because for each first component of a pair there is a unique second component. R1

is also a function, but R2 is not a function.
A binary relation R over a set A is a subset of A × A; that is, both components of each

pair are drawn from the same set. We use two notations to denote membership of a pair (a, b)
in a binary relation R over A, namely (a, b) ∈ R and the new notation aRb. Often it is more
convenient to say aRb than to say (a, b) ∈ R.

10 Chapter 1 The Role of Theory in Computer Science Models of Computation

A binary relation R is reflexive if for all a ∈ A, aRa. It is symmetric if for all a, b ∈ A,
aRb if and only if bRa. It is transitive if for all a, b, c ∈ A, if aRb and bRc, then aRc.

A binary relation R is an equivalence relation if it is reflexive, symmetric, and transitive.
For example, the pairs (a, b), a, b ∈ �, for which both a and b have the same remainder on
division by 3, is an equivalence relation. (See Problem 1.3.)

If R is an equivalence relation and aRb, then a and b are said to be equivalent elements.
We let E[a] be the set of elements in A that are equivalent to a under the relation R and
call it the equivalence class of elements equivalent to a. It is not difficult to show that for all
a, b ∈ A, E[a] and E[b] are either equal or disjoint. (See Problem 1.4.) Thus, the equivalence
classes of an equivalence relation over a set A partition the elements of A into disjoint sets.
For example, the partition {0∗, 0(0∗10∗)+, 1(0 + 1)∗} of the set (0 + 1)∗ of binary strings
defines an equivalence relation R. The equivalence classes consist of strings containing zero or
more 0’s, strings starting with 0 and containing at least one 1, and strings beginning with 1. It
follows that 00R000 and 1001R11 hold but not 10R01.

1.2.5 Graphs
A directed graph G = (V , E) consists of a finite set V of distinct vertices and a finite set
of pairs of distinct vertices E ⊆ V × V called edges. Edge e is incident on vertex v if e
contains v. A directed graph is undirected if for each edge (v1, v2) in E the edge (v2, v1)
is also in E. Figure 1.2 shows two examples of directed graphs, some of whose vertices are
labeled with symbols denoting gates, a topic discussed in Section 1.2.7. In a directed graph
the edge (v1, v2) is directed from the vertex v1 to the vertex v2, shown with an arrow from v1

to v2. The in-degree of a vertex in a directed graph is the number of edges directed into it; its
out-degree is the number of edges directed away from it; its degree is the sum of its in- and
out-degree. In a directed graph an input vertex has in-degree zero, whereas an output vertex
either has out-degree zero or is simply any vertex specially designated as an output vertex. A
walk in a graph (directed or undirected) is a tuple of vertices (v1, v2, . . . , vp) with the property
that (vi, vi+1) is in E for 1 ≤ i ≤ p− 1. A walk (v1, v2, . . . , vp) is closed if v1 = vp. A path
is a walk with distinct vertices. A cycle is a closed walk with p − 1 distinct vertices, p ≥ 3.
The length of a path is the number of edges on the path. Thus, the path (v1, v2, . . . , vp) has
length p− 1. A directed acyclic graph (DAG) is a directed graph that has no cycles.

+

+

(a)

v8

v6

v1 v2

v7

(b)

v4 v5

v3v1 v2

v3 v4

v5

Figure 1.2 Two directed acyclic graphs representing logic circuits.

c©John E Savage 1.2 Mathematical Preliminaries 11

Logic circuits are DAGs in which all vertices except input vertices carry the labels of gates.
Input vertices carry the labels of Boolean variables, variables assuming values over the set
B = {0, 1}. The graph of Fig. 1.2(a) is the logic circuit of Fig. 1.3(c), whereas the graph
of Fig. 1.2(b) is the logic circuit of Fig. 1.4. (The figures are shown in Section 1.4.1, Logic
Circuits.) The set of labels of logic gates used in a DAG is called the basis Ω for the DAG. The
size of a circuit is the number of non-input vertices that it contains. Its depth is the length of
the longest directed path from an input vertex to an output vertex.

1.2.6 Matrices
An m× n matrix is an array of elements containing m rows and n columns. (See Chapter 6.)
The adjacency matrix of a graph G with n vertices is an n × n matrix whose entries are 0 or
1. The entry in the ith row and jth column is 1 if there is an edge from vertex i to vertex j
and 0 otherwise. The adjacency matrix A for the graph in Fig. 1.2(a) is

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
1.2.7 Functions
The engineering component of computer science is concerned with the design, development,
and testing of hardware and software. The theoretical component is concerned with questions
of feasibility and optimality. For example, one might ask if there exists a program H that can
determine whether an arbitrary program P on an arbitrary input I will halt or not. This is
an example of an unsolvable computational problem. While it is a fascinating topic, practice
often demands answers to less ethereal questions, such as “Can a particular problem be solved
on a general-purpose computer with storage space S in T steps?”

To address feasibility and optimality it is important to have a precise definition of the tasks
under examination. Functions serve this purpose. A function (or mapping) f : D �→ R is
a relation f on the Cartesian product D ×R subject to the requirement that for each d ∈ D
there is at most one pair (d, r) in f . If (d, r) ∈ f , we say that the value of f on d is r, denoted
f(d) = r. The domain and codomain of f are D and R, respectively. The sets D and R can
be finite or infinite. For example, let fmult : �2 �→ � of domain D = �2 and codomain
R = � map a pair of natural numbers x and y (� = {0, 1, 2, 3, . . .}) into their product z;
that is, f(x, y) = z = x ∗ y. A function f : D �→ R is partial if for some d ∈ D no value
in R is assigned to f(d). Otherwise, a function is complete.

If the domain of a function is the Cartesian product of n sets, the function is said to have
n input variables. If the codomain of a function is the Cartesian product of m sets, the
function is said to have m output variables. If the input variables of such a function are all
drawn from the set A and the output variables are all drawn from the set B, this information
is often captured by the notation f (n,m) : An �→ Bm. However, we frequently do not use
exponents or we use only one exponent to parametrize a class of problems.

12 Chapter 1 The Role of Theory in Computer Science Models of Computation

A finite function is one whose domain and codomain are both finite sets. Finite functions
can be completely defined by tables of pairs {(d, r)}, where d is an element of its domain and
r is the corresponding element of its codomain.

Binary functions are complete finite functions whose domains and codomains are Carte-
sian products over the binary set B = {0, 1}. Boolean functions are binary functions whose
codomain is B. The tables below define three Boolean functions on two input variables and
one Boolean function on one input variable. They are called truth tables because the values 1
and 0 are often associated with the values True and False, respectively.

x y x ∧ y

0 0 0

0 1 0

1 0 0

1 1 1

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

x y x ⊕ y

0 0 0

0 1 1

1 0 1

1 1 0

x x

0 1

1 0

The above tables define the AND function x∧ y (its value is True when x and y are True),
the OR function x∨ y (its value is True when either x or y or both are True), the EXCLUSIVE

OR function x ⊕ y (its value is True only when either x or y is True, that is, when x is
True and y is False and vice versa), and the NOT function x (its value is True when x is
False and vice versa). The notation f

(2,1)
∧ : B2 �→ B, f

(2,1)
∨ : B2 �→ B, f

(2,1)
⊕ : B2 �→ B,

f
(1,1)
¬ : B �→ B for these functions makes explicit their number of input and output variables.

We generally suppress the second superscript when functions are Boolean. The physical devices
that compute the AND, OR, NOT, and EXCLUSIVE OR functions are called gates.

Many computational problems are described by functions f : A∗ �→ C∗ from the (un-
bounded) set of strings over an alphabet A to the set of strings over a potentially different
alphabet C. Since the letters in every finite alphabet A can be encoded as fixed-length strings
over the binary alphabet B = {0, 1}, there is no loss of generality in assuming that functions
are mappings f : B∗ �→ B∗, that is, from strings over B to strings over B.

Functions with unbounded domains can be used to identify languages. A language L over
the alphabet A is uniquely determined by a characteristic function f : A∗ �→ B with the
property that L = {x |x ∈ A∗ such that f(x) = 1}. This statement means that L is the set
of strings x in A∗ for which f on them, namely f(x), has value 1.

We often restrict a function f : B∗ �→ B∗ to input strings of length n, n arbitrary. The
domain of such a function is Bn. Its codomain consists of those strings into which strings of
length n map. This set may contain strings of many lengths. It is often convenient to map
strings of length n to strings of a fixed length containing the same information. This can be
done as follows. Let h(n) be the length of a longest string that is the value of an input string
of length n. Encode letters in B by repeating them (replace 0 by 00 and 1 by 11) and then add
as a prefix as many instances of 01 as necessary to insure that each string in the codomain of
fn has 2h(n) characters. For example, if h(4) = 3 and f(0110) = 10, encode the value 10 as
011100. This encoding provides a function fn : Bn �→ B2h(n) containing all the information
that is in the original version of fn.

It is often useful to work with functions f : � �→ � whose domains and codomains are
real numbers �. Functions of this type include linear functions, polynomials, exponentials,
and logarithms. A polynomial p(x) : � �→ � of degree k − 1 in the variable x is specified
by a set of k real coefficients, ck−1, . . . , c1, c0, where p(x) = ck−1x

k−1 + · · · + c1x
1 + c0.

c©John E Savage 1.2 Mathematical Preliminaries 13

A linear function is a polynomial of degree 1. An exponential function is a function of the
form E(x) = ax for some real a – for example, 21.5 = 2.8284271 The logarithm to the
base a of b, denoted loga b, is the value of x such that ax = b. For example, the logarithm to
base 2 of 2.8284271 . . . is 1.5 and the logarithm to base 10 of 100 is 2. A function f(x) is
polylogarithmic if for some polynomial p(x) we can write f(x) as p(log2 x); that is, it is a
polynomial in the logarithm of x.

Two other functions used often in this book are the floor and ceiling functions. Their
domains are the reals, but their codomains are the integers. The ceiling function, denoted
�x� : � �→ �, maps the real x to the smallest integer greater or equal to it. The floor
function, denoted �x� : � �→ �, maps the real x to the largest integer less than or equal to
it. Thus, �3.5� = 4 and �15.0001� = 16. Similarly, �3.5� = 3 and �15.0001� = 15. The
following bounds apply to the floor and ceiling functions.

f(x)− 1 ≤ �f(x)� ≤ f(x)
f(x) ≤ �f(x)� ≤ f(x) + 1

As an example of the application of the ceiling function we note that �log2 n� is the number
of bits necessary to represent the integer n.

1.2.8 Rate of Growth of Functions
Throughout this book we derive mathematical expressions for quantities such as space, time,
and circuit size. Generally these expressions describe functions f : � �→ � from the non-
negative integers to the reals, such as the functions f1(n) and f2(n) defined as

f1(n) = 4.5n2 + 3n

f2(n) = 3n + 4.5n2

When n is large we often wish to simplify expressions such as these to make explicit their
dominant or most rapidly growing term. For example, for large values of n the dominant terms
in f1(n) and f2(n) are 4.5n2 and 3n respectively, as we show. A term dominates when n is
large if the value of the function is approximately the value of this term, that is, if the function
is within some multiplicative factor of the term.

To highlight dominant terms we introduce the big Oh, big Omega and big Theta no-
tation. They are defined for functions whose domains and codomains are the integers or the
reals.

DEFINITION 1.2.1 Let f : � �→ � and g : � �→ � be two functions whose domains and
codomains are either the integers or the reals. If there are positive constants x0 and K > 0 such
that for all |x| ≥ x0,

|f(x)| ≤ K |g(x)|

we write

f(x) = O(g(x))

and say that “f(x) is big Oh of g(x)” or it grows no more rapidly in x than g(x). Under the
same conditions we also write

g(x) = Ω(f(x))

14 Chapter 1 The Role of Theory in Computer Science Models of Computation

and say that “g(x) is big Omega of f(x)” or that it grows at least as rapidly in x as f(x).
If f(x) = O(g(x)) and g(x) = O(f(x)), we write

f(x) = Θ(g(x)) or g(x) = Θ(f(x))

and say that “f(x) is big Theta of g(x)” and “g(x) is big Theta of f(x)” or that the two
functions have the same rate of growth in x.

The big Oh notation is illustrated by the expressions for f1(n) and f2(n) above.

EXAMPLE 1.2.1 We show that f1(n) = 4.5n2 + 3n is O(nk) for any k ≥ 2; that is, f1(n)
grows no more rapidly than nk for k ≥ 2. We also show that nk = O(f1(n)) for k ≤ 2; that
is, that nk grows no more rapidly than f1(n) for k ≤ 2. From the above definitions it follows
that f1(n) = Θ(n2); that is, f1(n) and n2 have the same rate of growth. We say that f1(n) is a
quadratic function in n.

To prove the first statement, we need to exhibit a natural number n0 and a constant K0 > 0
such that for all n ≥ n0, f1(n) ≤ K0n

k. If we can show that f1(n) ≤ K0n
2, then we have

shown f1(n) ≤ K0n
k for all k ≥ 2. To show the former, we must show the following for some

K0 > 0 and for all n ≥ n0:

4.5n2 + 3n ≤ K0n
2

We try K0 = 5.5 and find that the above inequality is equivalent to 3n ≤ n2 or 3 ≤ n. Thus, we
can choose n0 = 3 and we are done.

To prove the second statement, namely, that nk = O(f1(n)) for k ≤ 2, we must exhibit a
natural number n1 and some K1 > 0 such that for all n ≥ n1, nk ≤ K2f1(n). If we can show
that n2 ≤ K1f1(n), then we have shown nk ≤ K2f1(n). To show the former, we must show the
following for some K1 > 0 and for all n ≥ n1:

n2 ≤ K1(4.5n2 + 3n)

Clearly, if K1 = 1/4.5 the inequality holds for n ≥ 0, since 3K1n is positive. Thus, we choose
n1 = 0 and we are done.

EXAMPLE 1.2.2 We now show that the slightly more complex function f2(n) = 3n + 4.5n2

grows as 3n; that is, f2(n) = Θ(3n), an exponential function in n. Because 3n ≤ f2(n) for
all n ≥ 0, it follows that 3n = O(f2(n)). To show that f2(n) = O(3n), we demonstrate that
f2(n) ≤ 2(3n) holds for n ≥ 4. This is equivalent to the following inequality:

4.5n2 ≤ 3n

To prove this holds, we show that h(n) = 3n/n2 is an increasing function of n for n ≥ 2
and that h(4) ≥ 4.5. To show that h(n) is an increasing function of n, we compute the ratio
r(n) = h(n + 1)/h(n) and show that r(n) ≥ 1 for n ≥ 2. But r(n) = 3n2/(n + 1)2 and
r(n) ≥ 1 when 3n2 ≥ (n + 1)2 or when n(n − 1) ≥ 1/2, which holds for n ≥ 2. Since
h(3) = 3 and h(4) = 81/16 > 5, the desired conclusion follows.

1.3 Methods of Proof
In this section we briefly introduce several methods of proof that are used in this book, namely,
proof by induction, proof by contradiction, and the pigeonhole principle. In the previous

c©John E Savage 1.3 Methods of Proof 15

section we saw proof by reduction: in each step the condition to be established was translated
into another condition until a condition was found that was shown to be true.

Proofs by induction use predicates, that is, functions of the kind P : � �→ B. The
truth value of the predicate P : � �→ B on the natural number n, denoted P (n), is 1 or 0
depending on whether or not the predicate is True or False.

Proofs by induction are used to prove statements of the kind, “For all natural numbers
n, predicate (or property) P is true.” Consider the function S1 : � �→ � defined by the
following sum:

S1(n) =
n∑

j=1

j (1.1)

We use induction to prove that S1(n) = n(n + 1)/2 is true for each n ∈�.

DEFINITION 1.3.1 A proof by induction has a predicate P , a basis step, an induction hy-
pothesis, and an inductive step. The basis establishes that P (k) is true for integer k. The
induction hypothesis assumes that for some fixed but arbitrary natural number n ≥ k, the state-
ments P (k), P (k + 1), . . . , P (n) are true. The inductive step is a proof that P (n + 1) is true
given the induction hypothesis.

It follows from this definition that a proof by induction with the predicate P establishes
that P is true for all natural numbers larger than or equal to k because the inductive step
establishes the truth of P (n + 1) for arbitrary integer n greater than or equal to k. Also,
induction may be used to show that a predicate holds for a subset of the natural numbers. For
example, the hypothesis that every even natural number is divisible by 2 is one that would be
defined only on the even numbers.

The following proof by induction shows that S1(n) = n(n + 1)/2 for n ≥ 0.

LEMMA 1.3.1 For all n ≥ 0, S1(n) = n(n + 1)/2.

Proof PREDICATE: The value of the predicate P on n, P (n), is True if S1(n) = n(n +
1)/2 and False otherwise.

BASIS STEP: Clearly, S1(0) = 0 from both the sum and the closed form given above.

INDUCTION HYPOTHESIS: S1(k) = k(k + 1)/2 for k = 0, 1, 2, . . . , n.

INDUCTIVE STEP: By the definition of the sum for S1 given in (1.1), S1(n+1) = S1(n)+
n + 1. Thus, it follows that S1(n + 1) = n(n + 1)/2 + n + 1. Factoring out n + 1 and
rewriting the expression, we have that S1(n + 1) = (n + 1)((n + 1) + 1)/2, exactly the
desired form. Thus, the statement of the theorem follows for all values of n.

We now define proof by contradiction.

DEFINITION 1.3.2 A proof by contradiction has a predicate P . The complement ¬P of P is
shown to be False, which implies that P is True.

The examples shown earlier of strings in the language L = {00 ∪ 1}∗ suggest that L
contains only strings other than ε with an odd number of 1’s. Let P be the predicate “L
contains strings other than ε with an even number of 1’s.” We show that it is true by assuming

16 Chapter 1 The Role of Theory in Computer Science Models of Computation

it is false, namely, by assuming “L contains only strings with an odd number of 1’s” and
showing that this statement is false. In particular, we show that L contains the string 11. From
the definition of the Kleene closure, L contains strings of all lengths in the “letters” 00 and 1.
Thus, it contains a string containing two instances of 1 and the predicate P is true.

Induction and proof by contradiction can also be used to establish the pigeonhole principle.
The pigeonhole principle states that if there are n pigeonholes, n + 1 or more pigeons, and
every pigeon occupies a hole, then some hole must have at least two pigeons. We reformulate
the principle as follows:

LEMMA 1.3.2 Given two finite sets A and B with |A| > |B|, there does not exist a naming
function ν : A �→ B that gives to each element a in A a name ν(a) in B such that every element
in A has a unique name.

Proof BASIS: |B| = 1. To show that the statement is True, assume it is False and show
that a contradiction occurs. If it is False, every element in A can be given a unique name.
However, since there is one name (the one element of B) and more than one element in A,
we have a contradiction.

INDUCTION HYPOTHESIS: There is no naming function ν : A �→ B when |B| ≤ n and
|A| > |B|.

INDUCTIVE STEP: When |B| = n+1 and |A| > |B| we show there is no naming function
ν : A �→ B. Consider an element b ∈ B. If two elements of A have the name b, the desired
conclusion holds. If not, remove b from B, giving the set B′, and remove from A the
element, if any, whose name is b, giving the set A′. Since |A′| > |B′| and |B′| ≤ n, by the
induction hypothesis, there is no naming function obtained by restricting ν to A′. Thus,
the desired conclusion holds.

1.4 Computational Models
A variety of computer models are examined in this book. In this section we give the reader
a taste of five models, the logic circuit, the finite-state machine, the random-access machine,
the pushdown automaton, and the Turing machine. We also briefly survey the problem of
language recognition.

1.4.1 Logic Circuits
A logic gate is a physical device that realizes a Boolean function. A logic circuit, as defined
in Section 1.2, is a directed acyclic graph in which all vertices except input vertices carry the
labels of gates.

Logic gates can be constructed in many different technologies. To make ideas concrete,
Fig. 1.3(a) and (b) show electrical circuits for the AND and OR gates constructed with batteries,
bulbs, and switches. Shown with each of these circuits is a logic symbol for the gate. These
symbols are used to draw circuits, such as the circuit of Fig. 1.3(c) for the function (x∨y)∧z.
When electrical current flows out of the batteries through a switch or switches in these circuits,
the bulbs are lit. In this case we say the value of the circuit is True; otherwise it is False. Shown
below is the truth table for the function mapping the values of the three input variables of the
circuit in Fig. 1.3(c) to the value of the one output variable. Here x, y, and z have value 1

c©John E Savage 1.4 Computational Models 17

−
+

−
+

−
+

(a) (b)

x y x

y

x

y

x yx y

z

(c)

x y

z

Figure 1.3 Three electrical circuits simulating logic circuits.

when the switch that carries its name is closed; otherwise they have value 0.

x y z (x ∨ y) ∧ z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Today’s computers use transistor circuits instead of the electrical circuits of Fig. 1.3.
Logic circuits execute straight-line programs, programs containing only assignment state-

ments. Thus, they have no loops or branches. (They may have loops if the number of times
a loop is executed is fixed.) This point is illustrated by the “full-adder” circuit of Fig. 1.4,
a circuit discussed at length in Section 2.7. Each external input and each gate is assigned a
unique integer. Each is also assigned a variable whose value is the value of the external input
or gate. The ith vertex is assigned the variable xi. If xi is associated with a gate that combines
the results produced at the jth and kth gates with the operator �, we write an assignment
operation of the form xi := xj � xk. The sequence of assignment operations for a circuit is
a straight-line program. Below is a straight-line program for the circuit of Fig. 1.4:

x4 := x1 ⊕ x2

x5 := x4 ∧ x3

x6 := x1 ∧ x2

x7 := x4 ⊕ x3

x8 := x5 ∨ x6

The values computed for (x8, x7) are the standard binary representation for the number of 1’s
among x1, x2, and x3. This can be seen by constructing a table of values for x1, x2, x3, x7,

18 Chapter 1 The Role of Theory in Computer Science Models of Computation

x4 x6

x3x2x1

x8

x7x5

Figure 1.4 A full-adder circuit. Its output pair (x8, x7) is the standard binary representation
for the number of 1’s among its three inputs x1, x2, and x3.

and x8. Full-adder circuits can be combined to construct an adder for binary numbers. (In
Section 2.2 we give another notation for straight-line programs.)

As shown in the truth table for Fig. 1.3(c), each logic circuit has associated with it a binary
function that maps the values of its input variables to the values of its output variables. In the
case of the full-adder, since x8 and x7 are its output variables, we associate with it the function
f

(3,2)
FA : B3 �→ B2, whose value is f

(3,2)
FA (x1, x2, x3) = (x8, x7).

Algebraic circuits are similar to logic circuits except they may use operations over non-
binary sets, such as addition and multiplication over a ring, a concept explained in Sec-
tion 6.2.1. Algebraic circuits are the subject of Chapter 6. They are also described by DAGs
and they execute straight-line programs where the operators are non-binary functions. Alge-
braic circuits also have associated with them functions that map the values of inputs to the
values of outputs.

Logic circuits are the basic building blocks of all digital computers today. When such
circuits are combined with binary memory cells, machines with memory can be constructed.
The models for these machines are called finite-state machines.

1.4.2 Finite-State Machines
The finite-state machine (FSM) is a machine with memory. It executes a series of steps during
each of which it takes its current state from the set Q of states and current external input from
the set Σ of input letters and combines them in a logic circuit L to produce a successor state
in Q and an output letter in Ψ, as suggested in Fig. 1.5. The logic circuit L can be viewed as
having two parts, one that computes the next-state function δ : Q × Σ �→ Q, whose value
is the next state of the FSM, and the other that computes the output function λ : Q �→ Ψ,
whose value is the output of the FSM in the current state. A generic finite-state machine is
shown in Fig. 1.5(a) along with a concrete FSM in Fig. 1.5(b) that provides as successor state
and output the EXCLUSIVE OR of the current state and the external input. The state diagram
of the FSM in Fig. 1.5(b) is shown in Fig. 1.8. Two (or more) finite-state machines that operate

c©John E Savage 1.4 Computational Models 19

+

Input

Output

Input

Output

(a) (b)

L
Memory Memory

Figure 1.5 (a) The finite-state machine (FSM) model; at each unit of time its logic unit, L,
operates on its current state (taken from its memory) and its current external input to compute an
external output and a new state that it stores in its memory. (b) An FSM that holds in its memory
a bit that is the EXCLUSIVE OR of the initial value stored in its memory and the external inputs
received to the present time.

in lockstep can be interconnected to form a single FSM. In this case, some outputs of one FSM
serve as inputs to the other.

Finite-state machines are ubiquitous today. They are found in microwave ovens, VCRs and
automobiles. They can be simple or complex. One of the most useful FSMs is the general-
purpose computer modeled by the random-access machine.

1.4.3 Random-Access Machine
The (bounded-memory) random-access machine (RAM) is modeled as a pair of intercon-
nected finite-state machines, one a central processing unit (CPU) and the other a random-
access memory, as suggested in Fig. 1.6. The random-access memory holds m b-bit words,
each identified by an address. It also holds an output word (out wrd) and a triple of inputs

addr

in wrd

out wrd

b

ALU

rega

regb

CPU
cmd

Random-Access Memory

m − 1
m − 2

1

0

Decode

prog ctr

Figure 1.6 The bounded-memory random-access machine.

20 Chapter 1 The Role of Theory in Computer Science Models of Computation

consisting of a command (cmd), an address (addr), and an input data word (in wrd). cmd
is either READ, WRITE, or NO-OP. A NO-OP command does nothing whereas a READ com-
mand changes the value of out wrd to the value of the data word at address addr. A WRITE

command replaces the data word at address addr with the value of in wrd.
The random-access memory holds data as well as programs, collections of instructions

for the CPU. The CPU executes the fetch-and-execute cycle in which it repeatedly reads an
instruction from the random-access memory and executes it. Its instructions typically include
arithmetic, logic, comparison, and jump instructions. Comparisons are used to decide whether
the CPU reads the next program instruction in sequence or jumps to an instruction out of
sequence.

The general-purpose computer is much more complex than suggested by the above brief
sketch of the RAM. It uses a rich variety of methods to achieve high speed at low cost with the
available technology. For example, as the number of components that can fit on a semiconduc-
tor chip increases, designers have begun to use “super-scalar” CPUs, CPUs that issue multiple
instructions in each time step. Also, memory hierarchies are becoming more prevalent as de-
signers assemble collections of slower but larger memories with lower costs per bit to simulate
expensive fast memories.

1.4.4 Other Models
There are many other models of computers with memory, some of which have an infinite
supply of data words, such as the Turing machine, a machine consisting of a control unit (an
FSM) and a tape unit that has a potentially infinite linear array of cells each containing letters
from an alphabet that can be read and written by a tape head directed by the control unit. It
is assumed that in each time step the head may move only from one cell to an adjacent one on
the linear array. (See Fig. 1.7.) The Turing machine is a standard model of computation since
no other machine model has been discovered that performs tasks it cannot perform.

The pushdown automaton is a restricted form of Turing machine in which the tape is
used as a pushdown stack. Data is entered, deleted, and accessed only at the top of a stack. A

Unit

m − 1210

Control

Tape Unit

b

Figure 1.7 The Turing machine has a control unit that is a finite-state machine and a tape unit
that controls reading and writing by a tape head and the movement of the tape head one cell at a
time to the left or right of the current position.

c©John E Savage 1.4 Computational Models 21

pushdown stack can be simulated by a tape in which the cell to the right of the tape head is
always blank. If the tape moves right from a cell, it writes a non-blank symbol in the cell. If it
moves left, it writes a blank in that cell before leaving it.

Some computers are serial: they execute one operation on a fixed amount of data per time
step. Others are parallel; that is, they have multiple (usually communicating) subcomputers
that operate simultaneously. They may operate synchronously or asynchronously and they may
be connected via a simple or a complex network. An example of a simple network is a wire
between two computers. An example of a complex network is a crossbar switch consisting of
25 switches at the intersection of five columns and five rows of wires; closing the switch at the
intersection of a row and a column connects the two wires and the two computers to which
they are attached.

We close this section by emphasizing the importance of models of computers. Good mod-
els provide a level of abstraction at which important facts and insights can be developed without
losing so much detail that the results are irrelevant to practice.

1.4.5 Formal Languages
In Chapters 4 and 5 the finite-state machine, pushdown automaton, and Turing machine are
characterized by their language recognition capability. Formal methods for specifying lan-
guages have led to efficient ways to parse and recognize programming languages. This is il-
lustrated by the finite-state machine of Fig. 1.8. Its initial state is q0, its final state is q1 and
its inputs can assume values 0 or 1. An output of 0 is produced when the machine is in state
q0 and an output of 1 is produced when it is in state q1. The output before the first input is
received is 0.

After the first input the output of the FSM of Fig. 1.8 is equal to the input. After multiple
inputs the output is the EXCLUSIVE OR of the 1’s and 0’s among the inputs, as we show by
induction. The inductive hypothesis is clearly true after one input. Suppose it is true after k
inputs; we show that it remains true after k+1 inputs, and therefore for all inputs. The output
uniquely determines the state. There are two cases to consider: after k inputs either the FSM is
in state q0 or it is in state q1. For each state, there are two cases to consider based on the value
of the k + 1st input. In all four cases it is easy to see that after the k + 1st input the output is
the EXCLUSIVE OR of the first k + 1 inputs.

0

1

0

1

q0/0 q1/1

Initial

Figure 1.8 A state diagram for a finite-state machine whose circuit model is given in Fig. 1.5(b).
q0 is the initial state of the machine and q1 is its final state. If the machine is in q0, it has received
an even number of 1 inputs, whereas if it is in q1, it has received an odd number of 1’s.

22 Chapter 1 The Role of Theory in Computer Science Models of Computation

The language recognized by an FSM is defined in two ways. It is the set of input strings
that cause the FSM to produce a particular letter as its last output or to enter one of the set
of final states on its last input. Thus, the FSM of Fig. 1.8 recognizes the set of binary strings
containing an odd number of 1’s. It also recognizes the set of binary strings containing an even
number of 1’s because they result in a last output of 0.

An FSM can also compute a function. The most general function that it computes in

T steps is the function f
(T)
M : Q × ΣT �→ Q × ΨT that maps the initial state s and the

T inputs w1, w2, . . . , wT to the T outputs y1, y2, . . . , yT . It can also compute any other
function obtained by ignoring some outputs or fixing either the initial state or some inputs
or both.

The class of languages recognized by finite-state machines (the regular languages) is not
rich enough to describe easily the important programming languages that are in use today. As
a consequence, other languages, such as the context-free languages, are employed. Context-
free languages (which include the regular languages) require computers with potentially un-
bounded storage for their recognition. The class of computers that recognizes exactly the
context-free languages are the nondeterministic pushdown automata, pushdown automata in
which the control unit is nondeterministic; that is, some of its states can have multiple poten-
tial successor states.

The strings in regular and context-free languages (and other languages as well) can be
generated by grammars. A context-free grammar G = (N , T ,R, S) consists of sets of terminal
and non-terminal symbols, T and N respectively, and rules R by which each non-terminal
is replaced with one or more strings of terminals and non-terminals. All string generations
start with the special start non-terminal S. The language generated by G, L(G), contains the
strings of terminal characters produced by rewriting strings in this fashion. This is illustrated
by the context-free grammar G with two rules shown below.

EXAMPLE 1.4.1 G = (N , T ,R, S), where N = {S}, T = {a, b}, and R consists of the two
rules

(a) S → aSb (b) S → ab

Each application of a rule derives another string, as shown below. This grammar has only
two derivations, namely S → aSb and S → ab. The second derivation is always the last to be
used. (Recall that the language L(G) contains only terminal strings.)

S → aSb

→ aaSbb

→ aaaSbbb

→ aaaabbbb

As can be seen by inspection, the only strings in L(G) are of the form akbk, where ak denotes
the letter a repeated k times. Thus, L(G) = {akbk | k ≥ 1}.

Once a grammar for a regular or context-free language is known, it is possible to parse a
string in the language. In the above example this amounts to determining the number of times
that the first rule is applied.

To develop some intuition for the use of the pushdown automaton as a recognizer for
context-free languages, observe that we can determine the number of applications of the first
rule in this language by pushing each instance of a onto a stack and then popping a’s as b’s are

c©John E Savage 1.5 Computational Complexity 23

encountered. The number of a’s can then be matched with the number of b’s and if they are
not equal, the string is declared not in the language. If equal, the number of instances of the
first rule is determined.

Programming languages contain strings of characters and digits representing names and
the values of variables. Such strings can typically be scanned with finite-state machines. Once
scanned, these strings can be assigned tokens that are then used in a later parsing phase, which
today is typically based on a generalization of parsing for context-free languages.

1.5 Computational Complexity
Computational complexity is examined in concrete and abstract terms. The concrete analysis
of computational limits is done using models that capture the exchange of space for time. It also
is done via the study of circuit complexity, the minimal size and depth of circuits for functions.
Computational complexity is studied abstractly via complexity classes, the classification of
languages by the time and/or space they need.

1.5.1 A Computational Inequality
Computational inequalities play an important role in this book. We now sketch the derivation
of a computational inequality for the finite-state machine and specialize it to the RAM. The
idea is very simple: we simulate with a circuit the computation of a function f by an FSM
and then compare the size of the circuit produced with the size of the smallest circuit for f .
Simulation, which we use to derive this result, is a central idea in theoretical computer science.
For example, it is used to show that a problem is NP-complete. We use it here to relate the
resources available to compute a function f with an FSM to the inherent complexity of f .

Shown in Fig. 1.5(a) is the standard model for an FSM. As suggested, a circuit L combines
the current state held in the memory M together with an external input to form an external
output and a successor state which is held in M . If the input, output, and state are represented
as binary tuples, the circuit L can be realized by a logic circuit with Boolean gates. Let the
FSM compute the function f : Bn �→ Bm in T steps; that is, its state and/or T external
inputs contain the n Boolean inputs to f and its T outputs contain the m Boolean outputs of
f . (The inputs and outputs must appear in the same positions on each computation to prevent
the application of hidden computational resources.)

The function f can also be computed by the circuit shown in Fig. 1.9, which is obtained
by unwinding the loop of Fig. 1.5(a) using T copies of the logic circuit L for the FSM. This

x1

y1

x2

q1

y2

q2

xT

yT

qT
s

L LL

Figure 1.9 A circuit that computes the same function as an FSM (see Fig. 1.5(a)) in T steps. It
has the same initial state s, receives the same inputs and produces the same outputs.

24 Chapter 1 The Role of Theory in Computer Science Models of Computation

follows because the inputs x1, x2, . . . , xT that would be given to the FSM over time can be
given simultaneously to this circuit and it will produce the T outputs that would be produced
by the FSM. This circuit has T ·C(L) gates, where C(L) is the actual or equivalent number of
gates used to realize L. (The circuit L may be realized with a technology that does not formally
use gates.) Since this circuit is not necessarily the smallest circuit for the function f , we have
the following inequality, where C(f) is the size of the smallest circuit for f :

C(f) ≤ T · C(L)

This result is important because it imposes a constraint on every computation done by a
sequential machine. This inequality has two interpretations. First, if the product T · C(L)
(the equivalent number of logic operations employed) of the number of time steps T and
the equivalent number of logic operations C(L) per step is too small, namely, less than C(f),
the FSM cannot compute function f because the above inequality would be violated. This is
a form of impossibility theorem for bounded computations. Second, a complex function,
one for which C(f) is large, requires a large value for the product T ·C(L). In light of the first
interpretation of T · C(L) as the equivalent number of logic operations employed, it makes
sense to call W = T · C(L) the computational work done by the FSM to compute f .

The above computational inequality can be specialized to the bounded-memory RAM with
S bits of memory. When S is large, as it usually is, C(L) for the RAM is proportional to S. As
a consequence, for the RAM we have the following computational inequality for some positive
constant κ:

C(f) ≤ κST

This inequality shows the central role of circuit complexity in theoretical computer science. It
also demonstrates that the space-time product, ST , is an important measure of the complexity
of a problem. Functions with large circuit size can be computed by a RAM only if it either has
a large storage capacity or executes many time steps or both. Similar results exist for the Turing
machine.

1.5.2 Tradeoffs in Space, Time, and I/O Operations
Computational inequalities of the kind sketched above are important but often difficult to
apply because it is hard to show that functions have a large circuit size. For this reason space-
time tradeoffs have been studied under the assumption that the type of algorithm or program
allowed is restricted. For example, if only straight-line programs are considered, then the pebble
game sketched below and discussed in detail in Chapter 10 can be used to derive tradeoff
inequalities.

The standard pebble game is played on a directed acyclic graph (DAG), the graph of a
straight-line program. The input vertices of a DAG have no edges directed into them. Output
vertices have no edges directed away from them. Internal vertices are non-input vertices. A
predecessor of a vertex v is a vertex u that has an edge directed to v. The pebble game is played
with pebbles that are placed on vertices according to the following rules:

• Initially no vertices carry pebbles.

• A pebble can be placed on an input vertex at any time.

c©John E Savage 1.5 Computational Complexity 25

• A pebble can be placed on an internal vertex only if all of its predecessor vertices carry
pebbles.

• The pebble moved to a vertex can be a pebble residing on one of its immediate predecessors.

• A pebble can be removed from a vertex at any time.

• Every output vertex must carry a pebble at some time.

Space S in this game is the maximum number of pebbles used to play the game on a
DAG. Time T is the number of times that pebbles are placed on vertices. If enough pebbles
are available to play the game, each vertex is pebbled once and T is the number of vertices in
the graph. If, however, there are not enough pebbles, some vertices will have to be pebbled
more than once. In this case a tradeoff between space and time will be exhibited.

For a particular DAG G we may seek to determine the minimum number of pebbles, Smin,
needed to place pebbles on all output vertices at some time and for a given number of pebbles S
to determine the minimum time T needed when S pebbles are used. Methods for computing
Smin and bounding S and T simultaneously have been developed. For example, the four-
point (four-input) fast Fourier transform (FFT) graph shown in Fig. 1.10 has Smin = 3 and
can be pebbled in the minimum number of steps with five pebbles.

Let the FFT graph of Fig. 1.10 be pebbled with the minimum number S of pebbles.
Initially no pebbles reside on the graph. Thus, there is a first point in time at which S pebbles
reside on the graph. The dark gray vertices identify one possible placement of pebbles at such
a point in time. The light gray vertices will have had pebbles placed on them prior to this time
and will have to be repebbled again later to pebble output vertices that cannot be reached from
the placement of the dark gray vertices. This demonstrates that for this graph if the minimum
number of pebbles is used, some vertices will have to be repebbled. Although the n-point
FFT graph, n a power of two, has only n log n+n vertices, we show in Section 10.5.5 that its
vertices must be repebbled enough times that S and T satisfy (S+1)T ≥ n2/16. Thus, either
S is much larger than the minimum space or T is much larger than the number of vertices
or both.

146113

8 16157

1, 9 2, 10 4, 12 5, 13

Figure 1.10 A pebbling of a four-input FFT graph at the point at which the maximum num-
ber of pebbles (three) is used. Numbers specify the order in which vertices can be pebbled. A
maximum of three pebbles is used. Some vertices are pebbled twice.

26 Chapter 1 The Role of Theory in Computer Science Models of Computation

Space-time tradeoffs can also be studied with the branching program, a type of program
that permits data-dependent computations. (See Section 10.9.) While branching programs
provide more flexibility than does the pebble game, they are worth considering only for prob-
lems in which the algorithms used involve branching and have access to an external random-
access memory to permit data-dependent reading of inputs, a strong assumption. For many
problems only straight-line programs are used, in which case the pebble game is the model of
choice.

A serious problem arises when the storage capacity of a primary memory is too small for
a problem, so that a slow secondary memory, such as a disk, must be used for intermediate
storage. This results in time-consuming input/output operations (I/O) between primary and
secondary memory. If too many I/O operations are done, the overall performance of the system
can deteriorate markedly. This problem has been exacerbated by the growing disparity between
the speed of CPUs and that of memories; the speed of CPUs is increasing over time at a greater
rate than that of memories. In fact, the latency of a disk, the time between the issuance of a
request for data and the time it is answered, can be 100,000 to 1,000,000 times the length of a
CPU cycle. As a consequence, the amount of time spent swapping data between primary and
secondary memory may dominate the time to perform computations. A second pebble game,
the red-blue pebble game, has been introduced to study this problem. (See Chapter 11.)

The red-blue pebble game is played with both red and blue pebbles. The (hot) red pebbles
correspond to primary memory locations and the (cool) blue pebbles correspond to secondary
memory locations. Red pebbles are played according to the rules of the above pebble game.
The additional rules that apply to the red and blue pebbles allow a red pebble to be swapped
for a blue one and vice versa. In addition, blue pebbles reside only on inputs initially and
must reside on outputs finally. The number of red pebbles is limited, but the number of blue
pebbles is not.

The goal of the red-blue pebble game is to minimize the number of times that red and
blue pebbles are swapped, since each swap corresponds to an expensive input/output (I/O)
operation. Let T be the number of I/O operations and S be the number of red pebbles.
Upper and lower bounds on the exchange of S for T have been derived for a large number of
problems. For example, for the problem of multiplying two n×n matrices in about 2n3 steps
with the classical algorithm, it has been shown that a red-blue pebble-game strategy leads to a
product ST 2 proportional to n6 and that this cannot be beaten except by a small multiplicative
factor.

1.5.3 Complexity Classes
Complexity classes provide a way to group languages of similar computational complexity. For
example, the nondeterministic polynomial-time languages (NP) are languages that can be
solved in time that is polynomial in the size of their input when the machine in question is
a nondeterministic Turing machine (TM). Nondeterministic Turing machines can have more
than one state that is a successor to the current state for the current input. Thus, they can
make choices between successor states. A language L is in NP if there is a nondeterministic
TM such that, given an arbitrary string in L, there is some choice of successor states for the
TM control unit that causes the TM to enter an accepting state in a number of steps that is
polynomial in the length of the input.

An NP-complete language L0 must satisfy two conditions. First, L0 must be in NP and
second, it must be true that for each language L in NP a string x in L can be translated

c©John E Savage 1.6 Parallel Computation 27

into a string y of L0 using an algorithm whose running time is a polynomial in the length
of x such that y is in L0 if and only if x is in L. As a consequence of this definition, if any
NP-complete language can be solved in deterministic polynomial time, then every language in
NP can, including all the other NP-complete languages. However, the best algorithms known
today for NP-complete languages all have exponential running time. Thus, for long strings
these algorithms are impractical. If solutions to large NP-complete languages are needed, we
are limited to approximate solutions.

1.5.4 Circuit Complexity
Circuit complexity is a notoriously difficult subject. Despite decades of research, we have
failed to find methods to show that individual functions have super-polynomial circuit size
or more than poly-logarithmic depth. Nonetheless, the circuit is such a simple and appealing
model that it continues to attract a considerable amount of attention. Some very interesting
exponential lower bounds on circuit size have been derived when the circuits are monotone,
that is, realized by AND and OR gates but no NOTs.

1.6 Parallel Computation
The VLSI machine and the PRAM are examples of parallel machines. The VLSI machine
reflects constraints that exist when finite-state machines are realized through the very large-
scale integration of components on semiconductor chips. In the VLSI model the area of a chip
is important because large chips have a much higher probability of containing a disabling defect
than smaller ones. Consequently, the absolute size of chips is limited. However, the width of
lines that can be drawn on chips has been shrinking over time, thereby increasing the number
of wires, gates, and binary memory cells that can be placed on them. This has the effect of
increasing the effective chip area, the real chip area normalized by the cross section of wires.

Figure 1.11(a) is a VLSI diagram representing the types of material that can be deposited on
the surface of a pure crystalline semiconductor substrate to form different types of conducting
regions. Some of the rectangular regions serve as wires whereas overlaps of other regions create
transistors. In turn, collections of transistors form gates. This VLSI diagram describes a NAND

gate, a gate whose Boolean function is the NOT of the AND of its two inputs. Shown in
Fig. 1.11(b) is the logic symbol for the NAND gate. The small circle at the output of the AND

gate denotes the NOT of the gate value.
Given the premium attached to chip real estate, a large number of economical and very

regular finite-state machine designs have been made for VLSI chips. One of the most im-
portant of these is the systolic array, a one- or two-dimensional array of processors (FSMs)
that are identical, except possibly for those along the periphery of the array. These processors
operate in synchrony; that is, they perform the same operation at the same time. They also
communicate only with their nearest neighbors. (The word “systolic” is derived from “systole,”
a “rhythmically recurrent contraction” such as that of the heart.)

Systolic arrays are typically used to compute specific functions such as the convolution
c = a ⊗ b of the n-tuple a = (a0, a1, . . . , an−1) with the m-tuple b = (b0, b1, . . . , bm−1).
The jth component, cj , of the convolution c = a ⊗ b, 0 ≤ j ≤ (n + m− 2), is defined as

cj =
∑

r+s=j

ar ∗ bs

28 Chapter 1 The Role of Theory in Computer Science Models of Computation

��

c

Vss

p-plus
p-well

Vdd

ba

c

a b

(a) (b)

Figure 1.11 (a) A layout diagram for a VLSI chip and (b) its logic symbol.

0 a2 0 a1

0 0 a2

0 0

0 0

Step 2

0 0 b0

Step 4

0 b0

Step 5

b0 0

Step 6

0 0

a1

0

c4

0

0

c3

a0

b2

c2

0

0

c1

0

b1

c0

0

0

c4

a1

b2

c3

0

0

c2

a0

b1

c1

0

0

c0

a2

b2

c4

0

0

c3

a1

b1

c2

0

0

c1

a0

b0

c0

a0

0

c4

0

0

c3

0

0

c2

0

0

c1

0

b2

c0

0

0

0

0

a2

0

0

0

b1

0

Figure 1.12 A systolic array for the convolution of two binary sequences.

c©John E Savage Problems 29

It is assumed that the components of a and b are drawn from a set over which the operations
of ∗ (multiplication) and

∑
(addition) are defined, such as the integers.

Shown schematically in Fig. 1.12 on page 28 is the one-dimensional systolic array for the
convolution c = a ⊗ b at the second, fourth, fifth, and sixth steps of execution on input
vectors a = (a0, a1, a2) and b = (b0, b1, b2). The components of these vectors are fed from
the left and right, respectively, spaced by zero elements. The first component of a enters the
array one step ahead of the first component of b. The result of the convolution is the vector
c = (c0, c1, c2, c3, c4). There is one more cell in the array than there are components in the
result. At each step the components of a and b in each cell are multiplied and added to the
previous value of the component of c in that cell. After all components of the two input vectors
pass through the cell, the convolution is computed.

The processors of a parallel computer generally do not communicate only with nearest
neighbors, as in the systolic array. Instead, processors often can communicate with remote
neighbors via a network. The type of networks chosen for a parallel computer can have a large
impact on their effectiveness.

The processors of the PRAM mentioned in Section 1.1 operate synchronously, alternating
between accessing a global memory and computing locally. Since the processors communicate
by writing and reading values to and from the global memory, all processors are at the same
distance from one another. Although the PRAM model makes two unrealistic assumptions,
namely that processors a) can act in synchrony and b) they can communicate directly via global
memory, it remains a good model in which to explore problems that are hard to parallelize,
even with the flexibility offered by this model.

. .
Problems
MATHEMATICAL PRELIMINARIES

1.1 Show that the sum S(k) below has value S(k) = 2k − 1:

S(k) = 2k−1 + 2k−2 + · · ·+ 21 + 20

SETS, LANGUAGES, INTEGERS, AND GRAPHS

1.2 Let A = {red, green, blue}, B = {green, violet}, and C = {red, yellow, blue, green}.
Determine the elements in (A ∩ C)× (B − C).

1.3 Let the relation R ⊆�×� be defined by pairs (a, b) such that a and b have the same
remainder on division by 3. Show that R is an equivalence relation.

1.4 Let R ⊂ A × A be an equivalence relation. Let the set E[a] be the elements in A
equivalent under the relation R to the element a. Show that for all a, b ∈ A the
equivalence classes E[a] and E[b] are either equal or disjoint. Also show that A is the
union of all equivalence classes.

1.5 In terms of the Kleene closure and the concatenation of sets, describe the languages
containing the following:

a) Strings over {0, 1} beginning with 01.
b) Strings beginning with 0 that alternate between 0 and 1.

30 Chapter 1 The Role of Theory in Computer Science Models of Computation

1.6 Describe an algorithm to convert numbers from decimal to binary notation.

1.7 A graph G = (V , E) can be described by adjacency lists, one list for each vertex in the
graph. The adjacency list for vertex v ∈ V is a list of vertices to which there is an edge
from v. Generate adjacency lists for the two graphs of Fig. 1.2.

TASKS AS FUNCTIONS

1.8 Let�5 be the set {0, 1, 2, 3, 4}. Let the addition operator ⊕ over this set be modulo 5;
that is, if x and y are two such integers, x⊕y is obtained by adding x and y as integers
and taking the remainder after division by 5. For example, 2 ⊕ 2 = 4 mod 5 whereas
3 ⊕ 4 = 7 = 2 mod 5. Provide a table describing the function f⊕ : �5 ×�5 �→ �5.

1.9 Give a truth table for the Boolean function whose value is True exactly when either x
or y or both is True and z is False.

RATE OF GROWTH OF FUNCTIONS

1.10 For each of the fifteen unordered pairs of functions f and g below, determine whether
f(n) = O(g(n)), f(n) = Ω(g(n)), or f(n) = Θ(g(n)).
a) n3; c) n6; e) n3 log2 n;

b) 2n log2 n; d) n2n; f) 22n

.

1.11 Show that 2.7n2 + 6
√

n�log2 n� ≤ 8.7n2 for n ≥ 3.

METHODS OF PROOF

1.12 Let Sr(n) =
∑n

j=1 jr denote a sum of powers of integers. Use proof by induction to
show that the following identities on arithmetic series hold:

a) S2(n) = n3

3 + n2

2 + n
6

b) S3(n) = n4

4 + n3

2 + n2

4

COMPUTATIONAL MODELS

1.13 Produce a circuit and straight-line program for the Boolean function described in Prob-
lem 1.9.

1.14 A state diagram for a finite-state machine is a graph containing one vertex (or state)
for each pattern of data that can be held in its memory and an edge from state p to
state q if there is a value for the input data that causes the memory to change from p
to q. Such an edge is labeled with the value of the input data that causes the transition.
Outputs are generated by a finite-state machine when it is in a state. The vertices of its
state diagram are labeled by these outputs.

Provide a state diagram for the finite-state machine described in Fig. 1.5(b).

1.15 Using the straight-line program given for the full-adder circuit in Section 1.4.1, describe
how such a program would be placed in the random-access memory of the RAM and
how the RAM would run the fetch-and-execute cycle to compute the values produced
by the full-adder circuit. This is an example of circuit simulation by a program.

c©John E Savage Problems 31

1.16 Describe the actions that could be taken by a Turing machine to simulate a circuit from
a straight-line program for it. Illustrate your approach by applying it to the simulation
of the full-adder circuit described in Section 1.4.1.

1.17 Suppose you are told that a function is computed in four time steps by a very simple
finite-state machine, one whose logic circuit (but not its memory) can be realized with
four logic gates. Suppose you are also told that the same function cannot be computed
by a logic circuit with fewer than 20 logic gates. What can be said about these two
statements? Explain your answer.

1.18 Describe a finite-state machine that recognizes the language consisting of those strings
over {0, 1} that end in 1.

1.19 Determine the language generated by the context-free grammar G = (N , T ,R, S)
where N = {S, M, N}, T = {a, b, c, d} and R consists of the rules given below.

a) S → MN

b) M → aMb

c) M → ab

d) N → cNd

e) N → cd

COMPUTATIONAL COMPLEXITY

1.20 Using the rules for the red pebble game, show how to pebble the FFT graph of Fig. 1.10
with five red pebbles by labeling the vertices with the time step on which it is pebbled.
If a vertex has to be repebbled, it will be pebbled on two time steps.

1.21 Suppose that you are told that the n-point FFT graph can be pebbled with
√

n pebbles
in n/4 time steps for n ≥ 37. What can you say about this statement?

1.22 You have been told that the FFT graph of Fig. 1.10 cannot be pebbled with fewer than
three red pebbles. Show that it can be pebbled with two red pebbles in the red-blue
pebble game by sketching how you would use blue pebbles to achieve this objective.

PARALLEL COMPUTATION

1.23 Using Fig. 1.12 as a guide, design a systolic array to convolve two sequences of length
two. Sketch out each step of the convolution process.

1.24 Consider a version of the PRAM consisting of a collection of RAMs (see Fig. 1.13) with
small local random-access memories that repeat the following three-step cycle until they
halt: a) they simultaneously read one word from a common global memory, b) they
execute one local instruction using local memory, and c) they write one word to the
common memory. When reading and writing, the individual processors are allowed
to read and write from the same location. If two RAMs write to the same location,
they must be programmed so that they write a common value. (This is known as the
concurrent-read, concurrent-write (CRCW) PRAM.) Each RAM has a unique integer
associated with it and can use this number to decide where to read or write in the
common memory.
Show that the CRCW PRAM can compute the AND of n Boolean variables in two
cycles.
Hint: Reserve one word in common memory and initialize it with 0 and assign RAMs
to the appropriate memory cells.

32 Chapter 1 The Role of Theory in Computer Science Models of Computation

RAMRAM

Common Memory

p1 p2 pn

RAM

Figure 1.13 The PRAM model is a collection of synchronous RAMs accessing a common
memory.

Chapter Notes
Since this chapter introduces concepts used elsewhere in the book, we postpone the biblio-
graphic citations to later chapters. We remark here, however, that the notation for the rate of
growth of functions in Section 1.2.8 is due to Knuth [171]. The reader interested in more in-
formation on the development of the digital computer, ranging from Babbage’s seminal work
in the 1830s to the pioneering work of the 1940s, should consult the collection of papers
selected and edited by Brian Randell [268].

Part II
GENERAL COMPUTATIONAL

MODELS

C H A P T E R

Logic Circuits

Many important functions are naturally computed with straight-line programs, programs
without loops or branches. Such computations are conveniently described with circuits, di-
rected acyclic graphs of straight-line programs. Circuit vertices are associated with program
steps, whereas edges identify dependencies between steps. Circuits are characterized by their
size, the number of vertices, and their depth, the length (in edges) of their longest path.
Circuits in which the operations are Boolean are called logic circuits, those using algebraic
operations are called algebraic circuits, and those using comparison operators are called com-
parator circuits. In this chapter we examine logic circuits. Algebraic and comparator circuits
are examined in Chapter 6.

Logic circuits are the basic building blocks of real-world computers. As shown in Chap-
ter 3, all machines with bounded memory can be constructed of logic circuits and binary
memory units. Furthermore, machines whose computations terminate can be completely sim-
ulated by circuits.

In this chapter circuits are designed for a large number of important functions. We begin
with a discussion of circuits, straight-line programs, and the functions computed by them.
Normal forms, a structured type of circuit, are examined next. They are a starting point for
the design of circuits that compute functions. We then develop simple circuits that combine
and select data. They include logical circuits, encoders, decoders, multiplexers, and demulti-
plexers. This is followed by an introduction to prefix circuits that efficiently perform running
sums. Circuits are then designed for the arithmetic operations of addition (in which prefix
computations are used), subtraction, multiplication, and division. We also construct efficient
circuits for symmetric functions. We close with proofs that every Boolean function can be
realized with size and depth exponential and linear, respectively, in its number of inputs, and
that most Boolean functions require such circuits.

The concept of a reduction from one problem to a previously solved one is introduced in
this chapter and applied to many simple functions. This important idea is used later to show
that two problems, such as different NP-complete problems, have the same computational
complexity. (See Chapters 3 and 8.)

35

36 Chapter 2 Logic Circuits Models of Computation

2.1 Designing Circuits
The logic circuit, as defined in Section 1.4.1, is a directed acyclic graph (DAG) whose vertices
are labeled with the names of Boolean functions (logic gates) or variables (inputs). Each logic
circuit computes a binary function f : Bn �→ Bm that is a mapping from the values of its n
input variables to the values of its m outputs.

Computer architects often need to design circuits for functions, a task that we explore in
this chapter. The goal of the architect is to design efficient circuits, circuits whose size (the
number of gates) and/or depth (the length of the longest path from an input to an output
vertex) is small. The computer scientist is interested in circuit size and depth because these
measures provide lower bounds on the resources needed to complete a task. (See Section 1.5.1
and Chapter 3.) For example, circuit size provides a lower bound on the product of the
space and time needed for a problem on both the random-access and Turing machines (see
Sections 3.6 and 3.9.2) and circuit depth is a measure of the parallel time needed to compute
a function (see Section 8.14.1).

The logic circuit also provides a framework for the classification of problems by their com-
putational complexity. For example, in Section 3.9.4 we use circuits to identify hard compu-
tational problems, in particular, the P-complete languages that are believed hard to parallelize
and the NP-complete languages that are believed hard to solve on serial computers. After more
than fifty years of research it is still unknown whether NP-complete problems have polynomial-
time algorithms.

In this chapter not only do we describe circuits for important functions, but we show that
most Boolean functions are complex. For example, we show that there are so many Boolean
functions on n variables and so few circuits containing C or fewer gates that unless C is large,
not all Boolean functions can be realized with C gates or fewer.

Circuit complexity is also explored in Chapter 9. The present chapter develops methods
to derive lower bounds on the size and depth of circuits. A lower bound on the circuit size
(depth) of a function f is a value for the size (depth) below which there does not exist a circuit
for f . Thus, every circuit for f must have a size (depth) greater than or equal to the lower
bound. In Chapter 9 we also establish a connection between circuit depth and formula size,
the number of Boolean operations needed to realize a Boolean function by a formula. This
allows us to derive an upper bound on formula size from an upper bound on depth. Thus, the
depth bounds of this chapter are useful in deriving upper bounds on the size of the smallest
formulas for problems. Prefix circuits are used in the present chapter to design fast adders.
They are also used in Chapter 6 to design fast parallel algorithms.

2.2 Straight-Line Programs and Circuits
As suggested in Section 1.4.1, the mapping between inputs and outputs of a logic circuit can
be described by a binary function. In this section we formalize this idea and, in addition,
demonstrate that every binary function can be realized by a circuit. Normal-form expansions
of Boolean functions play a central role in establishing the latter result. Circuits were defined
informally in Section 1.4.1. We now give a formal definition of circuits.

To fix ideas, we start with an example. Figure 2.1 shows a circuit that contains two AND

gates, one OR gate, and two NOT gates. (Circles denote NOT gates, AND and OR gates are
labeled ∧ and ∨, respectively.) Corresponding to this circuit is the following functional de-

c©John E Savage 2.2 Straight-Line Programs and Circuits 37

g3g4

g5 g6

yx

g2g1

g7

Figure 2.1 A circuit is the graph of a Boolean straight-line program.

scription of the circuit, where gj is the value computed by the jth input or gate of the circuit:

g1 := x;
g2 := y;
g3 := g1;
g4 := g2;

g5 := g1 ∧ g4;
g6 := g3 ∧ g2;
g7 := g5 ∨ g6;

(2.1)

The statement g1 := x; means that the external input x is the value associated with the first
vertex of the circuit. The statement g3 := g1; means that the value computed at the third
vertex is the NOT of the value computed at the first vertex. The statement g5 := g1 ∧ g4;
means that the value computed at the fifth vertex is the AND of the values computed at the
first and fourth vertices. The statement g7 := g5 ∨ g6; means that the value computed at the
seventh vertex is the OR of the values computed at the fifth and sixth vertices. The above is
a description of the functions computed by the circuit. It does not explicitly specify which
function(s) are the outputs of the circuit.

Shown below is an alternative description of the above circuit that contains the same infor-
mation. It is a straight-line program whose syntax is closer to that of standard programming
languages. Each step is numbered and its associated purpose is given. Input and output
steps are identified by the keywords READ and OUTPUT, respectively. Computation steps
are identified by the keywords AND, OR, and NOT.

(1 READ x)
(2 READ y)
(3 NOT 1)
(4 NOT 2)
(5 AND 1 4)

(6 AND 3 2)
(7 OR 5 6)
(8 OUTPUT 5)
(9 OUTPUT 7)

(2.2)

The correspondence between the steps of a straight-line program and the functions computed
at them is evident.

Straight-line programs are not limited to describing logic circuits. They can also be used to
describe algebraic computations. (See Chapter 6.) In this case, a computation step is identified
with a keyword describing the particular algebraic operation to be performed. In the case of

38 Chapter 2 Logic Circuits Models of Computation

logic circuits, the operations can include many functions other than the basic three mentioned
above.

As illustrated above, a straight-line program can be constructed for any circuit. Similarly,
given a straight-line program, a circuit can be drawn for it as well. We now formally define
straight-line programs, circuits, and characteristics of the two.

DEFINITION 2.2.1 A straight-line program is set of steps each of which is an input step, de-
noted (s READ x), an output step, denoted (s OUTPUT i), or a computation step, denoted
(s OP i . . . k). Here s is the number of a step, x denotes an input variable, and the keywords
READ, OUTPUT, and OP identify steps in which an input is read, an output produced, and the
operation OP is performed. In the sth computation step the arguments to OP are the results produced
at steps i, . . . , k. It is required that these steps precede the sth step; that is, s ≥ i, . . . , k.

A circuit is the graph of a straight-line program. (The requirement that each computation
step operate on results produced in preceding steps insures that this graph is a DAG.) The fan-in
of the circuit is the maximum in-degree of any vertex. The fan-out of the circuit is the maximum
outdegree of any vertex. A gate is the vertex associated with a computation step.

The basis Ω of a circuit and its corresponding straight-line program is the set of operations
that they use. The bases of Boolean straight-line programs and logic circuits contain only Boolean
functions. The standard basis, Ω0, for a logic circuit is the set {AND, OR, NOT}.

2.2.1 Functions Computed by Circuits
As stated above, each step of a straight-line program computes a function. We now define the
functions computed by straight-line programs, using the example given in Eq. (2.2).

DEFINITION 2.2.2 Let gs be the function computed by the sth step of a straight-line pro-
gram. If the sth step is the input step (s READ x), then gs = x. If it is the computation
step (s OP i . . . k), the function is gs = OP(gi, . . . , gk), where gi, . . . , gk are the functions
computed at steps on which the sth step depends. If a straight-line program has n inputs and m
outputs, it computes a function f : Bn �→ Bm. If s1, s2, . . . , sm are the output steps, then
f = (gs1 , gs2 , . . . , gsm

). The function computed by a circuit is the function computed by the
corresponding straight-line program.

The functions computed by the logic circuit of Fig. 2.1 are given below. The expression
for gs is found by substituting for its arguments the expressions derived at the steps on which
it depends.

g1 := x;
g2 := y;
g3 := x;
g4 := y;

g5 := x ∧ y;
g6 := x ∧ y;
g7 := (x ∧ y) ∨ (x ∧ y);

The function computed by the above Boolean straight-line program is f(x, y) = (g5, g7).
The table of values assumed by f as the inputs x and y run through all possible values is shown
below. The value of g7 is the EXCLUSIVE OR function.

c©John E Savage 2.2 Straight-Line Programs and Circuits 39

x y g5 g7

0 0 0 0
0 1 0 1
1 0 1 1
1 1 0 0

We now ask the following question: “Given a circuit with values for its inputs, how can the
values of its outputs be computed?” One response it to build a circuit of physical gates, supply
values for the inputs, and then wait for the signals to propagate through the gates and arrive at
the outputs. A second response is to write a program in a high-level programming language to
compute the values of the outputs. A simple program for this purpose assigns each step to an
entry of an array and then evaluates the steps in order. This program solves the circuit value
problem; that is, it determines the value of a circuit.

2.2.2 Circuits That Compute Functions
Now that we know how to compute the function defined by a circuit and its corresponding
straight-line program, we ask: given a function, how can we construct a circuit (and straight-
line program) that will compute it? Since we presume that computational tasks are defined by
functions, it is important to know how to build simple machines, circuits, that will solve these
tasks. In Chapter 3 we show that circuits play a central role in the design of machines with
memory. Thus, whether a function or task is to be solved with a machine without memory (a
circuit) or a machine with memory (such as the random-access machine), the circuit and its
associated straight-line program play a key role.

To construct a circuit for a function, we begin by describing the function in a table. As
seen earlier, the table for a function f (n,m) : Bn �→ Bm has n columns containing all 2n

possible values for the n input variables of the function. Thus, it has 2n rows. It also has
m columns containing the m outputs associated with each pattern of n inputs. If we let
x1, x2, . . . , xn be the input variables of f and let y1, y2, . . . , ym be its output variables,

f
(3,2)
example

x1 x2 x3 y1 y2

0 0 0 1 1
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 1 1 1

Figure 2.2 The truth table for the function f
(3,2)
example.

40 Chapter 2 Logic Circuits Models of Computation

then we write f(x1, x2, . . . , xn) = (y1, y2, . . . , ym). This is illustrated by the function

f
(3,2)
example(x1, x2, x3) = (y1, y2) defined in Fig. 2.2 on page 39.

A binary function is one whose domain and codomain are Cartesian products of B =
{0, 1}. A Boolean function is a binary function whose codomain consists of the set B. In
other words, it has one output.

As we see in Section 2.3, normal forms provide standard ways to construct circuits for
Boolean functions. Because a normal-form expansion of a function generally does not yield
a circuit of smallest size or depth, methods are needed to simplify the algebraic expressions
produced by these normal forms. This topic is discussed in Section 2.2.4.

Before exploring the algebraic properties of simple Boolean functions, we define the basic
circuit complexity measures used in this book.

2.2.3 Circuit Complexity Measures
We often ask for the smallest or most shallow circuit for a function. If we need to compute
a function with a circuit, as is done in central processing units, then knowing the size of the
smallest circuit is important. Also important is the depth of the circuit. It takes time for
signals applied to the circuit inputs to propagate to the outputs, and the length of the longest
path through the circuit determines this time. When central processing units must be fast,
minimizing circuit depth becomes important.

As indicated in Section 1.5, the size of a circuit also provides a lower bound on the space-
time product needed to solve a problem on the random-access machine, a model for modern
computers. Consequently, if the size of the smallest circuit for a function is large, its space-time
product must be large. Thus, a problem can be shown to be hard to compute by a machine
with memory if it can be shown that every circuit for it is large.

We now define two important circuit complexity measures.

DEFINITION 2.2.3 The size of a logic circuit is the number of gates it contains. Its depth is the
number of gates on the longest path through the circuit. The circuit size, CΩ(f), and circuit
depth, DΩ(f), of a Boolean function f : Bn �→ Bm are defined as the smallest size and smallest
depth of any circuit, respectively, over the basis Ω for f .

Most Boolean functions on n variables are very complex. As shown in Sections 2.12 and
2.13, their circuit size is proportional to 2n/n and their depth is approximately n. Fortunately,
most functions of interest have much smaller size and depth. (It should be noted that the circuit
of smallest size for a function may be different from that of smallest depth.)

2.2.4 Algebraic Properties of Boolean Functions
Since the operations AND (∧), OR (∨), EXCLUSIVE OR (⊕), and NOT (¬ or) play a vital
role in the construction of normal forms, we simplify the subsequent discussion by describing
their properties.

If we interchange the two arguments of AND, OR, or EXCLUSIVE OR, it follows from their
definition that their values do not change. This property, called commutativity, holds for all
three operators, as stated next.

c©John E Savage 2.2 Straight-Line Programs and Circuits 41

COMMUTATIVITY
x1 ∨ x2 = x2 ∨ x1

x1 ∧ x2 = x2 ∧ x1

x1 ⊕ x2 = x2 ⊕ x1

When constants are substituted for one of the variables of these three operators, the expression
computed is simplified, as shown below.

SUBSTITUTION OF CONSTANTS
x1 ∨ 0 = x1

x1 ∨ 1 = 1
x1 ∧ 0 = 0

x1 ∧ 1 = x1

x1 ⊕ 0 = x1

x1 ⊕ 1 = x1

Also, when one of the variables of one of these functions is replaced by itself or its negation,
the functions simplify, as shown below.

ABSORPTION RULES
x1 ∨ x1 = x1

x1 ∨ x1 = 1
x1 ⊕ x1 = 0
x1 ⊕ x1 = 1

x1 ∧ x1 = x1

x1 ∧ x1 = 0
x1 ∨ (x1 ∧ x2) = x1

x1 ∧ (x1 ∨ x2) = x1

To prove each of these results, it suffices to test exhaustively each of the values of the arguments
of these functions and show that the right- and left-hand sides have the same value.

DeMorgan’s rules, shown below, are very important in proving properties about circuits
because they allow each AND gate to be replaced by an OR gate and three NOT gates and vice
versa. The rules can be shown correct by constructing tables for each of the given functions.

DEMORGAN’S RULES

(x1 ∨ x2) = x1 ∧ x2

(x1 ∧ x2) = x1 ∨ x2

The functions AND, OR, and EXCLUSIVE OR are all associative; that is, all ways of combining
three or more variables with any of these functions give the same result. (An operator � is
associative if for all values of a, b, and c, a � (b � c) = (a � b) � c.) Again, proof by
enumeration suffices to establish the following results.

ASSOCIATIVITY
x1 ∨ (x2 ∨ x3) = (x1 ∨ x2) ∨ x3

x1 ∧ (x2 ∧ x3) = (x1 ∧ x2) ∧ x3

x1 ⊕ (x2 ⊕ x3) = (x1 ⊕ x2)⊕ x3

Because of associativity it is not necessary to parenthesize repeated uses of the operators ∨, ∧,
and ⊕.

Finally, the following distributive laws are important in simplifying Boolean algebraic
expressions. The first two laws are the same as the distributivity of integer multiplication over
integer addition when multiplication and addition are replaced by AND and OR.

42 Chapter 2 Logic Circuits Models of Computation

DISTRIBUTIVITY
x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3)
x1 ∧ (x2 ⊕ x3) = (x1 ∧ x2)⊕ (x1 ∧ x3)
x1 ∨ (x2 ∧ x3) = (x1 ∨ x2) ∧ (x1 ∨ x3)

We often write x∧y as xy. The operator ∧ has precedence over the operators ∨ and ⊕, which
means that parentheses in (x ∧ y) ∨ z and (x ∧ y) ⊕ z may be dropped.

The above rules are illustrated by the following formula:

(x ∧ (y ⊕ z)) ∧ (x ∨ y) = (x ∨ (y ⊕ z)) ∧ (x ∨ y)
= (x ∨ (y ⊕ z)) ∧ (x ∨ y)
= x ∨ (y ∧ (y ⊕ z))
= x ∨ ((y ∧ y) ⊕ (y ∧ z))
= x ∨ (0 ⊕ y ∧ z)
= x ∨ (y ∧ z)

DeMorgan’s second rule is used to simplify the first term in the first equation. The last
rule on substitution of constants is used twice to simplify the second equation. The third
distributivity rule and commutativity of ∧ are used to simplify the third one. The second
distributivity rule is used to expand the fourth equation. The fifth equation is simplified by
invoking the third absorption rule. The final equation results from the commutativity of ⊕
and application of the rule x1 ⊕ 0 = x1. When there is no loss of clarity, we drop the operator
symbol ∧ between two literals.

2.3 Normal-Form Expansions of Boolean Functions
Normal forms are standard ways of constructing circuits from the tables defining Boolean
functions. They are easy to apply, although the circuits they produce are generally far from
optimal. They demonstrate that every Boolean function can be realized over the standard basis
as well as the basis containing AND and EXCLUSIVE OR.

In this section we define five normal forms: the disjunctive and conjunctive normal forms,
the sum-of-products expansion, the product-of-sums expansion, and the ring-sum expansion.

2.3.1 Disjunctive Normal Form
A minterm in the variables x1, x2, . . . , xn is the AND of each variable or its negation. For
example, when n = 3, x1 ∧ x2 ∧ x3 is a minterm. It has value 1 exactly when each variable
has value 0. x1 ∧ x2 ∧ x3 is another minterm; it has value 1 exactly when x1 = 1, x2 = 0 and
x3 = 1. It follows that a minterm on n variables has value 1 for exactly one of the 2n points
in its domain. Using the notation x1 = x and x0 = x, we see that the above minterms can
be written as x0

1x
0
2x

0
3 and x1x

0
2x3, respectively, when we drop the use of the AND operator ∧.

Thus, x0
1x

0
2x

0
3 = 1 when x = (x1, x2, x3) = (0, 0, 0) and x1

1x
0
2x

1
3 = 1 when x = (1, 0, 1).

That is, the minterm x(c) = xc1
1 ∧ xc2

2 ∧ · · · ∧ xcn
n has value 1 exactly when x = c where c =

(c1, c2, . . . , cn). A minterm of a Boolean function f is a minterm x(c) that contains all the
variables of f and for which f(c) = 1.

The word “disjunction” is a synonym for OR, and the disjunctive normal form (DNF) of
a Boolean function f : Bn �→ B is the OR of the minterms of f . Thus, f has value 1 when

c©John E Savage 2.3 Normal-Form Expansions of Boolean Functions 43

x1 x2 x3 f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

x1 x2 x3 f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

(a) (b)

Figure 2.3 Truth tables illustrating the disjunctive and conjunctive normal forms.

exactly one of its minterms has value 1 and has value 0 otherwise. Consider the function whose
table is given in Fig. 2.3(a). Its disjunctive normal form (or minterm expansion) is given by
the following formula:

f(x1, x2, x3) = x0
1x

0
2x

0
3 ∨ x0

1x
1
2x

0
3 ∨ x1

1x
0
2x

0
3 ∨ x1

1x
0
2x

1
3 ∨ x1

1x
1
2x

1
3

The parity function f
(n)
⊕ : Bn �→ B on n inputs has value 1 when an odd number of

inputs is 1 and value 0 otherwise. It can be realized by a circuit containing n − 1 instances of

the EXCLUSIVE OR operator; that is, f
(n)
⊕ (x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn. However, the

DNF of f
(n)
⊕ contains 2n−1 minterms, a number exponential in n. The DNF of f

(3)
⊕ is

f
(3)
⊕ (x, y, z) = x y z ∨ x y z ∨ x y z ∨ xyz

Here we use the standard notation for a variable and its complement.

2.3.2 Conjunctive Normal Form
A maxterm in the variables x1, x2, . . . , xn is the OR of each variable or its negation. For
example, x1 ∨ x2 ∨ x3 is a maxterm. It has value 0 exactly when x1 = x2 = 0 and x3 = 1.
x1 ∨ x2 ∨ x3 is another maxterm; it has value 0 exactly when x1 = 0 and x2 = x3 = 1.
It follows that a maxterm on n variables has value 0 for exactly one of the 2n points in its
domain. We see that the above maxterms can be written as x1

1 ∨ x1
2 ∨ x0

3 and x1
1 ∨ x0

2 ∨ x0
3,

respectively. Thus, x1
1 ∨x1

2 ∨x0
3 = 0 when x = (x1, x2, x3) = (0, 0, 1) and x1

1 ∨x0
2 ∨x1

3 = 0
when x = (0, 1, 0). That is, the maxterm x(c) = xc1

1 ∨ xc2
2 ∨ · · · ∨ xcn

n has value 0 exactly
when x = c. A maxterm of a Boolean function f is a maxterm x(c) that contains all the
variables of f and for which f(c) = 0.

The word “conjunction” is a synonym for AND, and the conjunctive normal form (CNF)
of a Boolean function f : Bn �→ B is the AND of the maxterms of f . Thus, f has value 0
when exactly one of its maxterms has value 0 and has value 1 otherwise. Consider the function
whose table is given in Fig. 2.3(b). Its conjunctive normal form (or maxterm expansion) is
given by the following formula:

f(x1, x2, x3) = (x1
1 ∨ x1

2 ∨ x0
3) ∧ (x1

1 ∨ x0
2 ∨ x0

3) ∧ (x0
1 ∨ x0

2 ∨ x1
3)

44 Chapter 2 Logic Circuits Models of Computation

An important relationship holds between the DNF and CNF representations for Boolean
functions. If DNF(f) and CNF(f) are the representations of f in the DNF and CNF expan-
sions, then the following identity holds (see Problem 2.6):

CNF(f) = DNF(f)

It follows that the CNF of the parity function f
(n)
⊕ has 2n−1 maxterms.

Since each function f : Bn �→ Bm can be expanded to its CNF or DNF and each can be
realized with circuits, the following result is immediate.

THEOREM 2.3.1 Every function f : Bn �→ Bm can be realized by a logic circuit.

2.3.3 SOPE and POSE Normal Forms
The sum-of-products and product-of-sums normal forms are simplifications of the disjunctive
and conjunctive normal forms, respectively. These simplifications are obtained by using the
rules stated in Section 2.2.4.

A product in the variables xi1 , xi2 , . . . , xik
is the AND of each of these variables or their

negations. For example, x2 x5 x6 is a product. A minterm is a product that contains each of
the variables of a function. A product of a Boolean function f is a product in some of the
variables of f . A sum-of-products expansion (SOPE) of a Boolean function is the OR (the
sum) of products of f . Thus, the DNF is a special case of the SOPE of a function.

A SOPE of a Boolean function can be obtained by simplifying the DNF of a function
using the rules given in Section 2.2.4. For example, the DNF given earlier and shown below
can be simplified to produce a SOPE.

y1(x1, x2, x3) = x1 x2 x3 ∨ x1 x2 x3 ∨ x1 x2 x3 ∨ x1 x2 x3 ∨ x1 x2 x3

It is easy to see that the first and second terms combine to give x1x3, the first and third give
x2x3 (we use the property that g ∨ g = g), and the last two give x1x3. That is, we can write
the following SOPE for f :

f = x1 x3 ∨ x1 x3 ∨ x2x3 (2.3)

Clearly, we could have stopped before any one of the above simplifications was used and gen-
erated another SOPE for f . This illustrates the point that a Boolean function may have many
SOPEs but only one DNF.

A sum in the variables xi1 , xi2 , . . . , xik
is the OR of each of these variables or their nega-

tions. For example, x3 ∨ x4 ∨ x7 is a sum. A maxterm is a product that contains each of the
variables of a function. A sum of a Boolean function f is a sum in some of the variables of
f . A product-of-sum expansion (POSE) of a Boolean function is the AND (the product) of
sums of f . Thus, the CNF is a special case of the POSE of a function.

A POSE of a Boolean function can be obtained by simplifying the CNF of a function
using the rules given in Section 2.2.4. For example, the conjunction of the two maxterms
x1 ∨ x2 ∨ x3 and x1 ∨ x2 ∨ x3, namely (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3), can be reduced to
x1 ∨ x2 by the application of rules of Section 2.2.4, as shown below:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) =

c©John E Savage 2.3 Normal-Form Expansions of Boolean Functions 45

= x1 ∨ (x2 ∨ x3) ∧ (x2 ∨ x3) {3rd distributivity rule}
= x1 ∨ x2 ∨ (x3 ∧ x3) {3rd distributivity rule}
= x1 ∨ x2 ∨ 0 {6th absorption rule}
= x1 ∨ x2 {1st rule on substitution of constants}

It is easily shown that the POSE of the parity function is its CNF. (See Problem 2.8.)

2.3.4 Ring-Sum Expansion
The ring-sum expansion (RSE) of a function f is the EXCLUSIVE OR (⊕) of a constant
and products (∧) of unnegated variables of f . For example, 1 ⊕ x1x3 ⊕ x2x4 is an RSE.
The operations ⊕ and ∧ over the set B = {0, 1} constitute a ring. (Rings are examined in
Section 6.2.1.) Any two instances of the same product in the RSE can be eliminated since they
sum to 0.

The RSE of a Boolean function f : Bn �→ B can be constructed from its DNF, as we
show. Since a minterm of f has value 1 on exactly one of the 2n points in its domain, at
most one minterm in the DNF for f has value 1 for any point in its domain. Thus, we
can combine minterms with EXCLUSIVE OR instead of OR without changing the value of the
function. Now replace xi with xi ⊕ 1 in each minterm containing xi and then apply the
second distributivity rule. We simplify the resulting formula by using commutativity and the
absorption rule xi ⊕ xi = 0. For example, since the minterms of (x1 ∨ x2)x3 are x1x2x3,
x1x2x3, and x1x2x3, we construct the RSE of this function as follows:

(x1 ∨ x2)x3 = x1x2x3 ⊕ x1x2x3 ⊕ x1x2x3

= (x1 ⊕ 1)x2x3 ⊕ (x1 ⊕ 1)(x2 ⊕ 1)x3 ⊕ x1x2x3

= x2x3 ⊕ x1x2x3 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x1x2x3

= x3 ⊕ x1x3 ⊕ x1x2x3

The third equation follows by applying the second distributivity rule and commutativity. The
fourth follows by applying xi ⊕ xi = 0 and commutativity. The two occurrences of x2x3 are
canceled, as are two of the three instances of x1x2x3.

As this example illustrates, the RSE of a function f : Bn �→ B is the EXCLUSIVE OR of
a Boolean constant c0 and one or more products of unnegated variables of f . Since each of
the n variables of f can be present or absent from a product, there are 2n products, including
the product that contains no variables; that is, a constant whose value is 0 or 1. For example,
1 ⊕ x3 ⊕ x1x3 ⊕ x1x2x3 is the RSE of the function (x1 ∨ x2) x3.

2.3.5 Comparison of Normal Forms
It is easy to show that the RSE of a Boolean function is unique (see Problem 2.7). However, the
RSE is not necessarily a compact representation of a function. For example, the RSE of the OR

of n variables, f
(n)
∨ , includes every product term except for the constant 1. (See Problem 2.9.)

It is also true that some functions have large size in some normal forms but small size in
others. For example, the parity function has exponential size in the DNF and CNF normal

forms but linear size in the RSE. Also, f
(n)
∨ has exponential size in the RSE but linear size in

the CNF and SOPE representations.

46 Chapter 2 Logic Circuits Models of Computation

A natural question to ask is whether there is a function that has large size in all five normal
forms. The answer is yes. This is true of the Boolean function on n variables whose value is 1
when the sum of its variables is 0 modulo 3 and is 0 otherwise. It has exponential-size DNF,
CNF, and RSE normal forms. (See Problem 2.10.) However, its smallest circuit is linear in n.
(See Section 2.11.)

2.4 Reductions Between Functions
A common way to solve a new problem is to apply an existing solution to it. For example, an
integer multiplication algorithm can be used to square an integer by supplying two copies of
the integer to the multiplier. This idea is called a “reduction” in complexity theory because we
reduce one problem to a previously solved problem, here squaring to integer multiplication. In
this section we briefly discuss several simple forms of reduction, including subfunctions. Note
that the definitions given below are not limited to binary functions.

DEFINITION 2.4.1 A function f : An �→ Am is a reduction to the function g : Ar �→ As

through application of the functions p : As �→ Am and q : An �→ Ar if for all x ∈ An:

f(x) = p(g(q(x)))

As suggested in Fig. 2.4, it follows that circuits for q, g and p can be cascaded (the output
of one is the input to the next) to form a circuit for f . Thus, the circuit size and depth of f ,
C(f) and D(f), satisfy the following inequalities:

C(f) ≤ C(p) + C(g) + C(q)
D(f) ≤ D(p) + D(g) + D(q)

A special case of a reduction is the subfunction, as defined below.

DEFINITION 2.4.2 Let g : An �→ Am. A subfunction f of g is a function obtained by assigning
values to some of the input variables of g, assigning (not necessarily unique) variable names to the
rest, deleting and/or permuting some of its output variables. We say that f is a reduction to g via
the subfunction relationship.

pq g

f

f(x) = p(g(q(x)))

x

Figure 2.4 The function f is reduced to the function g by applying functions p and q to prepare
the input to g and manipulate its output.

c©John E Savage 2.5 Specialized Circuits 47

a

b

f(a, b)

1
g

Figure 2.5 The subfunction f of the function g is obtained by fixing some input variables,
assigning names to the rest, and deleting and/or permuting outputs.

This definition is illustrated by the function f
(3,2)
example(x1, x2, x3) = (y1, y2) in Fig. 2.2.

We form the subfunction y1 by deleting y2 from f
(3,2)
example and fixing x1 = a, x2 = 1, and

x3 = b, where a and b are new variables. Then, consulting (2.3), we see that y1 can be written
as follows:

y1 = (a b) ∨ (a b) ∨ (1 b)
= a b ∨ a b

= a⊕ b ⊕ 1

That is, y1 contains the complement of the EXCLUSIVE OR function as a subfunction. The
definition is also illustrated by the reductions developed in Sections 2.5.2, 2.5.6, 2.9.5, and
2.10.1.

The subfunction definition derives its importance from the following lemma. (See Fig. 2.5.)

LEMMA 2.4.1 If f is a subfunction of g, a straight-line program for f can be created from one
for g without increasing the size or depth of its circuit.

As shown in Section 2.9.5, the logical shifting function (Section 2.5.1) can be realized
by composing the integer multiplication and decoder functions (Section 2.5). This type of
reduction is useful in those cases in which one function is reduced to another with the aid of
functions whose complexity (size or depth or both) is known to be small relative to that of
either function. It follows that the two functions have the same asymptotic complexity even if
we cannot determine what that complexity is. The reduction is a powerful idea that is widely
used in computer science. Not only is it the essence of the subroutine, but it is also used to
classify problems by their time or space complexity. (See Sections 3.9.3 and 8.7.)

2.5 Specialized Circuits
A small number of special functions arise repeatedly in the design of computers. These include
logical and shifting operations, encoders, decoders, multiplexers, and demultiplexers. In the
following sections we construct efficient circuits for these functions.

48 Chapter 2 Logic Circuits Models of Computation

Figure 2.6 A balanced binary tree circuit that combines elements with an associative operator.

2.5.1 Logical Operations
Logical operations are not only building blocks for more complex operations, but they are
at the heart of all central processing units. Logical operations include “vector” and “asso-
ciating” operations. A vector operation is the component-wise operation on one or more
vectors. For example, the vector NOT on the vector x = (xn−1, . . . , x1, x0) is the vector
x = (xn−1, . . . , x1, x0). Other vector operations involve the application of a two-input func-
tion to corresponding components of two vectors. If � is a two-input function, such as AND

or OR, and x = (xn−1, . . . , x1, x0) and y = (yn−1, . . . , y1, y0) are two n-tuples, the vector
operation x � y is

x � y = (xn−1 � yn−1, . . . , x1 � y1, x0 � y0)

An associative operator � over a A satisfies the condition (a�b)�c = a�(b�c) for all
a, b, c ∈ A. A summing operation on an n-tuple x with an associative two-input operation
� produces the “sum” y defined below.

y = xn−1 � · · · � x1 � x0

An efficient circuit for computing y is shown in Fig. 2.6. It is a binary tree whose leaves are
associated with the variables xn−1, . . . , x1, x0. Each level of the tree is full except possibly
the last. This circuit has smallest depth of those that form the associative combination of the
variables, namely �log2 n�.

2.5.2 Shifting Functions
Shifting functions can be used to multiply integers and generally manipulate data. A cyclic
shifting function rotates the bits in a word. For example, the left cyclic shift of the 4-tuple
(1, 0, 0, 0) by three places produces the 4-tuple (0, 1, 0, 0).

The cyclic shifting function f
(n)
cyclic : Bn+�log2 n� �→ Bn takes as input an n-tuple x =

(xn−1, . . . , x1, x0) and cyclically shifts it left by |s| places, where |s| is the integer associated
with the binary k-tuple s = (sk−1, . . . , s1, s0), k = �log2 n�, and

|s| =
k−1∑
j=0

sj2j

The n-tuple that results from the shift is y = (yn−1, . . . , y1, y0), denoted as follows:

y = f
(n)
cyclic(x, s)

c©John E Savage 2.5 Specialized Circuits 49

x1 x0

y7 y6 y5 y4

x2

y0

x3

y3 y2 y1

x4x6x7

Shift by 22

Shift by 20

x5

Shift by 21

s2

s1

s0

Figure 2.7 Three stages of a cyclic shifting circuit on eight inputs.

A convenient way to perform the cyclic shift of x by |s| places is to represent |s| as a sum
of powers of 2, as shown above, and for each 0 ≤ j ≤ k − 1, shift x left cyclically by sj2j

places, that is, by either 0 or 2j places depending on whether sj = 0 or 1. For example,
consider cyclically shifting the 8-tuple u = (1, 0, 1, 1, 0, 1, 0, 1) by seven places. Since 7 is
represented by the binary number (1, 1, 1), that is, 7 = 4+2+1, to shift (1, 0, 1, 1, 0, 1, 0, 1)
by seven places it suffices to shift it by one place, by two places, and then by four places. (See
Fig. 2.7.)

For 0 ≤ r ≤ n − 1, the following formula defines the value of the rth output, yr, of a
circuit on n inputs that shifts its input x left cyclically by either 0 or 2j places depending on
whether sj = 0 or 1:

yr = (xr ∧ sj) ∨ (x(r−2j) mod n ∧ sj)

Thus, yr is xr in the first case or x(r−2j) mod n in the second. The subscript (r − 2j) mod n
is the positive remainder of (r − 2j) after division by n. For example, if n = 4, r = 1, and
j = 1, then (r − 2j) = −1, which is 3 modulo 4. That is, in a circuit that shifts by either 0
or 21 places, y1 is either x1 or x3 because x3 moves into the second position when shifted left
cyclically by two places.

A circuit based on the above formula that shifts by either 0 or 2j places depending on
whether sj = 0 or 1 is shown in Fig. 2.8 for n = 4. The circuit on n inputs has 3n + 1 gates
and depth 3.

It follows that a circuit for cyclic shifting an n-tuple can be realized in k = �log2 n� stages
each of which has 3n+1 gates and depth 3, as suggested by Fig. 2.7. Since this may be neither

the smallest nor the shallowest circuit that computes f
(n)
cyclic : Bn+�log2 n�, its minimal circuit

size and depth satisfy the following bounds.

50 Chapter 2 Logic Circuits Models of Computation

y3 y2 y1 y0

x0x1x2x3

s1

Figure 2.8 One stage of a circuit for cyclic shifting four inputs by 0 or 2 places depending on
whether s1 = 0 or 1.

LEMMA 2.5.1 The cyclic shifting function f
(n)
cyclic : Bn+�log2 n� �→ Bn can be realized by a

circuit of the following size and depth over the basis Ω0 = {∧,∨,¬}:

CΩ0

(
f

(n)
cyclic

)
≤ (3n + 1)�log2 n�

DΩ0

(
f

(n)
cyclic

)
≤ 3�log2 n�

The logical shifting function f
(n)
shift : Bn+�log2 n� �→ Bn shifts left the n-tuple x by

a number of places specified by a binary �log n�-tuple s, discarding the higher-index com-
ponents, and filling in the lower-indexed vacated places with 0’s to produce the n-tuple y,
where

yj =

{
xj−|s| for |s| ≤ j ≤ n− 1

0 otherwise

REDUCTIONS BETWEEN LOGICAL AND CYCLIC SHIFTING The logical shifting function f
(n)
shift :

Bn+�log2 n� �→ Bn on the n-tuple x is defined below in terms of f
(2n)
cyclic and the “projection”

function π
(n)
L : B2n �→ Bn that deletes the n high order components from its input 2n-tuple.

Here 0 denotes the zero binary n-tuple and 0 ·x denotes the concatenation of the two strings.
(See Figs. 2.9 and 2.10.)

f
(n)
shift(x, s) = π

(n)
L

(
f

(2n)
cyclic(0 · x, s)

)

0 0 0 0 0 0x7 x6 x5 x4 x3 x2 x1 x0 00

Figure 2.9 The reduction of f
(8)
shift to f

(8)
cyclic obtained by cyclically shifting 0 ·x by three places

and projecting out the shaded components.

c©John E Savage 2.5 Specialized Circuits 51

x

f
(n)
cyclic

f
(2n)
shift

x

Figure 2.10 The function f
(n)
cyclic is obtained by computing f

(2n)
shift on xx and truncating the n

low-order bits.

LEMMA 2.5.2 The function f
(2n)
cyclic contains f

(n)
shift as a subfunction and the function f

(2n)
shift con-

tains f
(n)
cyclic as a subfunction.

Proof The first statement follows from the above argument concerning f
(n)
shift. The second

statement follows by noting that

f
(n)
cyclic(x, s) = π

(n)
H

(
f

(2n)
shift(x · x, s)

)
where π

(n)
H deletes the n low-order components of its input.

This relationship between logical and cyclic shifting functions clearly holds for variants
of such functions in which the amount of a shift is specified with some other notation. An
example of such a shifting function is integer multiplication in which one of the two arguments
is a power of 2.

2.5.3 Encoder
The encoder function f

(n)
encode : B2n �→ Bn has 2n inputs, exactly one of which is 1. Its

output is an n-tuple that is a binary number representing the position of the input that has
value 1. That is, it encodes the position of the input bit that has value 1. Encoders are used in
CPUs to identify the source of external interrupts.

Let x = (x2n−1, . . . , x2, x1, x0) represent the 2n inputs and let y = (yn−1, . . . , y1, y0)
represent the n outputs. Then, we write f

(n)
encode(x) = y.

When n = 1, the encoder function has two inputs, x1 and x0, and one output, y0, whose
value is y0 = x1 because if x0 = 1, then x1 = 0 and y0 = 0 is the binary representation of
the input whose value is 1. Similar reasoning applies when x0 = 0.

When n ≥ 2, we observe that the high-order output bit, yn−1, has value 1 if 1 falls among
the variables x2n−1, . . . , x2n−1+1, x2n−1 . Otherwise, yn−1 = 0. Thus, yn−1 can be computed
as the OR of these variables, as suggested for the encoder on eight inputs in Fig. 2.11.

The remaining n− 1 output bits, yn−2, . . . , y1, y0, represent the position of the 1 among
variables x2n−1−1, . . . , x2, x1, x0 if yn−1 = 0 or the 1 among variables x2n−1, . . . , x2n−1+1,
x2n−1 if yn−1 = 1. For example, for n = 3 if x = (0, 0, 0, 0, 0, 0, 1, 0), then y2 = 0 and

52 Chapter 2 Logic Circuits Models of Computation

f
(2)
encode

x7 x6 x5 x4 x3 x2 x1 x0

y0y1y2
f

(3)
encode

Figure 2.11 The recursive construction of an encoder circuit on eight inputs.

(y1, y0) = (0, 1), whereas if x = (0, 0, 1, 0, 0, 0, 0, 0), then y2 = 1 and (y1, y0) = (0, 1).
Thus, after computing yn−1 as the OR of the 2n−1 high-order inputs, the remaining output
bits can be obtained by supplying to an encoder on 2n−1 inputs the 2n−1 low-order bits if
yn−1 = 0 or the 2n−1 high-order bits if yn−1 = 1. It follows that in both cases we can
supply the vector δ = (x2n−1 ∨ x2(n−1)−1, x2n−2 ∨ x2(n−1)−2, . . . , x2(n−1) ∨ x0) of 2(n−1)

components to the encoder on 2(n−1) inputs. This is illustrated in Fig. 2.11.

Let’s now derive upper bounds on the size and depth of the optimal circuit for f
(n)
encode.

Clearly CΩ0

(
f

(1)
encode

)
= 0 and DΩ0

(
f

(1)
encode

)
= 0, since no gates are needed in this case.

From the construction described above and illustrated in Fig. 2.11, we see that we can construct

a circuit for f
(n)
encode in a two-step process. First, we form yn−1 as the OR of the 2n−1 high-

order variables in a balanced OR tree of depth n using 2n−1 − 1 OR’s. Second, we form
the vector δ with a circuit of depth 1 using 2n−1 OR’s and supply it to a copy of a circuit

for f
(n−1)
encode. This provides the following recurrences for the circuit size and depth of f

(n)
encode

because the depth of this circuit is no more than the maximum of the depth of the OR tree and

1 more than the depth of a circuit for f
(n−1)
encode:

CΩ0

(
f

(n)
encode

)
≤ 2n − 1 + CΩ0(f

(n−1)
encode) (2.4)

DΩ0

(
f

(n)
encode

)
≤ max(n− 1, DΩ0(f

(n−1)
encode) + 1) (2.5)

The solutions to these recurrences are stated as the following lemma, as the reader can show.
(See Problem 2.14.)

LEMMA 2.5.3 The encoder function f
(n)
encode has the following circuit size and depth bounds:

CΩ0

(
f

(n)
encode

)
≤ 2n+1 − (n + 3)

DΩ0

(
f

(n)
encode

)
≤ n− 1

c©John E Savage 2.5 Specialized Circuits 53

2.5.4 Decoder
A decoder is a function that reverses the operation of an encoder: given an n-bit binary address,
it generates 2n bits with a single 1 in the position specified by the binary number. Decoders
are used in the design of random-access memory units (see Section 3.5) and of the multiplexer
(see Section 2.5.5).

The decoder function f
(n)
decode : Bn �→ B2n

has n input variables x = (xn−1, . . . , x1, x0)
and 2n output variables y = (y2n−1, . . . , y1, y0); that is, f

(n)
decode(x) = y. Let c be a binary

n-tuple corresponding to the integer |c|. All components of the binary 2n-tuple y are zero
except for the one whose index is |c|, namely y|c|. Thus, the minterm functions in the variables

x are computed as the output of f
(n)
decode.

A direct realization of the function f
(n)
decode can be obtained by realizing each minterm

independently. This circuit uses (2n− 1)2n gates and has depth �log2 n�+ 1. Thus we have
the following bounds over the basis Ω0 = {∧,∨,¬}:

CΩ0

(
f

(n)
decode

)
≤ (2n − 1)2n

DΩ0

(
f

(n)
decode

)
≤ �log2 n�+ 1

A smaller upper bound on circuit size and depth can be obtained from the recursive con-
struction of Fig. 2.12, which is based on the observation that a minterm on n variables is the
AND of a minterm on the first n/2 variables and a minterm on the second n/2 variables. For
example, when n = 4, the minterm x3 ∧ x2 ∧ x1 ∧ x0 is obviously equal to the AND of the
minterm x3∧x2 in the variables x3 and x2 and the minterm x1∧x0 in the variables x1 and x0.
Thus, when n is even, the minterms that are the outputs of f

(n)
decode can be formed by ANDing

x0x1x2x3

u0u1u2u3v0v1v2v3

f
(2)
decodef

(2)
decode

f
(4)
decode

y15 y14 y13 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0y12

Figure 2.12 The construction of a decoder on four inputs from two copies of a decoder on two
inputs.

54 Chapter 2 Logic Circuits Models of Computation

every minterm generated by a circuit for f
(n/2)
decode on the variables xn/2−1, . . . , x0 with every

minterm generated by a circuit for f
(n/2)
decode on the variables xn−1, . . . , xn/2, as suggested in

Fig. 2.12.

The new circuit for f
(n)
decode has a size that is at most twice that of a circuit for f

(n/2)
decode

plus 2n for the AND gates that combine minterms. It has a depth that is at most 1 more than

the depth of a circuit for f
(n/2)
decode. Thus, when n is even we have the following bounds on the

circuit size and depth of f
(n)
decode:

CΩ0

(
f

(n)
decode

)
≤ 2CΩ0

(
f

(n/2)
decode

)
+ 2n

DΩ0

(
f

(n)
decode

)
≤ DΩ0

(
f

(n/2)
decode

)
+ 1

Specializing the first bounds given above on the size and depth of a decoder circuit to one on
n/2 inputs, we have the bound in Lemma 2.5.4. Furthermore, since the output functions are

all different, CΩ0

(
f

(n)
decode

)
is at least 2n.

LEMMA 2.5.4 For n even the decoder function f
(n)
decode has the following circuit size and depth

bounds:

2n ≤ CΩ0

(
f

(n)
decode

)
≤ 2n + (2n− 2)2n/2

DΩ0

(
f

(n)
decode

)
≤ �log2 n� + 1

The circuit size bound is linear in the number of outputs. Also, for n ≥ 12, the exact value of

CΩ0

(
f

(n)
decode

)
is known to within 25%. Since each output depends on n inputs, we will see

in Chapter 9 that the upper bound on depth is exactly the depth of the smallest depth circuit
for the decoder function.

2.5.5 Multiplexer

The multiplexer function f
(n)
mux : B2n+n �→ B has two vector inputs, z = (z2n−1, . . . , z1,

z0) and x = (xn−1, . . . , x1, x0), where x is treated as an address. The output of f
(n)
mux is

v = zj , where j = |x| is the integer represented by the binary number x. This function is
also known as the storage access function because it simulates the access to storage made by a
random-access memory with one-bit words. (See Section 3.5.)

The similarity between this function and the decoder function should be apparent. The
decoder function has n inputs, x = (xn−1, . . . , x1, x0), and 2n outputs, y = (y2n−1, . . . , y1,
y0), where yj = 1 if j = |x| and yj = 0 otherwise. Thus, we can form v = zj as

v = (z2n−1 ∧ y2n−1) ∨ · · · ∨ (z1 ∧ y1) ∨ (z0 ∧ y0)

This circuit uses a circuit for the decoder function f
(n)
decode plus 2n AND gates and 2n − 1

OR gates. It adds a depth of n + 1 to the depth of a decoder circuit. Lemma 2.5.5 follows
immediately from these observations.

c©John E Savage 2.6 Prefix Computations 55

LEMMA 2.5.5 The multiplexer function f
(n)
mux : B2n+n �→ B can be realized with the following

circuit size and depth over the basis Ω0 = {∧,∨,¬} :

CΩ0

(
f (n)
mux

)
≤ 3 · 2n + 2(n− 1)2n/2 − 1

DΩ0

(
f (n)
mux

)
≤ n + �log2 n� + 2

Using the lower bound of Theorem 9.3.3, one can show that it is impossible to reduce
the upper bound on circuit size to less than 2n+1 − 2. At the cost of increasing the depth by

1, the circuit size bound can be improved to about 2n+1. (See Problem 2.15.) Since f
(n)
mux

depends on 2n + n variables, we see from Theorem 9.3.1 that it must have depth at least
log2(2n + n) ≥ n. Thus, the above depth bound is very tight.

2.5.6 Demultiplexer

The demultiplexer function f
(n)
demux : Bn+1 �→ B2n

is very similar to a decoder. It has n + 1
inputs consisting of n bits, x, that serve as an address and a data bit e. It has 2n outputs y all
of which are 0 if e = 0 and one output that is 1 if e = 1, namely the output specified by the
n address bits. Demultiplexers are used to route a data bit (e) to one of 2n output positions.

A circuit for the demultiplexer function can be constructed as follows. First, form the AND

of e with each of the n address bits xn−1, . . . , x1, x0 and supply this new n-tuple as input to
a decoder circuit. Let z = (z2n−1, . . . , z1, z0) be the decoder outputs. When e = 0, each of
the decoder inputs is 0 and each of the decoder outputs except z0 is 0 and z0 = 1. If we form
the AND of z0 with e, this new output is also 0 when e = 0. If e = 1, the decoder input is the
address x and the output that is 1 is in the position specified by this address. Thus, a circuit

for a demultiplexer can be constructed from a circuit for f
(n)
decode to which are added n AND

gates on its input and one on its output. This circuit has a depth that is at most 2 more than
the depth of the decoder circuit. Since a circuit for a decoder can be constructed from one
for a demultiplexer by fixing e = 1, we have the following bounds on the size and depth of a

circuit for f
(n)
demux.

LEMMA 2.5.6 The demultiplexer function f
(n)
demux : Bn+1 �→ B2n

can be realized with the
following circuit size and depth over the basis Ω0 = {∧,∨,¬}:

0 ≤ CΩ0

(
f

(n)
demux

)
− CΩ0

(
f

(n)
decoder

)
≤ n + 1

0 ≤ DΩ0

(
f

(n)
demux

)
−DΩ0

(
f

(n)
decoder

)
≤ 2

2.6 Prefix Computations
The prefix computation first appeared in the design of logic circuits, the goal being to paral-
lelize as much as possible circuits for integer addition and multiplication. The carry-lookahead
adder is a fast circuit for integer addition that is based on a prefix computation. (See Sec-
tion 2.7.) Prefix computations are now widely used in parallel computation because they
provide a standard, optimizable framework in which to perform computations in parallel.

The prefix function P(n)
	 : An �→ An on input x = (x1, x2, . . . , xn) produces as

output y = (y1, y2, . . . , yn), which is a running sum of its n inputs x using the operator

56 Chapter 2 Logic Circuits Models of Computation

� as the summing operator. That is, yj = x1 � x2 � · · · � xj for 1 ≤ j ≤ n. Thus, if

the set A is �, the natural numbers, and � is the integer addition operator +, then P(n)
+

on the input x = (x1, x2, . . . , xn) produces the output y, where y1 = x1, y2 = x1 + x2,
y3 = x1 + x2 + x3, . . . , yn = x1 + x2 + · · · + xn. For example, shown below is the prefix
function on a 6-vector of integers under integer addition.

x = (2, 1, 3, 7, 5, 1)

P(6)
+ (x) = (2, 3, 6, 13, 18, 19)

A prefix function is defined only for operators � that are associative over the set A. An
operator over A is associative if a) for all a and b in A, a� b is in A, and b) for all a, b, and
c in A, (a� b)� c = a� (b� c)—that is, if all groupings of terms in a sum with the operator
� have the same value. A pair (A,�) in which � is associative is called a semigroup. Three
semigroups on which a prefix function can be defined are

• (�, +) where� are the natural numbers and + is integer addition.

• ({0, 1}∗, ·) where {0, 1}∗ is the set of binary strings and · is string concatenation.

• (A,�copy) where A is a set and �copy is defined by a �copy b = a.

It is easy to show that the concatenation operator · on {0, 1}∗ and �copy on a set A are
associative. (See Problem 2.20.) Another important semigroup is the set of matrices under
matrix multiplication (see Theorem 6.2.1).

Summarizing, if (A,�) is a semigroup, the prefix function P(n)
	 : An �→ An on input

x = (x1, x2, . . . , xn) produces as output y = (y1, y2, . . . , yn), where yj = x1�x2�· · ·�xj

for 1 ≤ j ≤ n.
Load balancing on a parallel machine is an important application of prefix computation.

A simple example of load balancing is the following: We assume that p processors, numbered
from 0 to p − 1, are running processes in parallel. We also assume that processes are born
and die, resulting in a possible imbalance in the number of processes active on processors.
Since it is desirable that all processors be running the same number of processes, processes
are periodically redistributed among processors to balance the load. To rebalance the load, a)
processors are given a linear order, and b) each process is assigned a Boolean variable with value
1 if it is alive and 0 otherwise. Each processor computes its number of living processes, ni. A
prefix computation is then done on these values using the linear order among processors. This
computation provides the jth processor with the sum nj + nj−1 + · · · + n1 which it uses to
give each of its living processes a unique index. The sum n = np + · · ·+ n1 is then broadcast
to all processors. When the processors are in balance all have �n/p� processes except possibly
one that has fewer processes. Assigning the sth process to processor (s mod p) insures that
the load is balanced.

Another important type of prefix computation is the segmented prefix computation. In
this case two n-vectors are given, a value vector x and a flag vector φ. The value of the ith
entry yi in the result vector y is xi if φi is 1 and otherwise is the associative combination with
� of xi and the values between it and the first value xj to the left of xi for which the flag
φj = 1. The first bit of φ is always 1. An example of a segmented prefix computation is shown
below for integer values and integer addition as the associative operation:

x = (2, 1, 3, 7, 5, 1)

c©John E Savage 2.6 Prefix Computations 57

φ = (1, 0, 0, 1, 0, 1)
y = (2, 3, 6, 7, 12, 1)

As shown in Problem 2.21, a segmented prefix computation is a special case of a general prefix
computation. This is demonstrated by defining a new associative operation ⊗ on value-flag
pairs that returns another value-flag pair.

2.6.1 An Efficient Parallel Prefix Circuit
A circuit for the prefix function P(n)

	 can be realized with O(n2) instances of � if for each
1 ≤ j ≤ n we naively realize yj = x1 �x2 �· · ·�xj with a separate circuit containing j−1
instances of �. If each such circuit is organized as a balanced binary tree, the depth of the

circuit for P(n)
	 is the depth of the circuit for yn, which is �log2 n�. This is a parallel circuit

for the prefix problem but uses many more operators than necessary. We now describe a much
more efficient circuit for this problem; it uses O(n) instances of � and has depth O(log n).

To describe this improved circuit, we let x[r, r] = xr and for r ≤ s let x[r, s] = xr �
xr+1 � · · · � xs. Then we can write P(n)

	 (x) = y where yj = x[1, j].
Because � is associative, we observe that x[r, s] = x[r, t] � x[t + 1, s] for r ≤ t < s.

We use this fact to construct the improved circuit. Let n = 2k. Observe that if we form the
(n/2)-tuple (x[1, 2], x[3, 4], x[5, 6], . . . , x[2k − 1, 2k]) using the rule x[i, i + 1] = x[i, i] �
x[i + 1, i + 1] for i odd and then do a prefix computation on it, we obtain the (n/2)-tuple
(x[1, 2], x[1, 4], x[1, 6], . . . , x[1, 2k]). This is almost what is needed. We must only compute
x[1, 1], x[1, 3], x[1, 5], . . . , x[1, 2k − 1], which is easily done using the rule x[1, 2i + 1] =
x[1, 2i] � x2i+1 for 1 ≤ i ≤ 2k−1 − 1. (See Fig. 2.13.) The base case for this construction is
that of n = 1, for which y1 = x1 and no operations are needed.

If C(k) is the size of this circuit on n = 2k inputs and D(k) is its depth, then C(0) = 0,
D(0) = 0 and C(k) and D(k) for k ≥ 1 satisfy the following recurrences:

C(k) = C(k − 1) + 2k − 1

D(k) = D(k − 1) + 2

As a consequence, we have the following result.

THEOREM 2.6.1 For n = 2k, k an integer, the parallel prefix function P(n)
	 : An �→ An on an

n-vector with associative operator � can be implemented by a circuit with the following size and
depth bounds over the basis Ω = {�}:

CΩ

(
P(n)
	

)
≤ 2n− log2 n− 2

DΩ

(
P(n)
	

)
≤ 2 log2 n

Proof The solution to the recurrence on C(k) is C(k) = 2k+1 − k − 2, as the reader can
easily show. It satisfies the base case of k = 0 and the general case as well. The solution to
D(k) is D(k) = 2k.

When n is not a power of 2, we can start with a circuit for the next higher power of 2 and
then delete operations and edges that are not used to produce the first n outputs.

58 Chapter 2 Logic Circuits Models of Computation

x1 x2 x3 x4 x5 x6 x7 x8

x[1, 1] x[1, 3] x[1, 5] x[1, 7]

x[1, 2] x[1, 4] x[1, 6] x[1, 8]

P
(n)
	P

(n/2)
	

P
(n/4)
	

Figure 2.13 A simple recursive construction of a prefix circuit when n = 2k = 8. The gates
used at each stage of the construction are grouped into individual shaded regions.

2.7 Addition
Addition is a central operation in all general-purpose digital computers. In this section we
describe the standard ripple adder and the fast carry-lookahead addition circuits. The ripple
adder mimics the elementary method of addition taught to beginners but for binary instead of
decimal numbers. Carry-lookahead addition is a fast addition method based on the fast prefix
circuit described in the preceding section.

Consider the binary representation of integers in the set {0, 1, 2, . . . , 2n − 1}. They are
represented by binary n-tuples u = (un−1, un−2, . . . , u1, u0) and have value

|u| =
n−1∑
j=0

uj2j

where
∑

denotes integer addition.

The addition function f
(n)
add : B2n �→ Bn+1 computes the sum of two binary n-bit

numbers u and v, as shown below, where + denotes integer addition:

|u| + |v| =
n−1∑
j=0

(uj + vj)2j

The tuple ((un−1 +vn−1), (un−2 +vn−2), . . . , (u0 +v0)) is not a binary number because the
coefficients of the powers of 2 are not Boolean. However, if the integer u0 + v0 is converted to

c©John E Savage 2.7 Addition 59

a binary number (c1, s0), where c121 + s020 = u0 + v0, then the sum can be replaced by

|u| + |v| =
n−1∑
j=2

(uj + vj)2j + (u1 + v1 + c1)21 + s020

where the least significant bit is now Boolean. In turn, the sum u1 +v1 +c1 can be represented
in binary by (c2, s1), where c22 + s1 = u1 + v1 + c1. The sum |u|+ |v| can then be replaced
by one in which the two least significant coefficients are Boolean. Repeating this process on all
coefficients, we have the ripple adder shown in Fig. 2.14.

In the general case, the jth stage of a ripple adder combines the jth coefficients of each
binary number, namely uj and vj , and the carry from the previous stage, cj , and represents
their integer sum with the binary notation (cj+1, sj), where

cj+12 + sj = uj + vj + cj

Here cj+1, the number of 2’s in the sum uj + vj + cj , is the carry into the (j + 1)st stage
and sj , the number of 1’s in the sum modulo 2, is the external output from the jth stage.
The circuit performing this mapping is called a full adder (see Fig. 2.15). As the reader can
easily show by constructing a table, this circuit computes the function fFA : B3 �→ B2, where
fFA(uj , vj , cj) = (cj+1, sj) is described by the following formulas:

pj = uj ⊕ vj

gj = uj ∧ vj

cj+1 = (pj ∧ cj) ∨ gj

sj = pj ⊕ cj

(2.6)

Here pj and gj are intermediate variables with a special significance. If gj = 1, a carry is
generated at the jth stage. If pj = 1, a carry from the previous stage is propagated through
the jth stage, that is, a carry-out occurs exactly when a carry-in occurs. Note that pj and gj

cannot both have value 1.
The full adder can be realized with five gates and depth 3. Since the first full adder has

value 0 for its carry input, three gates can be eliminated from its circuit and its depth reduced
by 2. It follows that a ripple adder can be realized by a circuit with the following size and
depth.

v4 u3u4

c1

v3 v0

c3c4c5

s4 s3

u1v2 v1 u0

c2

s2 s1

u2

s0

0FA4 FA3 FA2 FA1 FA0

Figure 2.14 A ripple adder for binary numbers.

60 Chapter 2 Logic Circuits Models of Computation

pj

vj uj cj

gj

sj

cj+1

cj+1

vj uj

cj

sj

FAj

Figure 2.15 A full adder realized with gates.

THEOREM 2.7.1 The addition function f
(n)
add : B2n �→ Bn+1 can be realized with a ripple adder

with the following size and depth bounds over the basis Ω = {∧,∨,⊕}:

CΩ

(
f

(n)
add

)
≤ 5n− 3

DΩ

(
f

(n)
add

)
≤ 3n− 2

(Do the ripple adders actually have depth less than 3n− 2?)

2.7.1 Carry-Lookahead Addition
The ripple adder is economical; it uses a small number of gates. Unfortunately, it is slow. The
depth of the circuit, a measure of its speed, is linear in n, the number of bits in each integer.
The carry-lookahead adder described below is considerably faster. It uses the parallel prefix
circuit described in the preceding section.

The carry-lookahead adder circuit is obtained by applying the prefix operation to pairs
in B2 using the associative operator � : (B2)2 �→ B2 defined below. Let (a, b) and (c, d) be
arbitrary pairs in B2. Then � is defined by the following formula:

(a, b) � (c, d) = (a ∧ c, (b ∧ c) ∨ d)

To show that � is associative, it suffices to show by straightforward algebraic manipulation that
for all values of a, b, c, d, e, and f the following holds:

((a, b) � (c, d)) � (e, f) = (a, b) � ((c, d) � (e, f))
= (a c e, b c e ∨ d e ∨ f)

Let π[j, j] = (pj , gj) and, for j < k, let π[j, k] = π[j, k−1]�π[k, k]. By induction it is
straightforward to show that the first component of π[j, k] is 1 if and only if a carry propagates
through the full adder stages numbered j, j + 1, . . . , k and its second component is 1 if and
only if a carry is generated at the rth stage, j ≤ r ≤ k, and propagates from that stage through
the kth stage. (See Problem 2.26.)

The prefix computation on the string (π[0, 0], π[1, 1], . . . , π[n − 1, n − 1]) with the op-
erator � produces the string (π[0, 0], π[0, 1], π[0, 2], . . . , π[0, n− 1]). The first component of

c©John E Savage 2.8 Subtraction 61

π[0, j] is 1 if and only if a carry generated at the zeroth stage, c0, is propagated through the
jth stage. Since c0 = 0, this component is not used. The second component of π[0, j], cj+1,
is 1 if and only if a carry is generated at or before the jth stage. From (2.6) we see that the
sum bit generated at the jth stage, sj , satisfies sj = pj ⊕ cj . Thus the jth output bit, sj , is
obtained from the EXCLUSIVE OR of pj and the second component of π[0, j − 1].

THEOREM 2.7.2 For n = 2k, k an integer, the addition function f
(n)
add : B2n �→ Bn+1 can

be realized with a carry-lookahead adder with the following size and depth bounds over the basis
Ω = {∧,∨,⊕}:

CΩ

(
f

(n)
add

)
≤ 8n

DΩ

(
f

(n)
add

)
≤ 4 log2 n + 2

Proof The prefix circuit uses 2n − log2 n − 3 instances of � and has depth 2 log2 n. Since
each instance of � can be realized by a circuit of size 3 and depth 2, each of these bounds is
multiplied by these factors. Since the first component of π[0, j] is not used, the propagate
value computed at each output combiner vertex can be eliminated. This saves one gate per
result bit, or n gates. However, for each 0 ≤ j ≤ n − 1 we need two gates to compute pj

and qj and one gate to compute sj , 3n additional gates. The computation of these three
sets of functions adds depth 2 to that of the prefix circuit. This gives the desired bounds.

The addition function f
(n)
add is computed by the carry-lookahead adder circuit with 1.6

times as many gates as the ripple adder but in logarithmic instead of linear depth.
When exact addition is expected and every number is represented by n bits, a carry-out of

the last stage of an adder constitutes an overflow, an error.

2.8 Subtraction
Subtraction is possible when negative numbers are available. There are several ways to repre-
sent negative numbers. To demonstrate that subtraction is not much harder than addition, we
consider the signed two’s complement representation for positive and negative integers in the
set�(n) = {−2n, . . . ,−2,−1, 0, 1, 2, . . . , 2n − 1}. Each signed number u is represented by
an (n + 1)-tuple (σ, u), where σ is its sign and u = (un−1, . . . , u0) is a binary number that
is either the magnitude |u| of the number u, if positive, or the two’s complement 2n − |u| of
it, if negative. The sign σ is defined below:

σ =

{
0 the number u is positive or zero

1 the number u is negative

The two’s complement of an n-bit binary number v is easily formed by adding 1 to t =
2n−1−|v|. Since 2n−1 is represented as the n-tuple of 1’s, t is obtained by complementing
(NOTing) every bit of v. Thus, the two’s complement of u is obtained by complementing every
bit of u and then adding 1. It follows that the two’s complement of the two’s complement of
a number is the number itself. Thus, the magnitude of a negative number (1, u) is the two’s
complement of u.

62 Chapter 2 Logic Circuits Models of Computation

This is illustrated by the integers in the set �(4) = {−16, . . . ,−2,−1, 0, 1, 2, . . . , 15}.
The two’s complement representation of the decimal integers 9 and −11 are

9 = (0, 1, 0, 0, 1)
−11 = (1, 0, 1, 0, 1)

Note that the two’s complement of 11 is 16 − 11 = 5, which is represented by the four-tuple
(0, 1, 0, 1). The value of the two’s complement of 11 can be computed by complementing all
bits in its binary representation (1, 0, 1, 1) and adding 1.

We now show that to add two numbers u and v in two’s complement notation (σu, u)
and (σv, v), we add them as binary (n + 1)-tuples and discard the overflow bit, that is, the
coefficient of 2n+1. We now show that this procedure provides a correct answer when no
overflow occurs and establish conditions on which overflow does occur.

Let |u| and |v| denote the magnitudes of the two numbers. There are four cases for their
sum u + v:

Case u v u + v

I ≥ 0 ≥ 0 |u| + |v|
II ≥ 0 < 0 2n+1 + |u| − |v|
III < 0 ≥ 0 2n+1 − |u| + |v|
IV < 0 < 0 2n+1 + 2n+1 − |u| − |v|

In the first case the sum is positive. If the coefficient of 2n is 1, an overflow error is detected.
In the second case, if |u|− |v| is negative, then 2n+1 + |u|− |v| = 2n + 2n −||u|− |v|| and
the result is in two’s complement notation with sign 1, as it should be. If |u| − |v| is positive,
the coefficient of 2n is 0 (a carry-out of the last stage has occurred) and the result is a positive
number with sign bit 0, properly represented. A similar statement applies to the third case.
In the fourth case, if |u| + |v| is less than 2n, the sum is 2n+1 + 2n + (2n − (|u| + |v|)),
which is 2n + (2n − (|u| + |v|)) when the coefficient of 2n+1 is discarded. This is a proper
representation for a negative number. However, if |u| + |v| ≥ 2n, a borrow occurs from the
(n + 1)st position and the sum 2n+1 + 2n + (2n − (|u| + |v|)) has a 0 in the (n + 1)st
position, which is not a proper representation for a negative number (after discarding 2n+1);
overflow has occurred.

The following procedure can be used to subtract integer u from integer v: form the two’s
complement of u and add it to the representation for v. The negation of a number is obtained
by complementing its sign and taking the two’s complement of its binary n-tuple. It follows
that subtraction can be done with a circuit of size linear in n and depth logarithmic in n. (See
Problem 2.27.)

2.9 Multiplication
In this section we examine several methods of multiplying integers. We begin with the stan-
dard elementary integer multiplication method based on the binary representation of numbers.
This method requires O(n2) gates and has depth O(log2 n) on n-bit numbers. We then ex-
amine a divide-and-conquer method that has the same depth but much smaller circuit size.
We also describe fast multiplication methods, that is, methods that have circuits with smaller
depths. These include a circuit whose depth is much smaller than O(log n). It uses a novel

c©John E Savage 2.9 Multiplication 63

representation of numbers, namely, the exponents of numbers in their prime number decom-
position.

The integer multiplication function f
(n)
mult : B2n �→ B2n can be realized by the standard

integer multiplication algorithm, which is based on the following representation for the
product of integers represented as binary n-tuples u and v:

|u||v| =
n−1∑
i=0

n−1∑
j=0

uivj2i+j (2.7)

Here |u| and |v| are the magnitudes of the integers represented by u and v. The standard
algorithm forms the products uivj individually to create n binary numbers, as suggested below.
Here each row corresponds to a different number; the columns correspond to powers of 2 with
the rightmost column corresponding to the least significant component, namely the coefficient
of 20.

26 25 24 23 22 21 20

u0v3 u0v2 u0v1 u0v0 = z0

u1v3 u1v2 u1v1 u1v0 0 = z1

u2v3 u2v2 u2v1 u2v0 0 0 = z2

u3v3 u3v2 u3v1 u3v0 0 0 0 = z3

(2.8)

Let the ith binary number produced by this multiplication operation be zi. Since each of
these n binary numbers contains at most 2n − 1 bits, we treat them as if they were (2n− 1)-
bit numbers. If these numbers are added in the order shown in Fig. 2.16(a) using a carry-
lookahead adder at each step, the time to perform the additions, measured by the depth of a
circuit, is O(n log n). The size of this circuit is O(n2). A faster circuit containing about the
same number of gates can be constructed by adding z0, . . . , zn−1 in a balanced binary tree
with n leaves, as shown in Fig. 2.16(b). This tree has n − 1 (2n − 1)-bit adders. (A binary
tree with n leaves has n− 1 internal vertices.) If each of the adders is a carry-lookahead adder,
the depth of this circuit is O(log2 n) because the tree has O(log n) adders on every path from
the root to a leaf.

z3z2z1z0

z1 z2 z3 z4 z5

z5z4

z6 z6

(b)(a)

z0

Figure 2.16 Two methods for aggregating the binary numbers z0, . . . , zn−1.

64 Chapter 2 Logic Circuits Models of Computation

2.9.1 Carry-Save Multiplication
We now describe a much faster circuit obtained through the use of the carry-save adder. Let
u, v, and w be three binary n-bit numbers. Their sum is a binary number t. It follows that
|t| can be represented as

|t| = |u| + |v| + |w|

=
n−1∑
i=0

(ui + vi + wi)2i

With a full adder the sum (ui + vi + wi) can be converted to the binary representation
ci+12 + si. Making this substitution, we have the following expression for the sum:

|t| = |u| + |v| + |w|

=
n−1∑
i=0

(2ci+1 + si)2i

= |c| + |s|

Here c with c0 = 0 is an (n + 1)-tuple and s is an n-tuple. The conversion of (ui, vi, wi) to
(ci+1, si) can be done with the full adder circuit shown in Fig. 2.15 of size 5 and depth 3 over
the basis Ω = {∧,∨,⊕}.

The function f
(n)
carry-save : B3n �→ B2n+2 that maps three binary n-tuples, u, v, and w,

to the pair (c, s) described above is the carry-save adder. A circuit of full adders that realizes
this function is shown in Fig. 2.17.

THEOREM 2.9.1 The carry-save adder function f
(n)
carry-save : B3n �→ B2n+2 can be realized with

the following size and depth over the basis Ω = {∧,∨,⊕}:

CΩ

(
f (n)
carry-save

)
≤ 5n

DΩ

(
f (n)
carry-save

)
≤ 3

Three binary n-bit numbers u, v, w can be added by combining them in a carry-save
adder to produce the pair (c, s), which are then added in an (n + 1)-input binary adder. Any
adder can be used for this purpose.

vn−1wn−1

...

sn−1

cn
FAn−1

un−1

s1

c2

v1w1

FA1

u1

s0

c1

v0w0

u0
FA0

Figure 2.17 A carry-save adder realized by an array of full adders.

c©John E Savage 2.9 Multiplication 65

A multiplier for two n-bit binary can be formed by first creating the n (2n− 1)-bit binary
numbers shown in (2.8) and then adding them, as explained above. These n numbers can be
added in groups of three, as suggested in Fig. 2.18.

Let’s now count the number of levels of carry-save adders in this construction. At the
zeroth level there are m0 = n numbers. At the jth level there are

mj = 2�mj−1/3� + mj−1 − 3�mj−1/3� = mj−1 − �mj−1/3�

binary numbers. This follows because there are �mj−1/3� groups of three binary numbers and
each group is mapped to two binary numbers. Not combined into such groups are mj−1 −
�mj−1/3� binary numbers, giving the total mj . Since (x− 2)/3 ≤ �x/3� ≤ x/3, we have(

2
3

)
mj−1 ≤ mj ≤

(
2
3

)
mj−1 +

(
2
3

)
from which it is easy to show by induction that the following inequality holds:(

2
3

)j

n ≤ mj ≤
(

2
3

)j

n + 2

(
1 −

(
2
3

)j
)
≤
(

2
3

)j

n + 2

Let s be the number of stages after which ms = 2. Since ms−1 ≥ 3, we have

log2(n/2)
log2(3/2)

≤ s ≤ log2 n

log2(3/2)
+ 1

The number of carry-save adders used in this construction is n− 2. This follows from the
observation that the number of carry-save adders used in one stage is equal to the decrease in
the number of binary numbers from one stage to the next. Since we start with n and finish
with 2, the result follows.

After reducing the n binary numbers to two binary numbers through a series of carry-save
adder stages, the two remaining binary numbers are added in a traditional binary adder. Since
each carry-save adder operates on three (2n−1)-bit binary numbers, they use at most 5(2n−1)
gates and have depth 3. Summarizing, we have the following theorem showing that carry-save
addition provides a multiplication circuit of depth O(log n) but of size quadratic in n.

p1

p2

p3

p4

p5

p6

p7

p8

p0

Figure 2.18 Schema for the carry-save combination of nine 18-bit numbers.

66 Chapter 2 Logic Circuits Models of Computation

THEOREM 2.9.2 The binary multiplication function f
(n)
mult : B2n �→ B2n for n-bit binary

numbers can be realized by carry-save addition by a circuit of the following size and depth over
the basis Ω = {∧,∨,⊕}:

CΩ

(
f

(n)
mult

)
≤ 5(2n− 1)(n− 2) + CΩ

(
f

(2n)
add

)
DΩ

(
f

(n)
mult

)
≤ 3s + DΩ

(
f

(2n)
add

)
where s, the number of carry-save adder stages, satisfies

s ≤ log2 n

log2(3/2)
+ 1

It follows from this theorem and the results of Theorem 2.7.2 that two n-bit binary num-
bers can be multiplied by a circuit of size O(n2) and depth O(log n).

2.9.2 Divide-and-Conquer Multiplication
We now examine a multiplier of much smaller circuit size but depth O(log2 n). It uses a
divide-and-conquer technique. We represent two positive integers by their n-bit binary num-
bers u and v. We assume that n is even and decompose each number into two (n/2)-bit
numbers:

u = (uh, ul), v = (vh, vl)

where uh, ul, vh, vl are the high and low components of the vectors u and v, respectively.
Then we can write

|u| = |uh|2n/2 + |ul|
|v| = |vh|2n/2 + |vl|

from which we have

|u||v| = |ul||vl| + (|uh||vh| + (|vh| − |vl|)(|ul| − |uh|) + |ul||vl|)2n/2 + |uh||vh|2n

It follows from this expression that only three integer multiplications are needed, namely
|ul||ul|, |uh||uh|, and (|vh| − |vl|)(|ul| − |uh|); multiplication by a power of 2 is done by
realigning bits for addition. Each multiplication is of (n/2)-bit numbers. Six additions and
subtractions of 2n-bit numbers suffice to complete the computation. Each of the additions
and subtractions can be done with a linear number of gates in logarithmic time.

If C(n) and D(n) are the size and depth of a circuit for integer multiplication realized
with this divide-and-conquer method, then we have

C(n) ≤ 3C(n/2) + cn (2.9)

D(n) ≤ D(n/2) + d log2 n (2.10)

where c and d are constants of the construction. Since C(1) = 1 and D(1) = 1 (one use
of AND suffices), we have the following theorem, the proof of which is left as an exercise (see
Problem 2.28).

c©John E Savage 2.9 Multiplication 67

THEOREM 2.9.3 If n = 2k, the binary multiplication function f
(n)
mult : B2n �→ B2n for n-bit

binary numbers can be realized by a circuit for the divide-and-conquer algorithm of the following
size and depth over the basis Ω = {∧,∨,⊕}:

CΩ

(
f

(n)
mult

)
= O

(
3log2 n

)
= O

(
nlog2 3

)
DΩ

(
f

(n)
mult

)
= O(log2

2 n)

The size of this divide-and-conquer multiplication circuit is O(n1.585), which is much
smaller than the O(n2) bound based on carry-save addition. The depth bound can be reduced
to O(log n) through the use of carry-save addition. (See Problem 2.29.) However, even faster
multiplication algorithms are known for large n.

2.9.3 Fast Multiplication
Schönhage and Strassen [303] have described a circuit to multiply integers represented in
binary that is asymptotically small and shallow. Their algorithm for the multiplication of n-bit
binary numbers uses O(n log n log log n) gates and depth O(log n). It illustrates the point
that a circuit can be devised for this problem that has depth O(log n) and uses a number of
gates considerably less than quadratic in n. Although the coefficients on the size and depth
bounds are so large that their circuit is not practical, their result is interesting and motivates
the following definition.

DEFINITION 2.9.1 Mint(n, c) is the size of the smallest circuit for the multiplication of two n-bit
binary numbers that has depth at most c log2 n for c > 0.

The Schönhage-Strassen circuit demonstrates that Mint(n, c) = O(n log n log log n) for
all n ≥ 1. It is also clear that Mint(n, c) = Ω(n) because any multiplication circuit must
examine each component of each binary number and no more than a constant number of
inputs can be combined by one gate. (Chapter 9 provides methods for deriving lower bounds
on the size and depth of circuits.)

Because we use integer multiplication in other circuits, it is convenient to make the follow-
ing reasonable assumption about the dependence of Mint(n, c) on n. We assume that

Mint(dn, c) ≤ dMint(n, c)

for all d satisfying 0 ≤ d ≤ 1. This condition is satisfied by the Schönhage-Strassen circuit.

2.9.4 Very Fast Multiplication
If integers in the set {0, 1, . . . , N − 1} are represented by the exponents of primes in their
prime factorization, they can be multiplied by adding exponents. The largest exponent on a
prime in this range is at most log2 N . Thus, exponents can be represented by O(log log N)
bits and integers multiplied by circuits with depth O(log log log N). (See Problem 2.32.)
This depth is much smaller than O(log log N), the depth of circuits to add integers in any
fixed radix system. (Note that if N = 2n, log2 log2 N = log2 n.) However, addition is very
difficult in this number system. Thus, it is a fast number system only if the operations are
limited to multiplications.

68 Chapter 2 Logic Circuits Models of Computation

2.9.5 Reductions to Multiplication

The logical shifting function f
(n)
shift can be reduced to integer multiplication function f

(n)
mult, as

can be seen by letting one of the two n-tuple arguments be a power of 2. That is,

f
(n)
shift(x, s) = π

(n)
L

(
f

(n)
mult(x, y)

)
where y = f

(m)
decode(s) is the value of the decoder function (see Section 2.5) that maps a binary

m-tuple, m = �log2 n�, into a binary 2m-tuple containing a single 1 at the output indexed

by the integer represented by s and π
(n)
L is the projection operator defined on page 50.

LEMMA 2.9.1 The logical shifting function f
(n)
shift can be reduced to the binary integer multipli-

cation function f
(n)
mult through the application of the decoder function f

(m)
decode on m = �log2 n�

inputs.

As shown in Section 2.5, the decoder function f
(m)
decode can be realized with a circuit of size

very close to 2m and depth �log2 m�. Thus, the shifting function has circuit size and depth
no more than constant factors larger than those for integer multiplication.

The squaring function f
(n)
square : Bn �→ B2n maps the binary n-tuple x into the binary

2n-tuple y representing the product of x with itself. Since the squaring and integer multipli-
cation functions contain each other as subfunctions, as shown below, circuits for one can be
used for the other.

LEMMA 2.9.2 The integer multiplication function f
(n)
mult contains the squaring function f

(n)
square

as a subfunction and f
(3n+1)
square contains f

(n)
mult as a subfunction.

Proof The first statement follows by setting the two n-tuple inputs of f
(n)
mult to be the input

to f
(n)
square. The second statement follows by examining the value of f

(3n+1)
square on the (3n+1)-

tuple input (xzy), where x and y are binary n-tuples and z is the zero binary (n+1)-tuple.
Thus, (xzy) denotes the value a = 22n+1|x| + |y| whose square b is

b = 24n+2|x|2 + 22n+2|x||y| + |y|2

The value of the product |x||y| can be read from the output because there is no carry
into 22n+2|x||y| from |y|2, nor is there a carry into 24n+2|x|2 from 22n+2|x||y|, since
|x|, |y| ≤ 2n − 1.

2.10 Reciprocal and Division
In this section we examine methods to divide integers represented in binary. Since the division
of one integer by another generally cannot be represented with a finite number of bits (consider,
for example, the value of 2/3), we must be prepared to truncate the result of a division. The
division method presented in this section is based on Newton’s method for finding a zero of a
function.

Let u = (un−1, . . . , u1, u0) and v = (vn−1, . . . , v1, v0) denote integers whose magni-
tudes are u and v. Then the division of one integer u by another v, u/v, can be obtained as the

c©John E Savage 2.10 Reciprocal and Division 69

result of taking the product of u with the reciprocal 1/v. (See Problem 2.33.) For this reason,
we examine only the computation of reciprocals of n-bit binary numbers. For simplicity we
assume that n is a power of 2.

The reciprocal of the n-bit binary number u = (un−1, . . . , u1, u0) representing the in-
teger u is a fractional number r represented by the (possibly infinite) binary number r =
(r−1, r−2, r−3, . . .), where

|r| = r−12−1 + r−22−2 + r−32−3 + · · ·

Some numbers, such as 3, have a binary reciprocal that has an infinite number of digits, such as
(0, 1, 0, 1, 0, 1, . . .), and cannot be expressed exactly as a binary tuple of finite extent. Others,
such as 4, have reciprocals that have finite extent, such as (0, 1).

Our goal is to produce an (n + 2)-bit approximation to the reciprocal of n-bit binary
numbers. (It simplifies the analysis to obtain an (n + 2)-bit approximation instead of an n-bit
approximation.) We assume that each such binary number u has a 1 in its most significant po-
sition; that is, 2n−1 ≤ u < 2n. If this is not true, a simple circuit can be devised to determine
the number of places by which to shift u left to meet this condition. (See Problem 2.25.) The
result is shifted left by an equal amount to produce the reciprocal.

It follows that an (n+2)-bit approximation to the reciprocal of an n-bit binary number u
with un−1 = 1 is represented by r = (r−1, r−2, r−3, . . .), where the first n− 2 digits of r are
zero. Thus, the value of the approximate reciprocal is represented by the n + 2 components
(r−(n−1), r−(n), . . . , r−(2n)). It follows that these components are produced by shifting r left

by 2n places and removing the fractional bits. This defines the function f
(n)
recip:

f
(n)
recip(u) =

⌊
22n

u

⌋
The approximation described below can be used to compute reciprocals.

Newton’s approximation algorithm is a method to find the zero x0 of a twice contin-
uously differentiable function h : � �→ � on the reals (that is, h(x0) = 0) when h has
a non-zero derivative h′(x) in the neighborhood of x0. As suggested in Fig. 2.19, the slope
of the tangent to the curve at the point yi, h′(yi), is equal to h(yi)/(yi − yi+1). For the
convex increasing function shown in this figure, the value of yi+1 is closer to the zero x0 than

yi+1x0 yi

h(x)

x

h′(yi)

Figure 2.19 Newton’s method for finding the zero of a function.

70 Chapter 2 Logic Circuits Models of Computation

is yi. The same holds for all twice continuously differentiable functions whether increasing,
decreasing, convex, or concave in the neighborhood of a zero. It follows that the recurrence

yi+1 = yi −
h(yi)
h′(yi)

(2.11)

provides values increasingly close to the zero of h as long as it is started with a value sufficiently
close to the zero.

The function h(y) = 1 − 22n/uy has zero y = 22n/u. Since h
′
(y) = 22n/uy2, the

recurrence (2.11) becomes

yi+1 = 2yi − uy2
i /22n

When this recurrence is modified as follows, it converges to the (n + 2)-bit binary reciprocal
of the n-bit binary number u:

yi+1 =
⌊

22n+1yi − uy2
i

22n

⌋
The size and depth of a circuit resulting from this recurrence are O(Mint(n, c) log n) and

O(log2 n), respectively. However, this recurrence uses more gates than are necessary since it
does calculations with full precision at each step even though the early steps use values of yi

that are imprecise. We can reduce the size of the resulting circuit to O(Mint(n, c)) if, instead
of computing the reciprocal with n + 2 bits of accuracy at every step we let the amount of
accuracy vary with the number of stages, as in the algorithm recip(u, n) of Fig. 2.20. The
algorithm recip is called 1 + log2 n times, the last time when n = 1.

We now show that the algorithm recip(u, n) computes the function f
(n)
recip(u) = r =

�22n/u�. In other words, we show that r satisfies ru = 22n − s for some 0 ≤ s < u. The
proof is by induction on n.

The inductive hypothesis is that the algorithm recip(u, m) produces an (m + 2)-bit
approximation to the reciprocal of the m-bit binary number u (whose most significant bit is
1), that is, it computes r = �22m/u�. The assumption applies to the base case of m = 1 since
u = 1 and r = 4. We assume it holds for m = n/2 and show that it also holds for m = n.

Algorithm recip(u, n)
if n = 1 then

r := 4;
else begin

t := recip(�u/2n/2�, n/2);
r :=

⌊
(23n/2 + 1t − ut2)/2n

⌋
;

for j := 3 downto 0 do
if (u(r + 2j) ≤ 22n) then r := r + 2j ;

end;
return(r);

Figure 2.20 An algorithm to compute r, the (n+2)-bit approximation to the reciprocal of the
n-bit binary number u representing the integer u, that is, r = f

(n)
recip(u).

c©John E Savage 2.10 Reciprocal and Division 71

Let u1 and u0 be the integers corresponding to the most and least significant n/2 bits
respectively of u, that is, u = u12n/2 + u0. Since 2n−1 ≤ u < 2n, 2n/2−1 ≤ u1 <
2n/2. Also, � u

2n/2 � = u1. By the inductive hypothesis t = �2n/u1� is the value returned by
recip(u1, n/2); that is, u1t = 2n − s′ for some 0 ≤ s′ < u1. Let w = 23n/2 + 1t − ut2.
Then

uw = 22n+1u1t + 23n/2 + 1u0t − [t(u12n/2 + u0)]2

Applying u1t = 2n − s′, dividing both sides by 2n, and simplifying yields

uw

2n
= 22n −

(
s′ − tu0

2n/2

)2

(2.12)

We now show that
uw

2n
≥ 22n − 8u (2.13)

by demonstrating that (s′ − tu0/2n/2)2 ≤ 8u. We note that s′ < u1 < 2n/2, which implies
(s′)2 < 2n/2u1 ≤ u. Also, since u1t = 2n − s′ or t ≤ 2n/u1 we have(

tu0

2n/2

)2

<

(
2n/2u0

u1

)2

<
(

2n/2+1
)2

≤ 8u

since u1 ≥ 2n/2−1, u0 < 2n/2, and 2n−1 ≤ u. The desired result follows from the observation
that (a− b)2 ≤ max (a2, b2).

Since r = �w/2n�, it follows from (2.13) that

ur = u
⌊ w

2n

⌋
> u

(w

2n
− 1

)
=

uw

2n
− u ≥ 22n − 9u

It follows that r > (22n/u) − 9. Also from (2.12), we see that r ≤ 22n/u. The three-step
adjustment process at the end of recip(u, m) increases ur by the largest integer multiple of
u less than 16u that keeps it less than or equal to 22n. That is, r satisfies ur = 22n − s for
some 0 ≤ s < u, which means that r is the reciprocal of u.

The algorithm for recip(u, n) translates into a circuit as follows: a) recip(u, 1) is
realized by an assignment, and b) recip(u, n), n > 1, is realized by invoking a circuit for
recip(� u

2n/2 �, n/2) followed by a circuit for
⌊
(23n/2 + 1t − ut2)/2n

⌋
and one to implement

the three-step adjustment. The first of these steps computes � u
2n/2 �, which does not require

any gates, merely shifting and discarding bits. The second step requires shifting t left by 3n/2
places, computing t2 and multiplying it by u, subtracting the result from the shifted version
of t, and shifting the final result right by n places and discarding low-order bits. Circuits for
this have size cMint(n, c) for some constant c > 0 and depth O(log n). The third step can be
done by computing ur, adding u2j for j = 3, 2, 1, or 0, and comparing the result with 22n.
The comparisons control whether 2j is added to r or not. The one multiplication and the
additions can be done with circuits of size c′Mint(n, c) for some constant c′ > 0 and depth
O(log n). The comparison operations can be done with a constant additional number of gates
and constant depth. (See Problem 2.19.)

It follows that recip can be realized by a circuit whose size Crecip(n) is no more than a
multiple of the size of an integer multiplication circuit, Mint(n, c), plus the size of a circuit for

72 Chapter 2 Logic Circuits Models of Computation

the invocation of recip(� u
2n/2 �,n/2). That is,

Crecip(n) ≤ Crecip(n/2) + cMint(n, c)
Crecip(1) = 1

for some constant c > 0. This inequality implies the following bound:

Crecip(n) ≤ c

log n∑
j=0

Mint

(n

2j
, c
)
≤ cMint(n, c)

log n∑
j=0

1
2j

= O(Mint(n, c))

which follows since Mint(dn, c) ≤ dMint(n, c) when d ≤ 1.
The depth Drecip(n) of the circuit produced by this algorithm is at most c log n plus the

depth Drecip(n/2). Since the circuit has at most 1 + log2 n stages with a depth of at most
c log n each, Drecip(n) ≤ 2c log2 n when n ≥ 2.

THEOREM 2.10.1 If n = 2k, the reciprocal function f
(n)
recip : Bn �→ Bn+2 for n-bit binary

numbers can be realized by a circuit with the following size and depth:

CΩ

(
f

(n)
recip

)
≤ O(Mint(n, c))

DΩ

(
f

(n)
recip

)
≤ c log2

2 n

VERY FAST RECIPROCAL Beame, Cook, and Hoover [33] have given an O(log n) circuit for
the reciprocal function. It uses a sequence of about n2/ log n primes to represent an n-bit
binary number x, .5 ≤ x < 1, using arithmetic modulo these primes. The size of the circuit
produced is polynomial in n, although much larger than Mint(n, c). Reif and Tate [325] show
that the reciprocal function can be computed with a circuit that is defined only in terms of n
and has a size proportional to Mint (and thus nearly optimal) and depth O(log n log log n).
Although the depth bound is not quite as good as that of Beame, Cook, and Hoover, its size
bound is very good.

2.10.1 Reductions to the Reciprocal
In this section we show that the reciprocal function contains the squaring function as a sub-
function. It follows from Problem 2.33 and the preceding result that integer multiplication
and division have comparable circuit size. We use Taylor’s theorem [315, p. 345] to establish
the desired result.

THEOREM 2.10.2 (Taylor) Let f(x) : � �→ � be a continuous real-valued function defined
on the interval [a, b] whose kth derivative is also continuous for k ≤ n + 1 over the same interval.
Then for a ≤ x0 ≤ x ≤ b, f(x) can be expanded as

f(x) = f(x0) + (x− x0)f [1](x0) +
(x− x0)2

2
f [2](x0) + · · ·+ (x − x0)n

n!
f [n](x0) + rn

where f [n] denotes the nth derivative of f and the remainder rn satisfies

rn =
∫ x

x0

f [n+1](t)
(x− t)n

n!
dt

c©John E Savage 2.10 Reciprocal and Division 73

=
(x − x0)n+1

(n + 1)!
f [n+1](ψ)

for some ψ satisfying x0 ≤ ψ ≤ x.

Taylor’s theorem is used to expand �22n−1/|u|� by applying it to the function f(w) =
(1 + w)−1 on the interval [0, 1]. The Taylor expansion of this function is

(1 + w)−1 = 1 − w + w2 − w3(1 + ψ)−4

for some 0 ≤ ψ ≤ 1. The magnitude of the last term is at most w3.
Let n ≥ 12, k = �n/2�, l = �n/12� and restrict |u| as follows:

|u| = 2k + |a| where

|a| = 2l|b| + 1 and

|b| ≤ 2l−1 − 1

It follows that |a| ≤ 22l−1 − 2l + 1 < 22l−1 for l ≥ 1. Applying the Taylor series expansion
to (1 + |a|/2k)−1, we have⌊

22n−1

(2k + |a|)

⌋
=

⌊
22n−1−k

(
1 − |a|

2k
+
(
|a|
2k

)2

−
(
|a|
2k

)3

(1 + ψ)−4

)⌋
(2.14)

for some 0 ≤ ψ ≤ 1. For the given range of values for |u| both the sum of the first two terms
and the third term on the right-hand side have the following bounds:

22n−1−k(1 − |a|/2k) > 22n−1−k
(
1 − 22l−1/2k

)
22n−1−k(|a|/2k)2 < 22n−1−k

(
22l−1/2k

)2

Since 22l−1/2k < 1/2, the value of the third term, 22n−1−k(|a|/2k)2, is an integer that does
not overlap in any bit positions with the sum of the first two terms.

The fourth term is negative; its magnitude has the following upper bound:

22n−1−4k|a|3(1 + ψ)−4 < 23(2l−1)+2n−1−4k

Expanding the third term, we have

22n−1−3k(|a|)2 = 22n−1−3k(22l|b|2 + 2l+1|b| + 1)

Because 3(2l − 1) ≤ k, the third term on the right-hand side of this expansion has value
22n−1−3k and is larger than the magnitude of the fourth term in (2.14). Consequently the
fourth term does not affect the value of the result in (2.14) in positions occupied by the binary
representation of 22n−1−3k(22l|b|2 + 2l+1|b|). In turn, 2l+1|b| is less than 22l, which means
that the binary representation of 22n−1−3k(22l|b|2) appears in the output shifted but otherwise
without modification. This provides the following result.

LEMMA 2.10.1 The reciprocal function f
(n)
recip contains as a subfunction the squaring function

f
(m)
square for m = �n/12� − 1.

Proof The value of the l-bit binary number denoted by b appears in the output if l =
�n/12� ≥ 1.

Lower bounds similar to those derived for the reciprocal function can be derived for special
fractional powers of binary numbers. (See Problem 2.35.)

74 Chapter 2 Logic Circuits Models of Computation

2.11 Symmetric Functions
The symmetric functions are encountered in many applications. Among the important sym-
metric functions is binary sorting, the binary version of the standard sorting function. A
surprising fact holds for binary sorting, namely, that it can be realized on n inputs by a cir-
cuit whose size is linear in n (see Problem 2.17), whereas non-binary sorting requires on the
order of n log n operations. Binary sorting, and all other symmetric functions, can be realized
efficiently through the use of a counting circuit that counts the number of 1’s among the n
inputs with a circuit of size linear in n. The counting circuit uses AND, OR, and NOT. When
negations are disallowed, binary sorting requires on the order of n log n gates, as shown in
Section 9.6.1.

DEFINITION 2.11.1 A permutation π of an n-tuple x = (x1, x2, . . . , xn) is a reordering
π(x) = (xπ(1), xπ(2), . . . , xπ(n)) of the components of x. That is, {π(1), π(2), . . . , π(n)} =
{1, 2, 3, . . . , n}. A symmetric function f (n) : Bn �→ Bm is a function for which f (n)(x) =
f (n)(π(x)) for all permutations π. Sn,m is the set of all symmetric functions f (n) : Bn �→ Bm

and Sn = Sn,1 is the set of Boolean symmetric functions on n inputs.

If f (3) is symmetric, then f (3)(0, 1, 1) = f (3)(1, 0, 1) = f (3)(1, 1, 0).
The following are symmetric functions:

1. Threshold functions τ
(n)
t : Bn �→ B, 1 ≤ t ≤ n:

τ
(n)
t (x) =

{
1

∑n
j=1 xj ≥ t

0 otherwise

2. Elementary symmetric functions e
(n)
t : Bn �→ B, 0 ≤ t ≤ n:

e
(n)
t (x) =

{
1

∑n
j=1 xj = t

0 otherwise

3. Binary sorting function f
(n)
sort : Bn �→ Bn sorts an n-tuple into descending order:

f
(n)
sort(x) = (τ (n)

1 , τ (n)
2 , . . . , τ (n)

n)

Here τ
(n)
t is the tth threshold function.

4. Modulus functions f
(n)
c, mod m : Bn �→ B, 0 ≤ c ≤ m − 1:

f
(n)
c, mod m(x) =

{
1

∑n
j=1 xj = c mod m

0 otherwise

The elementary symmetric functions et are building blocks in terms of which other sym-
metric functions can be realized at small additional cost. Each symmetric function f (n) is
determined uniquely by its value vt, 0 ≤ t ≤ n, when exactly t of the input variables are 1. It
follows that we can write f (n)(x) as

f (n)(x) =
∨

0≤t≤n

vt ∧ e
(n)
t (x) =

∨
t | vt=1

e
(n)
t (x) (2.15)

c©John E Savage 2.11 Symmetric Functions 75

Thus, efficient circuits for the elementary symmetric functions yield efficient circuits for gen-
eral symmetric functions.

An efficient circuit for the elementary symmetric functions can be obtained from a circuit
for counting the number of 1’s among the variables x. This counting function f

(n)
count :

Bn �→ B�log2(n+1)� produces a �log2(n + 1)�-bit binary number representing the number of
1’s among the n inputs x1, x2, . . . , xn.

A recursive construction for the counting function is shown in Fig. 2.21 (b) when m =
2l+1 − 1. The m inputs are organized into three groups, the first 2l − 1 Boolean variables u,
the second 2l − 1 variables v, and the last variable xm. The sum is represented by l “sum bits”
s
(l+1)
j , 0 ≤ j ≤ l − 1, and the “carry bit” c

(l+1)
l−1 . This sum is formed by adding in a ripple

adder the outputs s
(l)
j , 0 ≤ j ≤ l − 2, and c

(l+1)
l from the two counting circuits, each on

2l − 1 inputs, and the mth input xm. (We abuse notation and use the same variables for the
outputs of the different counting circuits.) The counting circuit on 22 − 1 = 3 inputs is the
full adder of Fig. 2.21(a). From this construction we have the following theorem:

LEMMA 2.11.1 For n = 2k − 1 , k ≥ 2, the counting function f
(n)
count : Bn �→ B�log2(n+1)�

can be realized with the following circuit size and depth over the basis Ω = {∧,∨,⊕}:

CΩ

(
f

(n)
count

)
≤ 5(2k − k − 1)

DΩ

(
f

(n)
count

)
≤ 4k − 5

Proof Let C(k) = CΩ

(
f

(n)
count

)
and D(k) = DΩ

(
f

(n)
count

)
when n = 2k − 1. Clearly,

C(2) = 5 and D(2) = 3 since a full adder over Ω = {∧,∨,⊕} has five gates and depth 3.
The following inequality is immediate from the construction:

C(k) ≤ 2C(k − 1) + 5(k − 1)

c
(l+1)
j

c
(l+1)
l

s
(l+1)
0s

(l+1)
js

(l+1)
l−2s

(l+1)
l−1

v

c
(l+1)
j+1 c

(l+1)
1

u

c
(l+1)
l−1

s
(l)
l−2 s

(l)
j s

(l)
0s

(l)
l−2 s

(l)
j s

(l)
0

c
(l)
l−1 c

(l)
l−1

c
(l+1)
j

s
(l)
j

2

1

2
3

(a) (b)

Full Adder

f
((m−1)/2)
count

s
(l+1)
j

s
(l)
j

f
((m−1)/2)
count

xm

c
(l+1)
j+1

FA FA FA FA

Figure 2.21 A recursive construction for the counting function f
(m)
count, m = 2l+1 − 1.

76 Chapter 2 Logic Circuits Models of Computation

The size bound follows immediately. The depth bound requires a more careful analysis.
Shown in Fig. 2.21(a) is a full adder together with notation showing the amount by

which the length of a path from one input to another is increased in passing through it
when the full-adder circuit used is that shown in Fig. 2.14 and described by Equation 2.6.
From this it follows that

DΩ

(
c
(l+1)
j+1

)
= max

(
DΩ

(
c
(l+1)
j

)
+ 2, DΩ

(
s
(l)
j

)
+ 3

)
DΩ

(
s
(l+1)
j

)
= max

(
DΩ

(
c
(l+1)
j

)
+ 1, DΩ

(
s
(l)
j

)
+ 2

)
for 2 ≤ l and 0 ≤ j ≤ l − 1, where s

(l)
l−1 = c

(l)
l−1. It can be shown by induction that

DΩ

(
c
(k)
j

)
= 2(k+j)−3, 1 ≤ j ≤ k−1, and DΩ

(
s
(k)
j

)
= 2(k+j)−2, 0 ≤ j ≤ k−2,

both for 2 ≤ k. (See Problem 2.16.) Thus, DΩ

(
f

(n)
count

)
= DΩ

(
c
(k)
k−1

)
= (4k − 5).

We now use this bound to derive upper bounds on the size and depth of symmetric func-
tions in the class Sn,m.

THEOREM 2.11.1 Every symmetric function f (n) : Bn �→ Bm can be realized with the following
circuit size and depth over the basis Ω = {∧,∨,⊕} where φ(k) = 5(2k − k − 1):

CΩ

(
f (n)

)
≤ m�(n + 1)/2� + φ(k) + 2(n + 1) + (2�log2(n + 1)� − 2)

√
2(n + 1)

DΩ

(
f (n)

)
≤ 5�log2(n + 1)� + �log2�log2(n + 1)�� − 4

for k = �log2(n + 1)� even.

Proof Lemma 2.11.1 establishes bounds on the size and depth of the function f
(n)
count for

n = 2k − 1. For other values of n, let k = �log2(n + 1)� and fill out the 2k − 1 − n
variables with 0’s.

The elementary symmetric functions are obtained by applying the value of f
(n)
count as

argument to the decoder function. A circuit for this function has been constructed that has
size 2(n + 1) + (2�log2(n + 1)� − 2)

√
2(n + 1) and depth �log2�log2(n + 1)�� + 1.

(See Lemma 2.5.4. We use the fact that 2�log2 m� ≤ 2m.) Thus, all elementary symmetric
functions on n variables can be realized with the following circuit size and depth:

CΩ

(
e
(n)
0 , e(n)

1 , . . . , e(n)
n

)
≤ φ(k) + 2(n + 1) + (2�log2(n + 1)� − 2)

√
2(n + 1)

DΩ

(
e
(n)
0 , e(n)

1 , . . . , e(n)
n

)
≤ 4k − 5 + �log2�log2(n + 1)��+ 1

The expansion of Equation (2.15) can be used to realize an arbitrary Boolean symmetric
function. Clearly, at most n OR gates and depth �log2 n� suffice to realize each one of m
arbitrary Boolean symmetric functions. (Since the vt are fixed, no ANDs are needed.) This
number of ORs can be reduced to (n− 1)/2 as follows: if �(n + 1)/2� or more elementary
functions are needed, use the complementary set (of at most �(n + 1)/2� functions) and
take the complement of the result. Thus, no more than �(n+1)/2�−1 ORs are needed per
symmetric function (plus possibly one NOT), and depth at most �log2�((n + 1)/2)�� + 1
≤ �log2(n + 1)�.

c©John E Savage 2.12 Most Boolean Functions Are Complex 77

This theorem establishes that the binary sorting f
(n)
sort : Bn �→ Bn has size O(n2). In fact,

a linear-size circuit can be constructed for it, as stated in Problem 2.17.

2.12 Most Boolean Functions Are Complex
As we show in this section, the circuit size and depth of most Boolean functions f : Bn �→ B
on n variables are at least exponential and linear in n, respectively. Furthermore, we show in
Section 2.13 that such functions can be realized with circuits whose size and depth are at most
exponential and linear, respectively, in n. Thus, the circuit size and depth of most Boolean
functions on n variables are tightly bounded. Unfortunately, this result says nothing about the
size and depth of a specific function, the case of most interest.

Each Boolean function on n variables is represented by a table with 2n rows and one
column of values for the function. Since each entry in this one column can be completed in
one of two ways, there are 22n

ways to fill in the column. Thus, there are exactly 22n

Boolean
functions on n variables. Most of these functions cannot be realized by small circuits because
there just are not enough small circuits.

THEOREM 2.12.1 Let 0 < ε < 1. The fraction of the Boolean functions f : Bn �→ B that
have size complexity CΩ0(f) satisfying the following lower bound is at least 1 − 2−(ε/2)2n

when
n ≥ 2[(1 − ε)/ε] log2[(3e)2(1 − ε/2)]. (Here e = 2.71828 . . . is the base of the natural
logarithm.)

CΩ0(f) ≥ 2n

n
(1 − ε)− 2n2

Proof Each circuit contains some number, say g, of gates and each gate can be one of the
three types of gate in the standard basis. The circuit with no gates computes the constant
functions with value of 1 or 0 on all inputs.

An input to a gate can either be the output of another gate or one of the n input variables.
(Since the basis Ω0 is {AND, OR, NOT}, no gate need have a constant input.) Since each
gate has at most two inputs, there are at most (g − 1 + n)2 ways to connect inputs to one
gate and (g − 1 + n)2g ways to interconnect g gates. In addition, since each gate can be
one of three types, there are 3g ways to name the gates. Since there are g! orderings of
g items (gates) and the ordering of gates does not change the function they compute, at
most N(g) = 3g(g + n)2g/g! distinct functions can be realized with g gates. Also, since
g! ≥ gge−g (see Problem 2.2) it follows that

N(g) ≤ (3e)g[(g2 + 2gn + n2)/g]g ≤ (3e)g(g + 2n2)g

The last inequality follows because 2gn + n2 ≤ 2gn2 for n ≥ 2. Since the last bound is an
increasing function of g, N(0) = 2 and G + 1 ≤ (3e)G for G ≥ 1, the number M(G) of
functions realizable with between 0 and G gates satisfies

M(G) ≤ (G + 1)(3e)G(G + 2n2)G ≤ [(3e)2(G + 2n2)]G ≤ (xx)1/a

where x = a(G + 2n2) and a = (3e)2. With base-2 logarithms, it is straightforward to
show that xx ≤ 2x0 if x ≤ x0/ log2 x0 and x0 ≥ 2.

If M(G) ≤ 2(1−δ)2n

for 0 < δ < 1, at most a fraction 2(1−δ)2n

/22n

= 2−δ2n

of the
Boolean functions on n variables have circuits with G or fewer gates.

78 Chapter 2 Logic Circuits Models of Computation

Let G < 2n(1 − ε)/n− 2n2. Then x = a(G + 2n2) ≤ a2n(1 − ε)/n ≤ x0/ log2 x0

for x0 = a2n(1 − ε/2) when n ≥ 2[(1 − ε)/ε] log2[(3e)2(1 − ε/2)], as can be shown
directly. It follows that M(G) ≤ (xx)1/a ≤ 2x0 = 22n(1−ε/2).

To show that most Boolean functions f : Bn �→ B over the basis Ω0 require circuits with
a depth linear in n, we use a similar argument. We first show that for every circuit there is a
tree circuit (a circuit in which either zero or one edge is directed away from each gate) that
computes the same function and has the same depth. Thus when searching for small-depth
circuits it suffices to look only at tree circuits. We then obtain an upper bound on the number
of tree circuits of depth d or less and show that unless d is linear in n, most Boolean functions
on n variables cannot be realized with this depth.

LEMMA 2.12.1 Given a circuit for a function f : Bn �→ Bm, a tree circuit can be constructed of
the same depth that computes f .

Proof Convert a circuit to a tree circuit without changing its depth as follows: find a vertex
v with out-degree 2 or more at maximal distance from an output vertex. Attach a copy of the
tree subcircuit with output vertex v to each of the edges directed away from v. This reduces
by 1 the number of vertices with out-degree greater than 1 but doesn’t change the depth or
function computed. Repeat this process on the new circuit until no vertices of outdegree
greater than 1 remain.

We count the number of tree circuits of depth d as follows. First, we determine T (d), the
number of binary, unlabeled, and unoriented trees of depth d. (The root has two descendants
as does every other vertex except for leaves which have none. No vertex carries a label and we
count as one tree those trees that differ only by the exchange of the two subtrees at a vertex.)
We then multiply T (d) by the number of ways to label the internal vertices with one of at
most three gates and the leaves by at most one of n variables or constants to obtain an upper
bound on N(d), the number of distinct tree circuits of depth d. Since a tree of depth d has at
most 2d − 1 internal vertices and 2d leaves (see Problem 2.3), N(d) ≤ T (d)32d

(n + 2)2d

.

LEMMA 2.12.2 When d ≥ 4 the number T (d) of depth-d unlabeled, unoriented binary trees
satisfies T (d) ≤ (56)2d−4

.

Proof There is one binary tree of depth 0, a tree containing a single vertex, and one of
depth 1. Let C(d) be the number of unlabeled, unoriented binary trees of depth d or less,
including depth 0. Thus, C(0) = 1, T (1) = 1, and C(1) = 2. This recurrence for C(d)
follows immediately for d ≥ 1:

C(d) = C(d− 1) + T (d) (2.16)

We now enumerate the unoriented, unlabeled binary trees of depth d + 1. Without loss of
generality, let the left subtree of the root have depth d. There are T (d) such subtrees. The
right subtree can either be of depth d− 1 or less (there are C(d− 1) such trees) or of depth
d. In the first case there are T (d)C(d−1) trees. In the second, there are T (d)(T (d)−1)/2
pairs of different subtrees (orientation is not counted) and T (d) pairs of identical subtrees.
It follows that

T (d + 1) = T (d)C(d− 1) + T (d)(T (d)− 1)/2 + T (d) (2.17)

c©John E Savage 2.13 Upper Bounds on Circuit Size 79

Thus, T (2) = 2, C(2) = 4, T (3) = 7, C(3) = 11, and T (4) = 56. From this recurrence
we conclude that T (d+1) ≥ T 2(d)/2. We use this fact and the inequality y ≥ 1/(1−1/y),
which holds for y ≥ 2, to show that (T (d + 1)/T (d)) + T (d)/2 ≤ T (d + 1)/2. Since
T (d) ≥ 4 for d ≥ 3, it follows that T (d)/2 ≥ 1/(1 − 2/T (d)). Replacing T (d)/2 by this
lower bound in the inequality T (d+ 1) ≥ T 2(d)/2, we achieve the desired result by simple
algebraic manipulation. We use this fact below.

Solving the equation (2.17) for C(d− 1), we have

C(d− 1) =
T (d + 1)

T (d)
− (T (d) + 1)

2
(2.18)

Substituting this expression into (2.16) yields the following recurrence:

T (d + 2)
T (d + 1)

=
T (d + 1)

T (d)
+

(T (d + 1) + T (d))
2

Since (T (d + 1)/T (d)) + T (d)/2 ≤ T (d + 1)/2, it follows that T (d + 2) satisfies the
inequality T (d + 2) ≤ T 2(d + 1) when d ≥ 3 or T (d) ≤ T 2(d − 1) when d ≥ 5 and
d− 1 ≥ 4. Thus, T (d) ≤ T 2j

(d− j) for d− j ≥ 4 or T (d) ≤ (56)2d−4
for d ≥ 4.

Combine this with the early upper bound on N(d) for the number of tree circuits over Ω0

of depth d and we have that N(d) ≤ c2d

for d ≥ 4, where c = 3((56)1/16)(n+2). (Note that
3(56)1/16 ≤ 4.) The number of such trees of depth 0 through d is at most N(d + 1) ≤ c2d+1

.
But if c2D0+1

is at most 22n(1−δ), then a fraction of at most 2−δ2n

of the Boolean functions on
n variables have depth D0 or less. But this holds when

D0 = n − 1 − δ log2 e− log2 log24(n + 2) = n − log log n −O(1)

since ln(1 − x) ≤ −x. Note that d ≥ 4 implies that n ≥ d + 1.

THEOREM 2.12.2 For each 0 < δ < 1 a fraction of at least 1 − 2−δ2n

of the Boolean functions
f : Bn �→ B have depth complexity DΩ0(f) that satisfies the following bound when n ≥ 5:

DΩ0(f) ≥ n− log log n −O(1)

As the above two theorems demonstrate, most Boolean functions on n variables require
circuits whose size and depth are approximately 2n/n and n, respectively. Fortunately, most
of the useful Boolean functions are far less complex than these bounds suggest. In fact, we
often encounter functions whose size is polynomial in n and whose depth is logarithmic in or
a small polynomial in the logarithm of the size of its input. Functions that are polynomial in
the logarithm of n are called poly-logarithmic.

2.13 Upper Bounds on Circuit Size
In this section we demonstrate that every Boolean function on n variables can be realized with
circuit size and depth that are close to the lower bounds derived in the preceding section.
We begin by stating the obvious upper bounds on size and depth and then proceed to obtain
stronger (that is, smaller) upper bounds on size through the use of refined arguments.

80 Chapter 2 Logic Circuits Models of Computation

As shown in Section 2.2.2, every Boolean function f : Bn �→ B can be realized as the OR

of its minterms. As shown in Section 2.5.4, the minterms on n variables are produced by the

decoder function f
(n)
decode : Bn �→ B2n

, which has a circuit with 2n + (2n− 2)2n/2 gates and

depth �log2 n�+ 1. Consequently, we can realize f from a circuit for f
(n)
decode and an OR tree

on at most 2n inputs (which has at most 2n − 1 two-input OR’s and depth at most n). We
have that every function f : Bn �→ B has circuit size and depth satisfying:

CΩ(f) ≤ CΩ

(
f

(n)
decode

)
+ 2n − 1 ≤ 2n+1 + (2n− 2)2n/2 − 1

DΩ(f) ≤ DΩ

(
f

(n)
decode

)
+ n ≤ n + �log2 n + 1� + 1

Thus every Boolean function f : Bn �→ B can be realized with an exponential number of
gates and depth n+�log2 n�+1. Since the depth lower bound of n−O(log log n) applies to
almost all Boolean functions on n variables (see Section 2.12), this is a very good upper bound
on depth. We improve upon the circuit size bound after summarizing the depth bound.

THEOREM 2.13.1 The depth complexity of every Boolean function f : Bn �→ B satisfies the
following bound:

DΩ0(f) ≤ n + �log2 n�+ 1

We now describe a procedure to construct circuits of small size for arbitrary Boolean func-
tions on n variables. By the results of the preceding section, this size will be exponential in n.
The method of approach is to view an arbitrary Boolean function f : Bn �→ B on n input vari-
ables x as a function of two sets of variables, a, the first k variables of x, and b, the remaining
n − k variables of x. That is, x = ab where a = (x1, . . . , xk) and b = (xk+1, . . . , xn).

As suggested by Fig. 2.22, we rearrange the entries in the defining table for f into a rectan-
gular table with 2k rows indexed by a and 2n−k columns indexed by b. The lower right-hand
quadrant of the table contains the values of the function f . The value of f on x is the entry
at the intersection of the row indexed by the value of a and the column indexed by the value
of b. We fix s and divide the lower right-hand quadrant of the table into p − 1 groups of s
consecutive rows and one group of s′ ≤ s consecutive rows where p = �2k/s�. (Note that
(p− 1)s + s′ = 2k.) Call the ith collections of rows Ai. This table serves as the basis for the
(k, s)-Lupanov representation of f , from which a smaller circuit for f can be constructed.

Let fi : Bn �→ B be f restricted to Ai; that is,

fi(x) =

{
f(x) if a ∈ Ai

0 otherwise.

It follows that f can be expanded as the OR of the fi:

f(x) =
p∨

i=1

fi(x)

We now expand fi. When b is fixed, the values for fi(ab) when a ∈ Ai constitute an
s-tuple (s′-tuple) v for 1 ≤ i ≤ p − 1 (for i = p). Let Bi,v be those (n − k)-tuples b for

c©John E Savage 2.13 Upper Bounds on Circuit Size 81

x4 0 1 0 1 0 1 0 1
x5 0 0 1 1 0 0 1 1
x6 0 0 0 0 1 1 1 1

x1 x2 x3

0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 1 A1

0 1 0 1 0 0 1 0 0 0 1
0 1 1 1 0 1 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 A2

1 0 1 1 1 0 1 1 0 0 0
1 1 0 1 0 1 1 0 1 1 0
1 1 1 0 1 0 0 0 0 1 0 A3

Figure 2.22 The rectangular representation of the defining table of a Boolean function used in
its (k, s)-Lupanov representation.

which v is the tuple of values of fi when a ∈ Ai. (Note that the non-empty sets Bi,v for

different values of v are disjoint.) Let f
(c)
i,v (b) : Bn−k �→ B be defined as

f
(c)
i,v (b) =

{
1 if b ∈ Bi,v

0 otherwise.

Finally, we let f
(r)
i,v (a) : Bk �→ B be the function that has value vj , the jth component of v,

when a is the jth k-tuple in Ai:

f
(r)
i,v (a) =

{
1 if a is the jth element of Ai and vj = 1

0 otherwise.

It follows that fi(x) =
∨

v f
(r)
i,v (a)f (c)

i,v(b). Given these definitions, f can be expanded in
the following (k, s)-Lupanov representation:

f(x) =
p∨

i=1

∨
v

f
(r)
i,v (a) ∧ f

(c)
i,v (b) (2.19)

We now bound the number of logic elements needed to realize an arbitrary function f : Bn �→
B in this representation.

Consider the functions f
(r)
i,v (a) for a fixed value of v. We construct a decoder circuit for

the minterms in a that has size at most 2k + (k − 2)2k/2. Each of the functions f
(r)
i,v can be

realized as the OR of s minterms in a for 1 ≤ i ≤ p − 1 and s′ minterms otherwise. Thus,
(p−1)(s−1)+(s′−1) ≤ 2k two-input OR’s suffice for all values of i and a fixed value of v.

Hence, for each value of v the functions f
(r)
i,v can be realized by a circuit of size O(2k). Since

there are at most 2s choices for v, all f
(r)
i,v can be realized by a circuit of size O(2k+s).

Consider next the functions f
(c)
i,v(b). We construct a decoder circuit for the minterms of

b that has size at most 2n−k + (n − k − 2)2(n−k)/2. Since for each i, 1 ≤ i ≤ p, the sets

82 Chapter 2 Logic Circuits Models of Computation

Bi,v for different values of v are disjoint, f
(c)
i,v (b) can be realized as the OR of at most 2n−k

minterms using at most 2n−k two-input OR’s. Thus, all f
(c)
i,v (b), 1 ≤ i ≤ p, can be realized

with p2n−k + 2n−k + (n− k − 2)2(n−k)/2 gates.
Consulting (2.19), we see that to realize f we must add one AND gate for each i and tuple

v. We must also add the number of two-input OR gates needed to combine these products.
Since there are at most p2s products, at least p2s OR gates are needed for a total of p2s+1

gates.
Let Ck,s(f) be the total number of gates needed to realize f in the (k, s)-Lupanov repre-

sentation. Ck,s(f) satisfies the following inequality:

Ck,s(f) ≤ O(2k+s) + O(2(n−k)) + p(2n−k + 2s+1)

Since p = �2k/s�, p ≤ 2k/s + 1, this expands to

Ck,s(f) ≤ O(2k+s) + O(2n−k) +
2n

s
+

2k+s+1

s

Now let k = �3 log2 n� and s = �n − 5 log2 n�. Then, k + s ≤ n − log2 n2 + 2 and
n − k ≤ n− log2 n3. As a consequence, for large n, we have

Ck,s(f) ≤ O

(
2n

n2

)
+ O

(
2n

n3

)
+

2n

(n− 5 log2 n)

We summarize the result in a theorem.

THEOREM 2.13.2 For each ε > 0 there exists some N0 > 1 such that for all n ≥ N0 every
Boolean function f : Bn �→ B has a circuit size complexity satisfying the following upper bound:

CΩ0(f) ≤ 2n

n
(1 + ε)

Since we show in Section 2.12 that for 0 < ε < 1 almost all Boolean functions f : Bn �→
B have a circuit size complexity satisfying

CΩ0(f) ≥ 2n

n
(1 − ε)− 2n2

for n ≥ 2[(1 − ε)/ε] log2[(3e)2(1 − ε/2)], this is a good lower bound.

. .
Problems
MATHEMATICAL PRELIMINARIES

2.1 Show that the following identities on geometric series hold:

s∑
j=0

aj =
(as+1 − 1)

(a − 1)

s∑
j=0

ajj =
a

(a− 1)2
(sas+1 − (s + 1)as + 1)

c©John E Savage Problems 83

2.5

2.0

1.5

1.0

0.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12 13

n

log n

log(n + 1)

Figure 2.23 The natural logarithm of the factorial n! is
∑n

k=1 ln k, which is bounded below
by

∫ n

1 lnx dx and above by
∫ n

1 ln(x + 1) dx.

2.2 Derive tight upper and lower bounds on the factorial function n! = n(n−1) · · · 3 2 1.

Hint: Derive bounds on ln n! where ln is the natural logarithm. Use the information
given in Fig. 2.23.

2.3 Let T (d) be a complete balanced binary tree of depth d. T (1), shown in Fig. 2.24(a),
has a root and two leaves. T (d) is obtained by attaching to each of the leaves of T (1)
copies of T (d− 1). T (3) is shown in Fig. 2.24(b).

a) Show by induction that T (d) has 2d leaves and 2d − 1 non-leaf vertices.

b) Show that any binary tree (each vertex except leaves has two descendants) with n
leaves has n− 1 non-leaf vertices and depth at least �log2 n�.

(a) (b)

Figure 2.24 Complete balanced binary trees a) of depth one and b) depth 3.

84 Chapter 2 Logic Circuits Models of Computation

BINARY FUNCTIONS AND LOGIC CIRCUITS

2.4 a) Write a procedure EXOR in a language of your choice that writes the description
of the straight-line program given in equation (2.2).

b) Write a program in a language of your choice that evaluates an arbitrary straight-
line program given in the format of equation (2.2) in which each input value is
specified.

2.5 A set of Boolean functions forms a complete basis Ω if a logic circuit can be constructed
for every Boolean function f : Bn �→ B using just functions in Ω.

a) Show that the basis consisting of one function, the NAND gate, a gate on two
inputs realizing the NOT of the AND of its inputs, is complete.

b) Determine whether or not the basis {AND, OR} is complete.

2.6 Show that the CNF of a Boolean function f is unique and is the negation of the DNF
of f .

2.7 Show that the RSE of a Boolean function is unique.

2.8 Show that any SOPE (POSE) of the parity function f
(n)
⊕ has exponentially many terms.

Hint: Show by contradiction that every term in a SOPE (every clause of a POSE)
of f

(n)
⊕ contains every variable. Then use the fact that the DNF (CNF) of f

(n)
⊕ has

exponentially many terms to complete the proof.

2.9 Demonstrate that the RSE of the OR of n variables, f
(n)
∨ , includes every product term

except for the constant 1.

2.10 Consider the Boolean function f
(n)
mod 3 on n variables, which has value 1 when the sum

of its variables is zero modulo 3 and value 0 otherwise. Show that it has exponential-size
DNF, CNF, and RSE normal forms.
Hint: Use the fact that the following sum is even:∑

0≤j≤k

(
3k

3j

)

2.11 Show that every Boolean function f (n) : Bn �→ B can be expanded as follows:

f(x1, x2, . . . , xn) = x1f(1, x2, . . . , xn) ∨ x1f(0, x2, . . . , xn)

Apply this expansion to each variable of f(x1, x2, x3) = x1x2 ∨ x2x3 to obtain its
DNF.

2.12 In a dual-rail logic circuit 0 and 1 are represented by the pairs (0, 1) and (1, 0), re-
spectively. A variable x is represented by the pair (x, x). A NOT in this representation
(called a DRL-NOT) is a pair of twisted wires.

a) How are AND (DRL-AND) and OR (DRL-OR) realized in this representation? Use
standard AND and OR gates to construct circuits for gates in the new representa-
tion. Show that every function f : Bn �→ Bm can be realized by a dual-rail logic
circuit in which the standard NOT gates are used only on input variables (to obtain
the pair (x, x̄)).

c©John E Savage Problems 85

b) Show that the size and depth of a dual-rail logic circuit for a function f : Bn �→ B
are at most twice the circuit size (plus the NOTs for the inputs) and at most one
more than the circuit depth of f over the basis {AND, OR, NOT}, respectively.

2.13 A function f : Bn �→ B is monotone if for all 1 ≤ j ≤ n, f(x1, . . . , xj−1, 0, xj+1,
. . . , xn) ≤ f(x1, . . . , xj−1, 1, xj+1, . . . , xn) for all values of the remaining variables;
that is, increasing any variable from 0 to 1 does not cause the function to decrease its
value from 1 to 0.

a) Show that every circuit over the basis Ωmon = {AND, OR} computes monotone
functions at every gate.

b) Show that every monotone function f (n) : Bn �→ B can be expanded as follows:

f(x1, x2, . . . , xn) = x1f(1, x2, . . . , xn) ∨ f(0, x2, . . . , xn)

Show that this implies that every monotone function can be realized by a logic circuit
over the monotone basis Ωmon = {AND, OR}.

SPECIALIZED FUNCTIONS

2.14 Complete the proof of Lemma 2.5.3 by solving the recurrences stated in Equation (2.4).

2.15 Design a multiplexer circuit of circuit size 2n+1 plus lower-order terms when n is even.

Hint: Construct a smaller circuit by applying the decomposition given in Section 2.5.4
of the minterms of n variables into minterms on the two halves of the n variables.

2.16 Complete the proof of Lemma 2.11.1 by establishing the correctness of the inductive
hypothesis stated in its proof.

2.17 The binary sorting function is defined in Section 2.11. Show that it can be realized
with a circuit whose size is O(n) and depth is O(log n).

Hint: Consider using a circuit for f
(m)
count, a decoder circuit and other circuitry. Is there

a role for a prefix computation in this problem?

LOGICAL FUNCTIONS

2.18 Let f
(n)
member : B(n+1)b �→ B be defined below.

f
(n)
member(x1, x2, . . . , xn, y) =

{
1 xi = y for some 1 ≤ i ≤ n

0 otherwise

where xi, y ∈ Bb and xi = y if and only if they agree in each position.

Obtain good upper bounds to CΩ

(
f

(n)
member

)
and DΩ

(
f

(n)
member

)
by constructing a

circuit over the basis Ω = {∧,∨,¬,⊕}.

2.19 Design a circuit to compare two n-bit binary numbers and return the value 1 if the first
is larger than or equal to the second and 0 otherwise.
Hint: Compare each pair of digits of the same significance and generate three out-
comes, yes, maybe, and no, corresponding to whether the first digit is greater than,
equal to or less than the second. How can you combine the outputs of such a compar-
ison circuit to design a circuit for the problem? Does a prefix computation appear in
your circuit?

86 Chapter 2 Logic Circuits Models of Computation

PARALLEL PREFIX

2.20 a) Let �copy : S2 �→ S be the operation

a �copy b = a

Show that (S,�copy) is a semigroup for S an arbitrary non-empty set.
b) Let · denote string concatenation over the set {0, 1}∗ of binary strings. Show that

it is associative.

2.21 The segmented prefix computation with the associative operation � on a “value” n-
vector x over a set S, given a “flag vector” φ over B, is defined as follows: the value
of the ith entry yi of the “result vector” y is xi if its flag is 1 and otherwise is the
associative combination with � of xi and the entries to its left up to and including the
first occurrence of a 1 in the flag array. The leftmost bit in every flag vector is 1. An
example of a segmented prefix computation is given in Section 2.6.

Assuming that (S,�) is a semigroup, a segmented prefix computation over the set
S ×B of pairs is a special case of general prefix computation. Consider the operator ⊗
on pairs (xi, φi) of values and flags defined below:

((x1, φ1) ⊗ (x2, φ2)) =

{
(x2, 1) φ2 = 1

(x1 � x2, φ1) φ2 = 0

Show that ((S,B),⊗) is a semigroup by proving that (S,B) is closed under the oper-
ator ⊗ and that the operator ⊗ is associative.

2.22 Construct a logic circuit of size O(n log n) and depth O(log2 n) that, given a binary n-
tuple x, computes the n-tuple y containing the running sum of the number of 1’s in x.

2.23 Given 2n Boolean variables organized as pairs 0a or 1a, design a circuit that moves pairs
of the form 1a to the left and the others to the right without changing their relative
order. Show that the circuit has size O(n log2 n).

2.24 Linear recurrences play an important role in many problems including the solution
of a tridiagonal linear system of equations. They are defined over “near-rings,” which
are slightly weaker than rings in not requiring inverses under the addition operation.
(Rings are defined in Section 6.2.1.)
A near-ring (R, ·, +) is a set R together with an associative multiplication operator ·
and an associative and commutative addition operator +. (If + is commutative, then
for all a, b ∈ R, a + b = b + a.) In addition, · distributes over +; that is, for all
a, b, c ∈ R, a · (b + c) = a · b + a · c.

A first-order linear recurrence of length n is an n-tuple x = (x1, x2, . . . , xn) of vari-
ables over a near-ring (R, ·, +) that satisfies x1 = b1 and the following set of identities
for 2 ≤ j ≤ n defined in terms of elements {aj , bj ∈ R | 2 ≤ j ≤ n}:

xj = aj · xj−1 + bj

Use the ideas of Section 2.7 on carry-lookahead addition to show that xj can be written

xj = cj · x1 + dj

where the pairs (cj , dj) are the result of a prefix computation.

c©John E Savage Problems 87

ARITHMETIC OPERATIONS

2.25 Design a circuit that finds the most significant non-zero position in an n-bit binary
number and logically shifts the binary number left so that the non-zero bit is in the most
significant position. The circuit should produce not only the shifted binary number but
also a binary representation of the amount of the shift.

2.26 Consider the function π[j, k] = π[j, k− 1] � π[k, k] for 1 ≤ j < k ≤ n− 1, where �
is defined in Section 2.7.1. Show by induction that the first component of π[j, k] is 1
if and only if a carry propagates through the full adder stages numbered j, j + 1, . . . , k
and its second component is 1 if and only if a carry is generated at one of these stages,
propagates through subsequent stages, and appears as a carry out of the kth stage.

2.27 Give a construction of a circuit for subtracting one n-bit positive binary integer from
another using the two’s-complement operation. Show that the circuit has size O(n)
and depth O(log n).

2.28 Complete the proof of Theorem 2.9.3 outlined in the text. In particular, solve the
recurrence given in equation (2.10).

2.29 Show that the depth bound stated in Theorem 2.9.3 can be improved from O(log2 n)
to O(log n) without affecting the size bound by using carry-save addition to form the
six additions (or subtractions) that are involved at each stage.

Hint: Observe that each multiplication of (n/2)-bit numbers at the top level is ex-
panded at the next level as sums of the product of (n/4)-bit numbers and that this type
of replacement continues until the product is formed of 1-bit numbers. Observe also
that 2n-bit carry-save adders can be used at the top level but that the smaller carry-save
adders can be used at successively lower levels.

2.30 Residue arithmetic can be used to add and subtract integers. Given positive relatively
prime integers p1, p2, . . . , pk (no common factors), an integer n in the set {0, 1, 2, . . . ,
N − 1}, N = p1p2 · · · pk, can be represented by the k -tuple n = (n1, n2, . . . , nk),
where nj = n mod pj . Let n and m be in this set.

a) Show that if n �= m, n �= m.

b) Form n + m by adding corresponding jth components modulo pj . Show that
n + m uniquely represents (n + m) mod N .

c) Form n × m by multiplying corresponding jth components of n and m modulo
pj . Show that n ×m is the unique representation for (nm) mod N .

2.31 Use the circuit designed in Problem 2.19 to build a circuit that adds two n-bit binary
numbers modulo an arbitrary third n-bit binary number. You may use known circuits.

2.32 In prime factorization an integer n is represented as the product of primes. Let p(N)
be the largest prime less than N . Then, n ∈ {2, . . . , N − 1} is represented by the
exponents (e2, e3, . . ., ep(N)), where n = 2e2 3e3 . . . p(N)ep(N) . The representation
for the product of two integers in this system is the sum of the exponents of their
respective prime factors. Show that this leads to a multiplication circuit whose depth
is proportional to log log log N . Determine the size of the circuit using the fact that
there are O(N/ log N) primes in the set {2, . . . , N − 1}.

88 Chapter 2 Logic Circuits Models of Computation

2.33 Construct a circuit for the division of two n-bit binary numbers from circuits for the

reciprocal function f
(n)
recip and the integer multiplication function f

(n)
mult. Determine

the size and depth of this circuit and the accuracy of the result.

2.34 Let f : Bn �→ Bkn be an integer power of x; that is, f(x) = xk for some integer k.

Show that such functions contain the shifting function f
(m)
shift as a subfunction for some

integer m. Determine m dependent on n and k.

2.35 Let f : Bn �→ Bn be a fractional power of x of the form f(x) = �xq/2k�, 0 <

q < 2k < log2 n. Show that this function contains the shifting function f
(m)
shift as a

subfunction. Find the largest value of m for which this holds.

Chapter Notes
Logic circuits have a long history. Early in the nineteenth century Babbage designed me-
chanical computers capable of logic operations. In the twentieth century logic circuits, called
switching circuits, were constructed of electromechanical relays. The earliest formal analysis of
logic circuits is attributed to Claude Shannon [306]; he applied Boolean algebra to the analysis
of logic circuits, the topic of Section 2.2. Reduction between problems, a technique central
to computer science, is encountered whenever one uses an existing program to solve a new
problem by pre-processing inputs and post-processing outputs. Reductions also provide a way
to identify problems with similar complexity, an idea given great importance by the work of
Cook [74], Karp [159], and Levin [199] on NP-completeness. (See also [335].) This topic is
explored in depth in Chapter 8.

The upper bound on the size of ripple adder described in Section 2.7 cannot be improved,
as shown by Red’kin [276] using the gate elimination method of Section 9.3.2. Prefix compu-
tations, the subject of Section 2.6, were first used by Ofman [234]. He constructed the adder
based on carry-lookahead addition described in Section 2.7. Krapchenko [173] and Brent
[57] developed adders with linear size whose depth is �log n�+O(

√
�log n�), asymptotically

almost as good at the best possible depth bound of �log n�.
Ofman used carry-save addition for fast integer multiplication [234]. Wallace indepen-

dently discovered carry-save addition and logarithmic depth circuits for addition and multipli-
cation [356]. The divide-and-conquer integer multiplication algorithm of Section 2.9.2 is due
to Karatsuba [155]. As mentioned at the end of Section 2.9, Schönhage and Strassen [303]
have designed binary integer multipliers of depth O(log n) whose size is O(n log n log log n).

Sir Isaac Newton around 1665 invented the iterative method bearing his name used in
Section 2.10 for binary integer division. Our treatment of this idea follows that given by Tate
[325]. Reif and Tate [278] have shown that binary integer division can be done with circuit
size O(n log n log log n) and depth O(log n log log n) using circuits whose description is log-
space uniform. Beame, Cook, and Hoover [33] have given an O(log n)-depth circuit for the
reciprocal function, the best possible depth bound up to a constant multiple, but one whose
size is polynomial in n and whose description is not uniform; it requires knowledge of about
n2/ log n primes.

The key result in Section 2.11 on symmetric functions is due to Muller and Preparata
[226]. As indicated, it is the basis for showing that every one-output symmetric function can
be realized by a circuit whose size and depth are linear and logarithmic, respectively.

c©John E Savage Chapter Notes 89

Shannon [307] developed lower bounds for two-terminal switching circuits of the type
given in Section 2.12 on circuit size. Muller [224] extended the techniques of Shannon to
derive the lower bounds on circuit size given in Theorem 2.12.1. Shannon and Riordan [281]
developed a lower bound of Ω(2n/ log n) on the size of Boolean formulas, circuits in which the
fan-out of each gate is 1. As seen in Chapter 9, such bounds readily translate into lower bounds
on depth of the form given Theorem 2.12.2. Gaskov, using the Lupanov representation, has
derived a comparable upper bound [110].

The upper bound on circuit size given in Section 2.13 is due to Lupanov [208]. Shannon
and Riordan [281] show that a lower bound of Ω(2n/ log n) must apply to the formula size
(see Definition 9.1.1) of most Boolean functions on n variables. Given the relationship of
Theorem 9.2.2 between formula size and depth, a depth lower bound of n− log log n−O(1)
follows.

Early work on circuits and circuit complexity is surveyed by Paterson [237] and covered in
depth by Savage [287]. More recent coverage of this subject is contained in the survey article
by Bopanna and Sipser [50] and books by Wegener [360] and Dunne [92].

C H A P T E R

Machines with Memory

As we saw in Chapter 1, every finite computational task can be realized by a combinational
circuit. While this is an important concept, it is not very practical; we cannot afford to design
a special circuit for each computational task. Instead we generally perform computational tasks
with machines having memory. In a strong sense to be explored in this chapter, the memory of
such machines allows them to reuse their equivalent circuits to realize functions of high circuit
complexity.

In this chapter we examine the deterministic and nondeterministic finite-state machine
(FSM), the random-access machine (RAM), and the Turing machine. The finite-state machine
moves from state to state while reading input and producing output. The RAM has a central
processing unit (CPU) and a random-access memory with the property that each memory
word can be accessed in one unit of time. Its CPU executes instructions, reading and writing
data from and to the memory. The Turing machine has a control unit that is a finite-state
machine and a tape unit with a head that moves from one tape cell to a neighboring one in
each unit of time. The control unit reads from, writes to, and moves the head of the tape unit.

We demonstrate through simulation that the RAM and the Turing machine are universal
in the sense that every finite-state machine can be simulated by the RAM and that it and the
Turing machine can simulate each other. Since they are equally powerful, either can be used as
a reference model of computation.

We also simulate with circuits computations performed by the FSM, RAM, and Turing
machine. These circuit simulations establish two important results. First, they show that all
computations are constrained by the available resources, such as space and time. For example,
if a function f is computed in T steps by the RAM with storage capacity S (in bits), then S
and T must satisfy the inequality CΩ(f) = O(ST), where CΩ(f) is the size of the smallest
circuit for f over the complete basis Ω. Any attempt to compute f on the RAM using space
S and time T whose product is too small will fail. Second, an O(log ST)-space, O(ST)-time
program exists to write the descriptions of circuits simulating the above machines. This fact
leads to the identification in this chapter of the first examples of P-complete and NP-complete
problems.

91

92 Chapter 3 Machines with Memory Models of Computation

3.1 Finite-State Machines
The finite-state machine (FSM) has a set of states, one of which is its initial state. At each unit
of time an FSM is given a letter from its input alphabet. This causes the machine to move
from its current state to a potentially new state. While in a state, the FSM produces a letter
from its output alphabet. Such a machine computes the function defined by the mapping
from its initial state and strings of input letters to strings of output letters. FSMs can also be
used to accept strings, as discussed in Chapter 4. Some states are called final states. A string
is recognized (or accepted) by an FSM if the last state entered by the machine on that input
string is a final state. The language recognized (or accepted) by an FSM is the set of strings
accepted by it. We now give a formal definition of an FSM.

DEFINITION 3.1.1 A finite-state machine (FSM) M is a seven-tuple M = (Σ, Ψ, Q, δ, λ, s,
F), where Σ is the input alphabet, Ψ is the output alphabet, Q is the finite set of states,
δ : Q×Σ �→ Q is the next-state function, λ : Q �→ Ψ is the output function, s is the initial
state (which may be fixed or variable), and F is the set of final states (F ⊆ Q). If the FSM is
given input letter a when in state q, it enters state δ(q, a). While in state q it produces the output
letter λ(q).

The FSM M accepts the string w ∈ Σ∗ if the last state entered by M on the input string w
starting in state s is in the set F . M recognizes (or accepts) the language L consisting of the set
of such strings.

When the initial state of the FSM M is not fixed, for each integer T M maps the initial state
s and its T external inputs w1, w2, . . . , wT onto its T external outputs y1, y2, . . . , yT and the
final state q(T). We say that in T steps the FSM M computes the function f

(T)
M : Q × ΣT �→

Q × ΨT . It is assumed that the sets Σ, Ψ, and Q are encoded in binary so that f
(T)
M is a binary

function.

The next-state and output functions of an FSM, δ and λ, can be represented as in Fig. 3.1.
We visualize these functions taking a state value from a memory and an input value from an
external input and producing next-state and output values. Next-state values are stored in the
memory and output values are released to the external world. From this representation an
actual machine (a sequential circuit) can be constructed (see Section 3.3). Once circuits are
constructed for δ and λ, we need only add memory units and a clock to construct a sequential
circuit that emulates an FSM.

δ, λ

Input

Output

Memory

Figure 3.1 The finite-state machine model.

c©John E Savage 3.1 Finite-State Machines 93

0

1

0

1

q0/0 q1/1

Start

Figure 3.2 A finite-state machine computing the EXCLUSIVE OR of its inputs.

An example of an FSM is shown in Fig. 3.2. Its input and output alphabets and state
sets are Σ = {0, 1}, Ψ = {0, 1}, and Q = {q0, q1}, respectively. Its next-state and output
functions, δ and λ, are given below.

q σ δ(q, σ)

q0 0 q0

q0 1 q1

q1 0 q1

q1 1 q0

q λ(q)

q0 0
q1 1

The FSM has initial state q0 and final state q1. As a convenience we explicitly identify final
states by shading, although in practice they can be associated with states producing a particular
output letter.

Each state has a label qj/vj , where qj is the name of the state and vj is the output produced
while in this state. The initial state has an arrow labeled with the word “start” pointing to
it. Clearly, the set of strings accepted by this FSM are those containing an odd number of
instances of 1. Thus it computes the EXCLUSIVE OR function on an arbitrary number of
inputs.

While it is conventional to think of the finite-state machine as a severely restricted com-
putational model, it is actually a very powerful one. The random-access machine (RAM)
described in Section 3.4 is an FSM when the number of memory locations that it contains
is bounded, as is always so in practice. When a program is first placed in the memory of
the RAM, the program sets the initial state of the RAM. The RAM, which may or may not
read external inputs or produce external outputs, generally will leave its result in its memory;
that is, the result of the computation often determines the final state of the random-access
machine.

The FSM defined above is called a Moore machine because it was defined by E.F. Moore
[223] in 1956. An alternative FSM, the Mealy machine (defined by Mealy [215] in 1955),
has an output function λ∗ : Q × Σ �→ Ψ that generates an output on each transition from
one state to another. This output is determined by both the state in which the machine resides
before the state transition and the input letter causing the transition. It can be shown that the
two machine models are equivalent (see Problem 3.6): any computation one can do, the other
can do also.

94 Chapter 3 Machines with Memory Models of Computation

3.1.1 Functions Computed by FSMs
We now examine the ways in which an FSM might compute a function. Since our goal is to
understand the power and limits of computation, we must be careful not to assume that an
FSM can have hidden access to an external computing device. All computing devices must
be explicit. It follows that we allow FSMs only to compute functions that receive inputs and
produce outputs at data-independent times.

To understand the function computed by an FSM M , observe that in initial state q(0) = s
and receiving input letter w1, M enters state q(1) = δ(q(0), w1) and produces output y1 =
λ(q(1)). If M then receives input w2, it enters state q(2) = δ(q(1), w2) and produces output
y2 = λ(q(2)). Repeated applications of the functions δ and λ on successive states with suc-
cessive inputs, as suggested by Fig. 3.3, generate the outputs y1, y2, . . . , yT and the final state

q(T). The function f
(T)
M : Q×ΣT �→ Q×ΨT given in Definition 3.1.1 defines this mapping

from an initial state and inputs to the final state and outputs:

f
(T)
M

(
q(0), w1, w2, . . . , wT

)
=

(
q(T), y1, y2, . . . , yT

)
This simulation of a machine with memory by a circuit illustrates a fundamental point about
computation, namely, that the role of memory is to hold intermediate results on which the
logical circuitry of the machine can operate in successive cycles.

When an FSM M is used in a T -step computation, it usually does not compute the most

general function f
(T)
M that it can. Instead, some restrictions are generally placed on the possible

initial states, on the values of the external inputs provided to M , and on the components of
the final state and output letters used in the computation. Consider three examples of the
specialization of an FSM to a particular task. In the first, let the FSM model be that shown in
Fig. 3.2 and let it be used to form the EXCLUSIVE OR of n variables. In this case, we supply n
bits to the FSM but ignore all but the last output value it produces. In the second example, let
the FSM be a programmable machine in which a program is loaded into its memory before the
start of a computation, thereby setting its initial state. The program ignores all external inputs
and produces no output, leaving the value of the function in memory. In the third example,
again let the FSM be programmable, but let the program that resides initially residing in its
memory be a “boot program” that treats its inputs as program statements. (Thus, the FSM
has a fixed initial state.) The boot program forms a program by loading these statements into
successive memory locations. It then jumps to the first location in this program.

In each of these examples, the function f that is actually computed by M in T steps is

a subfunction of the function f
(T)
M because f is obtained by either restricting the values of

yTy2y1

wTw2w1

s

δ, λδ, λ ...
q(1) q(2) q(T)δ, λ

Figure 3.3 A circuit computing the same function, f
(T)
M , as a finite-state machine M in T

steps.

c©John E Savage 3.1 Finite-State Machines 95

the initial state and inputs to M or deleting outputs or both. We assume that every function

computed by M in T steps is a subfunction f of the function f
(T)
M .

The simple construction of Fig. 3.3 is the first step in deriving a space-time product in-
equality for the random-access machine in Section 3.5 and in establishing a connection be-
tween Turing time and circuit complexity in Section 3.9.2. It is also involved in the definition
of the P-complete and NP-complete problems in Section 3.9.4.

3.1.2 Computational Inequalities for the FSM
In this book we model each computational task by a function that, we assume without loss
of generality, is binary. We also assume that the function f

(T)
M : Q × ΣT �→ Q × ΨT

computed in T steps by an FSM M is binary. In particular, we assume that the next-state
and output functions, δ and λ, are also binary; that is, we assume that their input, state, and
output alphabets are encoded in binary. We now derive some consequences of the fact that a
computation by an FSM can be simulated by a circuit.

The size CΩ

(
f

(T)
M

)
of the smallest circuit to compute the function f

(T)
M is no larger than

the size of the circuit shown in Fig. 3.3. But this circuit has size T ·CΩ(δ, λ), where CΩ(δ, λ)
is the size of the smallest circuit to compute the functions δ and λ. The depth of the shallowest

circuit for f
(T)
M is no more than T · DΩ(δ, λ) because the longest path through the circuit of

Fig. 3.3 has this length.

Let f be the function computed by M in T steps. Since it is a subfunction of f
(T)
M ,

it follows from Lemma 2.4.1 that the size of the smallest circuit for f is no larger than the

size of the circuit for f
(T)
M . Similarly, the depth of f , DΩ(f), is no more than that of f

(T)
M .

Combining the observations of this paragraph with those of the preceding paragraph yields the
following computational inequalities. A computational inequality is an inequality relating
parameters of computation, such as time and the circuit size and depth of the next-state and
output function, to the size or depth of the smallest circuit for the function being computed.

THEOREM 3.1.1 Let f
(T)
M be the function computed by the FSM M = (Σ, Ψ, Q, δ, λ, s, F) in

T steps, where δ and λ are the binary next-state and output functions of M . The circuit size and
depth over the basis Ω of any function f computed by M in T steps satisfy the following inequalities:

CΩ(f) ≤ CΩ

(
f

(T)
M

)
≤ TCΩ(δ, λ)

DΩ(f) ≤ DΩ

(
f

(T)
M

)
≤ TDΩ(δ, λ)

The circuit size CΩ(δ, λ) and depth DΩ(δ, λ) of the next-state and output functions of an
FSM M are measures of its complexity, that is, of how useful they are in computing functions.
The above theorem, which says nothing about the actual technologies used to realize M , re-
lates these two measures of the complexity of M to the complexities of the function f being
computed. This is a theorem about computational complexity, not technology.

These inequalities stipulate constraints that must hold between the time T and the circuit
size and depth of the machine M if it is used to compute the function f in T steps. Let the
product TCΩ(δ, λ) be defined as the equivalent number of logic operations performed by
M . The first inequality of the above theorem can be interpreted as saying that the number of
equivalent logic operations performed by an FSM to compute a function f must be at least

96 Chapter 3 Machines with Memory Models of Computation

the minimum number of gates necessary to compute f with a circuit. A similar interpretation
can be given to the second inequality involving circuit depth.

The first inequality of Theorem 3.1.1 and the interpretation given to T · CΩ(δ, λ) justify
the following definitions of computational work and power. Here power is interpreted as
the time rate at which work is done. These measures correlate nicely with our intuition that
machines that contain more equivalent computing elements are more powerful.

DEFINITION 3.1.2 The computational work done by an FSM M = (Σ, Ψ, Q, δ, λ, s, F) is
TCΩ(δ, λ), the number of equivalent logical operations performed by M , which is the product of
T , the number of steps executed by M , and CΩ(δ, λ), the size complexity of its next-state and output
functions. The power of an FSM M is CΩ(δ, λ), the number of logical operations performed by
M per step.

Theorem 3.1.1 is also a form of impossibility theorem: it is impossible to compute func-
tions f for which TCΩ(δ, λ) and TDΩ(δ, λ) are respectively less than the size and depth
complexity of f . It may be possible to compute a function on some points of its domain
with smaller values of these parameters, but not on all points. The halting problem, another
example of an impossibility theorem, is presented in Section 5.8.2. However, it deals with the
computation of functions over infinite domains.

The inequalities of Theorem 3.1.1 also place upper limits on the size and depth complex-
ities of functions that can be computed in a bounded number of steps by an FSM, regardless
of how the FSM performs the computation.

Note that there is no guarantee that the upper bounds stated in Theorem 3.1.1 are at all
close to the lower bounds. It is always possible to compute a function inefficiently, that is, with
resources that are greater than the minimal resources necessary.

3.1.3 Circuits Are Universal for Bounded FSM Computations
We now ask whether the classes of functions computed by circuits and by FSMs executing
a bounded number of steps are different. We show that they are the same. Many different
functions can be computed from the function f

(T)
M by specializing inputs and/or deleting

outputs.

THEOREM 3.1.2 Every subfunction of the function f
(n)
M computable by an FSM on n inputs is

computable by a Boolean circuit and vice versa.

Proof A Boolean function on n inputs, f , may be computed by an FSM with 2n+1 − 1
states by branching from the current state to one of two different states on inputs 0 and 1
until all n inputs have been read; it then produces the output that would be produced by f
on these n inputs. A fifteen-state version of this machine that computes the EXCLUSIVE OR

on three inputs as a subfunction is shown in Fig. 3.4.
The proof in the other direction is also straightforward, as described above and repre-

sented schematically in Fig. 3.3. Given a binary representation of the input, output, and state
symbols of an FSM, their associated next-state and output functions are binary functions.

They can be realized by circuits, as can f
(n)
M (s, w) = (q(n), y), the function computed by

the FSM on n inputs, as suggested by Fig. 3.3. Finally, the subfunction f is obtained by
fixing the appropriate inputs, assigning variable names to the remaining inputs, and deleting
the appropriate outputs.

c©John E Savage 3.1 Finite-State Machines 97

Start

0 1

0 1

0 1

0

0 1

0 1 0 1

1

q0/0

q2/1q1/0

q6/0q5/1q4/1q3/0

q9/1q8/1q7/0 q10/0 q11/1 q12/0 q13/0 q14/1

Figure 3.4 A fifteen-state FSM that computes the EXCLUSIVE OR of three inputs as a subfunc-
tion of f

(3)
M obtained by deleting all outputs except the third.

3.1.4 Interconnections of Finite-State Machines
Later in this chapter we examine a family of FSMs characterized by a computational unit
connected to storage devices of increasing size. The random-access machine that has a CPU
of small complexity and a random-access memory of large but indeterminate size is of this
type. The Turing machine having a fixed control unit that moves a tape head over a potentially
infinite tape is another example.

This idea is captured by the interconnection of synchronous FSMs. Synchronous FSMs
read inputs, advance from state to state, and produce outputs in synchronism. We allow two
or more synchronous FSMs to be interconnected so that some outputs from one FSM are
supplied as inputs of another, as illustrated in Fig. 3.5. Below we generalize Theorem 3.1.1 to
a pair of synchronous FSMs. We model random-access machines and Turing machines in this
fashion when each uses a finite amount of storage.

THEOREM 3.1.3 Let f
(T)
M1×M2

be a function computed in T steps by a pair of interconnected syn-
chronous FSMs, M1 = (Σ1, Ψ1, Q1, δ1, λ1, s1, F1) and M2 = (Σ2, Ψ2, Q2, δ2, λ2, s2, F2).

OutputOutput

M2M1

Input

Input

Figure 3.5 The interconnection of two finite-state machines in which one of the three outputs
of M1 is supplied as an input to M2 and two of the three outputs of M2 are supplied to M1 as
inputs.

98 Chapter 3 Machines with Memory Models of Computation

λ1

δ2

λ2

δ2

λ2

δ2

λ2

δ1

λ1

δ1

λ1

y1,2 y2,2 yT ,2y1,1 yT ,1y2,1

xTx2x1

δ1

v1

q1

u2,1
u2,2

p1

v2

q2

p2

uT ,1
uT ,2

qT

pT

q0

p0

...
vT

c1
c2

d1
u1,1
u1,2

Figure 3.6 A circuit simulating T steps of the two synchronous interconnected FSMs shown
in Fig. 3.5. The top row of circuits simulates a T -step computation by M1 and the bottom row
simulates a T -step computation by M2. One of the three outputs of M1 is supplied as an input
to M2 and two of the three outputs of M2 are supplied to M1 as inputs. The states of M1 on the
initial and T successive steps are q0, q1, . . . , qT . Those of M2 are p0, p1, . . . , pT .

Let CΩ(δ, λ) and DΩ(δ, λ) be the size and depth of encodings of the next-state and output func-
tions. Then, the circuit size and depth over the basis Ω of any function f computed by the pair
M1 ×M2 in T steps (that is, a subfunction of f

(T)
M1×M2

) satisfy the following inequalities:

CΩ(f) ≤ T [CΩ(δ1, λ1) + CΩ(δ2, λ2)]
DΩ(f) ≤ T [max(DΩ(δ1, λ1), DΩ(δ2, λ2))]

Proof The construction that leads to this result is suggested by Fig. 3.6. We unwind both
FSMs and connect the appropriate outputs from one to the other to produce a circuit that
computes f

(T)
M1×M2

. Observe that the number of gates in the simulated circuit is T times the
sum of the number of gates, whereas the depth is T times the depth of the deeper circuit.

3.1.5 Nondeterministic Finite-State Machines
The finite-state machine model described above is called a deterministic FSM (DFSM) be-
cause, given a current state and an input, the next state of the FSM is uniquely determined.
A potentially more general FSM model is the nondeterministic FSM (NFSM) characterized
by the possibility that several next states can be reached from the current state for some given
input letter.

One might ask if such a model has any use, especially since to the untrained eye a non-
deterministic machine would appear to be a dysfunctional deterministic one. The value of an
NFSM is that it may recognize languages with fewer states and in less time than needed by a
DFSM. The concept of nondeterminism will be extended later to the Turing machine, where

c©John E Savage 3.1 Finite-State Machines 99

it is used to classify languages in terms of the time and space they need for recognition. For
example, it will be used to identify the class NP of languages that are recognized by nondeter-
ministic Turing machines in a number of steps that is polynomial in the length of their inputs.
(See Section 3.9.6.) Many important combinatorial problems, such as the traveling salesperson
problem, fall into this class.

The formal definition of the NFSM is given in Section 4.1, where the next-state function
δ : Q × Σ �→ Q of the FSM is replaced by a next-state function δ : Q × Σ �→ 2Q. Such
functions assign to each state q and input letter a a subset δ(q, a) of the set Q of states of the
NFSM (2Q, the power set, is the set of all subsets of Q. It is introduced in Section 1.2.1.)
Since the value of δ(q, a) can be the empty set, there may be no successor to the state q on
input a. Also, since δ(q, a) when viewed as a set can contain more than one element, a state
q can have edges labeled a to several other states. Since a DFSM has a single successor to each
state on every input, a DFSM is an NFSM in which δ(q, a) is a singleton set.

While a DFSM M accepts a string w if w causes M to move from the initial state to a
final state in F , an NFSM accepts w if there is some set of next-state choices for w that causes
M to move from the initial state to a final state in F .

An NFSM can be viewed as a purely deterministic finite-state machine that has two inputs,
as suggested in Fig. 3.7. The first, the standard input, a, accepts the user’s data. The second,
the choice input, c, is used to choose a successor state when there is more than one. The in-
formation provided via the choice input is not under the control of the user supplying data via
the standard input. As a consequence, the machine is nondeterministic from the point of view
of the user but fully deterministic to an outside observer. It is assumed that the choice agent
supplies the choice input and, with full knowledge of the input to be provided by the user,
chooses state transitions that, if possible, lead to acceptance of the user input. On the other
hand, the choice agent cannot force the machine to accept inputs for which it is not designed.

In an NFSM it is not required that a state q have a successor for each value of the standard
and choice inputs. This possibility is captured by allowing δ(q, a, c) to have no value, denoted
by δ(q, a, c) =⊥.

Figure 3.8 shows an NFSM that recognizes strings over B∗ that end in 00101. In this
figure parentheses surround the choice input when its value is needed to decide the next state.
In this machine the choice input is set to 1 when the choice agent knows that the user is about
to supply the suffix 00101.

δ, λ

Memory

Output

Standard Input

Choice Input

Figure 3.7 A nondeterministic finite-state machine modeled as a deterministic one that has a
second choice input whose value disambiguates the value of the next state.

100 Chapter 3 Machines with Memory Models of Computation

q0 q1 q2 q3 q4 q5

Start

0(1) 0 1 0 1

0(0), 1

Figure 3.8 A nondeterministic FSM that accepts binary strings ending in 00101. Choice
inputs are shown in parentheses for those user inputs for which the value of choice inputs can
disambiguate next-state moves.

q0

Start

0(1), 1(1)
q5

0(0), 1(0)

Figure 3.9 An example of an NFSM whose choice agent (its values are in parentheses) accepts
not only strings in a language L, but all strings.

Although we use the anthropomorphic phrase “choice agent,” it is important to note that
this choice agent cannot freely decide which strings to accept and which not. Instead, it must
when possible make choices leading to acceptance. Consider, for example, the machine in
Fig. 3.9. It would appear that its choice agent can accept strings in an arbitrary language L. In
fact, the language that it accepts contains all strings.

Given a string w in the language L accepted by an NFSM, a choice string that leads to its
acceptance is said to be a succinct certificate for its membership in L.

It is important to note that the nondeterministic finite-state machine is not a model of
reality, but is used instead primarily to classify languages. In Section 4.1 we explore the
language-recognition capability of the deterministic and nondeterministic finite-state machines
and show that they are the same. However, the situation is not so clear with regard to Turing
machines that have access to unlimited storage capacity. In this case, we do not know whether
or not the set of languages accepted in polynomial time on deterministic Turing machines (the
class P) is the same set of languages that is accepted in polynomial time by nondeterministic
Turing machines (the class NP).

3.2 Simulating FSMs with Shallow Circuits*
In Section 3.1 we demonstrated that every T -step FSM computation can be simulated by
a circuit whose size and depth are both O(T). In this section we show that every T -step
finite-state machine computation can be simulated by a circuit whose size and depth are O(T)
and O(log T), respectively. While this seems a serious improvement in the depth bound, the
coefficients hidden in the big-O notation for both bounds depend on the number of states of
the FSM and can be very large. Nevertheless, for simple problems, such as binary addition, the

c©John E Savage 3.2 Simulating FSMs with Shallow Circuits* 101

q2/0

q3/1

q0/0Start

0001, 10 11
00

11

01, 10 00 11

01, 1000 11

q1/1

01, 10

Figure 3.10 A finite-state machine that adds two binary numbers. Their two least significant
bits are supplied first followed by those of increasing significance. The output bits represent the
sum of the two numbers.

results of this section can be useful. We illustrate this here for binary addition by exhibiting
small and shallow circuits for the adder FSM of Fig. 3.10. The circuit simulation for this
FSM produces the carry-lookahead adder circuit of Section 2.7. In this section we use matrix
multiplication, which is covered in Chapter 6.

The new method is based on the representation of the function f
(T)
M : Q×ΣT �→ Q×ΨT

computed in T steps by an FSM M = (Σ, Ψ, Q, δ, λ, s, F) in terms of the set of state-to-
state mappings S = {h : Q �→ Q} where S contains the mappings {Δx : Q �→ Q |x ∈ Σ}
and Δx is defined below.

Δx(q) = δ(q, x) (3.1)

That is, Δx(q) is the state to which state q is carried by the input letter x.
The FSM shown in Fig. 3.10 adds two binary numbers sequentially by simulating a ripple

adder. (See Section 2.7.) Its input alphabet is B2, that is, the set of pairs of 0’s and 1’s. Its
output alphabet is B and its state set is Q = {q0, q1, q2, q3}. (A sequential circuit for this
machine is designed in Section 3.3.) It has the state-to-state mappings shown in Fig. 3.11.

Let � : S2 �→ S be the operator defined on the set S of state-to-state mappings where for
arbitrary h1, h2 ∈ S and state q ∈ Q the operator � is defined as follows:

(h1 � h2)(q) = h2(h1(q)) (3.2)

q Δ0,0(q)

q0 q0

q1 q0

q2 q1

q3 q1

q Δ0,1(q)

q0 q1

q1 q1

q2 q2

q3 q2

q Δ1,0(q)

q0 q1

q1 q1

q2 q2

q3 q2

q Δ1,1(q)

q0 q2

q1 q2

q2 q3

q3 q3

Figure 3.11 The state-to-state mappings associated with the FSM of Fig. 3.10.

102 Chapter 3 Machines with Memory Models of Computation

The state-to-state mappings in S will be obtained by composing the mappings {Δx : Q �→
Q |x ∈ Σ} using this operator.

Below we show that the operator � is associative, that is, � satisfies the property (h1 �
h2) � h3 = h1 � (h2 � h3). This means that for each q ∈ Q, ((h1 � h2) � h3)(q) =
(h1 � (h2 � h3))(q) = h3(h2(h1(q))). Applying the definition of � in Equation (3.2), we
have the following for each q ∈ Q:

((h1 � h2)� h3)(q) = h3((h1 � h2)(q))
= h3(h2(h1(q))) (3.3)

= (h2 � h3)(h1(q))
= (h1 � (h2 � h3))(q)

Thus, � is associative and (S,�) is a semigroup. (See Section 2.6.) It follows that a prefix
computation can be done on a sequence of state-to-state mappings.

We now use this observation to construct a shallow circuit for the function f
(T)
M . Let w =

(w1, w2, . . . , wT) be a sequence of T inputs to M where wj is supplied on the jth step. Let
q(j) be the state of M after receiving the jth input. From the definition of � it follows that
q(j) has the following value where s is the initial state of M :

q(j) = (Δw1 �Δw2 � · · · �Δwj
)(s)

The value of f
(T)
M on initial state s and T inputs can be represented in terms of q = (q(1), . . . ,

q(T)) as follows:

f
(T)
M (s, w) =

(
q(n), λ(q(1)), λ(q(2)), . . . , λ(q(T))

)
Let Λ(T) be the following sequence of state-to-state mappings:

Λ(T) = (Δw1 , Δw2 , . . . , ΔwT
)

It follows that q can be obtained by computing the state-to-state mappings Δw1 �Δw2 �· · ·�
Δwj

, 1 ≤ j ≤ T , and applying them to the initial state s. Because � is associative, these T

state-to-state mappings are produced by the prefix operator P(T)
	 on the sequence Λ(T) (see

Theorem 2.6.1):

P(T)
	 (Λ(T)) = (Δw1 , (Δw1 �Δw2), . . . , (Δw1 �Δw2 � . . .�ΔwT

))

Restating Theorem 2.6.1 for this problem, we have the following result.

THEOREM 3.2.1 For T = 2k, k an integer, the T state-to-state mappings defined by the T inputs
to an FSM M can be computed by a circuit over the basis Ω = {�} whose size and depth satisfy
the following bounds:

CΩ

(
P(T)
	

)
≤ 2T − log2 T − 2

DΩ

(
P(T)
	

)
≤ 2 log2 T

c©John E Savage 3.2 Simulating FSMs with Shallow Circuits* 103

The construction of a shallow Boolean circuit for f
(T)
M is reduced to a five-step problem: 1)

for each input letter x design a circuit whose input and output are representations of states and
which defines the state-to-state mapping Δx for input letter x; 2) construct a circuit for the
associative operator � that accepts the representations of two state-to-state mappings Δy and
Δz and produces a representation for the state-to-state mapping Δy � Δz ; 3) use the circuit
for � in a parallel prefix circuit to produce the T state-to-state mappings; 4) construct a circuit
that combines the representation of the initial state s with that of the state-to-state mapping
Δw1 �Δw2 �· · ·�Δwj

to obtain a representation for the successor state Δw1 �Δw2 �· · ·�
Δwj

(s); and 5) construct a circuit for λ that computes an output from the representation of a
state.

We now describe a generic, though not necessarily efficient, implementation of these steps.
Let Q = {q0, q1, . . . , q|Q|−1} be the states of M . The state-to-state mapping Δx for the

FSM M needed for the first step can be represented by a |Q| × |Q| Boolean matrix N(x) =
{nij(x)} in which the entry in row i and column j, nij(x), satisfies

ni,j(x) =

{
1 if M moves from state qi to state qj on input x

0 otherwise

Consider again the FSM shown in Fig. 3.10. The matrices associated with its four pairs of
inputs x ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} are shown below, where N((0, 1)) = N((1, 0)):

N((0, 0)) =

⎡⎢⎢⎢⎣
1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

⎤⎥⎥⎥⎦ N((0, 1)) =

⎡⎢⎢⎢⎣
0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

⎤⎥⎥⎥⎦

N((1, 1)) =

⎡⎢⎢⎢⎣
0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

⎤⎥⎥⎥⎦
From these matrices the generic matrix N((u, v)) parameterized by the values of the inputs (a
pair (u, v) in this example) is produced from the following Boolean functions: t = u ∧ v, the
carry-terminate function, p = u ⊕ v, the carry-propagate function, and g = u ∧ v, the
carry-generate function.

N((u, v)) =

⎡⎢⎢⎢⎣
t p g 0

t p g 0

0 t p g

0 t p g

⎤⎥⎥⎥⎦
Let σ(i) = (0, 0, . . . , 0, 1, 0, . . .0) be the unit |Q|-vector that has value 1 in the ith position

and zeros elsewhere. Let σ(i)N(x) denote Boolean vector-matrix multiplication in which ad-
dition is OR and multiplication is AND. Then, for each i, σ(i)N(x) = (ni,1, ni,2, . . . , ni,|Q|)
is the unit vector denoting the state that M enters when it is in state qi and receives input x.

104 Chapter 3 Machines with Memory Models of Computation

Let N(x, y) = N(x) ×N(y) be the Boolean matrix-matrix multiplication of matrices N(x)
and N(y) in which addition is OR and multiplication is AND. Then, for each x and y the entry

in row i and column j of N(x)×N(y), namely n
(2)
i,j (x, y), satisfies the following identity:

n
(2)
i,j (x, y) =

∨
qt∈Q

ni,t(x) · nt,j(y)

That is, n
(2)
i,j (x, y) = 1 if there is a state qt ∈ Q such that in state qi, M is given input x,

moves to state qt, and then moves to state qj on input y. Thus, the composition operator �
can be realized through the multiplication of Boolean matrices. It is straightforward to show
that matrix multiplication is associative. (See Problem 3.10.)

Since matrix multiplication is associative, a prefix computation using matrix multiplica-
tion as a composition operator for each prefix x(j) = (x1, x2, . . . , xj) of the input string x
generates a matrix N(x(j)) = N(x1) × N(x2) × · · · × N(xj) defining the state-to-state
mapping associated with x(j) for each value of 1 ≤ j ≤ n.

The fourth step, the application of a sequence of state-to-state mappings to the initial state
s = qr, represented by the |Q|-vector σ(r), is obtained through the vector-matrix multiplica-
tion σ(r)N(x(j)) for 1 ≤ j ≤ n.

The fifth step involves the computation of the output word from the current state. Let
the column |Q|-vector λ contain in the tth position the output of the FSM M when in state
qt. Then, the output produced by the FSM after the jth input is the product σ(r)N(x(j))λ.
This result is summarized below.

THEOREM 3.2.2 Let the finite-state machine M = (Σ, Ψ, Q, δ, λ, s, F) with |Q| states compute
a subfunction f of f

(T)
M in T steps. Then f has the following size and depth bounds over the

standard basis Ω0 for some κ ≥ 1:

CΩ0(f) = O (Mmatrix(|Q|, κ)T)
DΩ0(f) = O ((κ log |Q|)(log T))

Here Mmatrix(n, κ) is the size of a circuit to multiply two n × n matrices with a circuit of depth
κ log n. These bounds can be achieved simultaneously.

Proof The circuits realizing the Boolean functions {ni,j(x) | 1 ≤ i, j ≤ |Q|}, x an
input, each have a size determined by the size of the input alphabet Σ, which is constant.
The number of operations required to multiply two Boolean matrices with a circuit of depth
κ log |Q|, κ ≥ 1, is Mmatrix(|Q|, κ). (See Section 6.3. Note that Mmatrix(|Q|, κ) ≤ |Q|3.)
Finally, the prefix circuit uses O(T) copies of the matrix multiplication circuit and has a
depth of O(log T) copies of the matrix multiplication circuit along the longest path. (See
Section 2.6.)

When an FSM has a large number of states but its next-state function is relatively simple,
that is, it has a size that is at worst a polynomial in log |Q|, the above size bound will be much
larger than the size bound given in Theorem 3.1.1 because Mmatrix(n, κ) grows exponentially
in log |Q|. The depth bound grows linearly with log |Q| whereas the depth of the next-
state function on which the depth bound of Theorem 3.1.1 depends will typically grow either
linearly or as a small polynomial in log log |Q| for an FSM with a relatively simple next-state
function. Thus, the depth bound will be smaller than that of Theorem 3.1.1 for very large
values of T , but for smaller values, the latter bound will dominate.

c©John E Savage 3.2 Simulating FSMs with Shallow Circuits* 105

3.2.1 A Shallow Circuit Simulating Addition
Applying the above result to the adder FSM of Fig. 3.10, we produce a circuit that accepts
T pairs of binary inputs and computes the sum as T -bit binary numbers. Since this FSM
has four states, the theorem states that the circuit has size O(T) and depth O(log T). The
carry-lookahead adder of Section 2.7 has these characteristics.

We can actually produce the carry-lookahead circuit by a more careful design of the state-
to-state mappings. We use the following encodings for states, where states are represented by
pairs {(c, s)}.

State Encoding

q c s

q0 0 0
q1 0 1
q2 1 0
q3 1 1

Since the next-state mappings are the same for inputs 0, 1, and 1, 0, we encode an input
pair (u, v) by (g, p), where g = u ∧ v and p = u ⊕ v are the carry-generate and carry-
propagate variables introduced in Section 2.7 and used above. With these encodings, the three
different next-state mappings {Δ0,0, Δ0,1, Δ1,1} defined in Fig. 3.11 can be encoded as shown
in the table below. The entry at the intersection of row (c, s) and column (p, g) in this table
is the value (c∗, s∗) of the generic next-state function (c∗, s∗) = Δp,g(c, s). (Here we abuse
notation slightly to let Δp,g denote the state-to-state mapping associated with the pair (u, v)
and represent the state q of M by the pair (c, s).)

g 0 0 1
p 0 1 0

c s c∗ s∗ c∗ s∗ c∗ s∗

0 0 0 0 0 1 1 0
0 1 0 0 0 1 1 0
1 0 0 1 1 0 1 1
1 1 0 1 1 0 1 1

Inspection of this table shows that we can write the following formulas for c∗ and s∗:

c∗ = (p ∧ c) ∨ g, s∗ = p ⊕ c

Consider two successive input pairs (u1, v1) and (u2, v2) and associated pairs (p1, g1) and
(p2, g2). If the FSM of Fig. 3.10 is in state (c0, s0) and receives input (u1, v1), it enters the
state (c1, s1) = (p1 ∧ c0 ∨ g1, p1 ⊕ c0). This new state can be obtained by combining p1 and
g1 with c0. Let (c2, s2) be the successor state when the mapping Δp2,g2 is applied to (c1, s1).
The effect of the operator � on successive state-to-state mappings Δp1,g1 and Δp2,g2 is shown
below, in which (3.2) is used:

(Δp1,g1 �Δp2,g2)(q) = Δp2,g2(Δp1,g1((c0, s0)))
= Δp2,g2(p1 ∧ c0 ∨ g1, p1 ⊕ c0)

106 Chapter 3 Machines with Memory Models of Computation

= (p2 ∧ (p1 ∧ c0 ∨ g1) ∨ g2, p2 ⊕ (p1 ∧ c0 ∨ g1))
= ((p2 ∧ p1) ∧ c0 ∨ (g2 ∨ p2 ∧ g1)), p2 ⊕ (p1 ∧ c0 ∨ g1))
= (c2, s2)

It follows that c2 can be computed from p∗ = p2 ∧ p1 and g∗ = g2 ∨ p2 ∧ g1 and c0. The
value of s2 is obtained from p2 and c1. Thus the mapping Δp1,g1 �Δp2,g2 is defined by p∗ and
g∗, quantities obtained by combining the pairs (p1, g1) and (p2, g2) using the same associative
operator � defined for the carry-lookahead adder in Section 2.7.1.

To summarize, the state-to-state mappings corresponding to subsequences of an input
string ((u0, v0), (u1, v1), . . . , (un−2, vn−2), (un−1, vn−1)) can be computed by representing
this string by the carry-propagate, carry-generate string ((p0, g0), (p1, g1), . . . , (pn−2, gn−2),
(pn−1, gn−1)), computing the prefix operation on this string using the operator �, then com-
puting ci from c0 and the carry-propagate and carry-generate functions for the ith stage and si

from this carry-propagate function and ci−1. This leads to the carry-lookahead adder circuit
of Section 2.7.1.

3.3 Designing Sequential Circuits
Sequential circuits are concrete machines constructed of gates and binary memory devices.
Given an FSM, a sequential machine can be constructed for it, as we show.

A sequential circuit is constructed from a logic circuit and a collection of clocked binary
memory units, as suggested in Figs. 3.12(a) and 3.15. (Shown in Fig. 3.12(a) is a simple
sequential circuit that computes the EXCLUSIVE OR of the initial value in memory and the
external input to the sequential circuit.) Inputs to the logic circuit consist of outputs from the
binary memory units as well as external inputs. The outputs of the logic circuit serve as inputs
to the clocked binary memory units as well as external outputs.

A clocked binary memory unit is driven by a clock, a periodic signal that has value 1 (it is
high) during short, uniformly spaced time intervals and is otherwise 0 (it is low), as suggested
in Figs. 3.12(b). For correct operation it is assumed that the input to a memory unit does not
change when the clock is high. Thus, the outputs of a logic circuit feeding the memory units
cannot change during these intervals. This in turn requires that all changes in the inputs to

(a)

x

M

Clock

s

(b)

Clock

Time

1

0

Figure 3.12 (a) A sequential circuit with one gate and one clocked memory unit computing
the EXCLUSIVE OR of its inputs; (b) a periodic clock pattern.

c©John E Savage 3.3 Designing Sequential Circuits 107

this circuit be fully propagated to its outputs in the intervals when the clock is low. A circuit
that operates this way is considered safe. Designers of sequential circuits calculate the time for
signals to pass through a logic circuit and set the interval between clock pulses to insure that
the operation of the sequential circuit is safe.

Sequential circuits are designed from finite-state machines (FSMs) in a series of steps.
Consider an FSM M = (Σ, Ψ, Q, δ, λ, s) with input alphabet Σ, output alphabet Ψ, state
set Q, next-state function δ : Q × Σ �→ Q, output function λ : Q �→ Ψ, and initial state s.
(For this discussion we ignore the set of final states; they are important only when discussing
language recognition.) We illustrate the design of a sequential machine using the FSM of
Fig. 3.10, which is repeated in Fig. 3.13.

The first step in producing a sequential circuit from an FSM is to assign unique binary
tuples to each input letter, output letter, and state (the state-assignment problem). This is
illustrated for our FSM by the tables of Fig. 3.14 in which the identity encoding is used on
inputs and outputs. This step can have a large impact on the size of the logic circuit produced.
Second, tables for δ : B4 �→ B2 and λ : B2 �→ B, the next-state and output functions of
the FSM, respectively, are produced from the description of the FSM, as shown in the same
figure. Here c∗ and s∗ represent the successor to the state (c, s). Third, circuits are designed
that realize the binary functions associated with c∗ and s∗. Fourth and finally, these circuits are
connected to clocked binary memory devices, as shown in Fig. 3.15, to produce a sequential
circuit that realizes the FSM. We leave to the reader the task of demonstrating that these circuits
compute the functions defined by the tables. (See Problem 3.11.)

Since gates and clocked memory devices can be constructed from semiconductor materials,
a sequential circuit can be assembled from physical components by someone skilled in the use
of this technology. We design sequential circuits in this book to obtain upper bounds on the
size and depth of the next-state and output functions of a sequential machine so that we can
derive computational inequalities.

q2/0

q3/1

q0/0Start

0001, 10 11
00

11

01, 10 00 11

01, 1000 11

q1/1

01, 10

Figure 3.13 A finite-state machine that simulates the ripple adder of Fig. 2.14. It is in state qr

if the carry-and-sum pair (cj+1, sj) generated by the jth full adder of the ripple adder represents
the integer r, 0 ≤ r ≤ 3. The output produced is the sum bit.

108 Chapter 3 Machines with Memory Models of Computation

Input Encoding

σ ∈ Σ u v

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

Output Encoding

λ(q) ∈ Ψ λ(q)

0 0
1 1

State Encoding

q c s

q0 0 0
q1 0 1
q2 1 0
q3 1 1

δ : B4 �→ B2

c s u v c∗ s∗

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 1
1 1 0 0 0 1
0 0 0 1 0 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 0 1 1 0
0 0 1 0 0 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 1 0 1 0
0 0 1 1 1 0
0 1 1 1 1 0
1 0 1 1 1 1
1 1 1 1 1 1

λ : B2 �→ B
c∗ s∗ s
0 0 0
0 1 1
1 0 0
1 1 1

Figure 3.14 Encodings for inputs, outputs, states, and the next-state and output functions of
the FSM adder.

s

c

p

u v

g

s∗

c∗

Clock

M

M

Figure 3.15 A sequential circuit for the FSM that adds binary numbers.

c©John E Savage 3.3 Designing Sequential Circuits 109

3.3.1 Binary Memory Devices
It is useful to fix ideas about memory units by designing one (a latch) from logic gates. We
use two latchs to create a flip-flop, the standard binary storage device. A collection of clocked
flip-flops is called a register. A clocked latch can be constructed from a few AND and NOT

gates, as shown in Fig. 3.16(a). The NAND gates (they compute NOT of AND) labeled g3 and
g4 form the heart of the latch. Consider the inputs to g3 and g4, the lines connected to the
outputs of NAND gates g1 and g2. If one is set to 1 and the other reset to 0, after all signals
settle down, ρ and ρ∗ will assume complementary values (one will have value 1 and the other
will have value 0), regardless of their previous values. The gate with input 1 will assume output
0 and vice versa.

Now if the outputs of g1 and g2 are both set to 1 and the values previously assumed by ρ
and ρ∗ are complementary, these values will be retained due to the feedback between g3 and
g4, as the reader can verify. Since the outputs of g1 and g2 are both 1 when the clock input
(CLK in Fig. 3.16) has value 0, the complementary outputs of g3 and g4 remain unchanged
when the clock is low. Since the outputs of a latch provide inputs to the logic-circuit portion
of a sequential circuit, it is important that the latch outputs remain constant when the clock
is low.

When the clock input is 1, the outputs of g1 and g2 are S and R, the Boolean complements
of S and R. If S and R are complementary, as is true for this latch since R = S, this device
will store the value of S in ρ and its complement in ρ∗. Thus, if S = 1, the latch is set to 1,
whereas if R = 1 (and S = 0) it is reset to 0. This type of device is called a D-type latch. For
this reason we change the name of the external input to this memory device from S to D.

Because the output of the D-type latch shown in Fig. 3.16(a) changes when the clock pulse
is high, it cannot be used as a stable input to a logic circuit that feeds this or another such flip-
flop. Adding another stage like the first but having the complementary value for the clock
pulse, as shown in Fig. 3.16(b), causes the output of the second stage to change only while the
clock pulse is low. The output of the first stage does change when the clock pulse is high to
record the new value of the state. This is called a master-slave edge-triggered flip-flop. Other
types of flip-flop are described in texts on computer architecture.

(b)

g4

g3

(a)

g1

g2

D = S

R

CLK CLK
ρ∗

ρ ρ

ρ∗

Figure 3.16 (a) Design of a D-type latch from NAND gates. (b) A master-slave edge-triggered
D-type flip-flop.

110 Chapter 3 Machines with Memory Models of Computation

3.4 Random-Access Machines
The random-access machine (RAM) models the essential features of the traditional serial
computer. The RAM is modeled by two synchronous interconnected FSMs, a central process-
ing unit (CPU) and a random-access memory. (See Fig. 3.17.) The CPU has a small number
of storage locations called registers whereas the random-access memory has a large number.
All operations performed by the CPU are performed on data stored in its registers. This is done
for efficiency; no increase in functionality is obtained by allowing operations on data stored in
memory locations as well.

3.4.1 The RAM Architecture
The CPU implements a fetch-and-execute cycle in which it alternately reads an instruction
from a program stored in the random-access memory (the stored-program concept) and ex-
ecutes it. Instructions are read and executed from consecutive locations in the random-access
memory unless a jump instruction is executed, in which case an instruction from a non-
consecutive location is executed next.

A CPU typically has five basic kinds of instruction: a) arithmetic and logical instructions of
the kind described in Sections 2.5.1, 2.7, 2.9, and 2.10, b) memory load and store instructions
for moving data between memory locations and registers, c) jump instructions for breaking
out of the current program sequence, d) input and output (I/O) instructions, and e) a halt
instruction.

The basic random-access memory has an output word (out wrd) and three input words,
an address (addr), a data word (in wrd), and a command (cmd). The command specifies
one of three actions, a) read from a memory location, b) write to a memory location, or c)
do nothing. Reading from address addr deposits the value of the word at this location into
out wrd whereas writing to addr replaces the word at this address with the value of in wrd.

addr

in wrd

out wrd

b

ALU

rega

regb

CPU
cmd

Random-Access Memory

m − 1
m − 2

1

0

Decode

prog ctr

Figure 3.17 The random-access machine has a central processing unit (CPU) and a random-
access memory unit.

c©John E Savage 3.4 Random-Access Machines 111

This memory is called random-access because the time to access a word is the same for all
words. The Turing machine introduced in Section 3.7 has a tape memory in which the time
to access a word increases with its distance from the tape head.

The random-access memory in the model in Fig. 3.17 has m = 2μ storage locations each
containing a b-bit word, where μ and b are integers. Each word has a μ-bit address and the
addresses are consecutive starting at zero. The combination of this memory and the CPU
described above is the bounded-memory RAM. When no limit is placed on the number and
size of memory words, this combination defines the unbounded-memory RAM. We use the
term RAM for these two machines when context unambiguously determines which is intended.

DESIGN OF A SIMPLE CPU The design of a simple CPU is given in Section 3.10. (See
Fig. 3.31.) This CPU has eight registers, a program counter (PC), accumulator (AC), mem-
ory address register (MAR), memory data register (MDR), operation code (opcode) regis-
ter (OPC), input register (INR), output register (OUTR), and halt register (HALT). Each
operation that requires two operands, such as addition or vector AND, uses AC and MDR as
sources for the operands and places the result in AC. Each operation with one operand, such
as the NOT of a vector, uses AC as both source and destination for the result. PC contains the
address of the next instruction to be executed. Unless a jump instruction is executed, PC is
incremented on the execution of each instruction. If a jump instruction is executed, the value
of PC is changed. Jumps occur in our simple CPU if AC is zero.

To fetch the next instruction, the CPU copies PC to MAR and then commands the
random-access memory to read the word at the address in MAR. This word appears in MDR.
The portion of this word containing the identity of the opcode is transferred to OPC. The
CPU then inspects the value of OPC and performs the small local operations to execute the
instruction represented by it. For example, to perform an addition it commands the arith-
metic/logical unit (ALU) to combine the contents of MDR and AC in an adder circuit and
deposit the result in AC. If the instruction is a load accumulator instruction (LDA), the CPU
treats the bits other than opcode bits as address bits and moves them to the MAR. It then com-
mands the random-access memory to deposit the word at this address in MDR, after which it
moves the contents of MDR to AC. In Section 3.4.3 we illustrate programming in an assembly
language, the language of a machine enhanced by mnemonics and labels. We further illustrate
assembly-language programming in Section 3.10.4 for the instruction set of the machine de-
signed in Section 3.10.

3.4.2 The Bounded-Memory RAM as FSM
As this discussion illustrates, the CPU and the random-access memory are both finite-state
machines. The CPU receives input from the random-access memory as well as from external
sources. Its output is to the memory and the output port. Its state is determined by the
contents of its registers. The random-access memory receives input from and produces output
to the CPU. Its state is represented by an m-tuple (w0, w1, . . . , wm−1) of b-bit words, one
per memory location, as well as by the values of in wrd, out word, and addr. We say that
the random-access memory has a storage capacity of S = mb bits. The RAM has input and
output registers (not shown in Fig. 3.17) through which it reads external inputs and produces
external outputs.

As the RAM example illustrates, some FSMs are programmable. In fact, a program stored
in the RAM memory selects one of very many state sequences that the RAM may execute. The

112 Chapter 3 Machines with Memory Models of Computation

number of states of a RAM can be very large; just the random-access memory alone has more
than 2S states.

The programmability of the unbounded-memory RAM makes it universal for FSMs, as
we show in Section 3.4.4. Before taking up this subject, we pause to introduce an assembly-
language program for the unbounded-memory RAM. This model will play a role in Chapter 5.

3.4.3 Unbounded-Memory RAM Programs
We now introduce assembly-language programs to make concrete the use of the RAM. An
assembly language contains one instruction for each machine-level instruction of a CPU. How-
ever, instead of bit patterns, it uses mnemonics for opcodes and labels as symbolic addresses.
Labels are used in jump instructions.

Figure 3.18 shows a simple assembly language. It implements all the instructions of the
CPU defined in Section 3.10 and vice versa if the CPU has a sufficiently long word length.

Our new assembly language treats all memory locations as equivalent and calls them reg-
isters. Thus, no distinction is made between the memory locations in the CPU and those
in the random-access memory. Such a distinction is made on real machines for efficiency: it
is much quicker to access registers internal to a CPU than memory locations in an external
random-access memory.

Registers are used for data storage and contain integers. Register names are drawn from the
set {R0, R1, R2, . . .}. The address of register Ri is i. Thus, both the number of registers and
their size are potentially unlimited. All registers are initialized with the value zero. Registers
used as input registers to a program are initialized to input values. Results of a computation
are placed in output registers. Such registers may also serve as input registers. Each instruc-
tion may be given a label drawn from the set {N0, N1, N2, . . .}. Labels are used by jump
instructions, as explained below.

Instruction Meaning

INC Ri Increment the contents of Ri by 1.

DEC Ri Decrement the contents of Ri by 1.

CLR Ri Replace the contents of Ri with 0.

Ri ← Rj Replace the contents of Ri with those of Rj .

JMP+ Ni Jump to closest instruction above current one with label Ni.

JMP− Ni Jump to closest instruction below current one with label Ni.

Rj JMP+ Ni If Rj contains 0, jump to closest instruction above
current one with label Ni.

Rj JMP− Ni If Rj contains 0, jump to closest instruction below
current one with label Ni.

CONTINUE Continue to next instruction; halt if none.

Figure 3.18 The instructions in a simple assembly language.

c©John E Savage 3.4 Random-Access Machines 113

The meaning of each instruction should be clear except possibly for the CONTINUE and
JUMP. If the program reaches a CONTINUE statement other than the last CONTINUE, it
executes the following instruction. If it reaches the last CONTINUE statement, the program
halts.

The jump instructions Rj JMP+ Ni, Rj JMP− Ni, JMP+ Ni, and JMP− Ni cause a
break in the program sequence. Instead of executing the next instruction in sequence, they
cause jumps to instructions with labels Ni. In the first two cases these jumps occur only when
the content of register Rj is zero. In the last two cases, these jumps occur unconditionally.
The instructions with JMP+ (JMP−) cause a jump to the closest instruction with label Ni

above (below) the current instruction. The use of the suffixes + and − permit the insertion of
program fragments into an existing program without relabeling instructions.

A RAM program is a finite sequence of assembly language instructions terminated with
CONTINUE. A valid program is one for which each jump is to an existing label. A halting
program is one that halts.

TWO RAM PROGRAMS We illustrate this assembly language with the two simple programs
shown in Fig. 3.19. The first adds two numbers and the second uses the first to square a
number. The heading of each program explains its operation. Registers R0 and R1 contain the
initial values on which the addition program operates. On each step it increments R0 by 1 and
decrements R1 by 1 until R1 is 0. Thus, on completion, the value of R0 is its original value
plus the value of R1 and R1 contains 0.

The squaring program uses the addition program. It makes three copies of the initial value
x of R0 and stores them in R1, R2, and R3. It also clears R0. R2 will be used to reset R1 to x
after adding R1 to R0. R3 is used as a counter and decremented x times, after which x is added
to zero x times in R0; that is, x2 is computed.

R0 ← R0 + R1 Comments

N0 R1 JMP− N1 End if R1 = 0
INC R0 Increment R0

DEC R1 Decrement R1

JMP+ N0 Repeat
N1 CONTINUE

R0 ← R2
0 Comments

R2 ← R0 Copy R0 (x) to R2

R3 ← R0 Copy R0 (x) to R3

CLR R0 Clear the contents of R0

N2 R1 ← R2 Copy R2 (x) to R1

N0 R1 JMP− N1 R0 ← R0 + R1

INC R0

DEC R1

JMP+ N0

N1 CONTINUE

DEC R3 Decrement R3

R3 JMP− N3 End when zero
JMP+ N2 Add x to R0

N3 CONTINUE

Figure 3.19 Two simple RAM programs. The first adds two integers stored initially in registers
R0 and R1, leaving the result in R0. The second uses the first to square the contents of R0, leaving
the result in R0.

114 Chapter 3 Machines with Memory Models of Computation

As indicated above, with large enough words each of the above assembly-language instruc-
tions can be realized with a few instructions from the instruction set of the CPU designed in
Section 3.10. It is also true that each of these CPU instructions can be implemented by a
fixed number of instructions in the above assembly language. That is, with sufficiently long
memory words in the CPU and random-access memory, the two languages allow the same
computations with about the same use of time and space.

However, the above assembly-language instructions are richer than is absolutely essential
to perform all computations. In fact with just five assembly-language instructions, namely
INC, DEC, CONTINUE, Rj JMP+ Ni, and Rj JMP− Ni, all the other instructions can be
realized. (See Problem 3.21.)

3.4.4 Universality of the Unbounded-Memory RAM
The unbounded-memory RAM is universal in two senses. First, it can simulate any finite-
state machine including another random-access machine, and second, it can execute any RAM
program.

DEFINITION 3.4.1 A machine M is universal for a class of machines C if every machine in C can
be simulated by M . (A stronger definition requiring that M also be in C is used in Section 3.8.)

We now show that the RAM is universal for the class C of finite-state machines. We show
that in O(T) steps and with constant storage capacity S the RAM can simulate T steps of any
other FSM. Since any random-access machine that uses a bounded amount of memory can be
described by a logic circuit such as the one defined in Section 3.10, it can also be simulated by
the RAM.

THEOREM 3.4.1 Every T-step FSM M = (Σ, Ψ, Q, δ, λ, s, F) computation can be simulated
by a RAM in O(T) steps with constant space. Thus, the RAM is universal for finite-state machines.

Proof We sketch a proof. Since an FSM is characterized completely by its next-state and
output functions, both of which are assumed to be encoded by binary functions, it suffices to
write a fixed-length RAM program to perform a state transition, generate output, and record
the FSM state in the RAM memory using the tabular descriptions of the next-state and
output functions. This program is then run repeatedly. The amount of memory necessary
for this simulation is finite and consists of the memory to store the program plus one state
(requiring at least log2 |Q| bits). While the amount of storage and time to record and
compute these functions is constant, they can be exponential in log2 |Q| because the next-
state and output functions can be a complex binary function. (See Section 2.12.) Thus, the
number of steps taken by the RAM per FSM state transition is constant.

The second notion of universality is captured by the idea that the RAM can execute RAM
programs. We discuss two execution models for RAM programs. In the first, a RAM program
is stored in a private memory of the RAM, say in the CPU. The RAM alternates between
reading instructions from its private memory and executing them. In this case the registers
described in Section 3.4.3 are locations in the random-access memory. The program counter
either advances to the next instruction in its private memory or jumps to a new location as a
result of a jump instruction.

In the second model (called by some [10] the random-access stored program machine
(RASP)), a RAM program is stored in the random-access memory itself. A RAM program

c©John E Savage 3.5 Random-Access Memory Design 115

can be translated to a RASP program by replacing the names of RAM registers by the names
of random-access memory locations not used for storing the RAM program. The execution
of a RASP program directly parallels that of the RAM program; that is, the RASP alternates
between reading instructions and executing them. Since we do not consider the distinction
between RASP and RAM significant, we call them both the RAM.

3.5 Random-Access Memory Design
In this section we model the random-access memory described in Section 3.4 as an FSM
MRMEM(μ, b) that has m = 2μ b-bit data words, w0, w1, . . . , wm−1, as well as an input
data word d (in wrd), an input address a (addr), and an output data word z (out wrd). (See
Fig. 3.20.) The state of this FSM is the concatenation of the contents of the data, input and
output words, input address, and the command word. We construct an efficient logic circuit
for its next-state and transition function.

To simplify the design of the FSM MRMEM we use the following encodings of the three
input commands:

Name s1 s0

no-op 0 0
read 0 1
write 1 0

An input to MRMEM is a binary (μ + b + 2)-bit binary tuple, two bits to represent a
command, μ bits to specify an address, and b bits to specify a data word. The output function
of MRMEM, λRMEM, is a simple projection operator and is realized by a circuit without any
gates. Applied to the state vector, it produces the output word.

We now describe a circuit for δRMEM, the next-state function of MRMEM. Memory words
remain unchanged if either no-op or read commands are executed. In these cases the value
of the command bit s1 is 0. One memory word changes if s1 = 1, namely, the one whose

wm−1

wm−1

wm−1

wm−1

cmd

b

out wrd

in wrd

addr

Figure 3.20 A random-access memory unit MRMEM that holds m b-bit words. Its inputs
consist of a command (cmd), an input word (in wrd), and an address (addr). It has one output
word (out wrd).

116 Chapter 3 Machines with Memory Models of Computation

address is a. Thus, the memory words w0, w1, . . . , wm−1 change only when s1 = 1. The
word that changes is determined by the μ-bit address a supplied as part of the input. Let
aμ−1, . . . , a1, a0 be the μ bits of a. Let these bits be supplied as inputs to an μ-bit decoder

function f
(μ)
decode (see Section 2.5.4). Let ym−1, . . . , y1, y0 be the m outputs of a decoder

circuit. Then, the Boolean function ci = s1yi (shown in Fig. 3.21(a)) is 1 exactly when
the input address a is the binary representation of the integer i and the FSM MRMEM is
commanded to write the word d at address a.

Let w∗
0 , w∗

1 , . . . , w∗
m−1 be the new values for the memory words. Let w∗

i,j and wi,j be the
jth components of w∗

i and wi, respectively. Then, for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ b− 1 we
write w∗

i,j in terms of wi,j and the jth component dj of d as follows:

ci = s1yi

w∗
i,j = ciwi,j ∨ cidj

Figures 3.21(a) and (b) show circuits described by these formulas. It follows that changes

to memory words can be realized by a circuit containing CΩ

(
f

(μ)
decode

)
gates for the decoder,

m gates to compute all the terms ci, 0 ≤ i ≤ m−1, and 4mb gates to compute w∗
i,j , 0 ≤ i ≤

m− 1, 0 ≤ j ≤ b− 1 (NOTs are counted). Combining this with Lemma 2.5.4, we have that

......

......y0 ∧ w0,j

f
(μ)
decode

(a) (b)

yi ∧ wi,j

uj

aμ−1 aμ−2 a0 y1 ∧ w1,j ym−1 ∧ wm−1,j

w∗
i,j

ci

wi,js1

dj

yi ∧ wi,j

y2 ∧ w2,j

z∗j

s0 zj s0

yiym−1 y0

wi,j

Figure 3.21 A circuit that realizes the next-state and output function of the random-access
memory. The circuit in (a) computes the next values {w∗

i,j} for components of memory words,
whereas that in (b) computes components {z∗

i } of the output word. The output yj ∧ wi,j of (a)
is an input to (b).

c©John E Savage 3.6 Computational Inequalities for the RAM 117

a circuit realizing this portion of the next-state function has at most m(4b+2)+(2μ−2)
√

m
gates. The depth of this portion of the circuit is the depth of the decoder plus 4 because the
longest path between an input and an output w∗

0 , w∗
1 , . . . , w∗

m−1 is through the decoder and
then through the gates that form ciwi,j . This depth is at most �log2 μ� + 5.

The circuit description is complete after we give a circuit to compute the output word z.
The value of z changes only when s0 = 1, that is, when a read command is issued. The jth
component of z, namely zj , is replaced by the value of wi,j , where i is the address specified by
the input a. Thus, the new value of zj , z∗j , can be represented by the following formula (see
the circuit of Fig. 3.21(b)):

z∗j = s0zj ∨ s0

(
m−1∨
k=0

ykwk,j

)
for 0 ≤ j ≤ b− 1

Here
∨

denotes the OR of the m terms ykwk,j , m = 2μ. It follows that for each value of
j this portion of the circuit can be realized with m two-input AND gates and m− 1 two-input
OR gates (to form

∨
) plus four additional operations. Thus, it is realized by an additional

(2m + 3)b gates. The depth of this circuit is the depth of the decoder (�log μ� + 1) plus
μ = log2 m, the depth of a tree of m inputs to form

∨
, plus three more levels. Thus, the

depth of the circuit to produce the output word is μ + �log2 μ� + 4.
The size of the complete circuit for the next-state function is at most m(6b + 2) + (2μ−

2)
√

m + 3b. Its depth is at most μ + �log2 μ� + 4. We state these results as a lemma.

LEMMA 3.5.1 The next-state and output functions of the FSM MRMEM(μ, b), δRMEM and
λRMEM, can be realized with the following size and depth bounds over the standard basis Ω0,
where S = mb is its storage capacity in bits:

CΩ0(δRMEM, λRMEM) ≤ m(6b + 2) + (2μ− 2)
√

m + 3b = O(S)
DΩ0(δRMEM, λRMEM) ≤ μ + �log2 μ� + 4 = O(log(S/b))

Random-access memories can be very large, so large that their equivalent number of logic
elements (which we see from the above lemma is proportional to the storage capacity of the
memory) is much larger than the tens to hundreds of thousands of logic elements in the CPUs
to which they are attached.

3.6 Computational Inequalities for the RAM
We now state computational inequalities that apply for all computations on the bounded-
memory RAM. Since this machine consists of two interconnected synchronous FSMs, we
invoke the inequalities of Theorem 3.1.3, which require bounds on the size and depth of the
next-state and output functions for the CPU and the random-access memory.

From Section 3.10.6 we see that size and depth of these functions for the CPU grow slowly
in the word length b and number of memory words m. In Section 3.5 we designed an FSM
modeling an S-bit random-access memory and showed that the size and depth of its next-state
and output functions are proportional to S and log S, respectively. Combining these results,
we obtain the following computational inequalities.

118 Chapter 3 Machines with Memory Models of Computation

THEOREM 3.6.1 Let f be a subfunction of f
(T ,m,b)
RAM , the function computed by the m-word, b-bit

RAM with storage capacity S = mb in T steps. Then the following bounds hold simultaneously
over the standard basis Ω0 for logic circuits:

CΩ0(f) = O(ST)
DΩ0(f) = O(T log S)

The discussion in Section 3.1.2 of computational inequalities for FSMs applies to this the-
orem. In addition, this theorem demonstrates the importance of the space-time product, ST ,
as well as the product T log S. While intuition may suggest that ST is a good measure of the
resources needed to solve a problem on the RAM, this theorem shows that it is a fundamental
quantity because it directly relates to another fundamental complexity measure, namely, the
size of the smallest circuit for a function f . Similar statements apply to the second inequality.

It is important to ask how tight the inequalities given above are. Since they are both derived
from the inequalities of Theorem 3.1.1, this question can be translated into a question about
the tightness of the inequalities of this theorem. The technique given in Section 3.2 can be
used to tighten the second inequality of Theorem 3.1.1 so that the bounds on circuit depth
can be improved to logarithmic in T without sacrificing the linearity of the bound on circuit
size. However, the coefficients on these bounds depend on the number of states and can be
very large.

3.7 Turing Machines
The Turing machine model is the classical model introduced by Alan Turing in his famous
1936 paper [338]. No other model of computation has been found that can compute func-
tions that a Turing machine cannot compute. The Turing machine is a canonical model of
computation used by theoreticians to understand the limits on serial computation, a topic
that is explored in Chapter 5. The Turing machine also serves as the primary vehicle for the
classification of problems by their use of space and time. (See Chapter 8.)

The (deterministic) one-tape, bounded-memory Turing machine (TM) consists of two
interconnected FSMs, a control unit and a tape unit of potentially unlimited storage capacity.

210

Unit

m − 1

Control

Tape Unit

b

Figure 3.22 A bounded-memory one-tape Turing machine.

c©John E Savage 3.7 Turing Machines 119

(It is shown schematically in Fig. 3.22.) At each unit of time the control unit accepts input
from the tape unit and supplies output to it. The tape unit produces the value in the cell
under the head, a b-bit word, and accepts and writes a b-bit word to that cell. It also accepts
commands to move the head one cell to the left or right or not at all. The bounded-memory
tape unit is an array of m b-bit cells and has a storage capacity of S = mb bits. A formal
definition of the one-tape deterministic Turing machine is given below.

DEFINITION 3.7.1 A standard Turing machine (TM) is a six-tuple M = (Γ, β, Q, δ, s, h),
where Γ is the tape alphabet not containing the blank symbol β, Q is the finite set of states,
δ : Q × (Γ ∪ {β}) �→ (Q ∪ {h}) × (Γ ∪ {β}) × {L, N, R} is the next-state function, s is
the initial state, and h �∈ Q is the accepting halt state. A TM cannot exit from h. If M is in
state q with letter a under the tape head and δ(q, a) = (q′, a′, C), its control unit enters state q′

and writes a′ in the cell under the head, and moves the head left (if possible), right, or not at all if
C is L, R, or N, respectively.

The TM M accepts the input string w ∈ Γ∗ (it contains no blanks) if, when started in
state s with w placed left-adjusted on its otherwise blank tape and the tape head at the leftmost
tape cell, the last state entered by M is h. If M has other halting states (states from which it does
not exit) these are rejecting states. Also, M may not halt on some inputs.

M accepts the language L(M) consisting of all strings accepted by M . If a Turing machine
halts on all inputs, we say that it recognizes the language that it accepts. For simplicity, we
assume that when M halts during language acceptance it writes the letter 1 in its first tape cell if its
input string is accepted and 0 otherwise.

The function computed by a Turing machine on input string w is the string z written
leftmost on the non-blank portion of the tape after halting. The function computed by a TM is
partial if the TM fails to halt on some input strings and complete otherwise.

Thus, a TM performs a computation on input string w, which is placed left-adjusted on
its tape by placing its head over the leftmost symbol of w and repeatedly reading the symbol
under the tape head, making a state change in its control unit, and producing a new symbol
for the tape cell and moving the head left or right by one cell or not at all. The head does not
move left from the leftmost tape cell. If a TM is used for language acceptance, it accepts w by
halting in the accepting state h. If the TM is used for computation, the result of a computation
on input w is the string z that remains on the non-blank portion of its tape.

We require that M store the letter 1 or 0 in its first tape cell when halting during language
acceptance to simplify the construction of a circuit simulating M in Section 3.9.1. This re-
quirement is not essential because the fact that M has halted in state h can be detected with a
simple circuit.

The multi-tape Turing machine is a generalization of this model that has multiple tape
units. (These models and limits on their ability to solve problems are examined in Chapter 5,
where it is shown that the multi-tape TM is no more powerful than the one-tape TM.) Al-
though in practice a TM uses a bounded number of memory locations, the full power of TMs
is realized only when they have access to an unbounded number of tape cells.

Although the TM is much more limited than the RAM in the flexibility with which it can
access memory, given sufficient time and storage capacity they both compute exactly the same
set of functions, as we show in Section 3.8.

A very important class of languages recognized by TMs is the class P of polynomial-time
languages.

120 Chapter 3 Machines with Memory Models of Computation

DEFINITION 3.7.2 A language L ⊆ Γ∗ is in P if there is a Turing machine M with tape alphabet
Γ and a polynomial p(n) such that, for every w ∈ Γ∗, a) M halts in p(|w|) steps and b) M
accepts w if and only if it is in L.

The class P is said to contain all the “feasible” languages because any language requiring
more than a polynomial number of steps for its recognition is thought to require so much time
for long strings as not to be recognizable in practice.

A second important class of languages is NP, the languages accepted in polynomial time
by nondeterministic Turing machines. To define this class we introduce the nondeterministic
Turing machines.

3.7.1 Nondeterministic Turing Machines
A nondeterministic Turing machine (NDTM) is identical to the standard TM except that
its control unit has an external choice input. (See Fig. 3.23.)

DEFINITION 3.7.3 A non-deterministic Turing machine (NDTM) is the extension of the TM
model by the addition of a choice input to its control unit. Thus an NDTM is a seven-tuple
M = (Σ, Γ, β, Q, δ, s, h), where Σ is the choice input alphabet, Γ is the tape alphabet not
containing the blank symbol β, Q is the finite set of states, s is the initial state, and h �∈ Q
is the accepting halt state. A TM cannot exit from h. When M is in state q with letter a under
the tape head, reading choice input c, its next-state function δ : Q × Σ × (Γ ∪ {β}) �→
(Q ∪ {h}) × (Γ ∪ {β}) × {L, R, N}∪ ⊥ has value δ(q, c, a). If δ(q, c, a) =⊥, there is no
successor to the current state with choice input c and tape symbol a. If δ(q, c, a) = (q′, a′, C), M ’s
control unit enters state q′, writes a′ in the cell under the head, and moves the head left (if possible),
right, or not at all if C is L, R, or N, respectively. The choice input selects possible transitions on
each time step.

An NDTM M reads one character of its choice input string c ∈ Σ∗ on each step. An
NDTM M accepts string w if there is some choice string c such that the last state entered by M is
h when M is started in state s with w placed left-adjusted on its otherwise blank tape and the tape
head at the leftmost tape cell. We assume that when M halts during language acceptance it writes
the letter 1 in its first tape cell if its input string is accepted and 0 otherwise.

An NDTM M accepts the language L(M) ⊆ Γ∗ consisting of those strings w that it accepts.
Thus, if w �∈ L(M), there is no choice input for which M accepts w.

Note that the choice input c associated with acceptance of input string w is selected with full
knowledge of w. Also, note that an NDTM does not accept any string not in L(M); that is,
for no choice inputs does it accept such a string.

The NDTM simplifies the characterization of languages. It is used in Section 8.10 to
characterize the class NP of languages accepted in nondeterministic polynomial time.

DEFINITION 3.7.4 A language L ⊆ Γ∗ is in NP if there is a nondeterministic Turing machine
M and a polynomial p(n) such that M accepts L and for each w ∈ L there is a choice input c
such that M on input w with this choice input halts in p(|w|) steps.

A choice input is said to “verify” membership of a string in a language. The particular
string provided by the choice agent is a verifier for the language. The languages in NP are thus

c©John E Savage 3.8 Universality of the Turing Machine 121

Unit

0 1 m − 12

Control

Tape Unit

b

Choice Input

Figure 3.23 A nondeterministic Turing machine modeled as a deterministic one whose control
unit has an external choice input that disambiguates the value of its next state.

easy to verify: they can be verified in a polynomial number of steps by a choice input string of
polynomial length.

The class NP contains many important problems. The Traveling Salesperson Problem
(TSP) is in this class. TSP is a set of strings of the following kind: each string contains an
integer n, the number of vertices (cities) in an undirected graph G, as well as distances between
every pair of vertices in G, expressed as integers, and an integer k such that there is a path that
visits each city once, returning to its starting point (a tour), whose length is at most k. A
verifier for TSP is an ordering of the vertices such that the total distance traveled is no more
than k. Since there are n! orderings of the n vertices and n! is approximately

√
2πnnne−n, a

verifier can be found in a number of steps exponential in n; the actual verification itself can be
done in O(n2) steps. (See Problem 3.24.) NP also contains many other important languages,
in particular, languages defining important combinatorial problems.

While it is obvious that P is a subset of NP, it is not known whether they are the same.
Since for each language L in NP there is a polynomial p such that for each string w in L
there is a verifying choice input c of length p(|w|), a polynomial in the length of w, the
number of possible choice strings c to be considered in search of a verifying string is at most
an exponential in |w|. Thus, for every language in NP there is an exponential-time algorithm
to recognize it.

Despite decades of research, the question of whether P is equal to NP, denoted P
?= NP,

remains open. It is one of the great outstanding questions of computer science today. The
approach taken to this question is to identify NP-complete problems (see Section 8.10), the
hardest problems in NP, and then attempt to determine problems whether or not such prob-
lems are in P. TSP is one of these NP-complete problems.

3.8 Universality of the Turing Machine
We show the existence of a universal Turing machine in two senses. On the one hand, we show
that there is a Turing machine that can simulate any RAM computation. Since every Turing

122 Chapter 3 Machines with Memory Models of Computation

machine can be simulated by the RAM, the Turing machine simulating a RAM is universal for
the set of all Turing machines.

Also, because there is a Turing machine that can simulate any RAM computation, every
RAM program can be simulated on this Turing machine. Since it is not hard to see that every
Turing machine can be described by a RAM program (see Problem 3.29), it follows that the
RAM programs are exactly the programs computed by Turing machines. Consequently, the
RAM is also universal.

The following theorem demonstrates that RAM computations can be simulated by Turing-
machine computations and vice versa when each operates with bounded memory. Note that
all halting computations are bounded-memory computations. A direct proof of the existence
of a universal Turing machine is given in Section 5.5.

THEOREM 3.8.1 Let S = mb and m ≥ b. Then for every m-word, b-bit Turing machine MTM

(with storage capacity S) there is an O(m)-word, b-bit RAM that simulates a time T computation
of MTM in time O(T) and storage O(S). Similarly, for every m-word, b-bit RAM MRAM

there is an O((m/b) log m)-word, O(b)-bit Turing machine that simulates a T-time, S-storage
computation of MRAM in time O(ST log2 S) and storage O(S log S).

Proof We begin by describing a RAM that simulates a TM. Consider a b-bit RAM program
to simulate an m-word, b-bit TM. As shown in Theorem 3.4.1, a RAM program can be
written to simulate one step of an FSM. Since a TM control unit is an FSM, it suffices to
exhibit a RAM program to simulate a tape unit (also an FSM); this is straightforward, as
is combining the two programs. If the RAM has storage capacity proportional to that of
the TM, then the RAM need only record with one additional word the position of the tape
head. This word, which can be held in a RAM register, is incremented or decremented as
the head moves. The resulting program runs in time proportional to the running time of
the TM.

We now describe a b∗-bit TM that simulates a RAM, where b∗ = �log m� + b + c for
some constant c, an assumption we examine later. Let RAM words and their corresponding
addresses be placed in individual cells on the tape of the TM, as suggested in Fig. 3.24. Let
the address addr of the RAM CPU program counter be placed on the tape of the TM to the
left, as suggested by the shading in the figure. (It is usually assumed that, unlike the RAM,
the TM holds words of size no larger than O(b) in its control unit.) The TM simulates
a RAM by simulating the RAM fetch-and-execute cycle. This means it fetches a word at

0000

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
10

w
11

w
12

w
13

w
9

w
15

w
0

♠

w
14

0001

0010

0011

0100

0101

0110

0111

1000

w
1

♦

1011

1100

1101

1110

1111

0000

1001

1010

Figure 3.24 Organization of a tape unit to simulate a RAM. Each RAM memory word wj is
accompanied by its address j in binary.

c©John E Savage 3.8 Universality of the Turing Machine 123

address addr in the simulated RAM memory unit, interprets it as an instruction, and then
executes the instruction (which might require a few additional accesses to the memory unit
to read or write data). We return to the simulation of the RAM CPU after we examine the
simulation of the RAM memory unit.

The TM can find a word at location addr as follows. It reads the most significant bit
of addr and moves right on its tape until it finds the first word with this most significant
bit. It leaves a marker at this location. (The symbol ♦ in Fig. 3.24 identifies the first place
a marker is left.) It then returns to the left-hand end of the tape and obtains the next most
significant bit of addr. It moves back to the marker ♦ and then carries this marker forward
to the next address containing the next most significant bit (identified by the marker ♠ in
Fig. 3.24). This process is repeated until all bits of addr have been visited, at which point
the word at location addr in the simulated RAM is found. Since m tape unit cells are used
in this simulation, at most O(m log m) TM steps are taken for this purpose.

The TM must also simulate internal RAM CPU computations. Each addition, sub-
traction, and comparison of b-bit words can be done by the TM control unit in a constant
number of steps, as can the logical vector operations. (For simplicity, we assume that the
RAM does not use its I/O registers. To simulate these operations, either other tapes would
be used or space would be reserved on the single tape to hold input and output words.) The
jump instructions as well as the incrementing of the program counter require moving and
incrementing �log m�-bit addresses. These cannot be simulated by the TM control unit
in a constant number of steps since it can only operate on b-bit words. Instead, they are
simulated on the tape by moving addresses in b-bit blocks. If two tape cells are separated
by q − 1 cells, 2q steps are necessary to move each block of b bits from the first cell to the
second. Thus, a full address can be moved in 2q��log m�/b� steps. An address can also
be incremented using ripple addition in ��log m�/b� steps using operations on b-bit words,
since the blocks of an address are contiguous. (See Section 2.7 for a discussion of ripple
addition.) Thus, both of these address-manipulation operations can be done in at most
O(m��log m�/b�) steps, since no two words are separated by more than O(m) cells.

Now consider the general case of a TM with word size comparable to that of the RAM,
that is, a size too small to hold an address as well as a word. In particular, consider a TM with
b̂-bit tape alphabet where b̂ = cb, c > 1 a constant. In this case, we divide addresses into⌈
�log m�/b̂

⌉
b̂-bit words and place these words in locations that precede the value of the

RAM word at this address, as suggested in Fig. 3.40. We also place the address addr at the
beginning of the tape in the same number of tape words. A total of O((m/b)(log m)) O(b)-
bit words are used to store all this data. Now assume that the TM can carry the contents of
a b̂-bit word in its control unit. Then, as shown in Problem 3.26, the extra symbols in the
TM’s tape alphabet can be used as markers to find a word with a given address in at most
O((m/b)(log2 m)) TM steps using storage O((m/b) log m). Hence each RAM memory
access translates into O((m/b)(log2 m)) TM steps on this machine.

Simulation of the CPU on this machine is straightforward. Again, each addition, sub-
traction, comparison, and logical vector operation on b-bit words can be done in a constant
number of steps. Incrementing of the program counter can also be done in ��log m�/b�
operations since the cells containing this address are contiguous. However, since a jump op-
eration may require moving an address by O(m) cells in the b∗-bit TM, it may now require

moving it by O(m(log m)/b) cells in the b̂-bit TM in O
(
m ((log m)/b)2

)
steps.

124 Chapter 3 Machines with Memory Models of Computation

Combining these results, we see that each step of the RAM may require as many as
O((m((logm)/b)2) steps of the b̂-bit TM. This machine uses storage O((m/b) log m).
Since m = S/b, the conclusion of the theorem follows.

This simulation of a bounded-memory RAM by a Turing machine assumes that the RAM
has a fixed number of memory words. Although this may appear to prevent an unbounded-
memory TM from simulating an unbounded-memory RAM, this is not the case. If the Turing
machine detects that an address contains more than the number of bits currently assumed
as the maximum number, it can increase by 1 the number of bits allocated to each memory
location and then resume computation. To make this adjustment, it will have to space out the
memory words and addresses to make space for the extra bits. (See Problem 3.28.)

Because a Turing machine with no limit on the length of its tape can be simulated by a
RAM, this last observation demonstrates the existence of universal Turing machines, Tur-
ing machines with unbounded memory (but with fixed-size control units and bounded-size
tape alphabets) that can simulate arbitrary Turing machines. This matter is also treated in
Section 5.5.

Since the RAM can execute RAM programs, the same is true of the Turing machines. As
mentioned above, it is not hard to see that every Turing machine can be simulated by a RAM
program. (See Problem 3.29.) As a consequence, the RAM programs are exactly the programs
that can be computed by a Turing machine.

While the above remarks apply to the one-tape Turing machine, they also apply to all other
Turing machine models, such as double-ended and multi-tape Turing machines, because each
of these can also be simulated by the one-tape Turing machine. (See Section 5.2.)

3.9 Turing Machine Circuit Simulations
Just as every T-step finite-state machine computation can be simulated by a circuit, so can
every T-step Turing machine computation. We give two circuit simulations, a simple one that
demonstrates the concept and another more complex one that yields a smaller circuit. We use
these two simulations in Sections 3.9.5 and 3.9.6 to establish computational inequalities that
must hold for Turing machines. With a different interpretation they provide examples of P-
complete and NP-complete problems. (See also Sections 8.9 and 8.10.) These results illustrate
the central role of circuits in theoretical computer science.

3.9.1 A Simple Circuit Simulation of TM Computations
We now design a circuit simulating a computation of a Turing machine M that uses m memory
cells and T steps. Since the only difference between a deterministic and nondeterministic
Turing machine is the addition of a choice input to the control unit, we design a circuit for a
nondeterministic Turing machine.

For deterministic computations, the circuit simulation provides computational inequalities
that must be satisfied by computational resources, such as space and time, if a problem is to be
solved by M . Such an inequality is stated at the end of this section.

With the proper interpretation, the circuit simulation of a deterministic computation is an
instance of a P-complete problem, one of the hardest problems in P to parallelize. Here P is
the class of polynomial-time languages. A first P-complete problem is stated in the following
section. This topic is studied in detail in Section 8.9.

c©John E Savage 3.9 Turing Machine Circuit Simulations 125

For nondeterministic computations, the circuit simulation produces an instance of an NP-
complete problem, a hardest problem to solve in NP. Here NP is the class of languages accepted
in polynomial time by a nondeterministic Turing machine. A first NP-complete problem is
stated in the following section. This topic is studied in detail in Section 8.10.

THEOREM 3.9.1 Any computation performed by a one-tape Turing machine M , deterministic or
nondeterministic, on an input string w in T steps using m b-bit memory cells can be simulated
by a circuit CM ,T over the standard complete basis Ω of size and depth O(ST) and O(T log S),
respectively, where S = mb is the storage capacity in bits of M ’s tape. For the deterministic TM
the inputs to this circuit consist of the values of w. For the nondeterministic TM the inputs consist
of w and the Boolean choice input variables whose values are not set in advance.

Proof To construct a circuit CM ,T simulating T steps by M is straightforward because M
is a finite-state machine now that its storage capacity is limited. We need only extend the
construction of Section 3.1.1 and construct a circuit for the next-state and output functions

Control
Circuit

Control

am−1,0

Circuit

s0,0

a0,0

s1,0

Control
Circuit

aj,0

0

sm−2,0

sm−1,0

sj−1,0

a0,1

aj,1

am−1,1

sj,1

sm−1,1
Cm−1,1

sj+1,0

Le
ft

0

R
ig

ht

sj,0

vT−1

CT (m)

vm−1,T

v0,T

Cj,T

C0,T
s0,T

am−1,T

a0,T

Cm−1,T

0

sm−1,T−1

sm−2,T−1
sj+1,T−1
aj,T−1

sj,T−1

sj−1,T−1
s1,T−1

a0,T−1
s0,T−1

0

am−1,T−1

sm−1,T

aj,T
sj,T

vj,T

v0

C1(m)

vm−1,1

v0,1

h1 v1

Cj,1

C0,1

vj,1

s0,1

cTc2

wT−1

qT

hT

qT−1

vTw2 h2

q0

w1

q1c1 cT

Figure 3.25 The circuit CM ,T simulates an m-cell, T -step computation by a nondeterministic
Turing machine M . It contains T copies of M ’s control unit circuit and T column circuits, Ct,
each containing cell circuits Cj,t, 0 ≤ j ≤ m−1, 1 ≤ t ≤ T , simulating the jth tape cell on the
tth time step. qt and ct are M ’s state on the tth step and its tth set of choice variables. Also, aj,t

is the value in the jth cell on the tth step, sj,t is 1 if the head is over cell j at the tth time step, and
vj,t is aj,t if sj,t = 1 and 0 otherwise. vt, the vector OR of vj,t, 0 ≤ j ≤ m − 1, supplies the
value under the head to the control unit, which computes head movement commands, ht, and
a new word, wt, for the current cell in the next simulated time step. The value of the function
computed by M resides on its tape after the T th step.

126 Chapter 3 Machines with Memory Models of Computation

of M . As shown in Fig. 3.25, it is convenient to view M as a pair of synchronous FSMs
(see Section 3.1.4) and design separate circuits for M ’s control and tape units. The design
of the circuit for the control unit is straightforward since it is an unspecified NFSM. The
tape circuit, which realizes the next-state and output functions for the tape unit, contains
m cell circuits, one for each cell on the tape. We denote by Ct(m), 1 ≤ t ≤ T , the tth tape
circuit. We begin by constructing a tape circuit and determining its size and depth.

For 0 ≤ j ≤ m and 1 ≤ t ≤ T let Cj,t be the jth cell circuit of the tth tape circuit,
Ct(m). Cj,t produces the value aj,t contained in the jth cell after the jth step as well as
sj,t, whose value is 1 if the head is over the jth tape cell after the tth step and 0 otherwise.
The value of aj,t is either aj,t−1 if sj,t = 0 (the head is not over this cell) or w if sj,t = 1
(the head is over the cell). Subcircuit SC2 of Fig. 3.26 performs this computation.

Subcircuit SC1 in Fig. 3.26 computes sj,t from sj−1,t−1, sj,t−1, sj+1,t−1 and the triple
ht = (h−1

t , h0
t , h+1

t), where h−1
t = 1 if the head moves to the next lower-numbered cell,

h+1
t = 1 if it moves to the next higher-numbered cell, or h0

t = 1 if it does not move. Thus,
sj,t = 1 if sj+1,t−1 = 1 and h−1

t = 1, or if sj−1,t−1 and h+1
t = 1, or if sj,t−1 = 1 and

h0
t = 1. Otherwise, sj,t = 0.

Subcircuit SC3 of cell circuit Cj,t generates the b-bit word vj,t that is used to provide
the value under the head on the tth step. vj,t is aj,t if the head is over the jth cell on the

...

...

......

aj,t−1,b

aj,t−1,1

SC2

SC3

vj,t,b

vj,t,1

SC1

w1

aj,t,1

aj,t,b

sj,t

wb

h0
t

h+1
t

h−1
t

sj+1,t−1

sj−1,t−1

sj,t−1

Figure 3.26 The cell circuit Cj,t has three components: SC1, a circuit to compute the new
value for the head location bit sj,t from the values of this quantity on the preceding step at
neighboring cells and the head movement vector ht, SC2, a circuit to replace the value in the jth
cell on the t step with the input w if the head is over the cell on the (t − 1)st step (sj,t−1 = 1),
and SC3, a circuit to produce the new value in the jth cell at the tth step if the head is over this
cell (sj,t = 1) and the zero vector otherwise. The circuit Cj,t has 5(b + 1) gates and depth 4.

c©John E Savage 3.9 Turing Machine Circuit Simulations 127

tth step (sj,t = 1) and 0 otherwise. The vector-OR of vj,t, 0 ≤ j ≤ m−1, is formed using
the tree circuit shown in Fig. 3.25 to compute the value of the b-bit word vt under the head
after the tth step. (This can be done by b balanced binary OR trees, each with size m − 1
and depth �log2 m�.) vt is supplied to the tth copy of the control unit circuit, which also
uses the previous state of the control unit, qt, and the choice input ct (a tuple of Boolean
variables) to compute the next state, qt+1, the new b-bit word wt+1 for the current tape cell,
and the head movement command ht+1.

Summarizing, it follows that the tth tape circuit, Ct(m), uses O(S) gates (here S = mb)
and has depth O(log S/b).

Let Ccontrol and Dcontrol be the size and depth of the circuit simulating the control
unit. It follows that the circuit simulating T computation steps by a Turing machine M has
T Ccontrol gates in the T copies of the control unit and O(ST) gates in the tape circuits for a
total of O(ST) gates. Since the longest path through the circuit of Fig. 3.26 passes through
each control and tape circuit, the depth of this circuit is O(T (Dcontrol + log S/b)) =
O(T log S).

The simulation of M is completed by placing the head over the zeroth cell by letting
s0,0 = 1 and sj,0 = 0 for j �= 0. The inputs to M are fixed by setting aj,0 = wj for
0 ≤ j ≤ n − 1 and to the blank symbol for j ≥ n. Finally, v0 is set equal to aj,0, the
value under the head at the start of the computation. The choice inputs are sets of Boolean
variables under the control of an outside agent and are treated as variables of the circuit
simulating the Turing machine M .

We now give two interpretations of the above simulation. The first establishes that the
circuit complexity for a function provides a lower bound to the time required by a computation
on a Turing machine. The second provides instances of problems that are P-complete and NP-
complete.

3.9.2 Computational Inequalities for Turing Machines
When the simulation of Theorem 3.9.1 is specialized to a deterministic Turing machine M , a
circuit is constructed that computes the function f computed by M in T steps with S bits of
memory. It follows that CΩ(f) and DΩ(f) cannot be larger than those given in this theorem,
since this circuit also computes f . From this observation we have the following computational
inequalities.

THEOREM 3.9.2 The function f computed by an m-word, b-bit one-tape Turing machine in T
steps can also be computed by a circuit whose size and depth satisfy the following bounds over any
complete basis Ω, where S = mb is the storage capacity used by this machine:

CΩ(f) = O(ST)
DΩ(f) = O(T log S)

Since S = O(T) (at most T + 1 cells can be visited in T steps), we have the following
corollary. It demonstrates that the time T to compute a function f with a Turing machine is
at least the square root of its circuit size. As a consequence, circuit size complexity can be used
to derive lower bounds on computation time on Turing machines.

128 Chapter 3 Machines with Memory Models of Computation

COROLLARY 3.9.1 Let the function f be computed by an m-word, b-bit one-tape Turing machine
in T steps, b fixed. Then, over any complete basis Ω the following inequality must hold:

CΩ(f) = O
(
T 2

)
There is no loss in assuming that a language L is a set of strings over a binary alpha-

bet; that is, L ⊆ B∗. As explained in Section 1.2.3, a language can be defined by a family
{f1, f2, f3, . . .} of characteristic (Boolean) functions, fn : Bn �→ B, where a string w of
length n is in L if and only if fn(w) = 1.

Theorem 3.9.2 not only establishes a clear connection between Turing time complexity

and circuit size complexity, but it also provides a potential means to resolve the question P
?=

NP of whether P and NP are equal or not. Circuit complexity is currently believed to be the
most promising tool to examine this question. (See Chapter 9.)

3.9.3 Reductions from Turing to Circuit Computations
As shown in Theorem 3.9.1, a circuit CM ,T can be constructed that simulates a time- and
space-bounded computation by either a deterministic or a nondeterministic Turing machine
M . If M is deterministic and accepts the binary input string w, then CM ,T has value 1 when
supplied with the value of w. If M is nondeterministic and accepts the binary input string w,
then for some values of the binary choice variables c, CM ,T on inputs w and c has value 1.

The language of strings describing circuits with fixed inputs whose value on these inputs
is 1 is called CIRCUIT VALUE. When the circuits also have variable inputs whose values can
be chosen so that the circuits have value 1, the language of strings describing such circuits is
called CIRCUIT SAT. (See Section 3.9.6.) The languages CIRCUIT VALUE and CIRCUIT SAT

are examples of P-complete and NP-complete languages, respectively.
The P-complete and NP-complete languages play an important role in complexity the-

ory: they are prototypical hard languages. The P-complete languages can all be recognized in
polynomial time on serial machines, but it is not known how to recognize them on parallel
machines in time that is a polynomial in the logarithm of the length of strings (this is called
poly-logarithmic time), which should be possible if they are parallelizable. The NP-complete
languages can be recognized in exponential time on deterministic serial machines, but it is
not known how to recognize them in polynomial time on such machines. Many important
problems have been shown to be P-complete or NP-complete.

Because so much effort has been expended without success in trying to show that the
NP-complete (P-complete) languages can be solved serially (in parallel) in polynomial (poly-
logarithmic) time, it is generally believed they cannot. Thus, showing that a problem is NP-
complete (P-complete) is considered good evidence that a problem is hard to solve serially (in
parallel).

To obtain such results, we exhibit a program that writes the description of the circuit CM ,T

from a description of the TM M and the values written initially on its tape. The time and
space needed by this program are used to classify languages and, in particular, to identify the
P-complete and NP-complete languages.

The simple program P shown schematically in Fig. 3.27 writes a description of the circuit
CM ,T of Fig. 3.25, which is deterministic or nondeterministic depending on the nature of
M . (Textual descriptions of circuits are given in Section 2.2. Also see Problem 3.8.) The
first loop of this program reads the value of ith input letter wi of the string w written on

c©John E Savage 3.9 Turing Machine Circuit Simulations 129

for i := 0 to n− 1
READ VALUE(wi)
WRITE INPUT(i, wi)

for j := n to m − 1
WRITE INPUT(j, β)

for t := 1 to T
WRITE CONTROL UNIT(t, ct)
WRITE OR(t, m)
for j := 0 to m− 1

WRITE CELL CIRCUIT(j, t)

Figure 3.27 A program P to write the description of a circuit CM ,T that simulates T steps of a
nondeterministic Turing machine M and uses m memory words. It reads the n inputs supplied
to M , after which it writes the input steps of a straight-line program that reads these n inputs as
well as m − n blanks β into the first copy of a tape unit. It then writes the remaining steps of a
straight-line program consisting of descriptions of the T copies of the control unit and the mT
cell circuits simulating the T copies of the tape unit.

the input tape of T , after which it writes a fragment of a straight-line program containing the
value of wi. The second loop sets the remaining initial values of cells to the blank symbol β.
The third outer loop writes a straight-line program for the control unit using the procedure
WRITE CONTROL UNIT that has as arguments t, the index of the current time step, and ct,
the tuple of Boolean choice input variables for the tth step. These choice variables are not used
if M is deterministic. In addition, this loop uses the procedure WRITE OR to write a straight-
line program for the vector OR circuit that forms the contents vt of the cell under the head
after the tth step. Its inner loop uses the procedure WRITE CELL CIRCUIT with parameters j
and t to write a straight-line program for the jth cell circuit in the tth tape.

The program P given in Fig. 3.27 is economical in its use of space and time, as we show.
Consider a language L in P; that is, for L there is a deterministic Turing machine ML and a
polynomial p(n) such that on an input string w of length n, ML halts in T = p(n) steps.
It accepts w if it is in L and rejects it otherwise. Since P uses space logarithmic in the values
of n and T and T = p(n), P uses space logarithmic in n. (For example, if p(n) = n6,
log2 p(n) = 6 log2 n = O(log n).) Such programs are called log-space programs.

We show in Theorem 8.8.1 that the composition of two log-space programs is a log-space
program, a non-obvious result. However, it is straightforward to show that the composition of
two polynomial-time programs is a polynomial-time program. (See Problems 3.2 and 8.19.)
Since P ’s inner and outer loops each execute a polynomial number of steps, it follows that P
is a polynomial-time program.

If M is nondeterministic, P continues to be a log-space, polynomial-time program. The
only difference is that it writes a circuit description containing references to choice variables
whose values are not specified in advance. We state these observations in the form of a theorem.

THEOREM 3.9.3 Let L ∈ P (L ∈ NP). Then for each string w ∈ Γ∗ a deterministic (nondeter-
ministic) circuit CM ,T can be constructed by a program in logarithmic space and polynomial time
in n = |w|, the length of w, such that the output of CM ,T , the value in the first tape cell, is (can
be) assigned value 1 (for some values of the choice inputs) if w ∈ L and 0 if w �∈ L.

130 Chapter 3 Machines with Memory Models of Computation

The program of Fig. 3.27 provides a translation (or reduction) from any language in NP
(or P) to a language that we later show is a hardest language in NP (or P).

We now use Theorem 3.9.3 and the above facts to give a brief introduction to the P-
complete and NP-complete languages, which are discussed in more detail in Chapter 8.

3.9.4 Definitions of P-Complete and NP-Complete Languages
In this section we identify languages that are hardest in the classes P and NP. A language L0 is
hardest in one of these classes if a) L0 is itself in the class and b) for every language L in the
class, a test for the membership of a string w in L can be constructed by translating w with an
algorithm to a string v and testing for membership of v in L0. If the class is P, the algorithm
must use at most space logarithmic in the length of w, whereas in the case of NP, the algorithm
must use time at most a polynomial in the length of w. Such a language L0 is said to be a
complete language for this complexity class. We begin by defining the P-complete languages.

DEFINITION 3.9.1 A language L ⊆ B∗ is P-complete if it is in P and if for every language
L0 ⊆ B∗ in P, there is a log-space deterministic program that translates each w ∈ B∗ into a string
w′ ∈ B∗ such that w ∈ L0 if and only if w′ ∈ L.

The NP-complete languages have a similar definition. However, instead of requiring that
the translation be log-space, we ask only that it be polynomial-time. It is not known whether
all polynomial-time computations can be done in logarithmic space.

DEFINITION 3.9.2 A language L ⊆ B∗ is NP-complete if it is in NP and if for every language
L0 ⊆ B∗ in NP, there is a polynomial-time deterministic program that translates each w ∈ B∗

into a string w′ ∈ B∗ such that w ∈ L0 if and only if w′ ∈ L.

Space precludes our explaining the important role of the P-complete languages. We simply
report that these languages are the hardest languages to parallelize and refer the reader to Sec-
tions 8.9 and 8.14.2. However, we do explain the importance of the NP-complete languages.

As the following theorem states, if an NP-complete language is in P; that is, if membership
of a string in an NP-complete language can be determined in polynomial time, then the same
can be done for every language in NP; that is, P and NP are the same class of languages.
Since decades of research have failed to show that P = NP, a determination that a problem is
NP-complete is a testimonial to but not a proof of its difficulty.

THEOREM 3.9.4 If an NP-complete language is in P, then P = NP.

Proof Let L be NP-complete and let L0 be an arbitrary language in NP. Because L is NP-
complete, there is a polynomial-time program that translates an arbitrary string w into a
string w′ such that w′ ∈ L if and only if w ∈ L0. If L ∈ P, then testing of membership
of strings in L0 can be done in polynomial time in the length of the string. It follows that
there exists a polynomial-time program to determine membership of a string in L0. Thus,
every language in NP is also in P.

3.9.5 Reductions to P-Complete Languages
We now formally define CIRCUIT VALUE, our first P-complete language.

c©John E Savage 3.9 Turing Machine Circuit Simulations 131

CIRCUIT VALUE

Instance: A circuit description with fixed values for its input variables and a designated
output gate.
Answer: “Yes” if the output of the circuit has value 1.

THEOREM 3.9.5 The language CIRCUIT VALUE is P-complete.

Proof To show that CIRCUIT VALUE is P-complete, we must show that it is in P and
that every language in P can be translated to it by a log-space program. We have already
shown the second half of the proof in Theorem 3.9.1. We need only show the first half,
which follows from a simple analysis of the obvious program. Since a circuit is a graph of a
straight-line program, each step depends on steps that precede it. (Such a program can be
produced by a pre-order traversal of the circuit starting with its output vertex.) Now scan
the straight-line program and evaluate and store in an array the value of each step. Successive
steps access this array to find their arguments. Thus, one pass over the straight-line program
suffices to evaluate it; the evaluating program runs in linear time in the length of the circuit
description. Hence CIRCUIT VALUE is in P.

When we wish to show that a new language L1 is P-complete, we first show that it is in
P. Then we show that every language L ∈ P can be translated to it in logarithmic space; that
is, for each string w, there is an algorithm that uses temporary space O(log |w|) (as does the
program in Fig. 3.27) that translates w into a string v such that w is in L if and only if v is
in L1. (This is called a log-space reduction. See Section 8.5 for a discussion of temporary
space.)

If we have already shown that a language L0 is P-complete, we ask whether we can save
work by using this fact to show that another language, L1, in P is P-complete. This is pos-
sible because the composition of two deterministic log-space algorithms is another log-space
algorithm, as shown in Theorem 8.8.1. Thus, if we can translate L0 into L1 with a log-space
algorithm, then every language in P can be translated into L1 by a log-space reduction. (This
idea is suggested in Fig. 3.28.) Hence, the task of showing L1 to be P-complete is reduced
to showing that L1 is in P and that L0, which is P-complete, can be translated to L1 by a
log-space algorithm. Many P-complete languages are exhibited in Section 8.9.

L1

L0

L

by Def. 3.9.1

log-space reduction

log-space reduction by Def. 3.9.1

Figure 3.28 A language L0 is shown P-complete by demonstrating that L0 is in P and that
every language L in P can be translated to it in logarithmic space. A new language L1 is shown
P-complete by showing that it is in P and that L0 can be translated to it in log-space. Since L can
be L1, L1 can also be translated to L0 in log-space.

132 Chapter 3 Machines with Memory Models of Computation

3.9.6 Reductions to NP-Complete Languages
Our first NP-complete language is CIRCUIT SAT, a language closely related to CIRCUIT

VALUE.

CIRCUIT SAT

Instance: A circuit description with n input variables {x1, x2, . . . , xn} for some integer n
and a designated output gate.
Answer: “Yes” if there is an assignment of values to the variables such that the output of the
circuit has value 1.

THEOREM 3.9.6 The language CIRCUIT SAT is NP-complete.

Proof To show that CIRCUIT SAT is NP-complete, we must show that it is in NP and that
every language in NP can be translated to it by a polynomial-time program. We have already
shown the second half of the proof in Theorem 3.9.1. We need only show the first half. As
discussed in the proof of Theorem 3.9.5, each circuit can be organized so that all steps on
which a given step depends precede it. We assume that a string in CIRCUIT SAT meets
this condition. Design an NTM which on such a string uses choice inputs to assign values
to each of the variables in the string. Then invoke the program described in the proof of
Theorem 3.9.5 to evaluate the circuit. For some assignment to the variables x1, x2, . . . , xn,
this nondeterministic program can accept each string in CIRCUIT SAT but no string not in
CIRCUIT SAT. It follows that CIRCUIT SAT is in NP.

The model used to show that a language is P-complete directly parallels the model used to
show that a language L1 is NP-complete. We first show that L1 is in NP and then show that
every language L ∈ NP can be translated to it in polynomial time. That is, we show that there
is a polynomial p and algorithm that on inputs of length n runs in time p(n), and that for
each string w the algorithm translates w into a string v such that w is in L if and only if v is
in L1. (This is called a polynomial-time reduction.) Since any algorithm that uses log-space
(as does the program in Fig. 3.27) runs in polynomial time (see Theorem 8.5.8), a log-space
reduction can be used in lieu of a polynomial-time reduction.

If we have already shown that a language L0 is NP-complete, we can show that another
language, L1, in NP is NP-complete by translating L0 into L1 with a polynomial-time algo-
rithm. Since the composition of two polynomial-time algorithms is another polynomial-time
algorithm (see Problem 3.2), every language in NP can be translated in polynomial time into
L1 and L1 is NP-complete. The diagram shown in Fig. 3.28 applies when the reductions
are polynomial-time and the languages are members of NP instead of P. Many NP-complete
languages are exhibited in Section 8.10.

We apply this idea to show that SATISFIABILITY is NP-complete. Strings in this language
consist of strings representing the POSE (product-of-sums expansion) of a Boolean function.
Thus, they consist of clauses containing literals (a variable or its negation) with the property
that for some value of the variables at least one literal in each clause is satisfied.

SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn} and a sequence of clauses
C = (c1, c2, . . . , cm) where each clause ci is a subset of X .
Answer: “Yes” if there is a (satisfying) assignment of values for the variables {x1, x2, . . . ,
xn} over the set B such that each clause has at least one literal whose value is 1.

c©John E Savage 3.9 Turing Machine Circuit Simulations 133

THEOREM 3.9.7 SATISFIABILITY is NP-complete.

Proof SATISFIABILITY is in NP because for each string w in this language there is a sat-
isfying assignment for its variables that can be verified by a polynomial-time program. We
sketch a deterministic RAM program for this purpose. This program reads as many choice
variables as there are variables in w and stores them in memory locations. It then evalu-
ates each literal in each clause in w and declares this string satisfied if all clauses evaluate
to 1. This program, which runs in time linear in the length of w, can be converted to
a Turing-machine program using the construction of Theorem 3.8.1. This program ex-
ecutes in a time cubic in the time of the original program on the RAM. We now show
that every language in NP can be reduced to SATISFIABILITY via a polynomial-time pro-
gram.

Given an instance of CIRCUIT SAT, as we now show, we can convert the circuit descrip-
tion, a straight-line program (see Section 2.2), into an instance of SATISFIABILITY such that
the former is a “yes” instance of CIRCUIT SAT if and only if the latter is a “yes” instance
of SATISFIABILITY. Shown below are the different steps of a straight-line program and the
clauses used to replace them in constructing an instance of SATISFIABILITY. A determinis-
tic TM can be designed to make these translations in time proportional to the length of the
circuit description. Clearly the instance of SATISFIABILITY that it produces is a satisfiable
instance if and only if the instance of CIRCUIT SAT is satisfiable.

Step Type Corresponding Clauses

(i READ x) (gi ∨ x) (gi ∨ x)
(i NOT j) (gi ∨ gj) (gi ∨ gj)
(i OR j k) (gi ∨ gj) (gi ∨ gk) (gi ∨ gj ∨ gk)
(i AND j k) (gi ∨ gj) (gi ∨ gk) (gi ∨ gj ∨ gk)
(i OUTPUT j) (gj)

For each gate type it is easy to see that each of the corresponding clauses is satisfiable
only for those gate and argument values that are consistent with the type of gate. For ex-
ample, a NOT gate with input gj has value gi = 1 when gj has value 0 and gi = 0 when
gj has value 1. In both cases, both of the clauses (gi ∨ gj) and (gi ∨ gj) are satisfied.
However, if gi is equal to gj , at least one of the clauses is not satisfied. Similarly, if gi

is the AND of gj and gk, then examining all eight values for the triple (gi, gj , gk) shows
that only when gi is the AND of gj and gk are all three clauses satisfied. The verification
of the above statements is left as a problem for the reader. (See Problem 3.36.) Since the
output clause (gj) is true if and only if the circuit output has value 1, it follows that the
set of clauses are all satisfiable if and only if the circuit in question has value 1; that is, it is
satisfiable.

Given an instance of CIRCUIT SAT, clearly a deterministic TM can produce the clauses
corresponding to each gate using a temporary storage space that is logarithmic in the length
of the circuit description because it need deal only with integers that are linear in the length
of the input. Thus, each instance of CIRCUIT SAT can be translated into an instance of
SATISFIABILITY in a number of steps polynomial in the length of the instance of CIRCUIT

SAT. Since it is also in NP, it is NP-complete.

134 Chapter 3 Machines with Memory Models of Computation

3.9.7 An Efficient Circuit Simulation of TM Computations*
In this section we construct a much more efficient circuit of size O(Tb log m) that simulates
a computation done in T steps by an m-word, b-bit one-tape TM. A similar result on circuit
depth is shown.

THEOREM 3.9.8 Let an m-word, b-bit Turing machine compute in T steps the function f , a
projection of f

(T ,m,b)
TM , the function computed by the TM in T steps. Then the following bounds on

the size and depth of f over the complete basis Ω must be satisfied:

CΩ(f) = O (T (log[min(bT , S)])
DΩ(f) = O(T)

Proof The circuit CM ,T described in Theorem 3.9.1 has size proportional to O(ST), where
S = mb. We now show that a circuit computing the same function, N(1, T , m), can be
constructed whose size is O (T (log[min(bT , S)]). This new circuit is obtained by more
efficiently simulating the tape unit portion of a Turing machine. We observe that if the head
never reaches a cell, the cell circuit of Fig. 3.26 can be replaced by wires that pass its inputs
to its output. It follows that the number of gates can be reduced if we keep the head near
the center of a simulated tape by “centering” it periodically. This is the basis for the circuit
constructed here.

It simplifies the design of N(1, T , m) to assume that the tape unit has cells indexed
from −m to m. Since the head is initially placed over the cell indexed with 0, it is over
the middle cell of the tape unit. (The control unit is designed so that the head never enters
cells whose index is negative.) We construct N(1, T , m) from a subcircuit N(c, s, n) that
simulates s steps of a tape unit containing n b-bit cells under the assumption that the tape
head is initially over one of the middle c cells where c and n are odd. Here n ≥ c + 2s, so
that in s steps the head cannot move from one of the middle c cells to positions that are not
simulated by this circuit. Let C(c, s, n) and D(c, s, n) be the size and depth of N(c, s, n).

As base cases for our recursive construction of N(c, s, n), consider the circuits N(1, 1, 3)
and N(3, 1, 5). They can be constructed from copies of the tape circuit Ct(3) and Ct(5)
since they simulate one step of tape units containing three and five cells, respectively. In fact,
these circuits can be simplified by removing unused gates. Without simplification Ct(n)
contains 5(b + 1) gates in each of the n cell circuits (see Fig. 3.26) as well as (n− 1)b gates
in the vector OR circuit, for a total of at most 6n(b + 1) gates. It has depth 4 + �log2 n�.
Thus, N(1, 1, 3) and N(3, 1, 5) each can be realized with O(b) gates and depth O(1).

We now give a recursive construction of a circuit that simulates a tape unit. The
N(1, 2q, 4q +1) circuit simulates 2q steps of the tape unit when the head is over the middle
cell. It can be decomposed into an N(1, q, 2q + 1) circuit simulating the first q steps and
an N(2q + 1, q, 4q + 1) circuit simulating the second q steps, as shown in Fig. 3.29. In
the N(1, q, 2q + 1) circuit, the head may move from the middle position to any one of
2q + 1 positions in q steps, which requires that 2q + 1 of the inputs be supplied to it. In the
N(2q + 1, q, 4q + 1) circuit, the head starts in the middle 2q + 1 positions and may move
to any one of 4q + 1 middle positions in the next q steps, which requires that 4q + 1 inputs
be supplied to it. The size and depth of our N(1, 2q, 4q + 1) circuit satisfy the following
recurrences:

c©John E Savage 3.9 Turing Machine Circuit Simulations 135

...

...

...

...

...

...

... N(2q + 1, q, 4q + 1)N(1, 2q, 4q + 1) N(1, q, 2q + 1)

s2q

a2q

a−2q
s−2q

s2q

s−q

a−q

sq

aq

a2q

a−2q
s−2q

Figure 3.29 A decomposition of an N(1, 2q, 4q + 1) circuit.

C(1, 2q, 4q + 1) ≤ C(1, q, 2q + 1) + C(2q + 1, q, 4q + 1)
D(1, 2q, 4q + 1) ≤ D(1, q, 2q + 1) + D(2q + 1, q, 4q + 1)

(3.4)

When the number of tape cells is bounded, the above construction and recurrences
can be modified. Let m = 2p be the maximum number of cells used during a T -step
computation by the TM. We simulate this computation by placing the head over the middle
of a tape with 2m + 1 cells. It follows that at least m steps are needed to reach each of the
reachable cells. Thus, if T ≤ m, we can simulate the computation with an N(1, T , 2T +1)
circuit. If T ≥ m, we can simulate the first m steps with an N(1, m, 2m + 1) circuit and
the remaining T −m steps with �(T −m)/m� copies of an N(2m+1, m, 4m+1) circuit.
This follows because at the end of the first m steps the head is over the middle 2m + 1 of
4m + 1 cells (of which only 2m + 1 are used) and remains in this region after m steps due
to the limitation on the number of cells used by the TM.

From the above discussion we have the following bounds on the size C(T , m) and depth
D(T , m) of a simulating circuit for a T -step, m-word TM computation:

C(T , m) ≤
{

C(1, T , 2T + 1) T ≤ m

C(1, m, 2m + 1) +
(⌈

T
m

⌉
− 1

)
C(2m + 1, m, 4m + 1) T ≥ m

D(T , m) ≤
{

D(1, T , 2T + 1) T ≤ m

D(1, m, 2m + 1) +
(⌈

T
m

⌉
− 1

)
D(2m + 1, m, 4m + 1) T ≥ m

(3.5)

We complete the proof of Theorem 3.9.8 by bounding C(1, 2q, 4q + 1), C(2q +
1, q, 4q + 1), D(1, 2q, 4q + 1), and D(2q + 1, q, 4q + 1) appearing in (3.4) and com-
bining them with the bounds of (3.5).

We now give a recursive construction of an N(2q + 1, q, 4q + 1) circuit from which
these bounds are derived. Shown in Fig. 3.30 is the recursive decomposition of an N(4t +
1, 2t, 8t+1) circuit in terms of two copies of N(2t+1, t, 4t+1) circuits. The t-centering cir-
cuits detect whether the head is in positions 2t, 2t−1, . . . , 1, 0 or in positions−1, . . . ,−2t.
In the former case, this circuit cyclically shifts the 8t + 1 inputs inputs down by t positions;
in the latter, it cyclically shifts them up by t positions. The result is that the head is centered
in the middle 2t+1 positions. The OR of s−1, . . . , s−2t can be used as a signal to determine

136 Chapter 3 Machines with Memory Models of Computation

...

...

...

...... ...

...
...

t-centering

t-centering

N
(2

t
+

1,t,4
t
+

1
)

t-correction

t-correction

N
(2

t
+

1,t,4
t
+

1
)

s−2t

s2t

a−2t

a2t

s2t

a−2t

s−2t

a4t
s4t

a0
s0

a−4t
s−4t

a2t

Figure 3.30 A recursive decomposition of N(4t + 1, 2t, 8t + 1).

which shift to take. After centering, t steps are simulated, the head is centered again, and
another t steps are again simulated. Two t-correction circuits cyclically shift the results in
directions that are the reverse of the first two shifts. This circuit correctly simulates the tape
computation over 2t steps and produces an N(4t + 1, 2t, 8t + 1) circuit.

A t-centering circuit can be realized as a single stage of the cyclic shift circuit described
in Section 2.5.2 and shown in Fig. 2.8. A t-correction circuit is just a t-centering circuit
in which the shift is in the reverse direction. The four shifting circuits can be realized with
O(tb) gates and constant depth. The two OR trees to determine the direction of the shift can
be realized with O(t) gates and depth O(log t). From this discussion we have the following
bounds on the size and depth of N(4t + 1, 2t, 8t + 1):

C(4t + 1, 2t, 8t + 1) ≤ 2C(2t + 1, t, 4t + 1) + O(bt)
C(3, 1, 5) ≤ O(b)

D(4t + 1, 2t, 8t + 1) ≤ 2D(2t + 1, t, 4t + 1) + 2�log2 t�
D(3, 1, 5) ≤ O(1)

We now solve this set of recurrences. Let C(k) = C(2t + 1, t, 4t + 1) and D(k) =
D(2t+1, t, 4t+1) when t = 2k. The above bounds translate into the following recurrences:

C(k + 1) ≤ 2C(k) + K12k + K2

C(0) ≤ K3

D(k + 1) ≤ 2D(k) + 2k + K4

D(0) ≤ K5

for constants K1, K2, K3, K4, and K5. It is straightforward to show that C(k + 1) and
D(k + 1) satisfy the following inequalities:

C(k) ≤ 2k(K1k/2 + K2 + K3) −K2

D(k) ≤ 2k(K5 + K4 + 2) − 2k − (K4 + 2)

c©John E Savage 3.10 Design of a Simple CPU 137

We now derive explicit upper bounds to (3.4). Let Λ(k) = C(1, q, 2q+1) and Δ(k) =
D(1, q, 2q + 1) when q = 2k. Then, the inequalities of (3.4) become the following:

Λ(k + 1) ≤ Λ(k) + C(k)
Λ(0) ≤ K6

Δ(k + 1) ≤ Δ(k) +D(k)
Δ(0) ≤ K7

where K6 = C(1, 1, 3) = 7b + 3 and K7 = D(1, 1, 3) = 4. The solutions to these
recurrences are given below.

Λ(k) ≤
k−1∑
j=0

C(j)

= 2k(K1k/2 + K2 + K3 −K1)− kK2 + (K6 − (K2 + K3 −K1))
= O(k2k)

Δ(k) ≤
k−1∑
j=0

D(j)

= 2k(K5 + K4 + 2) − k2 + (1 − (K4 + 2))k + (K7 − (K5 + K4 + 2))
= O(2k)

Here we have made use of the identity in Problem 3.1. From (3.5) and (3.6) we establish
the result of Theorem 3.9.8.

3.10 Design of a Simple CPU
In this section we design an eleven-instruction CPU for a general-purpose computer that has a
random-access memory with 212 16-bit memory words. We use this design to illustrate how a
general-purpose computer can be assembled from gates and binary storage devices (flip-flops).
The design is purposely kept simple so that basic concepts are made explicit. In practice,
however, CPU design can be very complex. Since the CPU is the heart of every computer, a
high premium is attached to making them fast. Many clever ideas have been developed for this
purpose, almost all of which we must for simplicity ignore here.

Before beginning, we note that a typical complex instruction set (CISC) CPU, one with
a rich set of instructions, contains several tens of thousands of gates, while as shown in the
previous section, a random-access memory unit has a number of equivalent gates proportional
to its memory capacity in bits. (CPUs are often sold with caches, small random-access memory
units that add materially to the number of equivalent gates.) The CPUs of reduced instruction
set (RISC) computers have many fewer gates. By contrast, a four-megabyte memory has the
equivalent of several tens of millions of gates. As a consequence, the size and depth of the
next-state and output functions of the random-access memory, δRMEM and λRMEM, typically
dominate the size and depth of the next-state and output functions, δCPU and λCPU, of the
CPU, as shown in Theorem 3.6.1.

138 Chapter 3 Machines with Memory Models of Computation

3.10.1 The Register Set
A CPU is a sequential circuit that repeatedly reads and executes an instruction from its memory
in what is known as the fetch-and-execute cycle. (See Sections 3.4 and 3.10.2.) A machine-
language program is a set of instructions drawn from the instruction set of the CPU. In our
simple CPU each instruction consists of two parts, an opcode and an address, as shown
schematically below.

1 4 5 16
Opcode Address

Since our computer has eleven instructions, we use a 4-bit opcode, a length sufficient to
represent all of them. Twelve bits remain in the 16-bit word, providing addresses for 4,096
16-bit words in a random-access memory.

We let our CPU have eight special registers: the 16-bit accumulator (AC), the 12-bit
program counter (PC), the 4-bit opcode register (OPC), the 12-bit memory address register
(MAR), the 16-bit memory data register (MDR), the 16-bit input register (INR), the 16-
bit output register (denoted OUTR), and the halt register (HLT). These registers are shown
schematically together with the random-access memory in Fig. 3.31.

The program counter PC contains the address from which the next instruction will be
fetched. Normally this is the address following the address of the current instruction. However,
if some condition is true, such as that the contents of the accumulator AC are zero, the program
might place a new address in the PC and jump to this new address. The memory address
register MAR contains the address used by the random-access memory to fetch a word. The
memory data register MDR contains the word fetched from the memory. The halt register
HLT contains the value 0 if the CPU is halted and otherwise contains 1.

161

16

1
HLT

161

1

1

OPC

ALU

AC

MAR

OUTR

INR

MDR

12
PC

Random-Access

Memory Unit

41

121 4096 16-bit words1

161

Figure 3.31 Basic registers of the simple CPU and the paths connecting them. Also shown
is the arithmetic logic unit (ALU) containing circuits for AND, addition, shifting, and Boolean
complement.

c©John E Savage 3.10 Design of a Simple CPU 139

3.10.2 The Fetch-and-Execute Cycle
The fetch-and-execute cycle has a fetch portion and an execution portion. The fetch portion
is always the same: the instruction whose address is in the PC is fetched into the MDR and
the opcode portion of this register is copied into the OPC. At this point the action of the CPU
diverges, based on the instruction denoted by the value of the OPC. Suppose, for example,
that the OPC denotes a load accumulator instruction. The action required is to copy the word
specified by the address part of the instruction into the accumulator. Fig. 3.32 contains a de-
composition of the load accumulator instruction into eight microinstructions executed in six
microcycles. During each microcycle several microinstructions can be executed concurrently,
as shown in the table for the second and fourth microcycles. In Section 3.10.5 we describe
implementations of the fetch-and-execute cycle for each of the instructions of our computer.

It is important to note that a realistic CPU must do more than fetch and execute instruc-
tions: it must be interruptable by a user or an external device that demands its attention. After
fetching and executing an instruction, a CPU typically examines a small set of flip-flops to see
if it must break away from the program it is currently executing to handle an interrupt, an
action equivalent to fetching an instruction associated with the interrupt. This action causes
an interrupt routine to be run that responds to the problem associated with the interrupt, after
which the CPU returns to the program it was executing when it was interrupted. It can do
this by saving the address of the next instruction of this program (the value of the PC) at a
special location in memory (such as address 0). After handling the interrupt, it branches to
this address by reloading PC with the old value.

3.10.3 The Instruction Set
Figure 3.33 lists the eleven instructions of our simple CPU. The first group consists of arith-
metic (see Section 2.7), logic, and shift instructions (see Section 2.5.1). The circulate in-
struction executes a cyclic shift of the accumulator by one place. The second group consists
of instructions to move data between the accumulator and memory. The third set contains
a conditional jump instruction: when the accumulator is zero, it causes the CPU to resume
fetching instructions at a new address, the address in the memory data register. This address
is moved to the program counter before fetching the next instruction. The fourth set contains
input/output instructions. The fifth set contains the halt instruction. Many more instruc-

Cycle Microinstruction Microinstruction

1 Copy contents of PC to MAR.
2 Fetch word at address MAR into MDR. Increment PC.
3 Copy opcode part of MDR to OPC.
4 Interpret OPC Copy address part of MDR

to MAR.
5 Fetch word at address MAR into MDR.
6 Copy MDR into AC.

Figure 3.32 Decomposition of the load accumulator instruction into eight microinstructions
in six microcycles.

140 Chapter 3 Machines with Memory Models of Computation

Opcode Binary Description

Arithmetic ADD 0000 Add memory word to AC
Logic AND 0001 AND memory word to AC

CLA 0010 Clear (set to zero) the accumulator
CMA 0011 Complement AC
CIL 0100 Circulate AC left

Memory LDA 0101 Load memory word into AC
STA 0110 Store AC into memory word

Jump JZ 0111 Jump to address if AC zero

I/O IN 1000 Load INR into AC
OUT 1001 Store AC into OUTR

Halt HLT 1010 Halt computer

Figure 3.33 Instructions of the simple CPU.

tions could be added, including ones to simplify the execution of subroutines, handle loops,
and process interrupts. Each instruction has a mnemonic opcode, such as CLA, and a binary
opcode, such as 0010.

Many other operations can be performed using this set, including subtraction, which
can be realized through the use of ADD, CMA, and two’s-complement arithmetic (see Prob-
lem 3.18). Multiplication is also possible through the use of CIL and ADD (see Problem 3.38).
Since multiple CILs can be used to rotate right one place, division is also possible. Finally, as
observed in Problem 3.39, every two-input Boolean function can be realized through the use
of AND and CMA. This implies that every Boolean function can be realized by this machine
if it is designed to address enough memory locations.

Each of these instructions is a direct memory instruction, by which we mean that all
addresses refer directly to memory locations containing the operands (data) on which the pro-
gram operates. Most CPUs also have indirect memory instructions (and are said to support
indirection). These are instructions in which an address is interpreted as the address at which
to find the address containing the needed operand. To find such an indirect operand, the CPU
does two memory fetches, the first to find the address of the operand and the second to find
the operand itself. Often a single bit is added to an opcode to denote that an instruction is an
indirect memory instruction.

An instruction stored in the memory of our computer consists of sixteen binary digits, the
first four denoting the opcode and the last twelve denoting an address. Because it is hard for
humans to interpret such machine-language statements, mnemonic opcodes and assembly
languages have been devised.

3.10.4 Assembly-Language Programming
An assembly-language program consists of a number of lines each containing either a real or
pseudo-instruction. Real instructions correspond exactly to machine-language instructions ex-
cept that they contain mnemonics and symbolic addresses instead of binary sequences. Pseudo-

c©John E Savage 3.10 Design of a Simple CPU 141

instructions are directions to the assembler, the program that translates an assembly-language
program into machine language. A typical pseudo-instruction is ORG 100, which instructs
the assembler to place the following lines at locations beginning with location 100. Another
example is the DAT pseudo-instruction that identifies a word containing only data. The END
pseudo-instruction identifies the end of the assembly-language program.

Each assembly-language instruction fits on one line. A typical instruction has the following
fields, some or all of which may be used.

Symbolic Address Mnemonic Address Indirect Bit Comment

If an instruction has a Symbolic Address (a string of symbols), the address is converted
to the physical address of the instruction by the assembler and substituted for all uses of the
symbolic address. The Address field can contain one or more symbolic or real addresses, al-
though the assembly language used here allows only one address. The Indirect Bit specifies
whether or not indirection is to be used on the address in question. In our CPU we do not
allow indirection, although we do allow it in our assembly language because it simplifies our
sample program.

Let’s now construct an assembly-language program whose purpose is to boot up a computer
that has been reset. The boot program reads another program provided through its input port
and stores this new program (a sequence of 16-bit words) in the memory locations just above
itself. When it has finished reading this new program (determined by reading a zero word),
it transfers control to the new program by jumping to the first location above itself. When
computers are turned off at night they need to be rebooted, typically by executing a program
of this kind.

Figure 3.34 shows a program to boot up our computer. It uses three symbolic addresses,
ADDR 1, ADDR 2, ADDR 3, and one real address, 10. We assume this program resides

ORG 0 Program is stored at location 0.

ADDR 1 IN Start of program.

JZ 10 Transfer control if AC zero.

STA ADDR 2 I Indirect store of input.

LDA ADDR 2 Start incrementing ADDR 2.

ADD ADDR 3 Finish incrementing of ADDR 2.

STA ADDR 2 Store new value of ADDR 2.

CLA Clear AC.

JZ ADDR 1 Jump to start of program.

ADDR 2 DAT 10 Address for indirection.

ADDR 3 DAT 1 Value for incrementing.
END

Figure 3.34 A program to reboot a computer.

142 Chapter 3 Machines with Memory Models of Computation

permanently in locations 0 through 9 of the memory. After being reset, the CPU reads and
executes the instruction at location 0 of its memory.

The first instruction of this program after the ORG statement reads the value in the input
register into the accumulator. The second instruction jumps to location 10 if the accumulator
is zero, indicating that the last word of the second program has been written into the memory.
If this happens, the next instruction executed by the CPU is at location 10; that is, control is
transferred to the second program. If the accumulator is not zero, its value is stored indirectly at
location ADDR 2. (We explain the indirect STA in the next paragraph.) On the first execution
of this command, the value of ADDR 2 is 10, so that the contents of the accumulator are
stored at location 10. The next three steps increment the value of ADDR 2 by placing its
contents in the accumulator, adding the value in location ADDR 3 to it, namely 1, and storing
the new value into location ADDR 2. Finally, the accumulator is zeroed and a JZ instruction
used to return to location ADDR 1, the first address of the boot program.

The indirect STA instruction in this program is not available in our computer. However,
as shown in Problem 3.42, this instruction can be simulated by a self-modifying subprogram.
While it is considered bad programming practice to write self-modifying programs, this exer-
cise illustrates the power of self-modification as well as the advantage of having indirection in
the instruction set of a computer.

3.10.5 Timing and Control
Now that the principles of a CPU have been described and a programming example given, we
complete the description of a sequential circuit realizing the CPU. To do this we need to de-
scribe circuits controlling the combining and movement of data. To this end we introduce the
assignment notation in Fig. 3.35. Here the expression AC ← MDR means that the contents
of MDR are copied into AC, whereas AC ← AC + MDR means that the contents of AC and
MDR are added and the result assigned to AC. In all cases the left arrow, ←, signifies that
the result or contents on the right are assigned to the register on the left. However, when the
register on the left contains information of a particular type, such as an address in the case of
PC or an opcode in the case of OPC, and the register on the right contains more information,
the assignment notation means that the relevant bits of the register on the right are loaded
into the register on the left. For example, the assignment PC ← MDR means that the address
portion of MDR is copied to PC.

Register transfer notation uses these assignment operations as well as timing information
to break down a machine-level instruction into microinstructions that are executed in succes-

Notation Explanation

AC ← MDR Contents of MDR loaded into AC.
AC ← AC + MDR Contents of MDR added to AC.
MDR ← M Contents of memory location MAR loaded into MDR.
M ← MDR Contents of MDR stored at memory location MAR.
PC ← MDR Address portion of MDR loaded into PC.
MAR ← PC Contents of PC loaded into MAR.

Figure 3.35 Microinstructions illustrating assignment notation.

c©John E Savage 3.10 Design of a Simple CPU 143

Timing Microinstructions

t1 MAR ← PC
t2 MDR ← M, PC ← PC+1
t3 OPC ← MDR

Figure 3.36 The microcode for the fetch portion of each instruction.

sive microcycles. The jth microcycle is specified by the timing variable tj , 1 ≤ j ≤ k. That
is, tj is 1 during the jth microcycle and is zero otherwise. It is straightforward to show that
these timing variables can be realized by connecting a decoder to the outputs of a counting
circuit, a circuit containing the binary representation of an integer that increments the integer
modulo some other integer on each clock cycle. (See Problem 3.40.)

Since the fetch portion of each instruction is the same, we write a few lines of register
transfer notation for it, as shown in Fig. 3.36. On the left-hand side of each line is timing
variable indicating the cycle during which the microinstruction is executed.

The microinstructions for the execute portion of each instruction of our computer are
shown in Fig. 3.37. On the left-hand side of each line is a timing variable that must be ANDed
with the indicated instruction variable, such as cADD, which is 1 if that instruction is in

Control Microcode

ADD

cADD t4 MAR ← MDR
cADD t5 MDR ← M
cADD t6 AC ← AC + MDR

AND

cAND t4 MAR ← MDR
cAND t5 MDR ← M
cAND t6 AC ← AC AND MDR

CLA

cCLA t4 AC ← 0

CIL

cCIL t4 AC ← Shift(AC)

LDA

cLDA t4 MAR ← MDR
cLDA t5 MDR ← M
cLDA t6 AC ← MDR

Control Microcode

STA

cSTA t4 MAR ← MDR
cSTA t4 MDR ← AC
cSTA t5 M ← MDR

CMA

cCMA t4 AC ←¬ AC

JZ

cJZ t4 if (AC = 0) PC ← MDR

IN

cIN t4 AC ← INR

OUT

cOUT t4 OUTR ← AC

HLT

cHLT t4 tj ← 0 for 1 ≤ j ≤ k

Figure 3.37 The execute portions of the microcode of instructions.

144 Chapter 3 Machines with Memory Models of Computation

the opcode register OPC and 0 otherwise. These instruction variables can be generated by a
decoder attached to the output of OPC. Here ¬A denotes the complement of the accumulator.

Now that we understand how to combine microinstructions in microcycles to produce
macroinstructions, we use this information to define control variables that control the move-
ment of data between registers or combine the contents of two registers and assign the result
to another register. This information will be used to complete the design of the CPU.

We now introduce notation for control variables. If a microinstruction results in the
movement of data from register B to register A, denoted A ← B in our assignment nota-
tion, we associate the control variable L(A, B) with it. If a microinstruction results in the
combination of the contents of registers B and C with the operation � and the assignment
of the result to register A, denoted A ← B � C in our assignment notation, we associate
the control variable L(A, B � C) with it. For example, inspection of Figs. 3.36 and 3.37
shows that we can write the following expressions for the control variables L(OPC, MDR)
and L(AC, AC+MDR):

L(OPC, MDR) = t3

L(AC, AC+MDR) = cADD ∧ t6

Thus, OPC is loaded with the contents of MDR when t3 = 1, and the contents of AC are
added to those of MDR and copied into AC when cADD ∧ t6 = 1.

The complete set of control variables can be obtained by first grouping together all the mi-
croinstructions that affect a given register, as shown in Fig. 3.38, and then writing expressions
for the control variables. Here M denotes the memory unit and HLT is a special register that
must be set to 1 for the CPU to run. Inspection of Fig. 3.38 leads to the following expressions
for control variables:

L(AC, AC + MDR) = cADD ∧ t6

L(AC, AC AND MDR) = cAND ∧ t6

L(AC, 0) = cCLA ∧ t4

L(AC, Shift(AC)) = cCIL ∧ t4

L(AC, MDR) = cLDA ∧ t6

L(AC, INR) = cIN ∧ t4

L(AC,¬ AC) = cCMA ∧ t4

L(MAR, PC) = t1

L(MAR, MDR) = (cADD ∨ cAND ∨ cLDA ∨ cSTA) ∧ t4

L(MDR, M) = t2 ∨ (cADD ∨ cAND ∨ cLDA) ∧ t5

L(MDR, AC) = cSTA ∧ t4

L(M, MDR) = cSTA ∧ t5

L(PC, PC+1) = t2

L(PC, MDR) = (AC = 0) ∧ cJZ ∧ t4

L(OPC, MDR) = t3

L(OUTR, AC) = cOUT ∧ t4

L(tj) = cHLT ∧ t4 for 1 ≤ j ≤ 6

c©John E Savage 3.10 Design of a Simple CPU 145

Control Microcode

AC

cADD t6 AC ← AC + MDR
cAND t6 AC ← AC AND MDR
cCLA t4 AC ← 0
cCIL t4 AC ← Shift(AC)
cLDA t6 AC ← MDR
cCMA t4 AC ←¬ AC
cIN t4 AC ← INR

MAR

t1 MAR ← PC
cADD t4 MAR ← MDR
cAND t4 MAR ← MDR
cLDA t4 MAR ← MDR
cSTA t4 MAR ← MDR

MDR

t2 MDR ← M
cADD t5 MDR ← M
cAND t5 MDR ← M
cLDA t5 MDR ← M
cSTA t4 MDR ← AC

Control Microcode

M

cSTA t5 M ← MDR

PC

t2 PC ← PC+1
cJZ t4 if (AC = 0) PC ← MDR

OPC

t3 OPC ← MDR

OUTR

cOUT t4 OUTR ← AC

HLT

cHLT t4 tj ← 0 for 1 ≤ j ≤ k

Figure 3.38 The microinstructions affecting each register.

The expression (AC = 0) denotes a Boolean variable whose value is 1 if all bits in the AC
are zero and 0 otherwise. This variable is the AND of the complement of each component of
register AC.

To illustrate the remaining steps in the design of the CPU, we show in Fig. 3.39 the
circuits used to provide input to the accumulator AC. Shown are registers AC, MDR, and
INR as well as circuits for the functions fadd (see Section 2.7) and fand that add two bi-
nary numbers and take their AND, respectively. Also shown are multiplexer circuits fmux (see
Section 2.5.5). They have three control inputs, L0, L1, and L2, and can select one of eight
inputs to place on their output lines. However, only seven inputs are needed: the result of
adding AC and MDR, the result of ANDing AC and MDR, the zero vector, the result of shift-
ing AC, the contents of MDR or INR, and the complement of AC. The three control inputs
encode the seven control variables, L(AC, AC + MDR), L(AC, AC AND MDR), L(AC, 0),
L(AC, Shift(AC)), L(AC, MDR), L(AC, INR), and L(AC,¬AC). Since at most one of these
control variables has value 1 at any one time, the encoder circuit of Section 2.5.3 can be used
to encode these seven control variables into the three bits L0, L1, and L2 shown in Fig. 3.39.

The logic circuit to supply inputs to AC has size proportional to the number of bits in each
register. Thus, if the word size of the CPU were scaled up, the size of this circuit would scale
linearly with the word size.

146 Chapter 3 Machines with Memory Models of Computation

...
...

... ...
............

...
.........

shift

fand

shift

fadd

L0

L1

L2

shift 0

fnot

AC

INR

0

MDR

fmuxfmux

Figure 3.39 Circuits providing input to the accumulator AC.

The circuit for the program counter PC can be designed from an adder, a multiplexer, and
a few additional gates. Its size is proportional to �log2 m�. The circuits to supply inputs to
the remaining registers, namely MAR, MDR, OPC, INR, and OUTR, are less complex to
design than those for the accumulator. The same observations apply to the control variable to
write the contents of the memory. The complete design of the CPU is given as an exercise (see
Problem 3.41).

3.10.6 CPU Circuit Size and Depth
Using the design given above for a simple CPU as a basis, we derive upper bounds on the size
and depth of the next-state and output functions of the RAM CPU defined in Section 3.4.

All words on which the CPU operates contain b bits except for addresses, which contain
�log m� bits where m is the number of words in the random-access memory. We assume that
the CPU not only has an �log m�-bit program counter but can send the contents of the PC
to the MAR of the random-access memory in one unit of time. When the CPU fetches an
instruction that refers to an address, it may have to retrieve multiple b-bit words to create an
�log m�-bit address. We assume the time for such operations is counted in the number T of
steps that the RAM takes for the computation.

The arithmetic operations supported by the RAM CPU include addition and subtraction,
operations realized by circuits with size and depth linear and logarithmic respectively in b, the

c©John E Savage Problems 147

length of the accumulator. (See Section 2.7.) The same is true for the logical vector and the
shift operations. (See Section 2.5.1.) Thus, circuits affecting the accumulator (see Fig. 3.39)
have size O(b) and depth O(log b). Circuits affecting the opcode and output registers and
the memory address and data registers are simple and have size O(b) and depth O(log b).
The circuits affecting the program counter not only support transfer of data from the accu-
mulator to the program counter but also allow the program counter to be incremented. The
latter function can be performed by an adder circuit whose size is O(�log m�) and depth is
O(log�log m�). It follows that

CΩ(δCPU) = O(b + �log m�)
DΩ(δCPU) = O(log b + log�log m�)

3.10.7 Emulation
In Section 3.4 we demonstrated that whatever computation can be done by a finite-state ma-
chine can be done by a RAM when the latter has sufficient memory. This universal nature of
the RAM, which is a model for the CPU we have just designed, is emphasized by the problem
of emulation, the simulation of one general-purpose computer by another.

Emulation of a target CPU by a host CPU means reading the instructions in a program
for the target CPU and executing host instructions that have the same effect as the target
instructions. In Problem 3.44 we ask the reader to sketch a program to emulate one CPU
by another. This is another manifestation of universality, this time for unbounded-memory
RAMs.

. .
Problems
MATHEMATICAL PRELIMINARIES

3.1 Establish the following identity:

k∑
j=0

j2j = 2
(
(k − 1)2k + 1

)
3.2 Let p : � �→ � and q : � �→ � be polynomial functions on the set � of non-

negative integers. Show that p(q(n)) is also a polynomial in n.

FINITE-STATE MACHINES

3.3 Describe an FSM that compares two binary numbers supplied as concurrent streams of
bits in descending order of importance and enters a rejecting state if the first string is
smaller than the second and an accepting state otherwise.

3.4 Describe an FSM that computes the threshold-two function on n Boolean inputs that
are supplied sequentially to the machine.

3.5 Consider the full-adder function fFA(xi, yi, ci) = (ci+1, si) defined below where +
denotes integer addition:

2ci+1 + si = xi + yi + ci

148 Chapter 3 Machines with Memory Models of Computation

Show that the subfunction of fFA obtained by fixing ci = 0 and deleting ci+1 is the
EXCLUSIVE OR of the variables xi and yi.

3.6 It is straightforward to show that every Moore FSM is a Mealy FSM. Given a Mealy
FSM, show how to construct a Moore FSM whose outputs for every input sequence are
identical to those of the Mealy FSM.

3.7 Find a deterministic FSM that recognizes the same language as that recognized by the
nondeterministic FSM of Fig. 3.8.

3.8 Write a program in a language of your choice that writes the straight-line program
described in Fig. 3.3 for the FSM of Fig. 3.2 realizing the EXCLUSIVE OR function.

SHALLOW FSM CIRCUITS

3.9 Develop a representation for states in the m-word, b-bit random-access memory so that
its next-state mappings form a semigroup.

Hint: Show that the information necessary to update the current state can be succinctly
described.

3.10 Show that matrix multiplication is associative.

SEQUENTIAL CIRCUITS

3.11 Show that the circuit of Fig. 3.15 computes the functions defined in the tables of
Fig. 3.14.

Hint: Section 2.2 provides a method to produce a circuit from a tabular description of
a binary function.

3.12 Design a sequential circuit (an electronic lock) that enters an accepting state only when
it receives some particular four-bit sequence that you specify.

3.13 Design a sequential circuit (a modulo-p counter) that increments a binary number by
one on each step until it reaches the integer value p, at which point it resets its value to
zero. You should assume that p is not a power of 2.

3.14 Give an efficient design of an incrementing/decrementing counter, a sequential cir-
cuit that increments or decrements a binary number modulo 2n. Specify the machine
as an FSM and determine the number of gates in the sequential circuit in terms of n.

RANDOM-ACCESS MACHINES

3.15 Given a straight-line program for a Boolean function, describe the steps taken to com-
pute it during fetch-and-execute cycles of a RAM. Determine whether jump instruc-
tions are necessary to execute such programs.

3.16 Consulting Theorem 3.4.1, determine whether jump instructions are necessary for all
RAM computations. If not, what advantage accrues to using them?

3.17 Sketch a RAM program using time and space O(n) that recognizes strings of the form
{0m1m | 1 ≤ m ≤ n}.

c©John E Savage Problems 149

ASSEMBLY-LANGUAGE PROGRAMMING

3.18 Write an assembly-language program in the language of Fig. 3.18 to subtract two inte-
gers.

3.19 The assembly-language instructions of Fig. 3.18 operate on integers. Show that the
operations AND, OR, and NOT can be realized on Boolean variables with these instruc-
tions. Show also that these operations on vectors can be implemented.

3.20 Write an assembly-language program in the language of Fig. 3.18 to form xy for inte-
gers x and y.

3.21 Show that the assembly-language instructions CLR Ri, Ri ← Rj , JMP+ Ni, and JMP−
Ni can be realized from the assembly-language instructions INC, DEC, CONTINUE,
Rj JMP+ Ni, and Rj JMP− Ni.

TURING MACHINES

3.22 In a standard Turing machine the tape unit has a left end but extends indefinitely to the
right. Show that allowing the tape unit to be infinite in both directions does not add
power to the Turing machine.

3.23 Describe in detail a Turing machine with unlimited storage capacity that recognizes the
language {0m1m|1 ≤ m}.

3.24 Sketch a proof that in O(n4) steps a Turing machine can verify that a particular tour
of n cities in an instance of the Traveling Salesperson Problem satisfies the requirement
that the total distance traveled is less than or equal to the limit k set on this instance of
the Traveling Salesperson Problem.

3.25 Design the additional circuitry needed to transform a sequential circuit for a random-
access memory into one for a tape memory. Give upper bounds on the size and depth
of the next-state and output functions that are simultaneously achievable.

3.26 In the proof of Theorem 3.8.1 it is assumed that the words and their addresses in a
RAM memory unit are placed on the tape of a Turing machine in order of increasing
addresses, as suggested by Fig. 3.40. The addresses, which are �log m� bits in length,
are organized as a collection of ��log m�/b� b-bit words. (In the example, b = 1.) An
address is written on tape cells that immediately precede the value of the corresponding
RAM word. A RAM address addr is stored on the tape to the left in the shaded region.

Assume that markers can be placed on cells. (This amounts to enlarging the tape al-
phabet by a constant factor.) Show that markers can be used to move from the first
word whose RAM address matches the ib most significant bits of the address a to the

♦ ♠ ♦ ♠♦

w
1

w
2

♠

0 0 w
0

0 1 1 0 101 1

♦

w
3

♠

Figure 3.40 A TM tape with markers on words and the first bit of each address.

150 Chapter 3 Machines with Memory Models of Computation

next one that matches the (i + 1)b most significant bits. Show that this procedure can
be used to find the RAM word whose address matches addr in O((m/b)(log m)2)
Turing machine steps by a machine that can store in its control unit only one b-bit
subword of addr.

3.27 Extend Problem 3.26 by demonstrating that the simulation can be done with a binary
tape symbol alphabet.

3.28 Extend Theorem 3.8.1 to show that there exists a Turing machine that can simulate an
unbounded-memory RAM.

3.29 Sketch a proof that every Turing machine can be simulated by a RAM program of the
kind described in Section 3.4.3.

Hint: Because such RAM programs can only have a finite number of registers, encode
the contents of the TM tape as a number to be stored in one register.

COMPUTATIONAL INEQUALITIES FOR TURING MACHINES

3.30 Show that a one-tape Turing machine needs time exponential in n to compute most
Boolean functions f : Bn �→ B on n variables, regardless of how much memory is
allocated to the computation.

3.31 Apply Theorem 3.2.2 to the one-tape Turing machine that executes T steps. Deter-
mine whether the resulting inequalities are weaker or stronger than those given in The-
orem 3.9.2.

3.32 Write a program in your favorite language for the procedure WRITE OR(t, m) intro-
duced in Fig. 3.27.

3.33 Write a program in your favorite language for the procedure WRITE CELL CIRCUIT(t,
m) introduced in Fig. 3.27.

Hint: See Problem 2.4.

FIRST P-COMPLETE AND NP-COMPLETE PROBLEMS

3.34 Show that the language MONOTONE CIRCUIT VALUE defined below is P-complete.

MONOTONE CIRCUIT VALUE

Instance: A description for a monotone circuit with fixed values for its input variables
and a designated output gate.
Answer: “Yes” if the output of the circuit has value 1.

Hint: Using dual-rail logic, find a way to translate (reduce) a string in the language
CIRCUIT VALUE to a string in MONOTONE CIRCUIT VALUE by converting in loga-
rithmic space (in the length of the string) a circuit over the standard basis to a circuit
over the monotone basis. Note that, as stated in the text, the composition of two
logarithmic-space reductions is a logarithmic-space reduction. To simplify the con-
version from non-monotone circuits to monotone circuits, use even integers to index
vertices in the non-monotone circuits so that both even and odd integers can be used
in the monotone case.

3.35 Show that the language FAN-OUT 2 CIRCUIT SAT defined below is NP-complete.

c©John E Savage Problems 151

FAN-OUT 2 CIRCUIT SAT

Instance: A description for a circuit of fan-out 2 with free values for its input variables
and a designated output gate.
Answer: “Yes” if the output of the circuit has value 1.

Hint: To reduce the fan-out of a vertex, replace the direct connections between a gate
and its successors by a binary tree whose vertices are AND gates with their inputs con-
nected together. Show that, for each gate of fan-out more than two, such trees can be
generated by a program that runs in polynomial time.

3.36 Show that clauses given in the proof of Theorem 3.9.7 are satisfied only when their
variables have values consistent with the definition of the gate type.

3.37 A circuit with n input variables {x1, x2, . . . , xn} is satisfiable if there is an assignment
of values to the variables such that the output of the circuit has value 1. Assume that
the circuit has only one output and the gates are over the basis Ω = {AND, OR, NOT}.

a) Describe a nondeterministic procedure that accepts as input the description of a
circuit in POSE and returns 1 if the circuit is satisfiable and 0 otherwise.

b) Describe a deterministic procedure that accepts as input the description of a circuit
in POSE and returns 1 if the circuit is satisfiable and 0 otherwise. What is the
running time of this procedure when implemented on the RAM?

c) Describe an efficient (polynomial-time) deterministic procedure that accepts as in-
put the description of a circuit in SOPE and returns 1 if the circuit is satisfiable
and 0 otherwise.

d) By using Boolean algebra, we can convert a circuit from POSE to SOPE. We can
then use the result of the previous question to determine if the circuit is satisfiable.
What is the drawback of this approach?

CENTRAL PROCESSING UNIT

3.38 Write an assembly-language program to multiply two binary numbers using the sim-
ple CPU of Section 3.10. How large are the integers that can be multiplied without
producing numbers that are too large to be recorded in registers?

3.39 Assume that the simple CPU of Section 3.10 is modified to address an unlimited num-
ber of memory locations. Show that it can realize any Boolean function by demonstrat-
ing that it can compute the Boolean operations AND, OR, and NOT.

3.40 Design a circuit to produce the timing variables tj , 1 ≤ j ≤ k, of the simple CPU.
They must have the property that exactly one of them has value 1 at a time and they
successively become 1.

Hint: Design a circuit that counts sequentially modulo k, an integer. That is, it incre-
ments a binary number until it reaches k, after which it resets the number to zero. See
Problem 3.13.

3.41 Complete the design of the CPU of Section 3.10 by describing circuits for PC, MAR,
MDR, OPC, INR, and OUTR.

3.42 Show that an indirect store operation can be simulated by the computer of Section 3.10.

152 Chapter 3 Machines with Memory Models of Computation

Hint: Construct a program that temporarily moves the value of AC aside, fetches the
address containing the destination for the store, and uses Boolean operations to modify
a STA instruction in the program so that it contains the destination address.

3.43 Write an assembly-language program that repeatedly examines the input register until
it is nonzero and then moves its contents to the accumulator.

3.44 Sketch an assembly-language program to emulate a target CPU by a host CPU under
the assumption that each CPU’s instruction set supports indirection. Provide a skeleton
program that reads an instruction from the target instruction set and decides which host
instruction to execute. Also sketch the particular host instructions needed to emulate a
target add instruction and a target jump-on-zero instruction.

Chapter Notes
Although the concept of the finite-state machine is fully contained in the Turing machine
model (Section 3.7) introduced in 1936 [338], the finite-state machine did not become a se-
rious object of study until the 1950s. Mealy [215] and Moore [223] introduced models for
finite-state machines that were shown to be equivalent. The Moore model is used in Sec-
tion 3.1. Rabin and Scott [266] introduced the nondeterministic machine, although not de-
fined in terms of external choice inputs as it is defined here.

The simulation of finite-state machines by logic circuits exhibited in Section 3.1.1 is due
to Savage [285], as is its application to random-access (Section 3.6) and deterministic Tur-
ing machines (Section 3.9.1) [286]. The design of a simple CPU owes much to the early
simple computers but is not tied to any particular architecture. The assembly language of
Section 3.4.3 is borrowed from Smith [312].

The shallow circuits simulating finite-state machines described in Section 3.2 are due to
Ladner and Fischer [186] and the existence of a universal Turing machine, the topic of Sec-
tion 3.7, was shown by Turing [338].

Cook [74] identified the first NP-complete problem and Karp [159] demonstrated that a
large number of other problems are NP-complete, including the Traveling Salesperson prob-
lem. About this time Levin [199] (see also [335]) was led to similar concepts for combinatorial
problems. Our construction in Section 3.9.1 of a satisfiable circuit follows the general out-
line given by Papadimitriou [235] (who also gives the reduction to SATISFIABILITY) as well
as the construction of a circuit simulating a deterministic Turing machine given by Savage
[286]. Cook also identified the first P-complete problem [75,79]. Ladner [185] observed
that the circuit of Theorem 3.9.1 could be written by a program using logarithmic space,
thereby showing that CIRCUIT VALUE is P-complete. More information on P-complete and
NP-complete problems can be found in Chapter 8.

The more sophisticated simulation of a circuit by a Turing machine given in Section 3.9.7
is due to Pippenger and Fischer [252] with improvements by Schnorr [301] and Savage, as
cited by Schnorr.

C H A P T E R

Finite-State Machines and
Pushdown Automata

The finite-state machine (FSM) and the pushdown automaton (PDA) enjoy a special place in
computer science. The FSM has proven to be a very useful model for many practical tasks and
deserves to be among the tools of every practicing computer scientist. Many simple tasks, such
as interpreting the commands typed into a keyboard or running a calculator, can be modeled
by finite-state machines. The PDA is a model to which one appeals when writing compilers
because it captures the essential architectural features needed to parse context-free languages,
languages whose structure most closely resembles that of many programming languages.

In this chapter we examine the language recognition capability of FSMs and PDAs. We
show that FSMs recognize exactly the regular languages, languages defined by regular expres-
sions and generated by regular grammars. We also provide an algorithm to find a FSM that is
equivalent to a given FSM but has the fewest states.

We examine language recognition by PDAs and show that PDAs recognize exactly the
context-free languages, languages whose grammars satisfy less stringent requirements than reg-
ular grammars. Both regular and context-free grammar types are special cases of the phrase-
structure grammars that are shown in Chapter 5 to be the languages accepted by Turing ma-
chines.

It is desirable not only to classify languages by the architecture of machines that recog-
nize them but also to have tests to show that a language is not of a particular type. For this
reason we establish so-called pumping lemmas whose purpose is to show how strings in one
language can be elongated or “pumped up.” Pumping up may reveal that a language does not
fall into a presumed language category. We also develop other properties of languages that
provide mechanisms for distinguishing among language types. Because of the importance of
context-free languages, we examine how they are parsed, a key step in programming language
translation.

153

154 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

4.1 Finite-State Machine Models
The deterministic finite-state machine (DFSM), introduced in Section 3.1, has a set of states,
including an initial state and one or more final states. At each unit of time a DFSM is given
a letter from its input alphabet. This causes the machine to move from its current state to a
potentially new state. While in a state, the DFSM produces a letter from its output alphabet.
Such a machine computes the function defined by the mapping from strings of input letters
to strings of output letters. DFSMs can also be used to accept strings. A string is accepted
by a DFSM if the last state entered by the machine on that input string is a final state. The
language recognized by a DFSM is the set of strings that it accepts.

Although there are languages that cannot be accepted by any machine with a finite number
of states, it is important to note that all realistic computational problems are finite in nature
and can be solved by FSMs. However, important opportunities to simplify computations may
be missed if we do not view them as requiring potentially infinite storage, such as that provided
by pushdown automata, machines that store data on a pushdown stack. (Pushdown automata
are formally introduced in Section 4.8.)

The nondeterministic finite-state machine (NFSM) was also introduced in Section 3.1.
The NFSM has the property that for a given state and input letter there may be several states
to which it could move. Also for some state and input letter there may be no possible move. We
say that an NFSM accepts a string if there is a sequence of next-state choices (see Section 3.1.5)
that can be made, when necessary, so that the string causes the NFSM to enter a final state.
The language accepted by such a machine is the set of strings it accepts.

Although nondeterminism is a useful tool in describing languages and computations, non-
deterministic computations are very expensive to simulate deterministically: the deterministic
simulation time can grow as an exponential function of the nondeterministic computation
time. We explore nondeterminism here to gain experience with it. This will be useful in
Chapter 8 when we classify languages by the ability of nondeterministic machines of infinite
storage capacity to accept them. However, as we shall see, nondeterminism offers no ad-
vantage for finite-state machines in that both DFSMs and NFSMs recognize the same set of
languages.

We now begin our formal treatment of these machine models. Since this chapter is con-
cerned only with language recognition, we give an abbreviated definition of the deterministic
FSM that ignores the output function. We also give a formal definition of the nondeterministic
finite-state machine that agrees with that given in Section 3.1.5. We recall that we interpreted
such a machine as a deterministic FSM that possesses a choice input through which a choice
agent specifies the state transition to take if more than one is possible.

DEFINITION 4.1.1 A deterministic finite-state machine (DFSM) M is a five-tuple M =
(Σ, Q, δ, s, F) where Σ is the input alphabet, Q is the finite set of states, δ : Q × Σ �→ Q is
the next-state function, s is the initial state, and F is the set of final states. The DFSM M
accepts the input string w ∈ Σ∗ if the last state entered by M on application of w starting in
state s is a member of the set F . M recognizes the language L(M) consisting of all such strings.

A nondeterministic FSM (NFSM) is similarly defined except that the next-state function δ
is replaced by a next-set function δ : Q × Σ �→ 2Q that associates a set of states with each
state-input pair (q, a). The NFSM M accepts the string w ∈ Σ∗ if there are next-state choices,
whenever more than one exists, such that the last state entered under the input string w is a member
of F . M accepts the language L(M) consisting of all such strings.

c©John E Savage 4.1 Finite-State Machine Models 155

1

1

00 0 0

1

1

Start
q1q0

q2 q3

Figure 4.1 The deterministic finite-state machines Modd/even that accepts strings containing
an odd number of 0’s and an even number of 1’s.

Figure 4.1 shows a DFSM Modd/even with initial state q0. The final state is shown as
a shaded circle; that is, F = {q2}. Modd/even is in state q0 or q2 as long as the number
of 1’s in its input is even and is in state q1 or q3 as long as the number of 1’s in its input is
odd. Similarly, Modd/even is in state q0 or q1 as long as the number of 0’s in its input is even
and is in states q2 or q3 as long as the number of 0’s in its input is odd. Thus, Modd/even

recognizes the language of binary strings containing an odd number of 0’s and an even number
of 1’s.

When the next-set function δ for an NFSM has value δ(q, a) = ∅, the empty set, for
state-input pair (q, a), no transition is specified from state q on input letter a.

Figure 4.2 shows a simple NFSM ND with initial state q0 and final state set F = {q0,
q3, q5}. Nondeterministic transitions are possible from states q0, q3, and q5. In addition, no
transition is specified on input 0 from states q1 and q2 nor on input 1 from states q0, q3, q4,
or q5.

0
Start

q0

q2

q3

q4

1
q1

q5

0

0

1

0

0

0

0

Figure 4.2 The nondeterministic machine ND.

156 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

4.2 Equivalence of DFSMs and NFSMs
Finite-state machines recognizing the same language are said to be equivalent. We now show
that the class of languages accepted by DFSMs and NFSMs is the same. That is, for each
NFSM there is an equivalent DFSM and vice versa. The proof has two symmetrical steps: a)
given an arbitrary DFSM D1 recognizing the language L(D1), we construct an NFSM N1

that accepts L(D1), and b) given an arbitrary NFSM N2 that accepts L(N2), we construct a
DFSM D2 that recognizes L(N2). The first half of this proof follows immediately from the
fact that a DFSM is itself an NFSM. The second half of the proof is a bit more difficult and
is stated below as a theorem. The method of proof is quite simple, however. We construct a
DFSM D2 that has one state for each set of states that the NFSM N2 can reach on some input
string and exhibit a next-state function for D2. We illustrate this approach with the NFSM
N2 = ND of Fig. 4.2.

Since the initial state of ND is q0, the initial state of D2 = Mequiv, the DFSM equivalent
to ND, is the set {q0}. In turn, because q0 has two successor states on input 0, namely q1 and
q2, we let {q1, q2} be the successor to {q0} in Mequiv on input 0, as shown in the following
table. Since q0 has no successor on input 1, the successor to {q0} on input 1 is the empty set ∅.
Building in this fashion, we find that the successor to {q1, q2} on input 1 is {q3, q4} whereas
its successor on input 0 is ∅. The reader can complete the table shown below. Here qequiv is
the name of a state of the DFSM Mequiv.

qequiv a δMequiv(qequiv, a)

{q0} 0 {q1, q2}
{q0} 1 ∅
{q1, q2} 0 ∅
{q1, q2} 1 {q3, q4}
{q3, q4} 0 {q1, q2, q5}
{q3, q4} 1 ∅
{q1, q2, q5} 0 {q1, q2}
{q1, q2, q5} 1 {q3, q4}

qequiv q

{q0} a
{q1, q2} b
{q3, q4} c
{q1, q2, q5} d
∅ qR

In the second table above, we provide a new label for each state qequiv of Mequiv. In
Fig. 4.3 we use these new labels to exhibit the DFSM Mequiv equivalent to the NFSM ND of
Fig. 4.2. A final state of Mequiv is any set containing a final state of ND because a string takes
Mequiv to such a set if and only if it can take ND to one of its final states. We now show that
this method of constructing a DFSM from an NFSM always works.

THEOREM 4.2.1 Let L be a language accepted by a nondeterministic finite-state machine M1.
There exists a deterministic finite-state machine M2 that recognizes L.

Proof Let M1 = (Σ, Q1, δ1, s1, F1) be an NFSM that accepts the language L. We design
a DFSM M2 = (Σ, Q2, δ2, s2, F2) that also recognizes L. M1 and M2 have identical input
alphabets, Σ. The states of M2 are associated with subsets of the states of Q1, which is
denoted by Q2 ⊆ 2Q1 , where 2Q1 is the power set of Q1 containing all the subsets of Q1,
including the empty set. We let the initial state s2 of M2 be associated with the set {s1}
containing the initial state of M1. A state of M2 is a set of states that M1 can reach on a
sequence of inputs. A final state of M2 is a subset of Q1 that contains a final state of M1.
For example, if q5 ∈ F1, then {q2, q5} ∈ F2.

c©John E Savage 4.2 Equivalence of DFSMs and NFSMs 157

0

1

1 0

0

1
1

Start
a

c

d

0, 1

b

qR

0

Figure 4.3 The DFSM Mequiv equivalent to the NFSM ND.

We first give an inductive definition of the states of M2. Let Q
(k)
2 denote the sets of states

of M1 that can be reached from s1 on input strings containing k or fewer letters. In the

example given above, Q
(1)
2 = {{q0}, {q1, q2}, qR} and Q

(3)
2 = {{q0}, {q1, q2}, {q3, q4},

{q1, q2, q5}, qR}. To construct Q
(k+1)
2 from Q

(k)
2 , we form the subset of Q1 that can be

reached on each input letter from a subset in Q
(k)
2 , as illustrated above. If this is a new set,

it is added to Q
(k)
2 to form Q

(k+1)
2 . When Q

(k)
2 and Q

(k+1)
2 are the same, we terminate

this process since no new subsets of Q1 can be reached from s1. This process eventually
terminates because Q2 has at most 2|Q1| elements. It terminates in at most 2|Q1| − 1 steps
because starting from the initial set {q0} at least one new subset must be added at each step.

The next-state function δ2 of M2 is defined as follows: for each state q of M2 (a subset
of Q1), the value of δ2(q, a) for input letter a is the state of M2 (subset of Q1) reached from

q on input a. As the sets Q
(1)
2 , . . . , Q(m)

2 are constructed, m ≤ 2|Q1| − 1, we construct a
table for δ2.

We now show by induction on the length of an input string z that if z can take M1 to
a state in the set S ⊆ Q1, then it takes M2 to its state associated with S. It follows that if S
contains a final state of M1, then z is accepted by both M1 and M2.

The basis for the inductive hypothesis is the case of the empty input letter. In this case,
s1 is reached by M1 if and only if {s1} is reached by M2. The inductive hypothesis is that
if w of length n can take M1 to a state in the set S, then it takes M2 to its state associated
with S. We assume the hypothesis is true on inputs of length n and show that it remains
true on inputs of length n + 1. Let z = wa be an input string of length n + 1. To show
that z can take M1 to a state in S′ if and only if it takes M2 to the state associated with S′,
observe that by the inductive hypothesis there exists a set S ⊆ Q1 such that w can take M1

to a state in S if and only if it takes M2 to the state associated with S. By the definition
of δ2, the input letter a takes the states of M1 in S into states of M1 in S′ if and only if a
takes the state of M2 associated with S to the state associated with S′. It follows that the
inductive hypothesis holds.

Up to this point we have shown equivalence between deterministic and nondeterministic
FSMs. Another equivalence question arises in this context: It is, “Given an FSM, is there an
equivalent FSM that has a smaller number of states?” The determination of an equivalent FSM

158 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

with the smallest number of states is called the state minimization problem and is explored
in Section 4.7.

4.3 Regular Expressions
In this section we introduce regular expressions, algebraic expressions over sets of individual
letters that describe the class of languages recognized by finite-state machines, as shown in the
next section.

Regular expressions are formed through the concatenation, union, and Kleene closure of
sets of strings. Given two sets of strings L1 and L2, their concatenation L1 · L2 is the set
{uv | u ∈ L1 and v ∈ L2}; that is, the set of strings consisting of an arbitrary string of L1

followed by an arbitrary string of L2. (We often omit the concatenation operator ·, writing
variables one after the other instead.) The union of L1 and L2, denoted L1 ∪ L2, is the set
of strings that are in L1 or L2 or both. The Kleene closure of a set L of strings, denoted L∗

(also called the Kleene star), is defined in terms of the i-fold concatenation of L with itself,
namely, Li = L · Li−1, where L0 = {ε}, the set containing the empty string:

L∗ =
∞⋃
i=0

Li

Thus, L∗ is the union of strings formed by concatenating zero or more words of L. Finally, we
define the positive closure of L to be the union of all i-fold products except for the zeroth,
that is,

L+ =
∞⋃
i=1

Li

The positive closure is a useful shorthand in regular expressions.
An example is helpful. Let L1 = {01, 11} and L2 = {0, aba}; then L1L2 = {010, 01aba,

110, 11aba}, L1 ∪ L2 = {0, 01, 11, aba}, and

L∗
2 = {0, aba}∗ = {ε, 0, aba, 00, 0aba, aba0, abaaba, . . .}

Note that the definition given earlier for Σ∗, namely, the set of strings over the finite alphabet
Σ, coincides with this new definition of the Kleene closure. We are now prepared to define
regular expressions.

DEFINITION 4.3.1 Regular expressions over the finite alphabet Σ and the languages they de-
scribe are defined recursively as follows:

1. ∅ is a regular expression denoting the empty set.

2. ε is a regular expression denoting the set {ε}.

3. For each letter a ∈ Σ, a is a regular expression denoting the set {a} containing a.

4. If r and s are regular expressions denoting the languages R and S, then (rs), (r + s), and
(r∗) are regular expressions denoting the languages R · S, R ∪ S, and R∗, respectively.

The languages denoted by regular expressions are called regular languages. (They are also often
called regular sets.)

c©John E Savage 4.3 Regular Expressions 159

0

1

0

1

q0/0 q1/1

Start

Figure 4.4 A finite-state machine computing the EXCLUSIVE OR of its inputs.

Some examples of regular expressions will clarify the definitions. The regular expression
(0 + 1)∗ denotes the set of all strings over the alphabet {0, 1}. The expression (0∗)(1)
denotes the strings containing zero or more 0’s that end with a single 1. The expression
((1)(0∗)(1) + 0)∗ denotes strings containing an even number of 1’s. Thus, the expression
((0∗)(1))((1)(0∗)(1) + 0)∗ denotes strings containing an odd number of 1’s. This is exactly
the class of strings recognized by the simple DFSM in Fig. 4.4. (So far we have set in boldface
all regular expressions denoting sets containing letters. Since context will distinguish between
a set containing a letter and the letter itself, we drop the boldface notation at this point.)

Some parentheses in regular expressions can be omitted if we give highest precedence to
Kleene closure, next highest precedence to concatenation, and lowest precedence to union. For
example, we can write ((0∗)(1))((1)(0∗)(1) + 0)∗ as 0∗1(10∗1 + 0)∗.

Because regular expressions denote languages, certain combinations of union, concatena-
tion, and Kleene closure operations on regular expressions can be rewritten as other combina-
tions of operations. A regular expression will be treated as identical to the language it denotes.
Two regular expressions are equivalent if they denote the same language. We now state
properties of regular expressions, leaving their proof to the reader.

THEOREM 4.3.1 Let ∅ and ε be the regular expressions denoting the empty set and the set contain-
ing the empty string and let r, s, and t be arbitrary regular expressions. Then the rules shown in
Fig. 4.5 hold.

We illustrate these rules with the following example. Let a = 0∗1·b+0∗, where b = c·10+

and c = (0 + 10+1)∗. Using rule (16) of Fig. 4.5, we rewrite c as follows:

c = (0 + 10+1)∗ = (0∗10+1)∗0∗

Then using rule (15) with r = 0∗10+ and s = 1, we write b as follows:

b = (0∗10+1)∗0∗10+ = (rs)∗r = r(sr)∗ = 0∗10+(10∗10+)∗

It follows that a satisfies

a = 0∗1 · b + 0∗

= 0∗10∗10+(10∗10+)∗ + 0∗

= 0∗(10∗10+)+ + 0∗

= 0∗((10∗10+)+ + ε)
= 0∗(10∗10+)∗

160 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

(1) r∅ = ∅r = ∅
(2) rε = εr = r

(3) r + ∅ = ∅ + r = r

(4) r + r = r

(5) r + s = s + r

(6) r(s + t) = rs + rt

(7) (r + s)t = rt + st

(8) r(st) = (rs)t
(9) ∅∗ = ε

(10) ε∗ = ε

(11) (ε + r)+ = r∗

(12) (ε + r)∗ = r∗

(13) r∗(ε + r) = (ε + r)r∗ = r∗

(14) r∗s + s = r∗s
(15) r(sr)∗ = (rs)∗r
(16) (r + s)∗ = (r∗s)∗r∗ = (s∗r)∗s∗

Figure 4.5 Rules that apply to regular expressions.

where we have simplified the expressions using the definition of the positive closure, namely
r(r∗) = r+ in the second equation and rules (6), (5), and (12) in the last three equations.
Other examples of the use of the identities can be found in Section 4.4.

4.4 Regular Expressions and FSMs
Regular languages are exactly the languages recognized by finite-state machines, as we now
show. Our two-part proof begins by showing (Section 4.4.1) that every regular language can
be accepted by a nondeterministic finite-state machine. This is followed in Section 4.4.2 by
a proof that the language recognized by an arbitrary deterministic finite-state machine can be
described by a regular expression. Since by Theorem 4.2.1 the language recognition power of
DFSMs and NFSMs are the same, the desired conclusion follows.

4.4.1 Recognition of Regular Expressions by FSMs
THEOREM 4.4.1 Given a regular expression r over the set Σ, there is a nondeterministic finite-state
machine that accepts the language denoted by r.

Proof We show by induction on the size of a regular expression r (the number of its opera-
tors) that there is an NFSM that accepts the language described by r.

BASIS: If no operators are used, the regular expression is either ε, ∅, or a for some a ∈ Σ.
The finite-state machines shown in Fig. 4.6 recognize these three languages.

c©John E Savage 4.4 Regular Expressions and FSMs 161

S
Start

(a)

Start

(b)

q
Start

(c)

S qS
a

Figure 4.6 Finite-state machines recognizing the regular expressions ε, ∅, and a, respectively.
In b) an output state is shown even though it cannot be reached.

INDUCTION: Assume that the hypothesis holds for all regular expressions r with at most k
operators. We show that it holds for k + 1 operators. Since k is arbitrary, it holds for all k.
The outermost operator (the k + 1st) is either concatenation, union, or Kleene closure. We
argue each case separately.

CASE 1: Let r = (r1 · r2). M1 and M2 are the NFSMs that accept r1 and r2, respectively.
By the inductive hypothesis, such machines exist. Without loss of generality, assume that the
states of these machines are distinct and let them have initial states s1 and s2, respectively.
As suggested in Fig. 4.7, create a machine M that accepts r as follows: for each input letter
σ, final state f of M1, and state q of M2 reached by an edge from s2 labeled σ, add an edge
with the same label σ from f to q. If s2 is not a final state of M2, remove the final state
designations from states of M1.

It follows that every string accepted by M either terminates on a final state of M1 (when
M2 accepts the empty string) or exits a final state of M1 (never to return to a state of M1),
enters a state of M2 reachable on one input letter from the initial state of M2, and terminates
on a final state of M2. Thus, M accepts exactly the strings described by r.

CASE 2: Let r = (r1 + r2). Let M1 and M2 be NFSMs with distinct sets of states and let
initial states s1 and s2 accept r1 and r2, respectively. By the inductive hypothesis, M1 and
M2 exist. As suggested in Fig. 4.8, create a machine M that accepts r as follows: a) add a
new initial state s0; b) for each input letter σ and state q of M1 or M2 reached by an edge

f1

f2

s1 M1 M2 f3

q2

q1

y

x

x z

z

x

y
s2 y

z

Figure 4.7 A machine M recognizing r1 · r2. M1 and M2 are the NFSMs that accept r1 and
r2, respectively. An edge with label a is added between each final state of M1 and each state of M2

reached on input a from its start state, s2. The final states of M2 are final states of M , as are the
final states of M1 if s2 is a final of M2. It follows that this machine accepts the strings beginning
with a string in r1 followed by one in r2.

162 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

M2 f2

q3

f1

q2

q1

x

s1

s2 w

y
z

M1

s0

y

x
z

w

Figure 4.8 A machine M accepting r1 + r2. M1 and M2 are the NFSMs that accept r1 and
r2, respectively. The new start state s0 has an edge labeled a for each edge with this label from the
initial state of M1 or M2. The final states of M are the final states of M1 and M2 as well as s0 if
either s1 or s2 is a final state. After the first input choice, the new machine acts like either M1 or
M2. Therefore, it accepts strings denoted by r1 + r2.

from s1 or s2 labeled σ, add an edge with the same label from s0 to q. If either s1 or s2 is a
final state, make s0 a final state.

It follows that if either M1 or M2 accepts the empty string, so does M . On the first
non-empty input letter M enters and remains in either the states of M1 or those of M2. It
follows that it accepts either the strings accepted by M1 or those accepted by M2 (or both),
that is, the union of r1 and r2.

CASE 3: Let r = (r1)∗. Let M1 be an NFSM with initial state s1 that accepts r1, which,
by the inductive hypothesis, exists. Create a new machine M , as suggested in Fig. 4.9, as
follows: a) add a new initial state s0; b) for each input letter σ and state q reached on σ from
s1, add an edge with label σ between s0 and state q with label σ, as in Case 2; c) add such
edges from each final state to these same states. Make the new initial state a final state and
remove the initial-state designation from s1.

It follows that M accepts the empty string, as it should since r = (r1)∗ contains the
empty string. Since the edges leaving each final state are those directed away from the initial
state s0, it follows that M accepts strings that are the concatenation of strings in r1, as it
should.

We now illustrate this construction of an NFSM from a regular expression. Consider the
regular expression r = 10∗ + 0, which we decompose as r = (r1r2 + r3) where r1 = 1,
r2 = (r4)∗, r3 = 0, and r4 = 0. Shown in Fig. 4.10(a) is a NFSM accepting the languages
denoted by the regular expressions r3 and r4, and in (b) is an NFSM accepting r1. Figure 4.11
shows an NFSM accepting the closure of r4 obtained by adding a new initial state (which is
also made a final state) from which is directed a copy of the edge directed away from the initial

c©John E Savage 4.4 Regular Expressions and FSMs 163

x

y

y

x

f1s1

q1

y

x

s0

Figure 4.9 A machine M accepts r∗1 . M1 accepts r1. Make s0 the initial state of M . For
each input letter a, add an edge labeled a from s0 and each final of M1 to each state reached on
input a from s1, the initial state of M1. The final states of M are s0 and the final states of M1.
Thus, M accepts ε and all states reached by the concatenation of strings accepted by M1; that is,
it realizes the closure r∗1 .

Start 0
s1 q1

(a)

Start 1
q2s2

(b)

Figure 4.10 Nondeterministic machines accepting 0 and 1.

s1

0Start
s0

0

0
q1

Figure 4.11 An NFSM accepting the Kleene closure of {0}.

s10

0

1 0Start
s2 q2 q1

Figure 4.12 A nondeterministic machine accepting 10∗.

164 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

1 0

s0
1

0Start

q3

q2 qf

0

0

s2

s3

Figure 4.13 A nondeterministic machine accepting 10∗ + 0.

state of M0, the machine accepting r4. (The state s1 is marked as inaccessible.) Figure 4.12
(page 163) shows an NFSM accepting r1r2 constructed by concatenating the machine M1

accepting r1 with M2 accepting r2. (s1 is inaccessible.) Figure 4.13 gives an NFSM accepting
the language denoted by r1r2+r3, designed by forming the union of machines for r1r2 and r3.
(States s2 and s3 are inaccessible.) Figure 4.14 shows a DFSM recognizing the same language
as that accepted by the machine in Fig. 4.13. Here we have added a reject state qR to which all
states move on input letters for which no state transition is defined.

4.4.2 Regular Expressions Describing FSM Languages
We now give the second part of the proof of equivalence of FSMs and regular expressions. We
show that every language recognized by a DFSM can be described by a regular expression. We
illustrate the proof using the DFSM of Fig. 4.3, which is the DFSM given in Fig. 4.15 except
for a relabeling of states.

THEOREM 4.4.2 If the language L is recognized by a DFSM M = (Σ, Q, δ, s, F), then L can
be represented by a regular expression.

0

q3

s0
1

0Start

q2

qR

q1

0, 1

1

0, 1

1
0

Figure 4.14 A deterministic machine accepting 10∗ + 0.

c©John E Savage 4.4 Regular Expressions and FSMs 165

1 0

0

1

Start
q1

q4

q5

0, 1

q2

q3

0

1

0

1

Figure 4.15 The DFSM of Figure 4.3 with a relabeling of states.

Proof Let Q = {q1, q2, . . . , qn} and F = {qj1 , qj2 , . . . , qjp
} be the final states. The

proof idea is the following. For every pair of states (qi, qj) of M we construct a regular

expression r
(0)
i,j denoting the set R

(0)
i,j containing input letters that take M from qi to qj

without passing through any other states. If i = j, R
(0)
i,j contains the empty letter ε because

M can move from qi to qi without reading an input letter. (These definitions are illustrated

in the table T (0) of Fig. 4.16.) For k = 1, 2, . . . , m we proceed to define the set R
(k)
i,j of

strings that take M from qi to qj without passing through any state except possibly one in

Q(k) = {q1, q2, . . . , qk}. We also associate a regular expression r
(k)
i,j with the set R

(k)
i,j . Since

Q(n) = Q, the input strings that carry M from s = qt, the initial state, to a final state in F
are the strings accepted by M . They can be described by the following regular expression:

r
(n)
t,j1

+ r
(n)
t,j2

+ · · ·+ r
(n)
t,jp

This method of proof provides a dynamic programming algorithm to construct a reg-
ular expression for L.

T (0) = {r(0)
i,j }

i \ j 1 2 3 4 5

1 ε 0 1 ∅ ∅
2 ∅ ε 0 1 ∅
3 ∅ ∅ ε + 0 + 1 ∅ ∅
4 ∅ ∅ 1 ε 0

5 ∅ 0 ∅ 1 ε

Figure 4.16 The table T (0) containing the regular expressions {r(0)
i,j } associated with the DFSM

in shown in Fig. 4.15.

166 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

R
(0)
i,j is formally defined below.

R
(0)
i,j =

{
{a | δ(qi, a) = qj} if i �= j

{a | δ(qi, a) = qj} ∪ {ε} if i = j

Since R
(k)
i,j is defined as the set of strings that take M from qi to qj without passing through

states outside of Q(k), it can be recursively defined as the strings that take M from qi to
qj without passing through states outside of Q(k−1) plus those that take M from qi to qk

without passing through states outside of Q(k−1), followed by strings that take M from
qk to qk zero or more times without passing through states outside Q(k−1), followed by
strings that take M from qk to qj without passing through states outside of Q(k−1). This is
represented by the formula below and suggested in Fig. 4.17:

R
(k)
i,j = R

(k−1)
i,j ∪R

(k−1)
i,k ·

(
R

(k−1)
k,k

)∗
·R(k−1)

k,j

It follows by induction on k that R
(k)
i,j correctly describes the strings that take M from qi to

qj without passing through states of index higher than k.

We now exhibit the set {r(k)
i,j } of regular expressions that describe the sets {R(k)

i,j | 1 ≤
i, j, k ≤ m} and establish the correspondence by induction. If the set R

(0)
i,j contains the

letters x1, x2, . . . , xl (which might include the empty letter ε), then we let r
(0)
i,j = x1 +x2 +

· · ·+xl. Assume that r
(k−1)
i,j correctly describes R

(k−1)
i,j . It follows that the regular expression

r
(k)
i,j = r

(k−1)
i,j + r

(k−1)
i,k

(
r
(k−1)
k,k

)∗
r
(k−1)
k,j (4.1)

correctly describes R
(k)
i,j . This concludes the proof.

The dynamic programming algorithm given in the above proof is illustrated by the DFSM
in Fig. 4.15. Because this algorithm can produce complex regular expressions even for small
DFSMs, we display almost all of its steps, stopping when it is obvious which results are needed
for the regular expression that describes the strings recognized by the DFSM. For 1 ≤ k ≤ 6,

R
(k−1)
k,k

R
(k−1)
i,j

R
(k−1)
k,jR

(k−1)
i,k

Figure 4.17 A recursive decomposition of the set R
(k)
i,j of strings that cause an FSM to move

from state qi to qj without passing through states ql for l > k.

c©John E Savage 4.4 Regular Expressions and FSMs 167

let T (k) denote the table of values of {r(k)
i,j | 1 ≤ i, j ≤ 6}. Table T (0) in Fig. 4.16 describes

the next-state function of this DFSM. The remaining tables are constructed by invoking the

definition of r
(k)
i,j in (4.1). Entries in table T (1) are formed using the following facts:

r
(1)
i,j = r

(0)
i,j + r

(0)
i,1

(
r
(0)
1,1

)∗
r
(0)
1,j ;

(
r
(0)
1,1

)∗
= ε∗ = ε; r

(0)
i,1 = ∅ for i ≥ 2

It follows that r
(1)
i,j = r

(0)
i,j or that T (1) is identical to T (0). Invoking the identity r

(2)
i,j =

r
(1)
i,j + r

(1)
i,2

(
r
(1)
2,2

)∗
r
(1)
2,j and using

(
r
(1)
2,2

)∗
= ε, we construct the table T (2) below:

T (2) = {r(2)
i,j }

i \ j 1 2 3 4 5

1 ε 0 1 + 00 01 ∅
2 ∅ ε 0 1 ∅
3 ∅ ∅ ε + 0 + 1 ∅ ∅
4 ∅ ∅ 1 ε 0

5 ∅ 0 00 1 + 01 ε

The fourth table T (3) is shown below. It is constructed using the identity r
(3)
i,j = r

(2)
i,j +

r
(2)
i,3

(
r
(2)
3,3

)∗
r
(2)
3,j and the fact that

(
r
(2)
3,3

)∗
= (0 + 1)∗.

T (3) = {r(3)
i,j }

i \ j 1 2 3 4 5

1 ε 0 (1 + 00)(0 + 1)∗ 01 ∅
2 ∅ ε 0(0 + 1)∗ 1 ∅
3 ∅ ∅ (0 + 1)∗ ∅ ∅
4 ∅ ∅ 1(0 + 1)∗ ε 0

5 ∅ 0 00(0 + 1)∗ 1 + 01 ε

The fifth table T (4) is shown below. It is constructed using the identity r
(4)
i,j = r

(3)
i,j +

r
(3)
i,4

(
r
(3)
4,4

)∗
r
(3)
4,j and the fact that

(
r
(3)
4,4

)∗
= ε.

T (4) = {r(4)
i,j }

i \ j 1 2 3 4 5

1 ε 0 (1 + 00 + 011)(0 + 1)∗ 01 010

2 ∅ ε (0 + 11)(0 + 1)∗ 1 10

3 ∅ ∅ (0 + 1)∗ ∅ ∅
4 ∅ ∅ 1(0 + 1)∗ ε 0

5 ∅ 0 (00 + 11 + 011)(0 + 1)∗ 1 + 01 ε + 10 + 010

168 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

Instead of building the sixth table, T (5), we observe that the regular expression that is

needed is r = r
(5)
1,1 + r

(5)
1,4 + r

(5)
1,5 . Since r

(5)
i,j = r

(4)
i,j + r

(4)
i,5

(
r
(4)
5,5

)∗
r
(4)
5,j and

(
r
(4)
5,5

)∗
=

(10 + 010)∗, we have the following expressions for r
(5)
1,1 , r

(5)
1,4 , and r

(5)
1,5 :

r
(5)
1,1 = ε

r
(5)
1,4 = 01 + (010)(10 + 010)∗(1 + 01)

r
(5)
1,5 = 010 + (010)(10 + 010)∗(ε + 10 + 010) = (010)(10 + 010)∗

Thus, the DFSM recognizes the language denoted by the regular expression r = ε + 01 +
(010)(10+010)∗(ε+1+01). It can be shown that this expression denotes the same language
as does ε + 01 + (01)(01 + 001)∗(ε + 0) = (01 + 010)∗. (See Problem 4.12.)

4.4.3 grep—Searching for Strings in Files
Many operating systems provide a command to find strings in files. For example, the Unix
grep command prints all lines of a file containing a string specified by a regular expression.
grep is invoked as follows:

grep regular-expression file name

Thus, the command grep ’o+’ file name returns each line of the file file name that
contains o+ somewhere in the line. grep is typically implemented with a nondeterministic
algorithm whose behavior can be understood by considering the construction of the preceding
section.

In Section 4.4.1 we describe a procedure to construct NFSMs accepting strings denoted
by regular expressions. Each such machine starts in its initial state before processing an input
string. Since grep finds lines containing a string that starts anywhere in the lines, these NFSMs
have to be modified to implement grep. The modifications required for this purpose are
straightforward and left as an exercise for the reader. (See Problem 4.19.)

4.5 The Pumping Lemma for FSMs
It is not surprising that some languages are not regular. In this section we provide machinery
to show this. It is given in the form of the pumping lemma, which demonstrates that if a
regular language contains long strings, it must contain an infinite set of strings of a particular
form. We show the existence of languages that do not contain strings of this form, thereby
demonstrating that they are not regular.

The pigeonhole principle is used to prove the pumping lemma. It states that if there are
n pigeonholes and n+1 pigeons, each of which occupies a hole, then at least one hole has two
pigeons. This principle, whose proof is obvious (see Section 1.3), enjoys a hallowed place in
combinatorial mathematics.

The pigeonhole principle is applied as follows. We first note that if a regular language L
is infinite, it contains a string w with at least as many letters as there are states in a DFSM M
recognizing L. Including the initial state, it follows that M visits at least one more state while
processing w than it has different states. Thus, at least one state is visited at least twice. The
substring of w that causes M to move from this state back to itself can be repeated zero or

c©John E Savage 4.5 The Pumping Lemma for FSMs 169

more times to give other strings in the language. We use the notation un to mean the string
repeated n times and let u0 = ε.

LEMMA 4.5.1 Let L be a regular language over the alphabet Σ recognized by a DFSM with m
states. If w ∈ L and |w| ≥ m, then there are strings r, s, and t with |s| ≥ 1 and |rs| ≤ m
such that w = rst and for all integers n ≥ 0, rsnt is also in L.

Proof Let L be recognized by the DFSM M with m states. Let k = |w| ≥ m be the length
of w in L. Let q0, q1, q2, . . . , qk denote the initial and k successive states that M enters after
receiving each of the letters in w. By the pigeonhole principle, some state q′ in the sequence
q0, . . . , qm (m ≤ k) is repeated. Let qi = qj = q′ for i < j. Let r = w1 . . . wi be the
string that takes M from q0 to qi = q′ (this string may be empty) and let s = wi+1 . . . wj

be the string that takes M from qi = q′ to qj = q′ (this string is non-empty). It follows
that |rs| ≤ m. Finally, let t = wj+1 . . . wk be the string that takes M from qj to qk. Since
s takes M from state q′ to state q′, the final state entered by M is the same whether s is
deleted or repeated one or more times. (See Fig. 4.18.) It follows that rsnt is in L for all
n ≥ 0.

As an application of the pumping lemma, consider the language L = {0p1p | p ≥ 1}.
We show that it is not regular. Assume it is regular and is recognized by a DFSM with m
states. We show that a contradiction results. Since L is infinite, it contains a string w of length
k = 2p ≥ 2m, that is, with p ≥ m. By Lemma 4.5.1 L also contains rsnt, n ≥ 0, where
w = rst and |rs| ≤ m ≤ p. That is, s = 0d where d ≤ p. Since rsnt = 0p+(n−1)d1p for
n ≥ 0 and this is not of the form 0p1p for n = 0 and n ≥ 2, the language is not regular.

The pumping lemma allows us to derive specific conditions under which a language is
finite or infinite, as we now show.

LEMMA 4.5.2 Let L be a regular language recognized by a DFSM with m states. L is non-empty
if and only if it contains a string of length less than m. It is infinite if and only if it contains a string
of length at least m and at most 2m− 1.

Proof If L contains a string of length less than m, it is not empty. If it is not empty, let w
be a shortest string in L. This string must have length at most m − 1 or we can apply the
pumping lemma to it and find another string of smaller length that is also in L. But this
would contradict the assumption that w is a shortest string in L. Thus, L contains a string
of length at most m − 1.

If L contains a string w of length m ≤ |w| ≤ 2m − 1, as shown in the proof of the
pumping lemma, w can be “pumped up” to produce an infinite set of strings. Suppose now
that L is infinite. Either it contains a string w of length m ≤ |w| ≤ 2m− 1 or it does not.

Start
q0 q′ qf

r t

s

Figure 4.18 Diagram illustrating the pumping lemma.

170 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

In the first case, we are done. In the second case, |w| ≥ 2m and we apply the pumping
lemma to it to find another shorter string that is also in L, contradicting the hypothesis that
it was the shortest string of length greater than or equal to 2m.

4.6 Properties of Regular Languages
Section 4.4 established the equivalence of regular languages (recognized by finite-state ma-
chines) and the languages denoted by regular expressions. We now present properties satisfied
by regular languages. We say that a class of languages is closed under an operation if ap-
plying that operation to a language (or languages) in the class produces another language in
the class. For example, as shown below, the union of two regular languages is another regular
language. Similarly, the Kleene closure applied to a regular language returns another regular
language.

Given a language L over an alphabet Σ, the complement of L is the set L = Σ∗ − L,
the strings that are in Σ∗ but not in L. (This is also called the difference between Σ∗ and L.)
The intersection of two languages L1 and L2, denoted L1 ∩ L2, is the set of strings that are
in both languages.

THEOREM 4.6.1 The class of regular languages is closed under the following operations:
• concatenation
• union
• Kleene closure
• complementation
• intersection

Proof In Section 4.4 we showed that the languages denoted by regular expressions are ex-
actly the languages recognized by finite-state machines (deterministic or nondeterministic).
Since regular expressions are defined in terms of concatenation, union, and Kleene closure,
they are closed under each of these operations.

The proof of closure of regular languages under complementation is straightforward. If
L is regular and has an associated FSM M that recognizes it, make all final states of M non-
final and all non-final states final. This new machine then recognizes exactly the complement
of L. Thus, L is also regular.

The proof of closure of regular languages under intersection follows by noting that if L1

and L2 are regular languages, then

L1 ∩ L2 = L1 ∪ L2

that is, the intersection of two sets can be obtained by complementing the union of their
complements. Since each of L1 and L2 is regular, as is their union, it follows that L1 ∪ L2

is regular. (See Fig. 4.19(a).) Finally, the complement of a regular set is regular.

When we come to study Turing machines in Chapter 5, we will show that there are well-
defined languages that have no machine to recognize them, even if the machine has an infinite
amount of storage available. Thus, it is interesting to ask if there are algorithms that solve
certain decision problems about regular languages in a finite number of steps. (Machines that
halt on all input are said to implement algorithms.) As shown above, there are algorithms

c©John E Savage 4.7 State Minimization* 171

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���
���
���
���
���
���

���
���
���
���
���
���

L1 L2

L(M1)

L(M2)

Figure 4.19 (a) The intersection L1 ∩ L2 of two sets L1 and L2 can be obtained by taking the

complement L1 ∪ L2 of the union L1 ∪L2 of their complements. (b) If L(M1) ⊆ L(M2), then
L(M1) ∩ L(M2) = ∅.

that can recognize the concatenation, union and Kleene closure of regular languages. We now
show that algorithms exist for a number of decision problems concerning finite-state machines.

THEOREM 4.6.2 There are algorithms for each of the following decision problems:
a) For a finite-state machine M and a string w, determine if w ∈ L(M).
b) For a finite-state machine M , determine if L(M) = ∅.
c) For a finite-state machine M , determine if L(M) = Σ∗.
d) For finite-state machines M1 and M2, determine if L(M1) ⊆ L(M2).
e) For finite-state machines M1 and M2, determine if L(M1) = L(M2).

Proof To answer (a) it suffices to supply w to a deterministic finite-state machine equiva-
lent to M and observe the final state after it has processed all letters in w. The number of
steps executed by this machine is the length of w. Question (b) is answered in Lemma 4.5.2.
We need only determine if the language contains strings of length less than m, where m is
the number of states of M . This can be done by trying all inputs of length less than m.
The answer to question (c) is the same as the answer to “Is L(M) = ∅?” The answer to
question (d) is the same as the answer to “Is L(M1) ∩ L(M2) = ∅?” (See Fig. 4.19(b).)
Since FSMs that recognize the complement and intersection of regular languages can be
constructed in a finite number of steps (see the proof of Theorem 4.6.1), we can use the
procedure for (b) to answer the question. Finally, the answer to question (e) is “yes” if and
only if L(M1) ⊆ L(M2) and L(M2) ⊆ L(M1).

4.7 State Minimization*
Given a finite-state machine M , it is often useful to have a potentially different DFSM Mmin

with the smallest number of states (a minimal-state machine) that recognizes the same language
L(M). In this section we develop a procedure to find such a machine recognizing a regular
language L. As a step in this direction, we define a natural equivalence relation RL for each lan-
guage L and show that L is regular if and only if RL has a finite number of equivalence classes.

4.7.1 Equivalence Relations on Languages and States
The relation RL is used to define a machine ML. When L is regular, we show that ML is a
minimal-state DFSM. We also give an explicit procedure to construct a minimal-state DFSM

172 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

recognizing a regular language L. The approach is the following: a) given a regular expression,
an NFSM is constructed (Theorem 4.4.1); b) an equivalent DFSM is then produced (Theo-
rem 4.2.1); c) equivalent states of this DFSM are discovered and coalesced, thereby producing
the minimal machine. We begin our treatment with a discussion of equivalence relations.

DEFINITION 4.7.1 An equivalence relation R on a set A is a partition of the elements of A into
disjoint subsets called equivalence classes. If two elements a and b are in the same equivalence
class under relation R, we write aRb. If a is an element of an equivalence class, we represent its
equivalence class by [a]. An equivalence relation is represented by its equivalence classes.

An example of equivalence relation on the set A = {0, 1, 2, 3} is the set of equivalence
classes {{0, 2}, {1, 3}}. Then, [0] and [2] denote the same equivalence class, namely {0, 2},
whereas [1] and [2] denote different equivalence classes.

Equivalence relations can be defined on any set, including the set of strings over a finite
alphabet (a language). For example, let the partition {0∗, 0(0∗10∗)+, 1(0 + 1)∗} of the
set (0 + 1)∗ denote the equivalence relation R. The equivalence classes consist of strings
containing zero or more 0’s, strings starting with 0 and containing at least one 1, and strings
beginning with 1. It follows that 00R000 and 1001R11 but not that 10R01.

Additional conditions can be put on equivalence relations on languages. An important
restriction is that an equivalence relation be right-invariant (with respect to concatenation).

DEFINITION 4.7.2 An equivalence relation R over the alphabet Σ is right-invariant (with respect
to concatenation) if for all u and v in Σ∗, uRv implies uzRvz for all z ∈ Σ∗.

For example, let R = {(10∗1 + 0)∗, 0∗1(10∗1 + 0)∗}. That is, R consists of two equiv-
alence classes, the set containing strings with an even number of 1’s and the set containing
strings with an odd number of 1’s. R is right-invariant because if uRv; that is, if the numbers
of 1’s in u and v are both even or both odd, then the same is true of uz and vz for each
z ∈ Σ∗, that is, uzRvz.

To each language L, whether regular or not, we associate the natural equivalence relation
RL defined below. Problem 4.30 shows that for some languages RL has an unbounded number
of equivalence classes.

DEFINITION 4.7.3 Given a language L over Σ, the equivalence relation RL is defined as follows:
strings u, v ∈ Σ∗ are equivalent, that is, uRLv, if and only if for each z ∈ Σ∗, either both uz
and vz are in L or both are not in L.

The equivalence relation R = {(10∗1+0)∗, 0∗1(10∗1+0)∗} given above is the equivalence
relation RL for both the language L = (10∗1 + 0)∗ and the language L = 0∗1(10∗1 + 0)∗.

A natural right-invariant equivalence relation on strings can also be associated with each
DFSM, as shown below. This relation defines two strings as equivalent if they carry the ma-
chine from its initial state to the same state. Thus, for each state there is an equivalence class
of strings that take the machine to that state. For this purpose we extend the state transition
function δ to strings a ∈ Σ∗ recursively by δ(q, ε) = q and δ(q, σa) = δ(δ(q, σ), a) for
σ ∈ Σ.

DEFINITION 4.7.4 Given a DFSM M = (Σ, Q, δ, s, F), RM is the equivalence relation defined
as follows: for all u, v ∈ Σ∗, uRMv if and only if δ(s, u) = δ(s, v). (Note that δ(q, ε) = q.)

c©John E Savage 4.7 State Minimization* 173

It is straightforward to show that the equivalence relations RL and RM are right-invariant.
(See Problems 4.28 and 4.29.) It is also clear that RM has as many equivalence classes as there
are accessible states of M .

Before we present the major results of this section we define a special machine ML that
will be seen to be a minimal machine recognizing the language L.

DEFINITION 4.7.5 Given the language L over the alphabet Σ with finite RL, the DFSM ML =
(Σ, QL, δL, sL, FL) is defined in terms of the right-invariant equivalence relation RL as follows:
a) the states QL are the equivalence classes of RL; b) the initial state sL is the equivalence class
[ε]; c) the final states FL are the equivalence classes containing strings in the language L; d) for an
arbitrary equivalence class [u] with representative element u ∈ Σ∗ and an arbitrary input letter
a ∈ Σ, the next-state transition function δL : QL × Σ �→ QL is defined by δL([u], a) = [ua].

For this definition to make sense we must show that condition c) does not contradict the
facts about RL: that an equivalence class containing a string in L does not also contain a
string that is not in L. But by the definition of RL, if we choose z = ε, we have that uRLv
only if both u and v are in L. We must also show that the next-state function definition is
consistent: it should not matter which representative of the equivalence class [u] is used. In
particular, if we denote the class [u] by [v] for v another member of the class, it should follow
that [ua] = [va]. But this is a consequence of the definition of RL.

Figure 4.20 shows the machine ML associated with L = (10∗1 + 0)∗. The initial state
is associated with [ε], which is in the language. Thus, the initial state is also a final state. The
state associated with [0] is also [ε] because ε and 0 are both in L. Thus, the transition from state
[ε] on input 0 is back to state [ε]. Problem 4.31 asks the reader to complete the description of
this machine.

We need the notion of a refinement of an equivalence relation before we establish condi-
tions for a language to be regular.

DEFINITION 4.7.6 An equivalence relation R over a set A is a refinement of an equivalence
relation S over the same set if aRb implies that aSb. A refinement R of S is strict if there exist
a, b ∈ A such that aSb but it is not true that aRb.

Over the set A = {a, b, c, d}, the relation R = {{a}, {b}, {c, d}} is a strict refinement
of the relation S = {{a, b}, {c, d}}. Clearly, if R is a refinement of S, R has no fewer
equivalence classes than does S. If the refinement R of S is strict, R has more equivalence
classes than does S.

0

1

0

1

[ε] [1]

Start

Figure 4.20 The machine ML associated with L = (10∗1 + 0)∗.

174 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

4.7.2 The Myhill-Nerode Theorem
The following theorem uses the notion of refinement to give conditions under which a lan-
guage is regular.

THEOREM 4.7.1 (Myhill-Nerode) L is a regular language if and only if RL has a finite num-
ber of equivalence classes. Furthermore, if L is regular, it is the union of some of the equivalence
classes of RL.

Proof We begin by showing that if L is regular, RL has a finite number of equivalence
classes. Let L be recognized by the DFSM M = (Σ, Q, δ, s, F). Then the number of
equivalence classes of RM is finite. Consider two strings u, v ∈ Σ∗ that are equivalent
under RM . By definition, u and v carry M from its initial state to the same state, whether
final or not. Thus, uz and vz also carry M to the same state. It follows that RM is right-
invariant. Because uRMv, either u and v take M to a final state and are in L or they take
M to a non-final state and are not in L. It follows from the definition of RL that uRLv.
Thus, RM is a refinement of RL. Consequently, RL has no more equivalence classes than
does RM and this number is finite.

Now let RL have a finite number of equivalence classes. We show that the machine
ML recognizes L. Since it has a finite number of states, we are done. The proof that ML

recognizes L is straightforward. If [w] is a final state, it is reached by applying to ML in
its initial state a string in [w]. Since the final states are the equivalence classes containing
exactly those strings that are in L, ML recognizes L. It follows that if L is regular, it is the
union of some of the equivalence classes of RL.

We now state an important corollary of this theorem that identifies a minimal machine
recognizing a regular language L. Two DFSMs are isomorphic if they differ only in the names
given to states.

COROLLARY 4.7.1 If L is regular, the machine ML is a minimal DFSM recognizing L. All other
such minimal machines are isomorphic to ML.

Proof From the proof of Theorem 4.7.1, if M is any DFSM recognizing L, it has no fewer
states than there are equivalence classes of RL, which is the number of states of ML. Thus,
ML has a minimal number of states.

Consider another minimal machine M0 = (Σ, Q0, δ0, s0, F0). Each state of M0 can
be identified with some state of ML. Equate the initial states of ML and M0 and let q be
an arbitrary state of M0. There is some string u ∈ Σ∗ such that q = δ0(s0, u). (If not,
M0 is not minimal.) Equate state q with state δL(sL, u) = [u] of ML. Let v ∈ [u].
If δ0(s0, v) �= q, M0 has more states than does ML, which is a contradiction. Thus, the
identification of states in these two machines is consistent. The final states F0 of M0 are
identified with those equivalence classes of ML that contain strings in L.

Consider now the next-state function δ0 of M0. Let state q of M0 be identified with
state [u] of ML and let a be an input letter. Then, if δ0(q, a) = p, it follows that p is
associated with state [ua] of ML because the input string ua maps s0 to state p in M0 and
maps sL to [ua] in ML. Thus, the next-state functions of the two machines are identical
up to a renaming of the states of the two machines.

c©John E Savage 4.7 State Minimization* 175

4.7.3 A State Minimization Algorithm
The above approach does not offer a direct way to find a minimal-state machine. In this sec-
tion we give a procedure for this purpose. Given a regular language, we construct an NFSM
that recognizes it (Theorem 4.4.1) and then convert the NFSM to an equivalent DFSM (The-
orem 4.2.1). Once we have such a DFSM M , we give a procedure to minimize the number of
states based on combining equivalence classes of the right-invariant equivalence relation RM

that are indistinguishable. (These equivalence classes are sets of states of M .) The resulting
machine is isomorphic to ML, the minimal-state machine.

DEFINITION 4.7.7 Let M = (Σ, Q, δ, s, F) be a DFSM. The equivalence relation ≡n on states
in Q is defined as follows: two states p and q of M are n-indistinguishable (denoted p ≡n q) if
and only if for all input strings u ∈ Σ∗ of length |u| ≤ n either both δ(p, u) and δ(q, u) are in
F or both are not in F . (We write p �≡n q if p and q are not n-indistinguishable.) Two states p
and q are equivalent (denoted p ≡ q) if they are n-indistinguishable for all n ≥ 0.

For arbitrary states q1, q2, and q3, if q1 and q2 are n-indistinguishable and q2 and q3 are
n-indistinguishable, then q1 and q3 are n-indistinguishable. Thus, all three states are in the
same set of the partition and ≡n is an equivalence relation. By an extension of this type of
reasoning to all values of n, it is also clear that ≡ is an equivalence relation.

The following lemma establishes that ≡j+1 refines ≡j and that for some k and all j ≥ k,
≡j is identical to ≡k, which is in turn equal to ≡.

LEMMA 4.7.1 Let M = (Σ, Q, δ, s, F) be an arbitrary DFSM. Over the set Q the equivalence
relation ≡n+1 is a refinement of the relation ≡n. Furthermore, if for some k ≤ |Q| − 2, ≡k+1

and ≡k are equal, then so are ≡j+1 and ≡j for all j ≥ k. In particular, ≡k and ≡ are identical.

Proof If p ≡n+1 q then p ≡n q by definition. Thus, for n ≥ 0 ≡n+1 refines ≡n.
We now show that if ≡k+1 and ≡k are equal, then ≡j+1 and ≡j are equal for all j ≥k.

Suppose not. Let l be the smallest value of j for which ≡j+1 and ≡j are equal but ≡j+2 and
≡j+1 are not equal. It follows that there exist two states p and q that are indistinguishable
for input strings of length l + 1 or less but are distinguishable for some input string v of
length |v| = l+2. Let v = au where a ∈ Σ and |u| = l+1. Since δ(p, v) = δ(δ(p, a), u)
and δ(q, v) = δ(δ(q, a), u), it follows that the states δ(p, a) and δ(q, a) are distinguishable
by some string u of length l + 1 but not by any string of length l. But this contradicts the
assumption that ≡l+1 and ≡l are equal.

The relation ≡0 has two equivalence classes, the final states and all other states. For each
integer j ≤ k, where k is the smallest integer such that ≡k+1 and ≡k are equal, ≡j has at
least one more equivalence class than does ≡j−1. That is, it has at least j + 2 classes. Since
≡k can have at most |Q| equivalence classes, it follows that k + 2 ≤ |Q|.

Clearly, ≡k and ≡ are identical because if two states cannot be distinguished by input
strings of length k or less, they cannot be distinguished by input strings of any length.

The proof of this lemma provides an algorithm to compute the equivalence relation ≡,
namely, compute the relations ≡j , 0 ≤ j ≤ |Q| − 2 in succession until we find two relations
that are identical. We find ≡j+1 from ≡j as follows: for every pair of states (p, q) in an
equivalence class of ≡j , we find their successor states δ(p, a) and δ(q, a) under input letter
a for each such letter. If for all letters a, δ(p, a) ≡j δ(q, a) and p ≡j q, then p ≡j+1 q
because we cannot distinguish between p and q on inputs of length j + 1 or less. Thus, the

176 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

algorithm compares each pair of states in an equivalence class of ≡j and forms equivalence
classes of ≡j+1 by grouping together states whose successors under input letters are in the
same equivalence class of ≡j .

To illustrate these ideas, consider the DFSM of Fig. 4.14. The equivalence classes of ≡0 are
{{s0, qR}, {q1, q2, q3}}. Since δ(s0, 0) and δ(qR, 0) are different, s0 and qR are in different
equivalence classes of≡1. Also, because δ(q3, 0) = qR and δ(q1, 0) = δ(q2, 0) = q1 ∈ F , q3 is
in a different equivalence class of≡1 from q1 and q2. The latter two states are in the same equiv-
alence class because δ(q1, 1) = δ(q2, 1) = qR �∈ F . Thus, ≡1= {{s0}, {qR}, {q3}, {q1, q2}}.
The only one of these equivalence classes that could be refined is the last one. However, since
we cannot distinguish between the two states in this class under any input, no further refine-
ment is possible and ≡=≡1.

We now show that if two states are equivalent under ≡, they can be combined, but if they
are distinguishable under ≡, they cannot. Applying this procedure provides a minimal-state
DFSM.

DEFINITION 4.7.8 Let M = (Σ, Q, δ, s, F) be a DFSM and let ≡ be the equivalence relation
defined above over Q. The DFSM M≡ = (Σ, Q≡, δ≡, [s], F≡) associated with the relation ≡
is defined as follows: a) the states Q≡ are the equivalence classes of ≡; b) the initial state of M≡
is [s]; c) the final states F≡ are the equivalence classes containing states in F; d) for an arbitrary
equivalence class [q] with representative element q ∈ Q and an arbitrary input letter a ∈ Σ, the
next-state function δ≡ : Q≡ × Σ �→ Q≡ is defined by δ≡([q], a) = [δ(q, a)].

This definition is consistent; no matter which representative of the equivalence class [q] is
used, the next state on input a is [δ(q, a)]. It is straightforward to show that M≡ recognizes
the same language as does M . (See Problem 4.27.) We now show that M≡ is a minimal-state
machine.

THEOREM 4.7.2 M≡ is a minimal-state machine.

Proof Let M = (Σ, Q, δ, s, F) be a DFSM recognizing L and let M≡ be the DFSM
associated with the equivalence relation ≡ on Q. Without loss of generality, we assume
that all states of M≡ are accessible from the initial state. We now show that M≡ has no
more states than ML. Suppose it has more states. That is, suppose M≡ has more states
than there are equivalence classes of RL. Then, there must be two states p and q of M
such that [p] �= [q] but that uRLv, where u and v carry M from its initial state to p and
q, respectively. (If this were not the case, any strings equivalent under RL would carry M
from its initial state s to equivalent states, contradicting the assumption that M≡ has more
states than ML.) But if uRLv, then since RL is right-invariant, uwRLvw for all w ∈ Σ∗.
However, because [p] �= [q], there is some z ∈ Σ∗ such that [p] and [q] can be distinguished.
This is equivalent to saying that uzRLvz does not hold, a contradiction. Thus, M≡ and
ML have the same number of states. Since M≡ recognizes L, it is a minimal-state machine
equivalent to M .

As shown above, the equivalence relation ≡ for the DFSM of Fig. 4.14 is ≡ is {{s0},
{qR}, {q3}, {q1, q2}}. The DFSM associated with this relation, M≡, is shown in Fig. 4.21.
It clearly recognizes the language 10∗ + 0. It follows that the equivalent DFSM of Fig. 4.14 is
not minimal.

c©John E Savage 4.8 Pushdown Automata 177

q3

0

s0
1

0Start

q2

qR

0, 1

0, 1

1

Figure 4.21 A minimal-state DFSM equivalent to the DFSM in Fig. 4.14.

4.8 Pushdown Automata
The pushdown automaton (PDA) has a one-way, read-only, potentially infinite input tape on
which an input string is written (see Fig. 4.22); its head either advances to the right from the
leftmost cell or remains stationary. It also has a stack, a storage medium analogous to the stack
of trays in a cafeteria. The stack is a potentially infinite ordered collection of initially blank
cells with the property that data can be pushed onto it or popped from it. Data is pushed onto
the top of the stack by moving all existing entries down one cell and inserting the new element
in the top location. Data is popped by removing the top element and moving all other entries
up one cell. The control unit of a pushdown automaton is a finite-state machine. The full
power of the PDA is realized only when its control unit is nondeterministic.

DEFINITION 4.8.1 A pushdown automaton (PDA) is a six-tuple M = (Σ, Γ, Q, Δ, s, F),
where Σ is the tape alphabet containing the blank symbol β, Γ is the stack alphabet containing
the blank symbol γ, Q is the finite set of states, Δ ⊆ (Q×(Σ∪{ε})×(Γ∪{ε})×Q×(Γ∪{ε}))
is the set of transitions, s is the initial state, and F is the set of final states. We now describe
transitions.

If for state p, tape symbol x, and stack symbol y the transition (p, x, y; q, z) ∈ Δ, then if M
is in state p, x ∈ Σ is under its tape head, and y ∈ Γ is at the top of its stack, M may pop y from
its stack, enter state q ∈ Q, and push z ∈ Γ onto its stack. However, if x = ε, y = ε or z = ε,
then M does not read its tape, pop its stack or push onto its stack, respectively. The head on the tape
either remains stationary if x = ε or advances one cell to the right if x �= ε.

If at each point in time a unique transition (p, x, y; q, z) may be applied, the PDA is deter-
ministic. Otherwise it is nondeterministic.

The PDA M accepts the input string w ∈ Σ∗ if when started in state s with an empty
stack (its cells contain the blank stack symbol γ) and w placed left-adjusted on its otherwise blank
tape (its blank cells contain the blank tape symbol β), the last state entered by M after reading
the components of w and no other tape cells is a member of the set F . M accepts the language
L(M) consisting of all such strings.

Some of the special cases for the action of the PDA M on empty tape or stack sym-
bols are the following: if (p, x, ε; q, z), x is read, state q is entered, and z is pushed onto

178 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

Unit
Control

One-way read-only input tape

Stack

Figure 4.22 The control unit, one-way input tape, and stack of a pushdown automaton.

the stack; if (p, x, y; q, ε), x is read, state q is entered, and y is popped from the stack;
if (p, ε, y; q, z), no input is read, y is popped, z is pushed and state q is entered. Also, if
(p, ε, ε; q, ε), M moves from state p to q without reading input, or pushing or popping the
stack.

Observe that if every transition is of the form (p, x, ε; q, ε), the PDA ignores the stack and
simulates an FSM. Thus, the languages accepted by PDAs include the regular languages.

We emphasize that a PDA is nondeterministic if for some state q, tape symbol x, and top
stack item y there is more than one transition that M can make. For example, if Δ contains
(s, a, ε; s, a) and (s, a, a; r, ε), M has the choice of ignoring or popping the top of the stack
and of moving to state s or r. If after reading all symbols of w M enters a state in F , then M
accepts w.

We now give two examples of PDAs and the languages they accept. The first accepts
palindromes of the form {wcwR}, where wR is the reverse of w and w ∈ {a, b}∗. The state
diagram of its control unit is shown in Fig. 4.23. The second PDA accepts those strings over
{a, b} of the form anbm for which n ≥ m.

EXAMPLE 4.8.1 The PDA M = (Σ, Γ, Q, Δ, s, F), where Σ = {a, b, c, β}, Γ = {a, b, γ},
Q = {s, p, r, f}, F = {f} and Δ contains the transitions shown in Fig. 4.24, accepts the
language L = {wcwR}.

The PDA M of Figs. 4.23 and 4.24 remains in the stacking state s while encountering
a’s and b’s on the input tape, pushing these letters (the order of these letters on the stack is the
reverse of their order on the input tape) onto the stack (Rules (a) and (b)). If it encounters an

c©John E Savage 4.8 Pushdown Automata 179

β, b; ε
a, γ; ε

b, a; ε
c, ε; ε

a, b; ε

β, a; ε

b, b; εa, a; ε

s r

p

b, γ; ε

Start

a, ε; a

b, ε; b

c, ε; ε

β, ε; ε

ε, ε; ε

β, γ; ε

f
ε, ε; ε

Figure 4.23 State diagram for the pushdown automaton of Fig. 4.24 which accepts {wcwR}.
An edge label a, b; c between states p and q corresponds to the transition (p, a, b; q, c).

instance of letter c while in state s, it enters the possible accept state p (Rule (c)) but enters
the reject state r if it encounters a blank on the input tape (Rule (d)). While in state p it
pops an a or b that matches the same letter on the input tape (Rules (e) and (f)). If the PDA
discovers blank tape and stack symbols, it has identified a palindrome and enters the accept
state f (Rule (g)). On the other hand, if while in state p the tape symbol and the symbol on
the top of the stack are different or the letter c is encountered, the PDA enters the reject state
r (Rules (h)–(n)). Finally, the PDA does not exit from either the reject or accept states (Rules
(o) and (p)).

Rule Comment

(a) (s, a, ε; s, a) push a

(b) (s, b, ε; s, b) push b

(c) (s, c, ε; p, ε) accept?

(d) (s, β, ε; r, ε) reject

(e) (p, a, a; p, ε) accept?

(f) (p, b, b; p, ε) accept?

(g) (p, β, γ; f , ε) accept

(h) (p, a, b; r, ε) reject

Rule Comment

(i) (p, b, a; r, ε) reject

(j) (p, β, a; r, ε) reject

(k) (p, β, b; r, ε) reject

(l) (p, a, γ; r, ε) reject

(m) (p, b, γ; r, ε) reject

(n) (p, c, ε; r, ε) reject

(o) (r, ε, ε; r, ε) stay in reject state

(p) (f , ε, ε; f , ε) stay in accept state

Figure 4.24 Transitions for the PDA described by the state diagram of Fig. 4.23.

180 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

Rule Comment

(a) (s, β, ε; f , ε) accept

(b) (s, a, ε; s, a) push a

(c) (s, b, γ; r, ε) reject

(d) (s, b, a; p, ε) pop a, enter pop state

(e) (p, b, a; p, ε) pop a

(f) (p, b, γ; r, ε) reject

Rule Comment

(g) (p, β, a; f , ε) accept

(h) (p, β, γ; f , ε) accept

(i) (p, a, ε; r, ε) reject

(j) (f , ε, ε; f , ε) stay in accept state

(k) (r, ε, ε; r, ε) stay in reject state

Figure 4.25 Transitions for a PDA that accepts the language {anbm |n ≥ m ≥ 0}.

EXAMPLE 4.8.2 The PDA M = (Σ, Γ, Q, Δ, s, F), where Σ = {a, b, β}, Γ = {a, b, γ},
Q = {s, p, r, f}, F = {f} and Δ contains the transitions shown in Fig. 4.25, accepts the
language L = {anbm |n ≥ m ≥ 0}. The state diagram for this machine is shown in Fig. 4.26.

The rules of Fig. 4.25 work as follows. An empty input in the stacking state s is accepted
(Rule (a)). If a string of a’s is found, the PDA remains in state s and the a’s are pushed onto
the stack (Rule (b)). At the first discovery of a b in the input while in state s, if the stack is
empty, the input is rejected by entering the reject state (Rule (c)). If the stack is not empty,
the a at the top is popped and the PDA enters the pop state p (Rule (d)). If while in p a b
is discovered on the input tape when an a is found at the top of the stack (Rule(e)), the PDA
pops the a and stays in this state because it remains possible that the input contains no more b’s
than a’s. On the other hand, if the stack is empty when a b is discovered, the PDA enters the
reject state (Rule (f)). If in state p the PDA discovers that it has more a’s than b’s by reading

r

p

Start

a, ε; a

ε, ε; ε

b, a; ε

ε, ε; ε

β, ε; ε

b, γ; ε

b, γ; ε

β, γ; ε

β, a; εb, a; ε

s

f

a, ε; ε

Figure 4.26 The state diagram for the PDA defined by the tables in Fig. 4.25.

c©John E Savage 4.9 Formal Languages 181

the blank tape letter β when the stack is not empty, it enters the accept state f (Rule (g)). If
the PDA encounters an a on its input tape when in state p, an a has been received after a b
and the input is rejected (Rule (i)). After the PDA enters either the accept or reject states, it
remains there (Rules (j) and (k)).

In Section 4.12 we show that the languages recognized by pushdown automata are exactly
the languages defined by the context-free languages described in the next section.

4.9 Formal Languages
Languages are introduced in Section 1.2.3. A language is a set of strings over a finite set Σ,
with |Σ| ≥ 2, called an alphabet. Σ∗ is the language of all strings over Σ including the empty
string ε, which has zero length. The empty string has the property that for an arbitrary string
w, εw = w = wε. Σ+ is the set Σ∗ without the empty string.

In this section we introduce grammars for languages, rules for rewriting strings through
the substitution of substrings. A grammar consists of alphabets T and N of terminal and
non-terminal symbols, respectively, a designated non-terminal start symbol, plus a set of rules
R for rewriting strings. Below we define four types of language in terms of their grammars:
the phrase-structure, context-sensitive, context-free, and regular grammars.

The role of grammars is best illustrated with an example for a small fragment of English.
Consider a grammar G whose non-terminals N contain a start symbol S denoting a generic
sentence and NP and VP denoting generic noun and verb phrases, respectively. In turn, assume
that N also contains non-terminals for adjectives and adverbs, namely AJ and AV. Thus, N =
{S, NP, VP, AJ, AV, N, V}. We allow the grammar to have the following words as terminals:
T = {bob, alice, duck , big , smiles , quacks , loudly}. Here bob, alice, and duck are nouns,
big is an adjective, smiles and quacks are verbs, and loudly is an adverb. In our fragment of
English a sentence consists of a noun phrase followed by a verb phrase, which we denote by the
rule S → NP VP. This and the other rules R of the grammar are shown below. They include
rules to map non-terminals to terminals, such as N → bob

S → NP VP

NP → N

NP → AJ N

VP → V

VP → V AV

N → bob

N → alice

N → duck

AJ → big

V → smiles

V → quacks

AV → loudly

With these rules the following strings (sentences) can be generated: bob smiles ; big duck
quacks loudly ; and alice quacks . The first two sentences are acceptable English sentences,
but the third is not if we interpret alice as a person. This example illustrates the need for rules
that limit the rewriting of non-terminals to an appropriate context of surrounding symbols.

Grammars for formal languages generalize these ideas. Grammars are used to interpret
programming languages. A language is translated and given meaning through a series of steps
the first of which is lexical analysis. In lexical analysis symbols such as a , l , i , c, e are grouped
into tokens such as alice, or some other string denoting alice. This task is typically done with
a finite-state machine. The second step in translation is parsing, a process in which a tokenized
string is associated with a series of derivations or applications of the rules of a grammar. For
example, big duck quacks loudly , can be produced by the following sequence of derivations:
S → NP VP; NP → AJ N; AJ → big ; N → duck ; VP → V AV; V → quacks ; AV → loudly .

182 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

In his exploration of models for natural language, Noam Chomsky introduced four lan-
guage types of decreasing expressibility, now called the Chomsky hierarchy, in which each
language is described by the type of grammar generating it. These languages serve as a basis for
the classification of programming languages. The four types are the phrase-structure languages,
the context-sensitive languages, the context-free languages, and the regular languages.

There is an exact correspondence between each of these types of languages and particular
machine architectures in the sense that for each language type T there is a machine architecture
A recognizing languages of type T and for each architecture A there is a type T such that all
languages recognized by A are of type T . The correspondence between language and architec-
ture is shown in the following table, which also lists the section or problem where the result is
established. Here the linear bounded automaton is a Turing machine in which the number
of tape cells that are used is linear in the length of the input string.

Level Language Type Machine Type Proof Location

0 phrase-structure Turing machine Section 5.4
1 context-sensitive linear bounded automaton Problem 4.36
2 context-free nondet. pushdown automaton Section 4.12
3 regular finite-state machine Section 4.10

We now give formal definitions of each of the grammar types under consideration.

4.9.1 Phrase-Structure Languages
In Section 5.4 we show that the phrase-structure grammars defined below are exactly the lan-
guages that can be recognized by Turing machines.

DEFINITION 4.9.1 A phrase-structure grammar G is a four-tuple G = (N , T ,R, S) where
N and T are disjoint alphabets of non-terminals and terminals, respectively. Let V = N ∪T .
The rules R form a finite subset of V +× V ∗ (denoted R ⊆ V +× V ∗) where for every rule
(a, b) ∈ R, a contains at least one non-terminal symbol. The symbol S ∈ N is the start symbol.

If (a, b) ∈ R we write a → b. If u ∈ V + and a is a contiguous substring of u, then u can
be replaced by the string v by substituting b for a. If this holds, we write u ⇒G v and call it an
immediate derivation. Extending this notation, if through a sequence of immediate derivations
(called a derivation) u ⇒G x1, x1 ⇒G x2, · · · , xn ⇒G v we can transform u to v, we
write u

∗⇒G v and say that v derives from u. If the rules R contain (a, a) for all a ∈ N+, the
relation ∗⇒G is called the transitive closure of the relation ⇒G and u

∗⇒G u for all u ∈ V ∗

containing at least one non-terminal symbol.
The language L(G) defined by the grammar G is the set of all terminal strings that can be

derived from the start symbol S; that is,

L(G) = {u ∈ T ∗ | S
∗⇒G u}

When the context is clear we drop the subscript G in ⇒G and
∗⇒G. These definitions are

best understood from an example. In all our examples we use letters in SMALL CAPS to denote
non-terminals and letters in italics to denote terminals, except that ε, the empty letter, may
also be a terminal.

c©John E Savage 4.9 Formal Languages 183

EXAMPLE 4.9.1 Consider the grammar G1 = (N1, T1,R1, S), where N1 = {S, B, C}, T1 =
{a, b, c} and R1 consists of the following rules:

a) S → aSBC

b) S → aBC

c) CB → BC

d) aB → ab

e) bB → bb

f) bC → bc

g) cC → cc

Clearly the string aaBCBC can be rewritten as aaBBCC using rule (c), that is, aaBCBC ⇒
aaBBCC. One application of (d), one of (e), one of (f), and one of (g) reduces it to the string
aabbcc. Since one application of (a) and one of (b) produces the string aaBBCC, it follows
that the language L(G1) contains aabbcc.

Similarly, two applications of (a) and one of (b) produce aaaBCBCBC, after which three
applications of (c) produce the string aaaBBBCCC. One application of (d) and two of (e)
produce aaabbbCCC, after which one application of (f) and two of (g) produces aaabbbccc.
In general, one can show that L(G1) = {anbncn |n ≥ 1}. (See Problem 4.38.)

4.9.2 Context-Sensitive Languages
The context-sensitive languages are exactly the languages accepted by linear bounded automata,
nondeterministic Turing machines whose tape heads visit a number of cells that is a constant
multiple of the length of an input string. (See Problem 4.36.)

DEFINITION 4.9.2 A context-sensitive grammar G is a phrase structure grammar G = (N ,
T , R, S) in which each rule (a, b) ∈ R satisfies the condition that b has no fewer characters
than does a, namely, |a| ≤ |b|. The languages defined by context-sensitive grammars are called
context-sensitive languages (CSL).

Each rule of a context-sensitive grammar maps a string to one that is no shorter. Since the
left-hand side of a rule may have more than one character, it may make replacements based
on the context in which a non-terminal is found. Examples of context-sensitive languages are
given in Problems 4.38 and 4.39.

4.9.3 Context-Free Languages
As shown in Section 4.12, the context-free languages are exactly the languages accepted by
pushdown automata.

DEFINITION 4.9.3 A context-free grammar G = (N , T ,R, S) is a phrase structure grammar
in which each rule in R ⊆ N ×V ∗ has a single non-terminal on the left-hand side. The languages
defined by context-free grammars are called context-free languages (CFL).

Each rule of a context-free grammar maps a non-terminal to a string over V ∗ without
regard to the context in which the non-terminal is found because the left-hand side of each
rule consists of a single non-terminal.

EXAMPLE 4.9.2 Let N2 = {S, A}, T2 = {ε, a, b}, and R2 = {S → aSb, S → ε}. Then the
grammar G2 = (N2, T2,R2, S) is context-free and generates the language L(G2) = {anbn |n ≥
0}. To see this, let the rule S → aSb be applied k times to produce the string akSbk. A final
application of the last rule establishes the result.

184 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

EXAMPLE 4.9.3 Consider the grammar G3 with the following rules and the implied terminal and
non-terminal alphabets:

a) S → cMcNc

b) M → aMa

c) M → c

d) N → bNb

e) N → c

G3 is context-free and generates the language L(G3) = {cancancbmcbmc |n, m ≥ 0}, as is
easily shown.

Context-free languages capture important aspects of many programming languages. As
a consequence, the parsing of context-free languages is an important step in the parsing of
programming languages. This topic is discussed in Section 4.11.

4.9.4 Regular Languages
DEFINITION 4.9.4 A regular grammar G is a context-free grammar G = (N , T ,R, S), where
the right-hand side is either a terminal or a terminal followed by a non-terminal. That is, its rules
are of the form A → a or A → bC. The languages defined by regular grammars are called regular
languages.

Some authors define a regular grammar to be one whose rules are of the form A → a
or A → b1b2 · · · bkC. It is straightforward to show that any language generated by such a
grammar can be generated by a grammar of the type defined above.

The following grammar is regular.

EXAMPLE 4.9.4 Consider the grammar G4 = (N4, T4,R4, S) where N4 = {S, A, B}, T4 =
{0,1} and R4 consists of the rules given below.

a) S → 0A

b) S → 0

c) A → 1B

d) B → 0A

e) B → 0

It is straightforward to see that the rules a) S → 0, b) S → 01B, c) B → 0, and d) B → 01B

generate the same strings as the rules given above. Thus, the language G4 contains the strings
0, 010, 01010, 0101010, . . ., that is, strings of the form (01)k0 for k ≥ 0. Consequently
L(G4) = (01)∗0. A formal proof of this result is left to the reader. (See Problem 4.44.)

4.10 Regular Language Recognition
As explained in Section 4.1, a deterministic finite-state machine (DFSM) M is a five-tuple
M = (Σ, Q, δ, s, F), where Σ is the input alphabet, Q is the set of states, δ : Q× Σ �→ Q is
the next-state function, s is the initial state, and F is the set of final states. A nondeterministic
FSM (NFSM) is similarly defined except that δ is a next-set function δ : Q × Σ �→ 2Q. In
other words, in an NFSM there may be more than one next state for a given state and input.
In Section 4.2 we showed that the languages recognized by these two machine types are the
same.

We now show that the languages L(G) and L(G) ∪ {ε} defined by regular grammars G
are exactly those recognized by FSMs.

c©John E Savage 4.10 Regular Language Recognition 185

THEOREM 4.10.1 The languages L(G) and L(G) ∪ {ε} generated by regular grammars G and
recognized by finite-state machines are the same.

Proof Given a regular grammar G, we construct a corresponding NFSM M that accepts
exactly the strings generated by G. Similarly, given a DFSM M we construct a regular
grammar G that generates the strings recognized by M .

From a regular grammar G = (N , T ,R, S) with rules R of the form A → a and
A → bC we create a grammar G′ generating the same language by replacing a rule A → a
with rules A → aB and B → ε where B is a new non-terminal unique to A → a. Thus,
every derivation S

∗⇒G w, w ∈ T ∗, now corresponds to a derivation S
∗⇒G′ wB where

B → ε. Hence, the strings generated by G and G′ are the same.
Now construct an NFSM MG′ whose states correspond to the non-terminals of this new

regular grammar and whose input alphabet is its set of terminals. Let the start state of MG′

be labeled S. Let there be a transition from state A to state B on input a if there is a rule
A → aB in G′. Let a state B be a final state if there is a rule of the form B → ε in G′.
Clearly, every derivation of a string w in L(G′) corresponds to a path in M that begins in
the start state and ends on a final state. Hence, w is accepted by MG′ . On the other hand,
if a string w is accepted by MG′ , given the one-to-one correspondence between edges and
rules, there is a derivation of w from S in G′. Thus, the strings generated by G and the
strings accepted by MG′ are the same.

Now assume we are given a DFSM M that accepts a language LM . Create a grammar
GM whose non-terminals are the states of M and whose start symbol is the start state of M .
GM has a rule of the form q1 → aq2 if M makes a transition from state q1 to q2 on input
a. If state q is a final state of M , add the rule q → ε. If a string is accepted by M , that is, it
causes M to move to a final state, then GM generates the same string. Since GM generates
only strings of this kind, the language accepted by M is is L(GM). Now convert GM to
a regular grammar G̃M by replacing each pair of rules q1 → aq2, q2 → ε by the pair
q1 → aq2, q1 → a, deleting all rules q → ε corresponding to unreachable final states q,
and deleting the rule S → ε if ε ∈ LM . Then, LM − {ε} = L(GM)− {ε} = L(G̃M).

S B

00

A

0 0

Start 1

C D

Figure 4.27 A nondeterministic FSM that accepts a language generated by a regular language in
which all rules are of the form A → bC or A → ε. A state is associated with each non-terminal, the
start symbol S is associated with the start state, and final states are associated with non-terminals
A such that A → ε. This particular NFSM accepts the language L(G4) of Example 4.9.4.

186 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

A simple example illustrates the construction of an NFSM from a regular grammar. Con-
sider the grammar G4 of Example 4.9.4. A new grammar G′

4 is constructed with the following
rules: a) S → 0A, b) S → 0C, c) C → ε, d) A → 1B, e) B → 0A, f) B → 0D, and g) D → ε.
Figure 4.27 (page 185) shows an NFSM that accepts the language generated by this gram-
mar. A DFSM recognizing the same language can be obtained by invoking the construction of
Theorem 4.2.1.

4.11 Parsing Context-Free Languages
Parsing is the process of deducing those rules of a grammar G (a derivation) that generates a
terminal string w. The first rule must have the start symbol S on the left-hand side. In this
section we give a brief introduction to the parsing of context-free languages, a topic central
to the parsing of programming languages. The reader is referred to a textbook on compilers
for more detail on this subject. (See, for example, [11] and [99].) The concepts of Boolean
matrix multiplication and transitive closure are used in this section, topics that are covered in
Chapter 6.

Generally a string w has many derivations. This is illustrated by the context-free grammar
G3 defined in Example 4.9.3 and described below.

EXAMPLE 4.11.1 G3 = (N3, T3,R3, S), where N3 = {S, M, N}, T3 = {A, B, C} and R3

consists of the rules below:

a) S → cMNc

b) M → aMa

c) M → c

d) N → bNb

e) N → c

The string caacaabcbc can be derived by applying rules (a), (b) twice, (c), (d) and (e) to
produce the following derivation:

S ⇒ cMNc ⇒ caMaNc ⇒ ca2Ma2Nc

⇒ ca2ca2Nc ⇒ ca2ca2bNbc ⇒ ca2ca2bcbc
(4.2)

The same string can be obtained by applying the rules in the following order: (a), (d), (e),
(b) twice, and (c). Both derivations are described by the parse tree of Fig. 4.28. In this tree
each instance of a non-terminal is rewritten using one of the rules of the grammar. The order
of the descendants of a non-terminal vertex in the parse tree is the order of the corresponding
symbols in the string obtained by replacing this non-terminal. The string ca2ca2bcbc, the
yield of this parse tree, is the terminal string obtained by visiting the leaves of this tree in a
left-to-right order. The height of the parse tree is the number of edges on the longest path
(having the most edges) from the root (associated with the start symbol) to a terminal symbol.
A parser for a language L(G) is a program or machine that examines a string and produces a
derivation of the string if it is in the language and an error message if not.

Because every string generated by a context-free grammar has a derivation, it has a cor-
responding parse tree. Given a derivation, it is straightforward to convert it to a leftmost
derivation, a derivation in which the leftmost remaining non-terminal is expanded first. (A
rightmost derivation is a derivation in which the rightmost remaining non-terminal is ex-
panded first.) Such a derivation can be obtained from the parse tree by deleting all vertices

c©John E Savage 4.11 Parsing Context-Free Languages 187

S

bb N

c

c

a M a

a M a

c cM N

Figure 4.28 A parse tree for the grammar G3.

associated with terminals and then traversing the remaining vertices in a depth-first manner
(visit the first descendant of a vertex before visiting its siblings), assuming that descendants of
a vertex are ordered from left to right. When a vertex is visited, apply the rule associated with
that vertex in the tree. The derivation given in (4.2) is leftmost.

Not only can some strings in a context-free language have multiple derivations, but in
some languages they have multiple parse trees. Languages containing strings with more than
one parse tree are said to be ambiguous languages. Otherwise languages are non-ambiguous.

Given a string that is believed to be generated by a grammar, a compiler attempts to parse
the string after first scanning the input to identify letters. If the attempt fails, an error message
is produced. Given a string generated by a context-free grammar, can we guarantee that we can
always find a derivation or parse tree for that string or determine that none exists? The answer
is yes, as we now show.

To demonstrate that every CFL can be parsed, it is convenient first to convert the grammar
for such a language to Chomsky normal form.

DEFINITION 4.11.1 A context-free grammar G is in Chomsky normal form if every rule is of
the form A → BC or A → u, u ∈ T except if ε ∈ L(G), in which case S → ε is also in the
grammar.

We now give a procedure to convert an arbitrary context-free grammar to Chomsky normal
form.

THEOREM 4.11.1 Every context-free language can be generated by a grammar in Chomsky normal
form.

Proof Let L = L(G) where G is a context-free grammar. We construct a context-free gram-
mar G′ that is in Chomsky normal form. The process described in this proof is illustrated
by the example that follows.

Initially G′ is identical with G. We begin by eliminating all ε-rules of the form B → ε.
except for S → ε if ε ∈ L(G). If either B → ε or B ⇒ ε, for every rule that has B on the
right-hand side, such as A → αBβBγ, α, β, γ ∈ (V −{B})∗ (V = N ∪T), we add a rule
for each possible replacement of B by ε; for example, we add A → αβBγ, A → αBβγ,

188 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

and A → αβγ. Clearly the strings generated by the new rules are the same as are generated
by the old rules.

Let A → w1 · · ·wi · · ·wk for some k ≥ 1 be a rule in G′ where wi ∈ V . We replace
this rule with the new rules A → Z1Z2 · · ·Zk, and Zi → wi for 1 ≤ i ≤ k. Here Zi is a
new non-terminal. Clearly, the new version of G′ generates the same language as does G.

With these changes the rules of G′ consist of rules either of the form A → u, u ∈ T
(a single terminal) or A → w, w ∈ N+ (a string of at least one non-terminal). There are
two cases of w ∈ N+ to consider, a) |w| = 1 and b) |w| ≥ 2. We begin by eliminating all
rules of the first kind, that is of the form A → B.

Rules of the form A → B can be cascaded to form rules of the type C
∗⇒ D. The number

of distinct derivations of this kind is at most |N |! because if any derivation contains two
instances of a non-terminal, the derivation can be shortened. Thus, we need only consider
derivations in which each non-terminal occurs at most once. For each such pair C, D with
a relation of this kind, add the rule C → D to G′. If C → D and D → w for |w| ≥ 2 or
w = u ∈ T , add C → w to the set of rules. After adding all such rules, delete all rules of
the form A → B. By construction this new set of rules generates the same language as the
original set of rules but eliminates all rules of the first kind.

We now replace rules of the type A → A1A2 · · · Ak, k ≥ 3. Introduce k − 2 new
non-terminals N1, N2, · · · , Nk−2 peculiar to this rule and replace the rule with the following
rules: A → A1N1, N1 → A2N2, · · · , Nk−3 → Ak−2Nk−2, Nk−2 → Ak−1Ak. Clearly, the
new grammar generates the same language as the original grammar and is in the Chomsky
normal form.

EXAMPLE 4.11.2 Let G5 = (N5, T5,R5, E) (with start symbol E) be the grammar with N5 =
{E, T, F}, T5 = {a, b, +, ∗, (,)}, and R5 consisting of the rules given below:

a) E → E + T

b) E → T

c) T → T ∗ F

d) T → F

e) F → (E)
f) F → a

g) F → b

Here E, T, and F denote expressions, terms, and factors. It is straightforward to show that E
∗⇒ (a∗

b + a) ∗ (a + b) and E
∗⇒ a ∗ b + a are two possible derivations.

We convert this grammar to the Chomsky normal form using the method described in the
proof of Theorem 4.11.1. Since R contains no ε-rules, we do not need the rule E → ε, nor
do we need to eliminate ε-rules.

First we convert rules of the form A → w so that each entry in w is a non-terminal. To
do this we introduce the non-terminals (,), +, and ∗ and the rules below. Here we use a
boldface font to distinguish between the non-terminal and terminal equivalents of these four
mathematical symbols. Since we are adding to the original set of rules, we number them
consecutively with the original rules.

h) (→ (
i)) →)

j) + → +
k) ∗ → ∗

Next we add rules of the form C → D for all chains of single non-terminals such that
C

∗⇒ D. Since by inspection E
∗⇒ F, we add the rule E → F. For every rule of the form A → B

for which B → w, we add the rule A → w. We then delete all rules of the form A → B. These

c©John E Savage 4.11 Parsing Context-Free Languages 189

changes cause the rules of G′ to become the following. (Below we use a different numbering
scheme because all these rules replace rules (a) through (k).)

1) E → E+T

2) E → T∗F

3) E → (E)

4) E → a

5) E → b

6) T → T∗F

7) T → (E)

8) T → a

9) T → b

10) F → (E)

11) F → a

12) F → b

13) (→ (
14)) →)
15) + → +
16) ∗ → ∗

We now reduce the number of non-terminals on the right-hand side of each rule to two
through the addition of new non-terminals. The result is shown in Example 4.11.3 below,
where we have added the non-terminals A, B, C, D, G, and H.

EXAMPLE 4.11.3 Let G6 = (N6, T6,R6, E) (with start symbol E) be the grammar with N6 =
{A, B, C, D, E, F, G, H, T, +, ∗, (,)}, T6 = {a, b, +, ∗, (,)}, and R6 consisting of the rules given
below.

(A) E → EA

(B) A → +T

(C) E → TB

(D) B → ∗F

(E) E → (C

(F) C → E)

(G) E → a

(H) E → b

(I) T → TD

(J) D → ∗F

(K) T → (G

(L) G → E)

(M) T → a

(N) T → b

(P) F → (H

(Q) H → E)

(R) F → a

(S) F → b

(T) (→ (
(U)) →)
(V) + → +
(W) ∗ → ∗

The new grammar clearly generates the same language as does the original grammar, but it
is in Chomsky normal form. It has 22 rules, 13 non-terminals, and six terminals whereas the
original grammar had seven rules, three non-terminals, and six terminals.

We now use the Chomsky normal form to show that for every CFL there is a polynomial-
time algorithm that tests for membership of a string in the language. This algorithm can be
practical for some languages.

THEOREM 4.11.2 Given a context-free grammar G = (N , T ,R, S), an O(n3|N |2)-step algo-
rithm exists to determine whether or not a string w ∈ T ∗ of length n is in L(G) and to construct
a parse tree for it if it exists.

Proof If G is not in Chomsky normal form, convert it to this form. Given a string w =
(w1, w2, . . . , wn), the goal is to determine whether or not S

∗⇒ w. Let ∅ denote the empty
set. The approach taken is to construct an (n + 1) × (n + 1) set matrix S whose entries
are sets of non-terminals of G with the property that the i, j entry, ai,j , is the set of non-
terminals C such that C

∗⇒ wi · · · wj−1. Thus, the string w is in L(G) if S ∈ a1,n+1, since
S generates the entire string w. Clearly, ai,j = ∅ for j ≤ i. We illustrate this construction
with the example following this proof.

We show by induction that set matrix S is the transitive closure (denoted B+) of the
(n + 1) × (n + 1) set matrix B whose i, j entry bi,j = ∅ for j �= i + 1 when 1 ≤ i ≤ n

190 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

and bi,i+1 is defined as follows:

bi,i+1 = {A | (A → wi) in R where wi ∈ T }

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∅ b1,2 ∅ . . . ∅
∅ ∅ b2,3 . . . ∅
...

...
...

. . .
...

∅ ∅ ∅ . . . bn,n+1

∅ ∅ ∅ . . . ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Thus, the entry bi,i+1 is the set of non-terminals that generate the ith terminal symbol wi

of w in one step. The value of each entry in the matrix B is the empty set except for the
entries bi,i+1 for 1 ≤ i ≤ n, n = |w|.

We extend the concept of matrix multiplication (see Chapter 6) to the product of two
set matrices. Doing this requires a new definition for the product of two sets (entries in the
matrix) as well as for the addition of two sets. The product S1 · S2 of sets of nonterminals
S1 and S2 is defined as:

S1 · S2 = {A | there exists B ∈ S1 and C ∈ S2 such that (A → BC) ∈ R}

Thus, S1 · S2 is the set of non-terminals for which there is a rule in R of the form A → BC

where B ∈ S1 and C ∈ S2. The sum of two sets is their union.
The i, j entry of the product C = D × E of two m × m matrices D and E, each

containing sets of non-terminals, is defined below in terms of the product and union of sets:

ci,j =
m⋃

k=1

di,k · ek,j

We also define the transitive closure C+ of an m ×m matrix C as follows:

C+ = C(1) ∪ C(2) ∪ C(3) ∪ · · ·C(m)

where

C(s) =
s−1⋃
r=1

C(r) × C(s−r) and C(1) = C

By the definition of the matrix product, the entry b
(2)
i,j of the matrix B(2) is ∅ if j �= i+2

and otherwise is the set of non-terminals A that produce wiwi+1 through a derivation tree
of depth 2; that is, there are rules such that A → BC, B → wi, and C → wi+1, which
implies that A

∗⇒ wiwi+1.
Similarly, it follows that both B(1)B(2) and B(2)B(1) are ∅ in all positions except i, i+3

for 1 ≤ i ≤ n − 2. The entry in position i, i + 3 of B(3) = B(1)B(2) ⋃B(2)B(1)

contains the set of non-terminals A that produce wiwi+1wi+2 through a derivation tree of
depth 3; that is, A → BC and either B produces wiwi+1 through a derivation of depth 2
(B

∗⇒ wiwi+1) and C produces wi+2 in one step (C → wi+2) or B produces wi in one step
(B → wi) and C produces wi+1wi+2 through a derivation of depth 2 (C

∗⇒ wi+1wi+2).

c©John E Savage 4.11 Parsing Context-Free Languages 191

Finally, the only entry in B(n) that is not ∅ is the 1, n + 1 entry and it contains the set
of non-terminals, if any, that generate w. If S is in this set, w is in L(G).

The transitive closure S = B+ involves
∑n

r=1 r = (n+1)n/2 products of set matrices.
The product of two (n + 1) × (n + 1) set matrices of the type considered here involves at
most n products of sets. Thus, at most O(n3) products of sets is needed to form S. In turn,
a product of two sets, S1 · S2, can be formed with O(q2) operations, where q = |N | is the
number of non-terminals. It suffices to compare each pair of entries, one from S1 and the
other from S2, through a table to determine if they form the right-hand side of a rule.

As the matrices are being constructed, if a pair of non-terminals is discovered that is the
right-hand side of a rule, that is, A → BC, then a link can be made from the entry A in the
product matrix to the entries B and C. From the entry S in a1,n+1, if it exists, links can be
followed to generate a parse tree for the input string.

The procedure described in this proof can be extended to show that membership in an
arbitrary CFL can be determined in time O(M(n)), where M(n) is the number of operations
to multiply two n × n matrices [342]. This is the fastest known general algorithm for this
problem when the grammar is part of the input. For some CFLs, faster algorithms are known
that are based on the use of the deterministic pushdown automaton. For fixed grammars
membership algorithms often run in O(n) steps. The reader is referred to books on compilers
for such results. The procedure of the proof is illustrated by the following example.

EXAMPLE 4.11.4 Consider the grammar G6 of Example 4.11.3. We show how the five-character
string a ∗ b + a in L(G6) can be parsed. We construct the 6× 6 matrices B(1), B(2), B(3), B(4),
B(5), as shown below. Since B(5) contains E in the 1, n + 1 position, a ∗ b + a is in the language.
Furthermore, we can follow links between non-terminals (not shown) to demonstrate that this string
has the parse tree shown in Fig. 4.29. The matrix B(4) is not shown because each of its entries is ∅.

B(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ {E,F,T} ∅ ∅ ∅ ∅
∅ ∅ {∗} ∅ ∅ ∅
∅ ∅ ∅ {E,F,T} ∅ ∅
∅ ∅ ∅ ∅ {+} ∅
∅ ∅ ∅ ∅ ∅ {E,F,T}
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ {B} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ {A}
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ ∅ ∅ {E} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ {E}
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

192 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

∗ b

E

T+BT

∗a F + a

E A

Figure 4.29 The parse tree for the string a ∗ b + a in the language L(G6).

B(5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ ∅ ∅ ∅ ∅ {E}
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.12 CFL Acceptance with Pushdown Automata*
While it is now clear that an algorithm exists to parse every context-free language, it is useful
to show that there is a class of automata that accepts exactly the context-free languages. These
are the nondeterministic pushdown automata (PDA) described in Section 4.8.

We now establish the principal results of this section, namely, that the context-free lan-
guages are accepted by PDAs and that the languages accepted by PDAs are context-free. We
begin with the first result.

THEOREM 4.12.1 For each context-free grammar G there is a PDA M that accepts L(G). That
is, L(M) = L(G).

Proof Before beginning this proof, we extend the definition of a PDA to allow it to push
strings onto the stack instead of just symbols. That is, we extend the stack alphabet Γ to
include a small set of strings. When a string such as abcd is pushed, a is pushed before b, b
before c, etc. This does not increase the power of the PDA, because for each string we can
add unique states that M enters after pushing each symbol except the last. With the pushing
of the last symbol M enters the successor state specified in the transition being executed.

Let G = (N , T ,R, S) be a context-free grammar. We construct a PDA M = (Σ, Γ, Q,
Δ, s, F), where Σ = T , Γ = N ∪ T ∪ {γ} (γ is the blank stack symbol), Q = {s, p, f},
F = {f}, and Δ consists of transitions of the types shown below. Here ∀ denotes “for all”
and ∀(A �→ w) ∈ R means for all transitions in R.

c©John E Savage 4.12 CFL Acceptance with Pushdown Automata* 193

a) (s, ε, ε; p, S)
b) (p, a, a; p, ε) ∀a ∈ T
c) (p, ε, A; p, v) ∀(A �→ v) ∈ R
d) (p, ε, γ; f , ε)

Let w be placed left-adjusted on the input tape of M . Since w is generated by G, it has
a leftmost derivation. (Consider for example that given in (4.2) on page 186.) The PDA
begins by pushing the start symbol S onto the stack and entering state p (Rule (a)). From
this point on the PDA simulates a leftmost derivation of the string w placed initially on its
tape. (See the example that follows this proof.) M either matches a terminal of G on the top
of the stack with one under the tape head (Rule (b)) or it replaces a non-terminal on the top
of the stack with a rule of R by pushing the right-hand side of the rule onto the stack (Rule
(c)). Finally, when the stack is empty, M can choose to enter the final state f and accept w.
It follows that any string that can be generated by G can also be accepted by M and vice
versa.

The leftmost derivation of the string caacaabcbc by the grammar G3 of Example 4.11.1
is shown in (4.2). The PDA M of the above proof can simulate this derivation, as we show.
With the notation T : . . . and S : . . . (shown below before the computation begins) we
denote the contents of the tape and stack at a point in time at which the underlined symbols
are those under the tape head and at the top of the stack, respectively. We ignore the blank
tape and stack symbols unless they are the ones underlined.

T : caacaabcbc S : γ

After the first step taken by M , the tape and stack configurations are:

T : caacaabcbc S : S

From this point on M simulates a derivation by G3. Consulting (4.2), we see that the rule
S → cMNc is the first to be applied. M simulates this with the transition (p, ε, S; p, cMNc),
which causes S to be popped from the stack and cMNc to be pushed onto it without advancing
the tape head. The resulting configurations are shown below:

T : caacaabcbc S : cMNc

Next the transition (p, c, c; p, ε) is applied to pop one item from the stack, exposing the non-
terminal M and advancing the tape head to give the following configurations:

T : caacaabcbc S : MNc

The subsequent rules, in order, are the following:

1) M → aMa

2) M → aMa

3) M → c

4) N → bNb

5) N → c

The corresponding transitions of the PDA are shown in Fig. 4.30.
We now show that the language accepted by a PDA can be generated by a context-free

grammar.

194 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

T : caacaabcbc S : aMaNc

T : caacaabcbc S : MaNc

T : caacaabcbc S : aMaaNc

T : caacaabcbc S : MaaNc

T : caacaabcbc S : caaNc

T : caacaabcbc S : aaNc

T : caacaabcbc S : aNc

T : caacaabcbc S : Nc

T : caacaabcbc S : bNbc

T : caacaabcbc S : Nbc

T : caacaabcbc S : cbc

T : caacaabcbc S : bc

T : caacaabcbc S : c

T : caacaabcbcβ S : γ

Figure 4.30 PDA transitions corresponding to the leftmost derivation of the string caacaabcbc
in the grammar G3 of Example 4.11.1..

THEOREM 4.12.2 For each PDA M there is a context-free grammar G that generates the language
L(M) accepted by M . That is, L(G) = L(M).

Proof It is convenient to assume that when the PDA M accepts a string it does so with
an empty stack. If M is not of this type, we can design a PDA M ′ accepting the same
language that does meet this condition. The states of M ′ consist of the states of M plus
three additional states, a new initial state s′, a cleanup state k, and a new final state f ′. Its
tape symbols are identical to those of M . Its stack symbols consist of those of M plus one
new symbol κ. In its initial state M ′ pushes κ onto the stack without reading a tape symbol
and enters state s, which was the initial state of M . It then operates as M (it has the same
transitions) until entering a final state of M , upon which it enters the cleanup state k. In
this state it pops the stack until it finds the symbol κ, at which time it enters its final state
f ′. Clearly, M ′ accepts the same language as M but leaves its stack empty.

We describe a context-free grammar G = (N , T ,R, S) with the property that L(G) =
L(M). The non-terminals of G consist of S and the triples < p, y, q > defined below
denoting goals:

< p, y, q >∈ N where N ⊂ Q× (Γ ∪ {ε})× Q

The meaning of < p, y, q > is that M moves from state p to state q in a series of steps
during which its only effect on the stack is to pop y. The triple < p, ε, q > denotes the goal
of moving from state p to state q leaving the stack in its original condition. Since M starts
with an empty stack in state s with a string w on its tape and ends in a final state f with
its stack empty, the non-terminal < s, ε, f >, f ∈ F , denotes the goal of M moving from
state s to a final state f on input w, and leaving the stack in its original state.

c©John E Savage 4.12 CFL Acceptance with Pushdown Automata* 195

The rules of G, which represent goal refinement, are described by the following con-
ditions. Each condition specifies a family of rules for a context-free grammar G. Each
rule either replaces one non-terminal with another, replaces a non-terminal with the empty
string, or rewrites a non-terminal with a terminal or empty string followed by one or two
non-terminals. The result of applying a sequence of rules is a string of terminals in the
language L(G). Below we show that L(G) = L(M).

1) S → < s, ε, f > ∀f ∈ F

2) < p, ε, p > → ε ∀p ∈ Q

3) < p, y, r > → x < q, z, r > ∀r ∈ Q and ∀(p, x, y; q, z) ∈ Δ,

where y �= ε

4) < p, u, r > → x < q, z, t >< t, u, r > ∀r, t ∈ Q, ∀(p, x, ε; q, z) ∈ Δ,

and ∀u ∈ Γ ∪ {ε}

Condition (1) specifies rules that map the start symbol of G onto the goal non-terminal
symbol < s, ε, f > for each final state f . These rules insure that the start symbol of G is
rewritten as the goal of moving from the initial state of M to a final state, leaving the stack
in its original condition.

Condition (2) specifies rules that map non-terminals < p, ε, p > onto the empty string.
Thus, all goals of moving from a state to itself leaving the stack in its original condition can
be ignored. In other words, no input is needed to take M from state p back to itself leaving
the stack unchanged.

Condition (3) specifies rules stating that for all r ∈ Q and (p, x, y; q, z), y �= ε, that are
transitions of M , a goal < p, y, r > to move from state p to state r while removing y from
the stack can be accomplished by reading tape symbol x, replacing the top stack symbol
y with z, and then realizing the goal < q, z, r > of moving from state q to state r while
removing z from the stack.

Condition (4) specifies rules stating that for all r, t ∈ Q and (p, x, ε; q, z) that are
transitions of M , the goal < p, u, r > of moving from state p to state r while popping u
for arbitrary stack symbol u can be achieved by reading input x and pushing z on top of u
and then realizing the goal < q, z, t > of moving from q to some state t while popping z
followed by the goal < t, u, r > of moving from t to r while popping u.

We now show that any string accepted by M can be generated by G and any string
generated by G can be accepted by M . It follows that L(M) = L(G). Instead of showing
this directly, we establish a more general result.

CLAIM: For all r, t ∈ Q and u ∈ Γ ∪ {ε}, < r, u, t >
∗⇒G w if and only if the PDA M

can move from state r to state t while reading w and popping u from the stack.

The theorem follows from the claim because < s, ε, f >
∗⇒G w if and only if the PDA

M can move from initial state s to a final state f while reading w and leaving the stack
empty, that is, if and only if M accepts w.

We first establish the “if ” portion of the claim, namely, if for r, t ∈ Q and u ∈ Γ ∪ {ε}
the PDA M can move from r to t while reading w and popping u from the stack, then
< r, u, t >

∗⇒G w. The proof is by induction on the number of steps taken by M . If no

196 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

step is taken (basis for induction), r = t, nothing is popped and the string ε is read by M .
Since the grammar G contains the rule < r, ε, r >→ ε, the basis is established.

Suppose that the “if ” portion of the claim is true for k or fewer steps (inductive hypoth-
esis). We show that it is true for k + 1 steps (induction step). If the PDA M can move
from r to t in k + 1 steps while reading w = xv and removing u from the stack, then on
its first step it must execute a transition (r, x, y; q, z), q ∈ Q, z ∈ Γ ∪ {ε}, for x ∈ Σ with
either y = u if u �= ε or y = ε. In the first case, M enters state q, pops u, and pushes
z. M subsequently pops z as it reads v and moves to state t in k steps. It follows from the
inductive hypothesis that < q, z, t >

∗⇒G v. Since y �= ε, a rule of type (3) applies, that is,
< r, y, t >→ x < q, z, t >. It follows that < r, y, t >

∗⇒G w, the desired conclusion.

In the second case y = ε and M makes the transition (r, x, ε; q, z) by moving from r to
t and pushing z while reading x. To pop u, which must have been at the top of the stack, M
must first pop z and then pop u. Let it pop z as it moves from q to some intermediate state
t′ while reading a first portion v1 of the input word v. Let it pop u as it moves from t′ to t
while reading a second portion v2 of the input word v. Here v1v2 = v. Since the move from
q to t′ and from t′ to t each involves at most k steps, it follows that the goals < q, z, t′ >

and < t′, u, r > satisfy < q, z, t′ >
∗⇒G v1 and < t′, u, r >

∗⇒G v2. Because M ’s first
transition meets condition (4), there is a rule < r, u, t >→ x < q, z, t′ >< t′, u, r >.
Combining these derivations yields the desired conclusion.

Now we establish the “only if ” part of the claim, namely, if for all r, t ∈ Q and u ∈
Γ ∪ {ε}, < r, u, t >

∗⇒G w, then the PDA M can move from state r to state t while
reading w and removing u from the stack. Again the proof is by induction, this time on
the number of derivation steps. If there is a single derivation step (basis for induction),
it must be of the type stated in condition (2), namely < p, ε, p >→ ε. Since M can
move from state p to p without reading the tape or pushing data onto its stack, the basis is
established.

Suppose that the “only if ” portion of the claim is true for k or fewer derivation steps
(inductive hypothesis). We show that it is true for k + 1 steps (induction step). That is,
if < r, u, t >

∗⇒G w in k + 1 steps, then we show that M can move from r to t while
reading w and popping u from the stack. We can assume that the first derivation step is of
type (3) or (4) because if it is of type (2), the derivation can be shortened and the result fol-
lows from the inductive hypothesis. If the first derivation is of type (3), namely, of the form
< r, u, t >→ x < q, z, t >, then by the inductive hypothesis, M can execute (r, x, u; q, z),
u �= ε, that is, read x, pop u, push z, and enter state q. Since < r, u, t >

∗⇒G w, where
w = xv, it follows that < q, z, t >

∗⇒G v. Again by the inductive hypothesis M can move
from q to t while reading v and popping z. Combining these results, we have the desired
conclusion.

If the first derivation is of type (4), namely, < r, u, t >→ x < q, z, t′ >< t′, u, t >,
then the two non-terminals < q, z, t′ > and < t′, u, t > must expand to substrings v1

and v2, respectively, of v where w = xv1v2 = xv. That is, < q, z, t′ >
∗⇒G v1 and

< t′, u, t >
∗⇒G v1. By the inductive hypothesis, M can move from q to t′ while read-

ing v1 and popping z and it can also move from t′ to t while reading v2 and popping
u. Thus, M can move from r to t while reading w and popping u, which is the desired
conclusion.

c©John E Savage 4.13 Properties of Context-Free Languages 197

4.13 Properties of Context-Free Languages
In this section we derive properties of context-free languages. We begin by establishing a
pumping lemma that demonstrates that every CFL has a certain periodicity property. This
property, together with other properties concerning the closure of the class of CFLs under the
operations of concatenation, union and intersection, is used to show that the class is not closed
under complementation and intersection.

4.13.1 CFL Pumping Lemma
The pumping lemma for regular languages established in Section 4.5 showed that if a regular
language contains an infinite number of strings, then it must have strings of a particular form.
This lemma was used to show that some languages are not regular. We establish a similar result
for context-free languages.

LEMMA 4.13.1 Let G = (N , T ,R, S) be a context-free grammar in Chomsky normal form
with m non-terminals. Then, if w ∈ L(G) and |w| ≥ 2m−1 + 1, there are strings r, s, t,
u, and v with w = rstuv such that |su| ≥ 1 and |stu| ≤ 2m and for all integers n ≥ 0,
S

∗⇒G rsntunv ∈ L(G).

Proof Since each production is of the form A → BC or A → a, a subtree of a parse tree of
height h has a yield (number of leaves) of at most 2h−1. To see this, observe that each rule
that generates a leaf is of the form A → a. Thus, the yield is the number of leaves in a binary
tree of height h− 1, which is at most 2h−1.

Let K = 2m−1 + 1. If there is a string w in L of length K or greater, its parse tree
has height greater than m. Thus, a longest path P in such a tree (see Fig. 4.31(a)) has more

x z

P

S

(a)

a

s

(b)

A

u

b

y

t

D

D A
SP

Figure 4.31 L(G) is generated by a grammar G in Chomsky normal form with m non-
terminals. (a) Each w ∈ L(G) with |w| ≥ 2m−1 + 1 has a parse tree with a longest path P
containing at least m + 1 non-terminals. (b) SP , the portion of P containing the last m + 1
non-terminals on P , has a non-terminal A that is repeated. The derivation A → sAu can be
deleted or repeated to generate new strings in L(G).

198 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

than m non-terminals on it. Consider the subpath SP of P containing the last m + 1
non-terminals of P . Let D be the first non-terminal on SP and let the yield of its parse tree
be y. It follows that |y| ≤ 2m. Thus, the yield of the full parse tree, w, can be written as
w = xyz for strings x, y, and z in T ∗.

By the pigeonhole principle stated in Section 4.5, some non-terminal is repeated on SP .
Let A be such a non-terminal. Consider the first and second time that A appears on SP .
(See Fig. 4.31(b).) Repeat all the rules of the grammar G that produced the string y except
for the rule corresponding to the first instance of A on SP and all those rules that depend
on it. It follows that D

∗⇒ aAb where a and b are in T ∗. Similarly, apply all the rules to
the derivation beginning with the first instance of A on P up to but not including the rules
beginning with the second instance of A. It follows that A

∗⇒ sAu, where s and u are in T ∗

and at least one is not ε since no rules of the form A → B are in G. Finally, apply the rules
starting with the second instance of A on P . Let A

∗⇒ t be the yield of this set of rules. Since
A

∗⇒ sAu and A
∗⇒ t, it follows that L also contains xatbz. L also contains xasntunbz

for n ≥ 1 because A
∗⇒ sAu can be applied n times after A

∗⇒ sAu and before A
∗⇒ t. Now

let r = xa and v = bz.

We use this lemma to show the existence of a language that is not context-free.

LEMMA 4.13.2 The language L = {anbncn |n ≥ 0} over the alphabet Σ = {a, b, c} is not
context-free.

Proof We assume that L is context-free generated by a grammar with m non-terminals and
show this implies L contains strings not in the language. Let n0 = 2m−1 + 1.

Since L is infinite, the pumping lemma can be applied. Let rstuv = anbncn for n =
n0. From the pumping lemma rs2tu2v is also in L. Clearly if s or u is not empty (and at
least one is), then they contain either one, two, or three of the symbols in Σ. If one of them,
say s, contains two symbols, then s2 contains a b before an a or a c before a b, contradicting
the definition of the language. The same is true if one of them contains three symbols.
Thus, they contain exactly one symbol. But this implies that the number of a’s, b’s, and c’s
in rs2tu2v is not the same, whether or not s and u contain the same or different symbols.

4.13.2 CFL Closure Properties
In Section 4.6 we examined the closure properties of regular languages. We demonstrated that
they are closed under concatenation, union, Kleene closure, complementation, and intersec-
tion. In this section we show that the context-free languages are closed under concatenation,
union, and Kleene closure but not complementation or intersection. A class of languages is
closed under an operation if the result of performing the operation on one or more languages
in the class produces another language in the class.

The concatenation, union, and Kleene closure of languages are defined in Section 4.3. The
concatenation of languages L1 and L2, denoted L1 ·L2, is the language {uv | u ∈ L1 and v ∈
L2}. The union of languages L1 and L2, denoted L1 ∪ L2, is the set of strings that are in L1

or L2 or both. The Kleene closure of a language L, denoted L∗ and called the Kleene star, is
the language

⋃∞
i=0 Li where L0 = {ε} and Li = L · Li−1.

THEOREM 4.13.1 The context-free languages are closed under concatenation, union, and Kleene
closure.

c©John E Savage 4.13 Properties of Context-Free Languages 199

Proof Consider two arbitrary CFLs L(H1) and L(H2) generated by grammars H1 =
(N1, T1,R1, S1) and H2 = (N2, T2,R2, S2). Without loss of generality assume that their
non-terminal alphabets (and rules) are disjoint. (If not, prefix every non-terminal in the
second grammar with a symbol not used in the first. This does not change the language
generated.)

Since each string in L(H1) · L(H2) consists of a string of L(H1) followed by a string
of L(H2), it is generated by the context-free grammar H3 = (N3, T3,R3, S3) in which
N3 = N1 ∪ N2 ∪ {S3}, T3 = T1 ∪ T2, and R3 = R1 ∪R2 ∪ {S3 → S1S2}. The new rule
S3 → S1S2 generates a string of L(H1) followed by a string of L(H2). Thus, L(H1) ·L(H2)
is context-free.

The union of languages L(H1) and L(H2) is generated by the context-free grammar
H4 = (N4, T4,R4, S4) in which N4 = N1 ∪ N2 ∪ {S4}, T4 = T1 ∪ T2, and R4 = R1 ∪
R2 ∪ {S4 → S1, S4 → S2}. To see this, observe that after applying S4 → S1 all subsequent
rules are drawn from H1. (The sets of non-terminals are disjoint.) A similar statement
applies to the application of S4 → S2. Since H4 is context-free, L(H4) = L(H1) ∪ L(H2)
is context-free.

The Kleene closure of L(H1), namely L(H1)∗, is generated by the context-free grammar
H5 = (N1, T1,R5, S1) in which R5 = R1 ∪ {S1 → ε, S1 → S1S1}. To see this, observe
that L(H5) includes ε, every string in L(H1), and, through i−1 applications of S1 → S1S1,
every string in L(H1)i. Thus, L(H1)∗ is generated by H5 and is context-free.

We now use this result and Lemma 4.13.2 to show that the set of context-free languages
is not closed under complementation and intersection, operations defined in Section 4.6. The
complement of a language L over an alphabet Σ, denoted L, is the set of strings in Σ∗ that are
not in L. The intersection of two languages L1 and L2, denoted L1 ∩ L2, is the set of strings
that are in both languages.

THEOREM 4.13.2 The set of context-free languages is not closed under complementation or inter-
section.

Proof The intersection of two languages L1 and L2 can be defined in terms of the comple-
ment and union operations as follows:

L1 ∩ L2 = Σ∗ − (Σ∗ − L1) ∪ (Σ∗ − L2)

Thus, since the union of two CFLs is a CFL, if the complement of a CFL is also a CFL, from
this identity, the intersection of two CFLs is also a CFL. We now show that the intersection
of two CFLs is not always a CFL.

The language L1 = {anbncm |n, m ≥ 0} is generated by the grammar H1 = (N1, T1,
R1, S1), where N1 = {S, A, B}, T1 = {a, b, c}, and the rules R1 are:

a) S → AB

b) A → aAb

c) A → ε

d) B → Bc

e) B → ε

The language L2 = {ambncn |n, m ≥ 0} is generated by the grammar H2 = (N2, T2,
R2, S2), where N2 = {S, A, B}, T2 = {a, b, c} and the rules R2 are:

200 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

a) S → AB

b) A → aA

c) A → ε

d) B → bBc

e) B → ε

Thus, the languages L1 and L2 are context-free. However, their intersection is L1∩L2 =
{anbncn |n ≥ 0}, which was shown in Lemma 4.13.2 not to be context-free. Thus, the set
of CFLs is not closed under intersection, nor is it closed under complementation.

. .
Problems
FSM MODELS

4.1 Let M = (Σ, Ψ, Q, δ, λ, s, F) be the FSM model described in Definition 3.1.1. It
differs from the FSM model of Section 4.1 in that its output alphabet Ψ has been
explicitly identified. Let this machine recognize the language L(M) consisting of input
strings w that cause the last output produced by M to be the first letter in Ψ. Show
that every language recognized under this definition is a language recognized according
to the “final-state definition” in Definition 4.1.1 and vice versa.

4.2 The Mealy machine is a seven-tuple M = (Σ, Ψ, Q, δ, λ, s, F) identical in its def-
inition with the Moore machine of Definition 3.1.1 except that its output function
λ : Q×Σ �→ Ψ depends on both the current state and input letter, whereas the output
function λ : Q �→ Ψ of the Moore FSM depends only on the current state. Show that
the two machines recognize the same languages and compute the same functions with
the exception of ε.

4.3 Suppose that an FSM is allowed to make state ε-transitions, that is, state transitions
on the empty string. Show that the new machine model is no more powerful than the
Moore machine model.
Hint: Show how ε-transitions can be removed, perhaps by making the resultant FSM
nondeterministic.

EQUIVALENCE OF DFSMS AND NFSMS

4.4 Functions computed by FSMs are described in Definition 3.1.1. Can a consistent
definition of function computation by NFSMs be given? If not, why not?

4.5 Construct a deterministic FSM equivalent to the nondeterministic FSM shown in
Fig. 4.32.

REGULAR EXPRESSIONS

4.6 Show that the regular expression 0(0∗10∗)+ defines strings starting with 0 and con-
taining at least one 1.

4.7 Show that the regular expressions 0∗, 0(0∗10∗)+, and 1(0 + 1)∗ partition the set of all
strings over 0 and 1.

4.8 Give regular expressions generating the following languages over Σ = {0, 1}:

c©John E Savage Problems 201

0 0, 11

0

0, 1

1

1

Start
q0 q1

q2 q3

00

Figure 4.32 A nondeterministic FSM.

a) L = {w | w has length at least 3 and its third symbol is a 0}
b) L = {w | w begins with a 1 and ends with a 0}
c) L = {w | w contains at least three 1s}

4.9 Give regular expressions generating the following languages over Σ = {0, 1}:

a) L = {w | w is any string except 11 and 111}
b) L = {w | every odd position of w is a 1}

4.10 Give regular expressions for the languages over the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8,
9} describing positive integers that are:

a) even

b) odd

c) a multiple of 5

d) a multiple of 4

4.11 Give proofs for the rules stated in Theorem 4.3.1.

4.12 Show that ε+ 01 +(010)(10 + 010)∗(ε+ 1 + 01) and (01 + 010)∗ describe the same
language.

REGULAR EXPRESSIONS AND FSMS

4.13 a) Find a simple nondeterministic finite-state machine accepting the language (01 ∪
001 ∪ 010)∗ over Σ = {0, 1}.

b) Convert the nondeterministic finite state machine of part (a) to a deterministic
finite-state machine by the method of Section 4.2.

4.14 a) Let Σ = {0, 1, 2}, and let L be the language over Σ that contains each string
w ending with some symbol that does not occur anywhere else in w. For exam-
ple, 011012, 20021, 11120, 0002, 10, and 1 are all strings in L. Construct a
nondeterministic finite-state machine that accepts L.

202 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

b) Convert the nondeterministic finite-state machine of part (a) to a deterministic
finite-state machine by the method of Section 4.2.

4.15 Describe an algorithm to convert a regular expression to an NFSM using the proof of
Theorem 4.4.1.

4.16 Design DFSMs that recognize the following languages:

a) a∗bca∗

b) (a + c)∗(ab + ca)b∗

c) (a∗b∗(b + c)∗)∗

4.17 Design an FSM that recognizes decimal strings (over the alphabet {0, 1, 2, 3, 4, 5, 6,
7, 8, 9} representing the integers whose value is 0 modulo 3.

Hint: Use the fact that (10)k = 1 mod 3 (where 10 is “ten”) to show that (ak(10)k +
ak−1(10)k−1 + · · ·+ a1(10)1 + a0) mod 3 = (ak + ak−1 + · · ·+ a1 + a0) mod 3.

4.18 Use the above FSM design to generate a regular expression describing those integers
whose value is 0 modulo 3.

4.19 Describe an algorithm that constructs an NFSM from a regular expression r and accepts
a string w if w contains a string denoted by r that begins anywhere in w.

THE PUMPING LEMMA

4.20 Show that the following languages are not regular:

a) L = {anban | n ≥ 0}
b) L = {0n12n0n | n ≥ 1}
c) L = {anbncn | n ≥ 0}

4.21 Strengthen the pumping lemma for regular languages by demonstrating that if L is
a regular language over the alphabet Σ recognized by a DFSM with m states and it
contains a string w of length m or more, then any substring z of w (w = uzv) of
length m can be written as z = rst, where |s| ≥ 1 such that for all integers n ≥ 0,
ursntv ∈ L. Explain why this pumping lemma is stronger than the one stated in
Lemma 4.5.1.

4.22 Show that the language L = {aibj | i > j} is not regular.

4.23 Show that the following language is not regular:

a) {unzvmzwn+m | n, m ≥ 1}

PROPERTIES OF REGULAR LANGUAGES

4.24 Use Lemma 4.5.1 and the closure property of regular languages under intersection to
show that the following languages are not regular:

a) {wwR | w ∈ {0, 1}∗}
b) {ww | where w denotes w in which 0’s and 1’s are interchanged}
c) {w | w has equal number of 0’s and 1’s}

4.25 Prove or disprove each of the following statements:

a) Every subset of a regular language is regular

c©John E Savage Problems 203

b) Every regular language has a proper subset that is also a regular language

c) If L is regular, then so is {xy | x ∈ L and y �∈ L}
d) If L is a regular language, then so is {w : w ∈ L and wR ∈ L}
e) {w | w = wR} is regular

STATE MINIMIZATION

4.26 Find a minimal-state FSM equivalent to that shown in Fig. 4.33.

4.27 Show that the languages recognized by M and M≡ are the same, where ≡ is the equiv-
alence relation on M defined by states that are indistinguishable by input strings of any
length.

4.28 Show that the equivalence relation RL is right-invariant.

4.29 Show that the equivalence relation RM is right-invariant.

4.30 Show that the right-invariance equivalence relation (defined in Definition 4.7.2) for the
language L = {anbn | n ≥ 0} has an unbounded number of equivalence classes.

4.31 Show that the DFSM in Fig. 4.20 is the machine ML associated with the language
L = (10∗1 + 0)∗.

PUSHDOWN AUTOMATA

4.32 Construct a pushdown automaton that accepts the following language: L = {w | w is
a string over the alphabet Σ = {(,)} of balanced parentheses}.

4.33 Construct a pushdown automaton that accepts the following language: L = {w | w
contains more 1’s than 0’s}.

0

10

0

Start

q3q2

q0 q1

11

0

Figure 4.33 A four-state finite-state machine.

204 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

PHRASE STRUCTURE LANGUAGES

4.34 Give phrase-structure grammars for the following languages:

a) {ww | w ∈ {a, b}∗}
b) {02i | i ≥ 1}

4.35 Show that the following language can be described by a phrase-structure grammar:

{ai | i is not prime}

CONTEXT-SENSITIVE LANGUAGES

4.36 Show that every context-sensitive language can be accepted by a linear bounded au-
tomaton (LBA), a nondeterministic Turing machine in which the tape head visits a
number of cells that is a constant multiple of the number of characters in the input
string w.

Hint: Consider a construction similar to that used in the proof of Theorem 5.4.2.
Instead of using a second tape, use a second track on the tape of the TM.

4.37 Show that every language accepted by a linear bounded automaton can be generated by
a context-sensitive language.

Hint: Consider a construction similar to that used in the proof of Theorem 5.4.1 but
instead of deleting characters at the end of TM configuration, encode the end markers
[and] by enlarging the tape alphabet of the LBA to permit the first and last characters
to be either marked or unmarked.

4.38 Show that the grammar G1 in Example 4.9.1 is context-sensitive and generates the
language L(G1) = {anbncn | n ≥ 1}.

4.39 Show that the language {02i | i ≥ 1} is context-sensitive.

4.40 Show that the context-sensitive languages are closed under union, intersection, and
concatenation.

CONTEXT-FREE LANGUAGES

4.41 Show that language generated by the context-free grammar G3 of Example 4.9.3 is
L(G3) = {cancancbmcbmc | n, m ≥ 0}.

4.42 Construct context-free grammars for each of the following languages:

a) {wwR | w ∈ {a, b}∗}
b) {w | w ∈ {a, b}∗, w = wR}
c) L = {w | w has twice as many 0’s as 1’s}

4.43 Give a context-free grammars for each of the following languages:

a) {w ∈ {a, b}∗ | w has twice as many a’s as b’s}
b) {arbs | r ≤ s ≤ 2r}

c©John E Savage Problems 205

REGULAR LANGUAGES

4.44 Show that the regular language G4 described in Example 4.9.4 is L(G4) = (01)∗0.

4.45 Show that grammar G = (N , T ,R, S), where N = {A, B, S}, T = {a, b} and the
rules R are given below, is regular.

a) S → abA

b) S → baB

c) S → B

d) S → ε

e) A → bS

f) B → aS

g) A → b

Give a derivation for the string abbbaa.

4.46 Provide a regular grammar generating strings over {0, 1} not containing 00.

4.47 Give a regular grammar for each of the following languages and show that there is a
FSM that accepts it. In all cases Σ = {0, 1}.

a) L = {w | the length of w is odd}
b) L = {w | w contains at least three 1s}

REGULAR LANGUAGE RECOGNITION

4.48 Construct a finite-state machine that recognizes the language generated by the grammar
G = (N , T ,R, S), where N = {S, X, Y}, T = {x, y}, and R contains the following
rules: S → xX, S → yY, X → yY, Y → xX, X → ε, and Y → ε.

4.49 Describe finite-state machines that recognize the following languages:

a) {w ∈ {a, b}∗ | w has an odd number of a’s}
b) {w ∈ {a, b}∗ | w has ab and ba as substrings}

4.50 Show that, if L is a regular language, then the language obtained by reversing the letters
in each string in L is also regular.

4.51 Show that, if L is a regular language, then the language consisting of strings in L whose
reversals are also in L is regular.

PARSING CONTEXT-FREE LANGUAGES

4.52 Use the algorithm of Theorem 4.11.2 to construct a parse tree for the string (a ∗ b +
a) ∗ (a + b) generated by the grammar G5 of Example 4.11.2, and give a leftmost and
a rightmost derivation for the string.

4.53 Let G = (N , T ,R, S) be the context-free grammar with N = S and T = {(,), 0}
with rules R = {S → 0, S → SS, S → (S)}. Use the algorithm of Theorem 4.11.2 to
generate a parse tree for the string (0)((0)).

CFL ACCEPTANCE WITH PUSHDOWN AUTOMATA

4.54 Construct PDAs that accept each of the following languages:

a) {anbn | n ≥ 0}
b) {wwR | w ∈ {a, b}∗}
c) {w | w ∈ {a, b}∗, w = wR}

206 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

4.55 Construct PDAs that accept each of the following languages:

a) {w ∈ {a, b}∗ | w has twice as many a’s as b’s}
b) {arbs | r ≤ s ≤ 2r}

4.56 Use the algorithm of Theorem 4.12.2 to construct a context-free grammar that accepts
the language accepted by the PDA in Example 4.8.2.

4.57 Construct a context-free grammar for the language {wcwR | w ∈ {a, b}∗}.
Hint: Use the algorithm of Theorem 4.12.2 to construct a context-free grammar that
accepts the language accepted by the PDA in Example 4.8.1.

PROPERTIES OF CONTEXT-FREE LANGUAGES

4.58 Show that the intersection of a context-free language and a regular language is context-
free.

Hint: From machines accepting the two language types, construct a machine accepting
their intersection.

4.59 Suppose that L is a context-free language and R is a regular one. Is L − R necessarily
context-free? What about R − L? Justify your answers.

4.60 Show that, if L is context-free, then so is LR = {wR | w ∈ L}.
4.61 Let G = (N , T ,R, S) be context-free. A non-terminal A is self-embedding if and

only if A
∗⇒G sAu for some s, u ∈ T .

a) Give a procedure to determine whether A ∈ N is self-embedding.
b) Show that, if G does not have a self-embedding non-terminal, then it is regular.

CFL PUMPING LEMMA

4.62 Show that the following languages are not context-free:

a) {02i | i ≥ 1}
b) {bn2 | n ≥ 1}
c) {0n | n is a prime}

4.63 Show that the following languages are not context-free:

a) {0n1n0n1n | n ≥ 0}
b) {aibjck | 0 ≤ i ≤ j ≤ k}
c) {ww | w ∈ {0, 1}∗}

4.64 Show that the language {ww | w ∈ {a, b}∗} is not context-free.

CFL CLOSURE PROPERTIES

4.65 Let M1 and M2 be pushdown automata accepting the languages L(M1) and L(M2).
Describe PDAs accepting their union L(M1)∪L(M2), concatenation L(M1)·L(M2),
and Kleene closure L(M1)∗, thereby giving an alternate proof of Theorem 4.13.1.

4.66 Use closure under concatenation of context-free languages to show that the language
{wwRvRv | w, v ∈ {a, b}∗} is context-free.

c©John E Savage Chapter Notes 207

Chapter Notes
The concept of the finite-state machine is often attributed to McCulloch and Pitts [211].
The models studied today are due to Moore [223] and Mealy [215]. The equivalence of
deterministic and non-deterministic FSMs (Theorem 4.4.1) was established by Rabin and
Scott [266].

Kleene established the equivalence of regular expressions and finite-state machines. The
proof used in Theorems 4.4.1 and 4.4.2 is due to McNaughton and Yamada [212]. The
pumping lemma (Lemma 4.5.1) is due to to Bar-Hillel, Perles, and Shamir [28]. The closure
properties of regular expressions are due to McNaughton and Yamada [212].

State minimization was studied by Huffman [144] and Moore [223]. The Myhill-Nerode
Theorem was independently obtained by Myhill [227] and Nerode [229]. Hopcroft [139] has
given an efficient algorithm for state miminization.

Chomsky [68,69] defined four classes of formal language, the regular, context-free, context-
sensitive, and phrase-structure languages. He and Miller [71] demonstrated the equivalence
of languages generated by regular grammars and those recognized by finite-state machines.
Chomsky introduced the normal form that carries his name [69]. Oettinger [233] introduced
the pushdown automaton and Schutzenberger [305], Chomsky [70], and Evey [97] indepen-
dently demonstrated the equivalence of context-free languages and pushdown automata.

Two efficient algorithms for parsing context-free languages were developed by Earley [94]
and Cocke (unpublished) and independently by Kasami [162] and Younger [371]. These are
cubic-time algorithms. Our formulation of the parsing algorithm of Section 4.11 is based
on Valiant’s derivation [342] of the Cocke-Kasami-Younger recognition matrix, where he also
presents the fastest known general algorithm to parse context-free languages. The CFL pump-
ing lemma and the closure properties of CFLs are due to Bar-Hillel, Perles, and Shamir [28].

Myhill [228] introduced the deterministic linear-bounded automata and Landweber [189]
showed that languages accepted by linear-bounded automata are context-sensitive. Kuroda
[184] generalized the linear-bounded automata to be nondeterministic and established the
equivalence of such machines and the context-sensitive languages.

C H A P T E R

Computability

The Turing machine (TM) is believed to be the most general computational model that can
be devised (the Church-Turing thesis). Despite many attempts, no computational model has
yet been introduced that can perform computations impossible on a Turing machine. This
is not a statement about efficiency; other machines, notably the RAM of Section 3.4, can do
the same computations either more quickly or with less memory. Instead, it is a statement
about the feasibility of computational tasks. If a task can be done on a Turing machine, it is
considered feasible; if it cannot, it is considered infeasible. Thus, the TM is a litmus test for
computational feasibility. As we show later, however, there are some well-defined tasks that
cannot be done on a TM.

The chapter opens with a formal definition of the standard Turing machine and describes
how the Turing machine can be used to compute functions and accept languages. We then
examine multi-tape and nondeterministic TMs and show their equivalence to the standard
model. The nondeterministic TM plays an important role in Chapter 8 in the classification of
languages by their complexity. The equivalence of phrase-structure languages and the languages
accepted by TMs is then established. The universal Turing machine is defined and used to
explore limits on language acceptance by Turing machines. We show that some languages
cannot be accepted by any Turing machine, while others can be accepted but not by Turing
machines that halt on all inputs (the languages are unsolvable). This sets the stage for a proof
that some problems, such as the Halting Problem, are unsolvable; that is, there is no Turing
machine halting on all inputs that can decide for an arbitrary Turing machine M and input
string w whether or not M will halt on w. We close by defining the partial recursive functions,
the most general functions computable by Turing machines.

209

210 Chapter 5 Computability Models of Computation

5.1 The Standard Turing Machine Model
The standard Turing machine consists of a control unit, which is a finite-state machine, and
a (single-ended) infinite-capacity tape unit. (See Fig. 5.1.) Each cell of the tape unit initially
contains the blank symbol β. A string of symbols from the tape alphabet Γ is written left-
adjusted on the tape and the tape head is placed over the first cell. The control unit then reads
the symbol under the head and makes a state transition the result of which is either to write
a new symbol under the tape head or to move the head left (if possible) or right. (The TM
described in Section 3.7 is slightly different; it always replaces the cell contents and always
issues a move command, even if the effect in both cases is null. The equivalence between the
standard TM and that described in Section 3.7 is easily established. See Problem 5.1.) A move
left from the first cell leads to abnormal termination, a problem that can be avoided by having
the Turing machine write a special end-of-tape marker in the first tape cell. This marker is a
tape symbol not used elsewhere.

DEFINITION 5.1.1 A standard Turing machine (TM) is a six-tuple M = (Γ, β, Q, δ, s, h)
where Γ is the tape alphabet not containing the blank symbol β, Q is the finite set of states,
δ : Q × (Γ ∪ {β}) �→ (Q ∪ {h}) × (Γ ∪ {β} ∪ {L, R}) is the next-state function, s is the
initial state, and h �∈ Q is the accepting halt state. A TM cannot exit from h. If M is in state
q with letter a under the tape head and δ(q, a) = (q′, C), its control unit enters state q′ and writes
a′ if C = a′ ∈ Γ ∪ {β} or moves the head left (if possible) or right if C is L or R, respectively.

The TM M accepts the input string w ∈ Γ∗ (it contains no blanks) if when started in state
s with w placed left-adjusted on its otherwise blank tape and the tape head at the leftmost tape cell,
the last state entered by M is h. M accepts the language L(M) consisting of all strings accepted
by M . Languages accepted by Turing machines are called recursively enumerable. A language
L is decidable or recursive if there exists a TM M that halts on every input string, whether in L
or not, and accepts exactly the strings in L.

A function f : Γ∗ �→ Γ∗ ∪ {⊥}, where ⊥ is a symbol that is not in Γ, is partial if for some
w ∈ Γ∗, f(w) =⊥ (f is not defined on w). Otherwise, f is total.

A TM M computes a function f : Γ∗ �→ Γ∗ ∪ ⊥ for those w such that f(w) is defined if
when started in state s with w placed left-adjusted on its otherwise blank tape and the tape head
at the leftmost tape cell, M enters the accepting halt state h with f(w) written left-adjusted on its
otherwise blank tape. If a TM halts on all inputs, it implements an algorithm. A task defined by
a total function f is solvable if f has an algorithm and unsolvable otherwise.

10

Control
Unit

Tape Unit

2

Figure 5.1 The control and tape units of the standard Turing machine.

c©John E Savage 5.1 The Standard Turing Machine Model 211

Accepter
for L

for L
(Decider)

Recognizer

w

“Yes”

(a) (b)

w

“Yes”

“No”

Figure 5.2 An accepter (a) for a language L is a Turing machine that can accept strings in a
language L but may not halt on all inputs. A decider or recognizer (b) for a language L is a Turing
machine that halts on all inputs and accepts strings in L.

The accepting halt state h has been singled out to emphasize language acceptance. How-
ever, there is nothing to prevent a TM from having multiple halt states, states from which it
does not exit. (A halt state can be realized by a state to which a TM returns on every input
without moving the tape head or changing the value under the head.) On the other hand, on
some inputs a TM may never halt. For example, it may endlessly move its tape head right one
cell and write the symbol a.

Notice that we do not require a TM M to halt on every input string for it to accept a
language L(M). It need only halt on those strings in the language. A language L for which
there is a TM M accepting L = L(M) that halts on all inputs is decidable. The distinction
between accepting and recognizing (or deciding) a language L is illustrated schematically in
Fig. 5.2. An accepter is a TM that accepts strings in L but may not halt on strings not in L.
When the accepter determines that the string w is in the language L, it turns on the “Yes”
light. If this light is not turned on, it may be that the string is not in L or that the TM is just
slow. On the other hand, a recognizer or decider is a TM that halts on all inputs and accepts
strings in L. The “Yes” or “No” light is guaranteed to be turned on at some time.

The computing power of the TM is extended by allowing partial computations, com-
putations on which the TM does not halt on every input. The computation of functions by
Turing machines is discussed in Section 5.9.

5.1.1 Programming the Turing Machine
Programming a Turing machine means choosing a tape alphabet and designing its control
unit, a finite-state machine. Since the FSM has been extensively studied elsewhere, we limit
our discussion of programming of Turing machines to four examples, each of which illustrates
a fundamental point about Turing machines. Although TMs are generally designed to perform
unbounded computations, their control units have a bounded number of states. Thus, we must
insure that as they move across their tapes they do not accumulate an unbounded amount of
information.

A simple example of a TM is one that moves right until it encounters a blank, whereupon
it halts. The TM of Fig. 5.3(a) performs this task. If the symbol under the head is 0 or 1,

212 Chapter 5 Computability Models of Computation

q a δ(σ, q)

q1 0 q1 R
q1 1 q1 R
q1 β h β

q a δ(σ, q)

q1 0 q2 β
q1 1 q3 β
q1 β h β
q2 0 q4 R
q2 1 q4 R
q2 β q4 R
q3 0 q5 R
q3 1 q5 R
q3 β q5 R
q4 0 q2 0
q4 1 q3 0
q4 β h 0
q5 0 q2 1
q5 1 q3 1
q5 β h 1

(a) (b)

Figure 5.3 The transition functions of two Turing machines, one (a) that moves across the
non-blank symbols on its tape and halts over the first blank symbol, and a second (b) that moves
the input string right one position and inserts a blank to its left.

it moves right. If it is the blank symbol, it halts. This TM can be extended to replace the
rightmost character in a string of non-blank characters with a blank. After finding the blank
on the right of a non-blank string, it backs up one cell and replaces the character with a blank.
Both TMs compute functions that map strings to strings.

A second example is a TM that replaces the first letter in its input string with a blank and
shifts the remaining letters right one position. (See Fig. 5.3(b).) In its initial state q1 this TM,
which is assumed to be given a non-blank input string, records the symbol under the tape head
by entering q2 if the letter is 0 or q3 if the letter is 1 and writing the blank symbol. In its
current state it moves right and enters a corresponding state. (It enters q4 if its current state
is q2 and q5 if it is q3.) In the new state it prints the letter originally in the cell to its left and
enters either q2 or q3 depending on whether the current cell contains 0 or 1. This TM can
be used to insert a special end-of-tape marker instead of a blank to the left of a string written
initially on a tape. This idea can generalized to insert a symbol anyplace in another string.

A third example of a TM M is one that accepts strings in the language L = {anbncn |n ≥
1}. M inserts an end-of-tape marker to the left of a string w placed on its tape and uses a
computation denoted C(x, y), in which it moves right across zero or more x’s followed by
zero or more “pseudo-blanks” (a symbol other than a, b, c, or β) to an instance of y, entering
a non-accepting halt state f if some other pattern of letters is found. Starting in the first cell,
if M discovers that the next letter is not a, it exits to state f . If it is a, it replaces a by a
pseudo-blank. It then executes C(a, b). M then replaces b by a pseudo-blank and executes
C(b, c), after which it replaces c by a pseudo-blank and executes C(c, β). It then returns to
the beginning of the tape. If it arrives at the end-of-tape marker without encountering any

c©John E Savage 5.2 Extensions to the Standard Turing Machine Model 213

instances of a, b, or c, it terminates in the accepting halt state h. If not, then it moves right
over pseudo-blanks until it finds an a, entering state f if it finds some other letter. It then
resumes the process executed on the first pass by invoking C(a, b). This computation either
enters the non-accepting halt state f or on each pass it replaces one instance each of a, b, and
c with a pseudo-blank. Thus, M accepts the language L = {anbncn |n ≥ 1}; that is, L
is decidable (recursive). Since M makes one pass over the tape for each instance of a, it uses
time O(n2) on a string of length n. Later we give examples of languages that are recursively
enumerable but not recursive.

In Section 3.8 we reasoned that any RAM computation can be simulated by a Turing
machine. We showed that any program written for the RAM can be executed on a Turing
machine at the expense of an increase in the running time from T steps on a RAM with S bits
of storage to a time O(ST log2 S) on the Turing machine.

5.2 Extensions to the Standard Turing Machine Model
In this section we examine various extensions to the standard Turing machine model and
establish their equivalence to the standard model. These extensions include the multi-tape,
nondeterministic, and oracle Turing machines.

We first consider the double-ended tape Turing machine. Unlike the standard TM that
has a tape bounded on one end, this is a TM whose single tape is double-ended. A TM of this
kind can be simulated by a two-track one-tape TM by reading and writing data on the top
track when working on cells to the right of the midpoint of the tape and reading and writing
data on the bottom track when working with cells to its left. (See Problem 5.7.)

5.2.1 Multi-Tape Turing Machines
A k-tape Turing machine has a control unit and k single-ended tapes of the kind shown in
Fig. 5.1. Each tape has its own head and operates in the fashion indicated for the standard
model. The FSM control unit accepts inputs from all tapes simultaneously, makes a state
transition based on this data, and then supplies outputs to each tape in the form of either a
letter to be written under its head or a head movement command. We assume that the tape
alphabet of each tape is Γ. A three-tape TM is shown in Fig. 5.4. A k-tape TM Mk can be
simulated by a one-tape TM M1, as we now show.

THEOREM 5.2.1 For each k-tape Turing machine Mk there is a one-tape Turing machine M1

such that a terminating T -step computation by Mk can be simulated in O(T 2) steps by M1.

Proof Let Γ and Γ′ be the tape alphabets of Mk and M1, respectively. Let |Γ′| = (2|Γ|)k

so that Γ′ has enough letters to allow the tape of M1 to be subdivided into k tracks, as
suggested in Fig. 5.5. Each cell of a track contains 2|Γ| letters, a number large enough to
allow each cell to contain either a member of Γ or a marked member of Γ. The marked
members retain their original identity but also contain the information that they have been
marked. As suggested in Fig. 5.5 for a three-tape TM, k heads can be simulated by one head
by marking the positions of the k heads on the tracks of M1.

M1 simulates Mk in two passes. First it visits marked cells to collect the letters under
the original tape heads, after which it makes a state transition akin to that made by Mk. In a
second pass it visits the marked cells either to change their entries or to move the simulated

214 Chapter 5 Computability Models of Computation

Control
Unit

Figure 5.4 A three-tape Turing machine.

Figure 5.5 A single tape of a TM with a large tape alphabet that simulates a three-tape TM
with a smaller tape alphabet.

tape heads. If the k-tape TM executes T steps, it uses at most T + 1 tape cells. Thus each
pass requires O(T) steps and the complete computation can be done in O(T 2) steps.

Multi-tape machines in which the tapes are double-ended are equivalent to multi-tape
single-ended Turing machines, as the reader can show.

5.2.2 Nondeterministic Turing Machines
The nondeterministic standard Turing machine (NDTM) is introduced in Section 3.7.1.
We use a slightly altered definition that conforms to the definition of the standard Turing
machine in Definition 5.1.1.

DEFINITION 5.2.1 A nondeterministic Turing machine (NDTM) is a seven-tuple M =
(Σ, Γ, β, Q, δ, s, h) where Σ is the choice input alphabet, Γ is the tape alphabet not con-
taining the blank symbol β, Q is the finite set of states, δ : Q × Σ × (Γ ∪ {β}) �→
(Q ∪ {h}) × (Γ ∪ {β} ∪ {L, R}) ∪ {⊥} is the next-state function, s is the initial state,
and h �∈ Q is the accepting halt state. A TM cannot exit from h. If M is in state q with letter
a under the tape head and δ(q, c, a) = (q′, C), its control unit enters state q′ and writes a′ if

c©John E Savage 5.2 Extensions to the Standard Turing Machine Model 215

qkq1 q2 q1 q2

(a) (b)

q

qk

q

Figure 5.6 The construction used to reduce the fan-out of a nondeterministic state.

C = a′ ∈ Γ ∪ {β}, or it moves the head left (if possible) or right if C is L or R, respectively. If
δ(q, c, a) =⊥, there is no successor to the current state with choice input c and tape symbol a.

An NDTM M reads one character of its choice input string c ∈ Σ∗ on each step. An NDTM
M accepts string w if there is some choice string c such that the last state entered by M is h when
M is started in state s with w placed left-adjusted on its otherwise blank tape, and the tape head
at the leftmost tape cell. An NDTM M accepts the language L(M) ⊆ Γ∗ consisting of those
strings w that it accepts. Thus, if w �∈ L(M), there is no choice input for which M accepts w.

If an NDTM has more than two nondeterministic choices for a particular state and letter
under the tape head, we can design another NDTM that has at most two choices. As suggested
in Fig. 5.6, for each state q that has k possible next states q1, . . . , qk for some input letter, we
can add k − 2 intermediate states, each with two outgoing edges such that a) in each state the
tape head doesn’t move and no change is made in the letter under the head, but b) each state
has the same k possible successor states. It follows that the new machine computes the same
function or accepts the same language as the original machine. Consequently, from this point
on we assume that there are either one or two next states from each state of an NDTM for
each tape symbol.

We now show that the range of computations that can be performed by deterministic and
nondeterministic Turing machines is the same. However, this does not mean that with the
identical resource bounds they compute the same set of functions.

THEOREM 5.2.2 Any language accepted by a nondeterministic standard TM can be accepted by a
standard deterministic one.

Proof The proof is by simulation. We simulate all possible computations of a nondeter-
ministic standard TM MND on an input string w by a deterministic three-tape TM MD

and halt if we find a sequence of moves by MND that leads to an accepting halt state. Later
this machine can be simulated by a one-tape TM. The three tapes of MD are an input
tape, a work tape, and enumeration tape. (See Fig. 5.7.) The input tape holds the in-
put and is never modified. The work tape is used to simulate MND. The enumeration
tape contains choice sequences used by MD to decide which move to make when simu-

216 Chapter 5 Computability Models of Computation

Unit

110

Control

Enumeration Tape

Work Tape

Read-Only Input Tape

Figure 5.7 A three-tape deterministic Turing machine that simulates a nondeterministic Turing
machine.

lating MND. These sequences are generated in lexicographical order, that is, in the order
0, 1, 00, 01, 10, 11, 000, 001, It is straightforward to design a deterministic TM that
generates these sequences. (See Problem 5.2.)

Breadth-first search is used. Since a string w is accepted by a nondeterministic TM if
there is some choice input on which it is accepted, a deterministic TM MD that accepts the
input w accepted by MND can be constructed by erasing the work tape, copying the input
sequence w to the work tape, placing the next choice input sequence in lexicographical or-
der on the enumeration tape (initially this is the sequence 0), and then simulating MND on
the work tape while reading one choice input from the enumeration tape on each step. If
MD runs out of choice inputs before reaching the halt state, the above procedure is restarted
with the next choice input sequence. This method deterministically accepts the input string
w if and only if there is some choice input to MND on which it is accepted.

Adding more than one tape to a nondeterministic Turing machine does not increase its
computing power. To see this, it suffices to simulate a multi-tape nondeterministic Turing
machine with a single-tape one, using a construction parallel to that of Theorem 5.2.1, and
then invoke the above result. Applying these observations to language acceptance yields the
following corollary.

COROLLARY 5.2.1 Any language accepted by a nondeterministic (multi-tape) Turing machine can
be accepted by a deterministic standard Turing machine.

We emphasize that this result does not mean that with identical resource bounds the de-
terministic and nondeterministic Turing machines compute the same set of functions.

5.2.3 Oracle Turing Machines
The oracle Turing machine (OTM) is a multi-tape TM or NDTM with a special oracle
tape and an associated oracle function h : B∗ �→ B∗, which need not be computable. (See
Fig. 5.8.) After writing a string z on its oracle tape, the OTM signals to the oracle to replace
z with the value h(z) of the oracle function. During a computation the OTM may consult

c©John E Savage 5.2 Extensions to the Standard Turing Machine Model 217

Input Tape

Work Tape

Oracle Tape

Unit
Control

Output Tape

Figure 5.8 The oracle Turing machine has an “oracle tape” on which it writes a string (a problem
instance), after which an “oracle” returns an answer in one step.

the oracle as many times as it wishes. Time on an OTM is the number of steps taken, where
one consultation of the oracle is counted as one step. Space is the number of cells used on
the work tapes of an OTM not including the oracle tape. The OTM machine can be used to
classify problems. (See Problem 8.15.)

5.2.4 Representing Restricted Models of Computation
Now that we have introduced a variety of Turing machine models, we ask how the finite-state
machine and pushdown automaton fit into the picture.

The finite-state machine can be viewed as a Turing machine with two tapes, the first a
read-only input tape and the second a write-only output tape. This TM reads consecutive
symbols on its input tape, moving right after reading each symbol, and writes outputs on its
output tape, moving right after writing each symbol. If this TM enters an accepting halt state,
the input sequence read from the tape is accepted.

The pushdown automaton can be viewed as a Turing machine with two tapes, a read-only
input tape and a pushdown tape. The pushdown tape is a standard tape that pushes a new
symbol by moving its head right one cell and writing the new symbol into this previously
blank cell. It pops the symbol at the top of the stack by copying the symbol, after which it
replaces it with the blank symbol and moves its head left one cell.

The Turing machine can be simulated by two pushdown tapes. The movement of the head
in one direction can be simulated by popping the top item of one stack and pushing it onto
the other stack. To simulate the movement of the head in the opposite direction, interchange
the names of the two stacks.

The nondeterministic equivalents of the finite-state machine and pushdown automaton
are obtained by making their Turing machine control units nondeterministic.

218 Chapter 5 Computability Models of Computation

5.3 Configuration Graphs
We now introduce configuration graphs, graphs that capture the state of Turing machines
with potentially unlimited storage capacity. We begin by describing configuration graphs for
one-tape Turing machines.

DEFINITION 5.3.1 The configuration of a standard Turing machine M at any point in time
is [x1x2 . . .pxj . . . xn], where p is the state of the control unit, the tape head is over the jth tape
cell, and x = (x1, x2, . . . , xn) is the string that contains all the non-blank symbols on the tape as
well as the symbol under the head. Here the state p is shown in boldface to the left of the symbol xj to
indicate that the tape head is over the jth cell. xn and some of the symbols to its left may be blanks.

To illustrate such configurations, consider a TM M that is in state p reading the third
symbol on its tape, which contains xyz. This information is captured by the configuration
[xypz]. If M changes to state q and moves its head right, then its new configuration is
[xyzqβ]. In this case we add a blank β to the right of the string xyz to insure that the head
resides over the string.

Because multi-tape TMs are important in classifying problems by their use of temporary
work space, a definition for the configuration of a multi-tape TM is desirable. We now intro-
duce a notation for this purpose that is somewhat more cumbersome than used for the standard
TM. This notation uses an explicit binary number for the position of each tape head.

DEFINITION 5.3.2 The configuration of a k-tape Turing machine M is (p, h1, h2, . . . , hk,
x1, x2, . . . , xk), where hr is the position of the head in binary on the rth tape, p is the state of
the control unit, and xr is the string on the rth tape that includes all the non-blank symbols as well
as the symbol under the head.

We now define configuration graphs for deterministic TMs and NDTMs. Because we will
apply configuration graphs to machines that halt on all inputs, we view them as acyclic.

DEFINITION 5.3.3 A configuration graph G(MND, w) associated with the NDTM MND is a
directed graph whose vertices are configurations of MND. (See Fig. 5.9.) There is a directed edge
between two vertices if for some choice input vector c MND can move from the first configuration to

Figure 5.9 The configuration graph G(MND, w) of a nondeterministic Turing machine MND

on input w has one vertex for each configuration of MND. The graph is acyclic. Heavy edges
identify the nondeterministic choices associated with each configuration.

c©John E Savage 5.4 Phrase-Structure Languages and Turing Machines 219

the second in one step. There is one configuration corresponding to the initial state of the machine
and one corresponding to the final state. (We assume without loss of generality that, after accepting
an input string, MND enters a cleanup phase during which it places a fixed string on each tape.)

Configuration graphs are used in the next section to associate a phrase-structure language
with a Turing machine. They are also used in many places in Chapter 8, especially in Sec-
tion 8.5.3, where they are used to establish an important relationship between deterministic
and nondeterministic space classes.

5.4 Phrase-Structure Languages and Turing Machines
We now demonstrate that the phrase-structure languages and the languages accepted by Turing
machines are the same. We begin by showing that every recursively enumerable language
is a phrase-structure language. For this purpose we use configurations of one-tape Turing
machines. Then, for each phrase-structure language L we describe the construction of a TM
accepting L. We conclude that the languages accepted by TMs and described by phrase-
structure grammars are the same.

With these conventions as background, if a standard TM halts in its accepting halt state,
we can require that it halt with β1β on its tape when it accepts the input string w. Thus,
the TM configuration when a TM halts and accepts its input string is [hβ1β]. Its starting
configuration is [sβw1w2 . . . wnβ], where w = w1w2 . . . wn.

THEOREM 5.4.1 Every recursively enumerable language is a phrase-structure language.

Proof Let M = (Γ, β, Q, δ, s, h) be a deterministic TM and let L(M) be the recursively
enumerable language over the alphabet Γ that it accepts. The goal is to show the existence of
a phrase-structure grammar G = (N , T ,R, S) that can generate each string w of L, and no
others. Since the TM accepting L halts with β1β on its tape when started with w ∈ L, we
design a grammar G that produces the configurations of M in reverse order. Starting with
the final configuration [hβ1β], G produces the starting configuration [sβw1w2 . . . wnβ],
where w = w1w2 . . . wn, after which it strips off the characters [sβ at the beginning and
β]. The grammar G defined below serves this purpose, as we show.

Let N = Q ∪ {S, β, [,]} and T = Γ. The rules R of G are defined as follows:

(a) S → [hβ1β]
(b) β] → ββ]
(c) [sβ → ε
(d) ββ] → β]
(e) β] → ε
(f) xq → px for all p ∈ Q and x ∈ (Γ ∪ {β})

such that δ(p, x) = (q, R)
(g) qzx → zpx for all p ∈ Q and x, z ∈ (Γ ∪ {β})

such that δ(p, x) = (q, L)
(h) qy → px for all p ∈ Q and x ∈ (Γ ∪ {β})

such that δ(p, x) = (q, y), y ∈ (Γ ∪ {β})

These rules are designed to start with the transition S → [hβ1β] (Rule (a)) and then
rewrite [hβ1β] using other rules until the configuration [sβw1w2 . . . wnβ] is reached. At

220 Chapter 5 Computability Models of Computation

this point Rule (c) is invoked to strip [sβ from the beginning of the string, and Rule (e) strips
β] from the end, thereby producing the string w1, w2, . . . , wn that was written initially on
M ’s tape.

Rule (b) is used to add blank space at the right-hand end of the tape. Rules (f)–(h)
mimic the transitions of M in reverse order. Rule (f) says that if M in state p reading x
moves to state q and moves its head right, then M ’s configuration contained the substring
px before the move and xq after it. Thus, we map xq into px with the rule xq → px.
Similar reasoning is applied to Rule (g). If the transition δ(p, x) = (q, y), y ∈ Γ ∪ {β}
is executed, M ’s configuration contained the substring px before the step and qy after it
because the head does not move.

Clearly, every computation by a TM M can be described by a sequence of configurations
and the transitions between these configurations can be described by this grammar G. Thus,
the strings accepted by M can be generated by G. Conversely, if we are given a derivation
in G, it produces a series of configurations characterizing computations by the TM M in
reverse order. Thus, the strings generated by G are the strings accepted by M .

By showing that every phrase-structure language can be accepted by a Turing machine, we
will have demonstrated the equivalence between the phrase-structure and recursively enumer-
able languages.

THEOREM 5.4.2 Every phrase-structure language is recursively enumerable.

Proof Given a phrase-structure grammar G, we construct a nondeterministic two-tape TM
M with the property that L(G) = L(M). Because every language accepted by a multi-tape
TM is accepted by a one-tape TM and vice versa, we have the desired conclusion.

To decide whether or not to accept an input string placed on its first (input) tape, M
nondeterministically generates a terminal string on its second (work) tape using the rules of
G. To do so, it puts G’s start symbol on its work tape and then nondeterministically expands
it into a terminal string using the rules of G. After producing a terminal string, M compares
the input string with the string on its work tape. If they agree in every position, M accepts
the input string. If not, M enters an infinite loop. To write the derived strings on its work
tape, M must either replace, delete, or insert characters in the string on its tape, tasks well
suited to Turing machines.

Since it is possible for M to generate every string in L(G) on its work tape, it can accept
every string in L(G). On the other hand, every string accepted by M is a string that it can
generate using the rules of G. Thus, every string accepted by M is in L(G). It follows that
L(M) = L(G).

This last result gives meaning to the phrase “recursively enumerable”: the languages ac-
cepted by Turing machines (the recursively enumerable languages) are languages whose strings
can be enumerated by a Turing machine (a recursive device). Since an NDTM can be simu-
lated by a DTM, all strings accepted by a TM can be generated deterministically in sequence.

5.5 Universal Turing Machines
A universal Turing machine is a Turing machine that can simulate the behavior of an arbitrary
Turing machine, even the universal Turing machine itself. To give an explicit construction for
such a machine, we show how to encode Turing machines as strings.

c©John E Savage 5.5 Universal Turing Machines 221

Without loss of generality we consider only deterministic Turing machines M = (Γ, β, Q,
δ, s, h) that have a binary tape alphabet Γ = B = {0, 1}. When M is in state p and the
value under the head is a, the next-state function δ : Q × (Γ ∪ {β}) �→ (Q ∪ {h}) ×
(Γ ∪ {β} ∪ {L, R}) takes M to state q and provides output z, where δ(p, a) = (q, z) and
z ∈ Γ ∪ {β} ∪ {L, R}.

We now specify a convention for numbering states that simplifies the description of the
next-state function δ of M .

DEFINITION 5.5.1 The canonical encoding of a Turing machine M , ρ(M), is a string over the
10-letter alphabet Λ = {<, >, [,], #, 0, 1, β, R, L} formed as follows:

(a) Let Q = {q1, q2, . . . , qk} where s = q1. Represent state qi in unary notation by the string
1i. The halt state h is represented by the empty string.

(b) Let (q, z) be the value of the next-state function when M is in state p reading a under
its tape head; that is, δ(p, a) = (q, z). Represent (q, z) by the string < z#q > in which q is
represented in unary and z ∈ {0, 1, β, L, R}. If q = h, the value of the next-state function is
< z# >.

(c) For p ∈ Q, the three values < z′#q′ >, < z′′#q′′ >, and < z′′′#q′′′ > of δ(p, 0),
δ(p, 1), and δ(p, β) are assembled as a triple [< z′#q′ >< z′′#q′′ >< z′′′#q′′′ >]. The
complete description of the next-state function δ is given as a sequence of such triples, one for each
state p ∈ Q.

To illustrate this definition, consider the two TMs whose next-state functions are shown in
Fig. 5.3. The first moves across the non-blank initial string on its tape and halts over the first
blank symbol. The second moves the input string right one position and inserts a blank to its
left. The canonical encoding of the first TM is [< R#1 > < R#1 > < β# >] whereas that
of the second is

[< β#11 > < β#111 > < β# >]
[< R#1111 > < R#1111 > < R#1111 >]
[< R#11111 > < R#11111 > < R#11111 >]
[< 0#11 > < 0#111 > < 0# >]
[< 1#11 > < 1#111 > < 1# >]

It follows that the canonical encodings of TMs are a subset of the strings defined by the
regular expression ([(< {0, 1, β, L, R}#1∗ >)3])∗ which a TM can analyze to insure that for
each state and tape letter there is a valid action.

A universal Turing machine (UTM) U is a Turing machine that is capable of simulating
an arbitrary Turing machine on an arbitrary input word w. The construction of a UTM based
on the simulation of the random-access machine is described in Section 3.8. Here we describe
a direct construction of a UTM.

Let the UTM U have a 20-letter alphabet Λ̂ containing the 10 symbols in Λ plus another
10 symbols that are marked copies of the symbols in Λ. (The marked copies are used to
simulate multiple tracks on a one-track TM.) That is, we define Λ̂ as follows:

Λ̂ = {<, >, [,], #, 0, 1, β, R, L} ∪ {<̂, >̂, [̂,]̂, #̂, 0̂, 1̂, β̂, R̂, L̂}

To simulate the TM M on the input string w, we place M ’s canonical encoding, ρ(M),
on the tape of the UTM U preceded by β and followed by w, as suggested in Fig. 5.10. The

222 Chapter 5 Computability Models of Computation

Unit
Control

β

wρ(M)

Figure 5.10 The initial configuration of the tape of a universal TM that is prepared to simulate
the TM M on input w. The left end-of-tape marker is the blank symbol β.

first letter of w follows the rightmost bracket,], and is marked by replacing it with its marked
equivalent, ŵ1. The current state q of M is identified by replacing the left bracket, [, in q’s

triple by its marked equivalent, [̂. U simulates M by reading the marked input symbol a,
the one that resides under M ’s simulated head, and advancing its own head to the triple to

the right of [̂ that corresponds to a. (Before it moves its head, it replaces [̂ with [.) That is, it
advances its head to the first, second, or third triple associated with the current state depending
on whether a is 0, 1, or β. It then changes < to <̂, moves to the symbol following <̂ and takes
the required action on the simulated tape. If the action requires writing a symbol, it replaces a
with a new marked symbol. If it requires moving M ’s head, the marking on a is removed and
the appropriate adjacent symbol is marked. U returns to <̂ and removes the mark.

The UTM U moves to the next state as follows. It moves its head three places to the
right of <̂ after changing it to <, at which point it is to the right of #, over the first digit
representing the next state. If the symbol in this position is >, the next state is h, the halting
state, and the UTM halts. If the symbol is 1, U replaces it with 1̂ and then moves its head
left to the leftmost instance of [(the leftmost tape cell contains β, an end-of tape marker). It
marks [and returns to 1̂. It replaces 1̂ with 1 and moves its head right one place. If U finds the

symbol 1, it marks it, moves left to [̂, restores it to [and then moves right to the next instance
of [and marks it. It then moves right to 1̂ and repeats this operation. However, if the UTM
finds the symbol >, it has finished updating the current state so it moves right to the marked
tape symbol, at which point it reads the symbol under M ’s head and starts another transition
cycle. The details of this construction are left to the reader. (See Problem 5.15.)

5.6 Encodings of Strings and Turing Machines
Given an alphabet A with an ordering of its letters, strings over this alphabet have an order
known as the standard lexicographical order, which we now define. In this order, strings of
length n − 1 precede strings of length n. Thus, if A = {0, 1, 2}, 201 < 0001. Among the
strings of length n, if a and b are in A and a < b, then all strings beginning with a precede
those beginning with b. For example, if 0 < 1 < 2 in A = {0, 1, 2}, then 022 < 200. If two
strings of length n have the same prefix u, the ordering between them is determined by the

c©John E Savage 5.7 Limits on Language Acceptance 223

order of the next letter. For example, for the alphabet A and the ordering given on its letters,
201021 < 201200.

A simple algorithm produces the strings over an alphabet in lexicographical order. Strings
of length 1 are produced by enumerating the letters from the alphabet in increasing order.
Strings of length n are enumerated by choosing the first letter from the alphabet in increasing
order. The remaining n − 1 letters are generated in lexicographical order by applying this
algorithm recursively on strings of length n− 1.

To prepare for later results, we observe that it is straightforward to test an arbitrary string
over the alphabet Λ given in Definition 5.5.1 to determine if it is a canonical description ρ(M)
of a Turing machine M . Each must be contained in ([(< {0, 1, β, L, R}#1∗ >)3])∗ and have
a transition for each state and tape letter. If a putative encoding is not canonical, we associate
with it the two-state null TM Tnull with next-state function satisfying δ(s, a) = (h, a) for all
tape letters a. This encoding associates a Turing machine with each string over the alphabet Λ.

We now show how to identify the jth Turing machine, Mj . Given an order to the
symbols in Λ, strings over this alphabet are generated in lexicographical order. We define the
null TM to be the zeroth TM. Each string over Λ that is not a canonical encoding is associated
with this machine. The first TM is the one described by the lexicographically first string over
Λ that is a canonical encoding. The second TM is described by the second canonical encoding,
etc. Not only does a TM determine which string is a canonical encoding, but when combined
with an algorithm to generate strings in lexicographical order, this procedure also assigns a
Turing machine to each string and allows the jth Turing machine to be found.

Observe that there is no loss in generality in assuming that the encodings of Turing ma-
chines are binary strings. We need only create a mapping from the letters in the alphabet Λ
to binary strings. Since it may be necessary to use marked letters, we can assume that the 20
strings in Λ̂ are available and are encoded into 5-bit binary strings. This allows us to view
encodings of Turing machines as binary strings but to speak of the encodings in terms of the
letters in the alphabet Λ.

5.7 Limits on Language Acceptance
A language L that is decidable (also called recursive) has an algorithm, a Turing machine
that halts on all inputs and accepts just those strings in L. A language for which there is a
Turing machine that accepts just those strings in L, possibly not halting on strings not in L,
is recursively enumerable. A language that is recursively enumerable but not decidable is
unsolvable.

We begin by describing some decidable languages and then exhibit a language, L1, that
is not recursively enumerable (no Turing machine exists to accepts strings in it) but whose
complement, L2, is recursively enumerable but not decidable; that is, L2 is unsolvable. We use
the language L2 to show that other languages, including the halting problem, are unsolvable.

5.7.1 Decidable Languages
Our first decidable problem is the language of pairs of regular expressions and strings such that
the regular expression describes a language containing the corresponding string:

LRX = {R, w | w is in the language described by the regular expression R}

224 Chapter 5 Computability Models of Computation

THEOREM 5.7.1 The language LRX is decidable.

Proof To decide on a string R, w, use the method of Theorem 4.4.1 to construct a NFSM
M1 that accepts the language described by R. Then invoke the method of Theorem 4.2.1
to construct a DFSM M2 accepting the same language as M1. The string w is given to M2,
which accepts it if R can generate it and rejects it otherwise. This procedure decides LRX

because it halts on all strings R, w, whether in LRX or not.

As a second example, we show that finite-state machines that recognize empty languages
are decidable. Here an FSM encoded as Turing machine reads one input from the tape per
step and makes a state transition, halting when it reaches the blank letter.

THEOREM 5.7.2 The language L = {ρ(M) | M is a DFSM and L(M) = ∅} is decidable.

Proof L(M) is not empty if there is some string w it can accept. To determine if there
is such a string, we use a TM M ′ that executes a breadth-first search on the graph of the
DFSM M that is provided as input to M ′. M ′ first marks the initial state of M and then
repeatedly marks any state that has not been marked previously and can be reached from a
marked state until no additional states can be marked. This process terminates because M
has a finite number of states. Finally, M ′ checks to see if there is a marked accepting state
that can be reached from the initial state, rejecting the input ρ(M) if so and accepting it if
not.

The third language describes context-free grammars generating languages that are empty.
Here we encode the definition of a context-free grammar G as a string ρ(G) over a small
alphabet.

THEOREM 5.7.3 The language L = {ρ(G) | G is a CFG and L(G) = ∅} is decidable.

Proof We design a TM M ′ that, when given as input a description ρ(G) of a CFG G,
first marks all the terminals of the grammar and then scans all the rules of the grammar,
marking non-terminal symbols that can be replaced by some marked symbols. (If there is a
non-terminal A that it is not marked and there is a rule A → BCD in which B, C, D have
already been marked, then the TM also marks A.) We repeat this procedure until no new
non-terminals can be marked. This process terminates because the grammar G has a finite
number of non-terminals. If S is not marked, we accept ρ(G). Otherwise, we reject ρ(G)
because it is possible to generate a string of terminals from S.

5.7.2 A Language That Is Not Recursively Enumerable
Not unexpectedly, there are well-defined languages that are not recursively enumerable, as we
show in this section. We also show that the complement of a decidable language is decidable.
This allows us to exhibit a language that is recursively enumerable but undecidable.

Consider the language L1 defined below. It contains the ith binary input string if it is not
accepted by the ith Turing machine.

L1 = {wi |wi is not accepted by Mi}

THEOREM 5.7.4 The language L1 is not recursively enumerable; that is, no Turing machine exists
that can accept all the strings in this language.

c©John E Savage 5.7 Limits on Language Acceptance 225

...

...

...

...

...

...

...

......

...

...

w2

w1

wk

accept

ρ(M2)

reject

reject

?

ρ(Mk)

accept

ρ(M1)

reject

reject

accept

accept

Figure 5.11 A table whose rows and columns are indexed by input strings and Turing ma-
chines, respectively. Here wi is the ith input string and ρ(Mj) is the encoding of the jth Turing
machine. The entry in row i, column j indicates whether or not Mj accepts wi. The language
L1 consists of input strings wj for which the entry in the jth row and jth column is reject.

Proof We use proof by contradiction; that is, we assume the existence of a TM Mk that
accepts L1. If wk is in L1, then Mk accepts it, contradicting the definition of L1. This
implies that wk is not in L1. On the other hand, if wk is not in L1, then it is not accepted
by Mk. It follows from the definition of L1 that wk is in L1. Thus, wk is in L1 if and only
if it is not in L1. We have a contradiction and no Turing machine accepts L1.

This proof uses diagonalization. (See Fig. 5.11.) In effect, we construct an infinite two-
dimensional matrix whose rows are indexed by input words and whose columns are indexed
by Turing machines. The entry in row i and column j of this matrix specifies whether or not
input word wi is accepted by Mj . The language L1 contains those words wj that Mj rejects,
that is, it contains row indices (words) for which the word “reject” is found on the diagonal.
If we assume that some TM, Mk, accepts L1, we have a problem because we cannot decide
whether or not wk is in L1. Diagonalization is effective in ruling out the possibility of solving
a computational problem but has limited usefulness on problems of bounded size.

5.7.3 Recursively Enumerable but Not Decidable Languages
We show the existence of a language that is recursively enumerable but not decidable. Our
approach is to show that the complement of a recursive language is recursive and then exhibit
a recursively enumerable language L2 whose complement L1 is not recursively enumerable:

L2 = {wi |wi is accepted by Mi}

THEOREM 5.7.5 The complement of a decidable language is decidable.

Proof Let L be a recursive language accepted by a Turing machine M1 that halts on all
input strings. Relabel the accepting halt state of M1 as non-accepting and all non-accepting
halt states as accepting. This produces a machine M2 that enters an accepting halt state only
when M1 enters a non-accepting halt state and vice versa. We convert this non-standard
machine to standard form (having one accepting halt state) by adding a new accepting halt

226 Chapter 5 Computability Models of Computation

state and making a transition to it from all accepting halt states. This new machine halts on
all inputs and accepts the complement of L.

THEOREM 5.7.6 The language L2 is recursively enumerable but not decidable.

Proof To establish the desired result it suffices to exhibit a Turing machine M that accepts
each string in L2, because the complement L2 = L1, which is not recursively enumerable,
as shown above.

Given a string x in B∗, let M enumerate the input strings over the alphabet B of L2

until it finds x. Let x be the ith string where i is recorded in binary on one of M ’s tapes.
The strings over the alphabet Λ used for canonical encodings of Turing machines are enu-
merated and tested to determine whether or not they are canonical encodings, as described
in Section 5.6. When the encoding ρ(Mi) of the ith Turing machine is discovered, Mi is
simulated with a universal Turing machine on the input string x. This universal machine
will halt and accept the string x if it is in L2. Thus, L2 is recursively enumerable.

5.8 Reducibility and Unsolvability
In this section we show that there are many languages that are unsolvable (undecidable). In the
previous section we showed that the language L2 is unsolvable. To show that a new problem
is unsolvable we use reducibility: we assume an algorithm A exists for a new language L and
then show that we can use A to obtain an algorithm for a language previously shown to be
unsolvable, thereby contradicting the assumption that algorithm A exists.

We begin by introducing reducibility and then give examples of unsolvable languages.
Many interesting languages are unsolvable.

5.8.1 Reducibility
A new language Lnew can often be shown unsolvable by assuming it is solvable and then
showing this implies that an older language Lold is solvable, where Lold has been previously
shown to be unsolvable. Since this contradicts the facts, the new language cannot be solvable.
This is one application of reducibility. The formal definition of reducibility is given below
and illustrated by Fig. 5.12.

DEFINITION 5.8.1 The language L1 is reducible to the language L2 if there is an algorithm
computing a total function f : C∗ �→ D∗ that translates each string w over the alphabet C of L1

into a string z = f(w) over the alphabet D of L2 such that w ∈ L1 if and only if z ∈ L2.

In this definition, testing for membership of a string w in L1 is reduced to testing for
membership of a string z in L2, where the latter problem is presumably a previously solved
problem. It is important to note that the latter problem is no easier than the former, even
though the use of the word “reduce” suggests that it is. Rather, reducibility establishes a link
between two problems with the expectation that the properties of one can be used to deduce
properties of the other. For example, reducibility is used to identify NP-complete problems.
(See Sections 3.9.3 and 8.7.)

c©John E Savage 5.8 Reducibility and Unsolvability 227

φ2f

φ1(x) = φ2(f(x))x

φ1

Figure 5.12 The characteristic function φi of Li, i = 1, 2 has value 1 on strings in Li and
0 otherwise. Because the language L1 is reducible to the language L2, there is a function f such
that for all x, φ1(x) = φ2(f(x)).

Reducibility is a fundamental idea that is formally introduced in Section 2.4 and used
throughout this book. Reductions of the type defined above are known as many-to-one re-
ductions. (See Section 8.7 for more on this subject.)

The following lemma is a tool to show that problems are unsolvable. We use the same
mechanism in Chapter 8 to classify languages by their use of time, space and other computa-
tional resources.

LEMMA 5.8.1 Let L1 be reducible to L2. If L2 is decidable, then L1 is decidable. If L1 is
unsolvable and L2 is recursively enumerable, L2 is also unsolvable.

Proof Let T be a Turing machine implementing the algorithm that translates strings over
the alphabet of L1 to strings over the alphabet of L2. If L2 is decidable, there is a halting
Turing machine M2 that accepts it. A multi-tape Turing machine M1 that decides L1 can
be constructed as follows: On input string w, M1 invokes T to generate the string z, which
it then passes to M2. If M2 accepts z, M1 accepts w. If M2 rejects it, so does M1. Thus,
M1 decides L1.

Suppose now that L1 is unsolvable. Assuming that L2 is decidable, from the above con-
struction, L1 is decidable, contradicting this assumption. Thus, L2 cannot be decidable.

The power of this lemma will be apparent in the next section.

5.8.2 Unsolvable Problems
In this section we examine six representative unsolvable problems. They range from the classi-
cal halting problem to Rice’s theorem.

We begin by considering the halting problem for Turing machines. The problem is to
determine for an arbitrary TM M and an arbitrary input string x whether M with input x
halts or not. We characterize this problem by the language LH shown below. We show it is
unsolvable, that is, LH is recursively enumerable but not decidable. No Turing machine exists
to decide this language.

LH = {ρ(M), w | M halts on input w}

228 Chapter 5 Computability Models of Computation

THEOREM 5.8.1 The language LH is recursively enumerable but not decidable.

Proof To show that LH is recursively enumerable, pass the encoding ρ(M) of the TM M
and the input string w to the universal Turing machine U of Section 5.5. This machine
simulates M and halts on the input w if and only if M halts on w. Thus, LH is recursively
enumerable.

To show that LH is undecidable, we assume that LH is decidable by a Turing machine
MH and show a contradiction. Using MH we construct a Turing machine M∗ that decides
the language L∗ = {ρ(M), w | w is not accepted by M}. M∗ simulates MH on ρ(M), w
to determine whether M halts or not on w. If MH says that M does not halt, M∗ accepts
w. If MH says that M does halt, M∗ simulates M on input string w and rejects w if M
accepts it and accepts w if M rejects it. Thus, if LH is decidable, so is L∗.

The procedures described in Section 5.6 can be used to design a Turing machine M�

that determines for which integer i the input string w is lexicographically the ith string, wi,
and also produce the description ρ(Mi) of the ith Turing machine Mi.

To decide L1 we use M� to translate an input string w = wi to the string ρ(Mi), wi.
Given the presumed existence of M∗, we can decide L1 by deciding L∗. However, by
Theorem 5.7.4, L1 is not decidable (it is not even recursively enumerable). Thus, L∗ is not
decidable which implies that LH is also not decidable.

The second unsolvable problem we consider is the empty tape acceptance problem: given
a Turing machine M , we ask if we can tell whether it accepts the empty string. We reduce the
halting problem to it. (See Fig. 5.13.)

LET = {ρ(M) | L(M) contains the empty string}

THEOREM 5.8.2 The language LET is not decidable.

Proof To show that LET is not decidable, we assume that it is and derive a contradiction.
The contradiction is produced by assuming the existence of a TM MET that decides LET

and then showing that this implies the existence of a TM MH that decides LH.
Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM

MH constructs a TM T (M , w) that writes w on the tape when the tape is empty and
simulates M on w, halting if M halts. Thus, T (M , w) accepts the empty tape if M halts
on w. MH decides LH by constructing an encoding of T (M , w) and passing it to MET.
(See Fig. 5.13.) The language accepted by T (M , w) includes the empty string if and only

“Yes”Decide
Empty String

“No”
Decide Halt

T (M , w)

w

ρ(M)

Figure 5.13 Schematic representation of the reduction from LH to LET.

c©John E Savage 5.8 Reducibility and Unsolvability 229

if M halts on w. Thus, MH decides the halting problem, which as shown earlier cannot be
decided.

The third unsolvable problem we consider is the empty set acceptance problem: Given a
Turing machine, we ask if we can tell if the language it accepts is empty. We reduce the halting
problem to this language.

LEL = {ρ(M) | L(M) = ∅}

THEOREM 5.8.3 The language LEL is not decidable.

Proof We reduce LH to LEL, assume that LEL is decidable by a TM MEL, and then show
that a TM MH exists that decides LH , thereby establishing a contradiction.

Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM
MH constructs a TM T (M , w) that accepts the string placed on its tape if it is w and M
halts on it; otherwise it enters an infinite loop. MH can implement T (M , w) by entering an
infinite loop if its input string is not w and otherwise simulating M on w with a universal
Turing machine.

It follows that L(T (M , w)) is empty if M does not halt on w and contains w if it does
halt. Under the assumption that MEL decides LEL, MH can decide LH by constructing
T (M , w) and passing it to MEL, which accepts ρ(T (M , w)) if M does not halt on w and
rejects it if M does halt. Thus, MH decides LH , a contradiction.

The fourth problem we consider is the regular machine recognition problem. In this
case we ask if a Turing machine exists that can decide from the description of an arbitrary
Turing machine M whether the language accepted by M is regular or not:

LR = {ρ(M) | L(M) is regular}

THEOREM 5.8.4 The language LR is not decidable.

Proof We assume that a TM MR exists to decide LR and show that this implies the exis-
tence of a TM MH that decides LH , a contradiction. Thus, MR cannot exist.

Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM
MH constructs a TM T (M , w) that scans its tape. If it finds a string in {0n1n | n ≥ 0}, it
accepts it; if not, T (M , w) erases the tape and simulates M on w, halting only if M halts
on w. Thus, T (M , w) accepts all strings in B∗ if M halts on w but accepts only strings
in {0n1n | n ≥ 0} otherwise. Thus, T (M , w) accepts the regular language B∗ if M halts
on w and accepts the context-free language {0n1n | n ≥ 0} otherwise. Thus, MH can be
implemented by constructing T (M , w) and passing it to MR, which is presumed to decide
LR.

The fifth problem generalizes the above result and is known as Rice’s theorem. It says that
no algorithm exists to determine from the description of a TM whether or not the language it
accepts falls into any proper subset of the recursively enumerable languages.

Let RE be the set of recursively enumerable languages over B. For each set C that is a
proper subset of RE, define the following language:

LC = {ρ(M) | L(M) ∈ C}

Rice’s theorem says that, for all C such that C �= ∅ and C ⊂ RE, the language LC defined above
is undecidable.

230 Chapter 5 Computability Models of Computation

THEOREM 5.8.5 (Rice) Let C ⊂ RE, C �= ∅. The language LC is not decidable.

Proof To prove that LC is not decidable, we assume that it is decidable by the TM MC and
show that this implies the existence of a TM MH that decides LH , which has been shown
previously not to exist. Thus, MC cannot exist.

We consider two cases, the first in which B∗ is in not C and the second in which it is in
C. In the first case, let L be a language in C. In the second, let L be a language in RE − C.
Since C is a proper subset of RE and not empty, there is always a language L such that one
of L and B∗ is in C and the other is in its complement RE − C.

Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM
MH constructs a (four-tape) TM T (M , w) that simulates two machines in parallel (by al-
ternatively simulating one step of each machine). The first, M0, uses a phrase-structure
grammar for L to see if T (M , w)’s input string x is in L; it holds x on one tape, holds the
current choice inputs for the NDTM ML of Theorem 5.4.2 on a second, and uses a third
tape for the deterministic simulation of ML. (See the comments following Theorem 5.4.2.)
T (M , w) halts if M0 generates x. The second TM writes w on the fourth tape and sim-
ulates M on it. T (M , w) halts if M halts on w. Thus, T (M , w) accepts the regular
language B∗ if M halts on w and accepts L otherwise. Thus, MH can be implemented by
constructing T (M , w) and passing it to MC , which is presumed to decide LC .

Our last problem is the self-terminating machine problem. The question addressed is
whether a Turing machine M given a description ρ(M) of itself as input will halt or not. The
problem is defined by the following language. We give a direct proof that it is undecidable;
that is, we do not reduce some other problem to it.

LST = {ρ(M) | M is self-terminating}

THEOREM 5.8.6 The language LST is recursively enumerable but not decidable.

Proof To show that LST is recursively enumerable we exhibit a TM T that accepts strings
in LST. T makes a copy of its input string ρ(M) and simulates M on ρ(M) by passing
(ρ(M), ρ(M)) to a universal TM that halts and accepts ρ(M) if it is in LST.

To show that LST is not decidable, we assume that it is and arrive at a contradiction.
Let MST decide LST. We design a TM M∗ that does the following: M∗ simulates MST on
the input string w. If MST halts and accepts w, M∗ enters an infinite loop. If MST halts
and rejects w, M∗ accepts w. (MST halts on all inputs.)

The new machine M∗ is either self-terminating or it is not. If M∗ is self-terminating,
then on input ρ(M∗), which is an encoding of itself, M∗ enters an infinite loop because
MST detects that it is self-terminating. Thus, M∗ is not self-terminating. On the other
hand, if M∗ is not self-terminating, on input ρ(M∗) it halts and accepts ρ(M∗) because
MST detects that it is not self-terminating and enters the rejecting halt state. But this con-
tradicts the assumption that M∗ is not self-terminating. Since we arrive at a contradiction
in both cases, the assumption that LST is decidable must be false.

5.9 Functions Computed by Turing Machines
In this section we introduce the partial recursive functions, a family of functions in which
each function is constructed from three basic function types, zero, successor, and projection,

c©John E Savage 5.9 Functions Computed by Turing Machines 231

and three operations on functions, composition, primitive recursion, and minimalization. Al-
though we do not have the space to show this, the functions computed by Turing machines are
exactly the partial recursive functions. In this section, we show one half of this result, namely,
that every partial recursive function can be encoded as a RAM program (see Section 3.4.3) that
can be executed by Turing machines.

We begin with the primitive recursive functions then describe the partial recursive func-
tions. We then show that partial recursive functions can be realized by RAM programs.

5.9.1 Primitive Recursive Functions
Let� = {0, 1, 2, 3, . . .} be the set of non-negative integers. The partial recursive functions,
f : �n �→ �

m, map n-tuples of integers over� to m-tuples of integers in� for arbitrary
n and m. Partial recursive functions may be partial functions. They are constructed from
three base function types, the successor function S : � �→ �, where S(x) = x + 1,
the predecessor function P : � �→ �, where P (x) returns either 0 if x = 0 or the
integer one less than x, and the projection functions Un

j : �n �→ �, 1 ≤ j ≤ n, where
Un

j (x1, x2, . . . , xn) = xj . These basic functions are combined using a finite number of
applications of function composition, primitive recursion, and minimalization.

Function composition is studied in Chapters 2 and 6. A function f : �n �→ � of n
arguments is defined by the composition of a function g : �m �→ � of m arguments with
m functions f1 : �n �→ �, f2 : �n �→ �, . . . , fm : �n �→ �, each of n arguments, as
follows:

f(x1, x2, . . . , xn) = g(f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn))

A function f :�n+1 �→� of n + 1 arguments is defined by primitive recursion from a
function g :�n �→� of n arguments and a function h :�n+2 �→� on n + 2 arguments
if and only if for all values of x1, x2, . . . , xn and y in�:

f(x1, x2, . . . , xn, 0) = g(x1, x2, . . . , xn)
f(x1, x2, . . . , xn, y + 1) = h(x1, x2, . . . , xn, y, f(x1, x2, . . . , xn, y))

In the above definition if n = 0, we adopt the convention that the value of f is a constant.
Thus, f(x1, x2, . . . , xn, k) is defined recursively in terms of h and itself with k replaced by
k − 1 unless k = 0.

DEFINITION 5.9.1 The class of primitive recursive functions is the smallest class of functions
that contains the base functions and is closed under composition and primitive recursion.

Many functions of interest are primitive recursive. Among these is the zero function
Z :� �→�, where Z(x) = 0. It is defined by primitive recursion by Z(0) = 0 and

Z(x + 1) = U 2
2 (x, Z(x))

Other important primitive recursive functions are addition, subtraction, multiplication, and
division, as we now show. Let fadd : �2 �→ �, fsub : �2 �→ �, fmult : �2 �→ �, and
fdiv :�2 �→� denote integer addition, subtraction, multiplication, and division.

For the integer addition function fadd introduce the function h1 : �3 �→ � on three
arguments, where h1 is defined below in terms of the successor and projection functions:

h1(x1, x2, x3) = S(U 3
3 (x1, x2, x3))

232 Chapter 5 Computability Models of Computation

Then, h1(x1, x2, x3) = x3 + 1. Now define fadd(x, y) using primitive recursion, as follows:

fadd(x, 0) = U 1
1 (x)

fadd(x, y + 1) = h1(x, y, fadd(x, y))

The role of h is to carry the values of x and y from one recursive invocation to another. To
determine the value of fadd(x, y) from this definition, if y = 0, fadd(x, y) = x. If y > 0,
fadd(x, y) = h1(x, y − 1, fadd(x, y − 1)). This in turn causes other recursive invocations of
fadd. The infix notation + is used for fadd; that is, fadd(x, y) = x + y.

Because the primitive recursive functions are defined over the non-negative integers, the
subtraction function fsub(x, y) must return the value 0 if y is larger than x, an operation
called proper subtraction. (Its infix notation is · and we write fsub(x, y) = x · y.) It is
defined as follows:

fsub(x, 0) = U 1
1 (x)

fsub(x, y + 1) = U 3
3 (x, y, P (fsub(x, y)))

The value of fsub(x, y) is x if y = 0 and is the predecessor of fsub(x, y − 1) otherwise.
The integer multiplication function, fmult, is defined in terms of the function h2 :

�
3 �→�:

h2(x1, x2, x3) = fadd(U 3
1 (x1, x2, x3), U 3

3 (x1, x2, x3))

Using primitive recursion, we have

fmult(x, 0) = Z(x)
fmult(x, y + 1) = h2(x, y, fmult(x, y))

The value of fmult(x, y) is zero if y = 0 and otherwise is the result of adding x to itself y
times. To see this, note that the value of h2 is the sum of its first and third arguments, x and
fmult(x, y). On each invocation of primitive recursion the value of y is decremented by 1
until the value 0 is reached. The definition of the division function is left as Problem 5.26.

Define the function fsign : � �→ � so that fsign(0) = 0 and fsign(x + 1) = 1. To
show that fsign is primitive recursive it suffices to invoke the projection operator formally. A
function with value 0 or 1 is called a predicate.

5.9.2 Partial Recursive Functions
The partial recursive functions are obtained by extending the primitive recursive functions to
include minimalization. Minimalization defines a function f : �n �→ � in terms of a
second function g : �n+1 �→ � by letting f(x) be the smallest integer y ∈ � such that
g(x, y) = 0 and g(x, z) is defined for all z ≤ y, z ∈ �. Note that if g(x, z) is not defined
for all z ≤ y, then f(x) is not defined. Thus, minimalization can result in partial functions.

DEFINITION 5.9.2 The set of partial recursive functions is the smallest set of functions contain-
ing the base functions that is closed under composition, primitive recursion, and minimalization.

A partial recursive function that is defined for all points in its domain is called a recursive
function.

c©John E Savage Problems 233

5.9.3 Partial Recursive Functions are RAM-Computable
There is a nice correspondence between RAM programs and partial recursive functions. The
straight-line programs result from applying composition to the base functions. Adding primi-
tive recursion corresponds to adding for-loops whereas adding minimilization corresponds to
adding while loops.

It is not difficult to see that every partial recursive function can be described by a program
in the RAM assembly language of Section 3.4.3. For example, to compute the zero function,
Z(x), it suffices for a RAM program to clear register R1. To compute the successor function,
S(x), it suffices to increment register R1. Similarly, to compute the projection function Un

j ,
one need only load register R1 with the contents of register Rj . Function composition it is
straightforward: one need only insure that the functions fj , 1 ≤ j ≤ m, deposit their values
in registers that are accessed by g. Similar constructions are possible for primitive recursion
and minimalization. (See Problems 5.29, 5.30, and 5.31.)

. .
Problems
THE STANDARD TURING MACHINE MODEL

5.1 Show that the standard Turing machine model of Section 5.1 and the model of Sec-
tion 3.7 are equivalent in that one can simulate the other.

PROGRAMMING THE TURING MACHINE

5.2 Describe a Turing machine that generates the binary strings in lexicographical order.
The first few strings in this ordering are 0, 1, 00, 01, 10, 11, 000, 001,

5.3 Describe a Turing machine recognizing {xiyjxk | i, j, k ≥ 1 and k = i · j}.

5.4 Describe a Turing machine that computes the function whose value on input aibj is
ck, where k = i · j.

5.5 Describe a Turing machine that accepts the string (u, v) if u is a substring of v.

5.6 The element distinctness language, Led, consists of binary strings no two of which
are the same; that is, Led = {2w12 . . . 2wk2 | wi ∈ B∗ and wi �= wj , for i �= j}.
Describe a Turing machine that accepts this language.

EXTENSIONS TO THE STANDARD TURING MACHINE MODEL

5.7 Given a Turing machine with a double-ended tape, show how it can be simulated by
one with a single-ended tape.

5.8 Show equivalence between the standard Turing machine and the one-tape double-
headed Turing machine with two heads that can move independently on its one tape.

5.9 Show that a pushdown automaton with two pushdown tapes is equivalent to a Turing
machine.

5.10 Figure 5.14 shows a representation of a Turing machine with a two-dimensional tape
whose head can move one step vertically or horizontally. Give a complete definition of
a two-dimensional TM and sketch a proof that it can be simulated by a standard TM.

234 Chapter 5 Computability Models of Computation

Control
Unit

Figure 5.14 A schematic representation of a two-dimensional Turing machine.

5.11 By analogy with the construction given in Section 3.9.7, show that every deterministic
T-step multi-tape Turing machine computation can be simulated on a two-tape Turing
machine in O(T log T) steps.

PHRASE-STRUCTURE LANGUAGES AND TURING MACHINES

5.12 Give a detailed design of a Turing machine recognizing {anbncn |n ≥ 1}.

5.13 Use the method of Theorem 5.4.1 to construct a phrase-structure grammar generating
{anbncn |n ≥ 1}.

5.14 Design a Turing machine recognizing the language {02i | i ≥ 1}.

UNIVERSAL TURING MACHINES

5.15 Using the description of Section 5.5, give a complete description of a universal Turing
machine.

5.16 Construct a universal TM that has only two non-accepting states.

DECIDABLE PROBLEMS

5.17 Show that the following languages are decidable:

a) L = {ρ(M), w | M is a DFSM that accepts the input string w}
b) L = {ρ(M) | M is a DFSM and L(M) is infinite}

5.18 The symmetric difference between sets A and B is defined by (A − B) ∪ (B − A),
where A − B = A ∩ B. Use the symmetric difference to show that the following
language is decidable:

LEQ FSM = {ρ(M1), ρ(M2) | M1 and M2 are FSMs recognizing the same language}

c©John E Savage Problems 235

5.19 Show that the following language is decidable:

L = {ρ(G), w | ρ(G) encodes a CFG G that generates w}

Hint: How long is a derivation of w if G is in Chomsky normal form?

5.20 Show that the following language is decidable:

L = {ρ(G) | ρ(G) encodes a CFG G for which L(G) �= ∅}

5.21 Let L1, L2 ∈ P where P is the class of polynomial-time problems (see Definition 3.7.2).
Show that the following statements hold:

a) L1 ∪ L2 ∈ P
b) L1L2 ∈ P, where L1L2 is the concatenation of L1 and L2

c) L1 ∈ P

5.22 Let L1 ∈ P. Show that L∗
1 ∈ P.

Hint: Try using dynamic programming, the algorithmic concept illustrated by the
parsing algorithm of Theorem 4.11.2.

UNSOLVABLE PROBLEMS

5.23 Show that the problem of determining whether an arbitrary TM starting with a blank
tape will ever halt is unsolvable.

5.24 Show that the following language is undecidable:

LEQ = {ρ(M1), ρ(M2) | L(M1) = L(M2)}

5.25 Determine which of the following problems are solvable and unsolvable. Defend your
conclusions.

a) {ρ(M), w, p | M reaches state p on input w from its initial state}
b) {ρ(M), p | there is a configuration [u1 . . . umqv1 . . . vn] yielding a configuration

containing state p}
c) {ρ(M), a | M writes character a when started on the empty tape}
d) {ρ(M) | M writes a non-blank character when started on the empty tape}
e) {ρ(M), w | on input w M moves its head to the left}

FUNCTIONS COMPUTED BY TURING MACHINES

5.26 Define the integer division function fdiv :�2 �→� using primitive recursion.

5.27 Show that the function fremain : �2 �→ � that provides the remainder of x after
division by y is a primitive recursive function.

5.28 Show that the factorial function x! is primitive recursive.

5.29 Write a RAM program (see Section 3.4.3) to realize the composition operation.

5.30 Write a RAM program (see Section 3.4.3) to realize the primitive recursion operation.

5.31 Write a RAM program (see Section 3.4.3) to realize the minimalization operation.

236 Chapter 5 Computability Models of Computation

Chapter Notes
Alan Turing introduced the Turing machine, gave an example of a universal machine and
demonstrated the unsolvability of the halting problem in [338]. A similar model was inde-
pendently developed by Post [255]. Chomsky [69] demonstrated the equivalence of phrase-
structure languages. Rice’s theorem is presented in [280].

Church gave a formal model of computation in [72]. The equivalence between the partial
recursive functions and the Turing computable functions was shown by Kleene [168].

For a more extensive introduction to Turing machines, see the books by Hopcroft and
Ullman [141] and Lewis and Papadimitriou [200].

C H A P T E R

Algebraic and Combinatorial
Circuits

Algebraic circuits combine operations drawn from an algebraic system. In this chapter we de-
velop algebraic and combinatorial circuits for a variety of generally non-Boolean problems, in-
cluding multiplication and inversion of matrices, convolution, the discrete Fourier transform,
and sorting networks. These problems are used primarily to illustrate concepts developed in
later chapters, so that this chapter may be used for reference when studying those chapters.

For each of the problems examined here the natural algorithms are straight-line and the
graphs are directed and acyclic; that is, they are circuits. Not only are straight-line algorithms
the ones typically used for these problems, but in some cases they are the best possible.

The quality of the circuits developed here is measured by circuit size, the number of circuit
operations, and circuit depth, the length of the longest path between input and output ver-
tices. Circuit size is a measure of the work necessary to execute the corresponding straight-line
program. Circuit depth is a measure of the minimal time needed for a problem on a parallel
machine.

For some problems, such as matrix inversion, we give serial (large-depth) as well as par-
allel (small-depth) circuits. The parallel circuits generally require considerably more circuit
elements than the corresponding serial circuits.

237

238 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.1 Straight-Line Programs
Straight-line programs (SLP) are defined in Section 2.2. Each SLP step is an input, compu-
tation, or output step. The notation (s READ x) indicates that the sth step is an input step on
which the value x is read. The notation (s OUTPUT i) indicates that the result of the ith step
is to be provided as output. Finally, the notation (s OP i . . . k) indicates that the sth step
computes the value of the operator OP on the results generated at steps i, . . . , k. We require
that s > i, . . . , k so that the result produced at step s depends only on the results produced
at earlier steps. In this chapter we consider SLPs in which the inputs and operators have values
over a set A that is generally not binary. Thus, the circuits considered here are generally not
logic circuits. The basis Ω for an SLP is the set of operators it uses. A circuit is the graph of a
straight-line program. By its nature this graph is directed and acyclic.

An example of a straight-line program that computes the fast Fourier transform (FFT)
on four inputs is given below. (The FFT is introduced in Section 6.7.3.) Here the function
f+, α(a, b) = a + bα where α is a power of a constant ω that is a principal nth root of unity of
a commutative ring R. (See Section 6.7.1.) The arguments a and b are variables with values
in R.

(1 READ a0)

(2 READ a2)

(3 READ a1)

(4 READ a3)

(5 f+, ω0 1 2)
(6 f+, ω2 1 2)

(7 f+, ω0 3 4)
(8 f+, ω2 3 4)
(9 f+, ω0 5 7)
(10 f+, ω1 6 8)
(11 f+, ω2 5 7)
(12 f+, ω3 6 8)

The graph of the above SLP is the familiar FFT butterfly graph shown in Fig. 6.1. As-
signment statements are associated with vertices of in-degree zero and operator statements are
associated with other vertices. We attach the name of the operator or variable associated with
each step to the corresponding vertex in the graph. We often suppress the unique indices of
vertices, although they are retained in Fig. 6.1.

f+, ω3f+, ω2f+, ω1f+, ω0

9 10 11 12

1 2 3 4

a2a0 a1 a3

f+, ω2f+, ω0f+, ω2f+, ω0

86 75

Figure 6.1 The FFT butterfly graph on four inputs.

c©John E Savage 6.2 Mathematical Preliminaries 239

The function gs is associated with the sth step. The identity function with value v is
associated with the assignment statement (r READ v). Associated with the computation step
(s OP i . . . k) is the function gs = OP(gi, . . . , gk), where gi, . . . , gk are the functions
computed at the steps on which the sth step depends. If a straight-line program has n inputs
and m outputs, it computes a function f : An �→ Am. If s1, s2, . . ., sm are the output steps,
then f = (gs1 , gs2 , . . . , gsm

). The function computed by a circuit is the function computed
by the corresponding straight-line program.

In the example above, g11 = f+, ω2(g5, g7) = g5 + g7ω
2, where g5 = f+, ω0(g1, g2) =

a0 + a2ω
0 = a0 + a2 and g7 = f+, ω0(g3, g4) = a1 + a3ω

0 = a1 + a3. Thus,

g11 = a0 + a1ω
2 + a2 + a3ω

2

which is the value of the polynomial p(x) at x = ω2 when ω4 = 1:

p(x) = a0 + a1x + a2x
2 + a3x

3

The size of a circuit is the number of operator statements it contains. Its depth is the
length of (number of edges on) the longest path from an input to an output vertex. The basis
Ω is the set of operators used in the circuit. The size and depth of the smallest and shallowest
circuits for a function f over the basis Ω are denoted CΩ(f) and DΩ(f), respectively. In this
chapter we derive upper bounds on the size and depth of circuits.

6.2 Mathematical Preliminaries
In this section we introduce rings, fields and matrices, concepts widely used in this chapter.

6.2.1 Rings and Fields
Rings and fields are algebraic systems that consists of a set with two special elements, 0 and 1,
and two operations called addition and multiplication that obey a small set of rules.

DEFINITION 6.2.1 A ring R is a five-tuple (R, +, ∗, 0, 1), where R is closed under addition
+ and multiplication ∗ (that is, + : R2 �→ R and ∗ : R2 �→ R) and + and ∗ are associative
(for all a, b, c ∈ R, a + (b + c) = (a + b) + c and a ∗ (b ∗ c) = (a ∗ b) ∗ c). Also, 0, 1 ∈ R,
where 0 is the identity under addition (for all a ∈ R, a+0 = 0+a = a) and 1 is the identity
under multiplication (for all a ∈ R, a ∗ 1 = 1 ∗ a = a). In addition, 0 is an annihilator
under multiplication (for all a ∈ R, a ∗ 0 = 0 ∗ a = 0). Every element of R has an additive
inverse (for all a ∈ R, there exists an element −a such that (−a)+a = a+(−a) = 0). Finally,
addition is commutative (for all a, b ∈ R, a + b = b + a) and multiplication distributes over
addition (for all a, b, c ∈ R, a∗ (b+ c) = (a∗ b)+(a∗ c) and (b+ c)∗a = (b∗a)+(c∗a)).
A ring is commutative if multiplication is commutative (for all a, b ∈ R, a ∗ b = b ∗ a). A field
is a commutative ring in which each element other than 0 has a multiplicative inverse (for all
a ∈ R, a �= 0, there exists an element a−1 such that a ∗ a−1 = 1).

Let � be the set of positive and non-negative integers and let + and ∗ denote integer
addition and multiplication. Then (�, +, ∗, 0, 1) is a commutative ring. (See Problem 6.1.)
Similarly, the system ({0, 1}, +, ∗, 0, 1), where + is addition modulo 2 (for all a, b ∈ {0, 1},
a + b is the remainder after division by 2 or the EXCLUSIVE OR operation) and ∗ is the AND

240 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

operation, is a commutative ring, as the reader can show. A third commutative ring is the
integers modulo p together with the operations of addition and multiplication modulo p. (See
Problem 6.2.) The ring of matrices introduced in the next section is not commutative. Some
important commutative rings are introduced in Section 6.7.1.

6.2.2 Matrices
A matrix over a set R is a rectangular array of elements drawn from R consisting of some
number m of rows and some number n of columns. Rows are indexed by integers from the set
{1, 2, 3, . . . , m} and columns are indexed by integers from the set {1, 2, 3, . . . , n}. The entry
in the ith row and jth column of A is denoted ai,j , as suggested in the following example:

A = [ai,j] =

⎡⎢⎣ a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

⎤⎥⎦ =

⎡⎢⎣ 1 2 3 4

5 6 7 8

9 10 11 12

⎤⎥⎦
Thus, a2,3 = 7 and a3,1 = 9.

The transpose of a matrix A, denoted AT , is the matrix obtained from A by exchanging
rows and columns, as shown below for the matrix A above:

AT =

⎡⎢⎢⎢⎣
1 5 9

2 6 10

3 7 11

4 8 12

⎤⎥⎥⎥⎦
Clearly, the transpose of the transpose of a matrix A, (AT)T , is the matrix A.

A column n-vector x is a matrix containing one column and n rows, for example:

x =

⎡⎢⎢⎢⎢⎣
x1

x2

...

xn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
5

6
...

8

⎤⎥⎥⎥⎥⎦
A row m-vector y is a matrix containing one row and m columns, for example:

y = [y1, y2, . . . , ym] = [1, 5, . . . , 9]

The transpose of a row vector is a column vector and vice versa.
A square matrix is an n × n matrix for some integer n. The main diagonal of an n × n

square matrix A is the set of elements {a1,1, a2,2, . . . , an−1,n−1, an,n}. The diagonal below
(above) the main diagonal is the elements {a2,1, a3,2, . . . , an,n−1} ({a1,2, a2,3, . . . , an−1,n}).
The n × n identity matrix, In, is a square n × n matrix with value 1 on the main diagonal
and 0 elsewhere. The n × n zero matrix, 0n, has value 0 in each position. A matrix is upper
(lower) triangular if all elements below (above) the main diagonal are 0. A square matrix A is
symmetric if A = AT , that is, ai,j = aj,i for all 1 ≤ i, j ≤ n.

The scalar product of a scalar c ∈ R and an n × m matrix A over R, denoted cA, has
value cai,j in row i and column j.

c©John E Savage 6.2 Mathematical Preliminaries 241

The matrix-vector product between an m × n matrix A and a column n-vector x is the
column m-vector b below:

b = Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 an−1,2 . . . am−1,n

am,1 an,2 . . . am,n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ∗ x1 + a1,2 ∗ x2 + · · · + a1,n ∗ xn

a2,1 ∗ x1 + a2,2 ∗ x2 + · · · + a2,n ∗ xn

...
...

. . .
...

am−1,1 ∗ x1 + am−1,2 ∗ x2 + · · · + am−1,n ∗ xn

am,1 ∗ x1 + am,2 ∗ x2 + · · · + am,n ∗ xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Thus, bj is defined as follows for 1 ≤ j ≤ n:

bj = ai,1 ∗ x1 + ai,2 ∗ x2 + · · ·+ ai,m ∗ xm

The matrix-vector product between a row m-vector x and an m × n matrix A is the row
n-vector b below:

b = [bi] = xA

where for 1 ≤ i ≤ n bi satisfies

bi = x1 ∗ a1,i + x2 ∗ a2,i + · · ·+ xm ∗ am,i

The special case of a matrix-vector product between a row n-vector, x, and a column n vector,
y, denoted x · y and defined below, is called the inner product of the two vectors:

x · y =
n∑

i=1

xi ∗ yi

If the entries of the n × n matrix A and the column n-vectors x and b shown below are
drawn from a ring R and A and b are given, then the following matrix equation defines a
linear system of n equations in the n unknowns x:

Ax = b

An example of a linear system of four equations in four unknowns is

1 ∗ x1 + 2 ∗ x2 + 3 ∗ x3 + 4 ∗ x4 = 17

5 ∗ x1 + 6 ∗ x2 + 7 ∗ x3 + 8 ∗ x4 = 18

9 ∗ x1 + 10 ∗ x2 + 11 ∗ x3 + 12 ∗ x4 = 19

13 ∗ x1 + 14 ∗ x2 + 15 ∗ x3 + 16 ∗ x4 = 20

242 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

It can be expressed as follows:⎡⎢⎢⎢⎣
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
17

18

19

20

⎤⎥⎥⎥⎦
Solving a linear system, when it is possible, consists of finding values for x given values for
A and b. (See Section 6.6.)

Consider the set of m × n matrices whose entries are drawn from a ring R. The matrix
addition function f

(m,n)
A+B : R2mn �→ Rmn on two m×n matrices A = [ai,j] and B = [bi,j]

generates a matrix C = f
(m,n)
A+B (A, B) = A +m,n B = [ci,j], where +m,n is the infix matrix

addition operator and ci,j is defined as

ci,j = ai,j + bi,j

The straight-line program based on this equation uses one instance of the ring addition op-

erator + for each entry in C. It follows that over the basis {+}, C+(f (m,n)
A+B) = mn and

D+(f (m,n)
A+B) = 1. Two special cases of matrix addition are the addition of square matrices

(m = n), denoted +n, and the addition of row or column vectors that are either 1 × n or
m × 1 matrices.

The matrix multiplication function f
(n)
A×B : R(m+p)n �→ Rmp multiplies an m ×

n matrix A = [ai,j] by an n × p matrix B = [bi,j] to produce the m × p matrix C =
f

(n)
A×B(A, B) = A×n B = [ci,j], where

ci,j =
n∑

k=1

ai,k ∗ bk,j (6.1)

and ×n is the infix matrix multiplication operator. The subscript on ×n is usually dropped
when the dimensions of the matrices are understood. The standard matrix multiplication
algorithm for multiplying an m×n matrix A by an n×p matrix B forms mp inner products
of the kind shown in equation (6.1). Thus, it uses mnp instances of the ring multiplication
operator and m(n− 1)p instances of the ring addition operator.

A fast algorithm for matrix multiplication is given in Section 6.3.1. It is now straightfor-
ward to show the following result. (See Problem 6.4.)

THEOREM 6.2.1 Let Mn×n be the set of n × n matrices over a commutative ring R. The
system Mn×n = (Mn×n, +n,×n, 0n, In), where +n and ×n are the matrix addition and
multiplication operators and 0n and In are the n× n zero and identity matrices, is a ring.

The ring of matrices Mn×n is not a commutative ring because matrix multiplication is not
commutative. For example, the following two matrices do not commute, that is, AB �= BA:

A =

[
0 1

1 0

]
B =

[
1 0

0 −1

]
A linear combination of a subset of the rows of an n × m matrix A is a sum of scalar

products of the rows in this subset. A linear combination is non-zero if the sum of the scalar

c©John E Savage 6.2 Mathematical Preliminaries 243

product is not the zero vector. A set of rows of a matrix A over a field R is linearly indepen-
dent if all linear combinations are non-zero except when each scalar is zero.

The rank of an n × m matrix A over a field R, f
(n)
rank : Rn2 �→ �, is the maximum

number of linearly independent rows of A. It is also the maximum number of linearly inde-

pendent columns of A. (See Problem 6.5.) We write rank(A) = f
(n)
rank(A). An n× n matrix

A is non-singular if rank(A) = n.
If an n×n matrix A over a field R is non-singular, it has an inverse A−1 that is an n×n

matrix with the following properties:

AA−1 = A−1A = In

where In is the n × n identity matrix. That is, there is a (partial) inverse function f
(n)
inv :

Rn2 �→ Rn2
that is defined for non-singular square matrices A such that f

(n)
inv (A) = A−1.

f
(n)
inv is partial because it is not defined for singular matrices. Below we exhibit a matrix and its

inverse over a field R. [
1 1

−1 1

]−1

=

[
1 −1

1 1

]

Algorithms for matrix inversion are given in Section 6.5.
We now show that the inverse (AB)−1 of the product AB of two invertible matrices, A

and B, over a field R is the product of their inverses in reverse order.

LEMMA 6.2.1 Let A and B be invertible square matrices over a field R. Then the following
relationship holds:

(AB)−1 = B−1A−1

Proof To show that (AB)−1 = B−1A−1, we multiply AB either on the left or right by
B−1A−1 to produce the identity matrix:

AB(AB)−1 = ABB−1A−1 = A(BB−1)A−1 = AA−1 = I

(AB)−1AB = B−1A−1AB = B−1(A−1A)B = B−1B = I

The transpose of the product of an m× n matrix A and an n× p matrix B over a ring R
is the product of their transposes in reverse order:

(A B)T = BT AT

(See Problem 6.6.) In particular, the following identity holds for an m × n matrix A and a
column n-vector x:

xT AT = (Ax)T

A block matrix is a matrix in which each entry is a matrix with fixed dimensions. For
example, when n is even it may be convenient to view an n×n matrix as a 2×2 matrix whose
four entries are (n/2)× (n/2) matrices.

Two special types of matrix that are frequently encountered are the Toeplitz and circulant
matrices. An n × n Toeplitz matrix T has the property that its (i, j) entry ti,j = ar for

244 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

j = i− n + 1 + r and 0 ≤ r ≤ 2n− 2. A generic Toeplitz matrix T is shown below:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an an+1 . . . a2n−2

an−2 an−1 an . . . a2n−3

an−3 an−2 an−1 . . . a2n−4

...
...

...
. . .

...

a0 a1 a2 . . . an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
An n × n circulant matrix C has the property that the entries on the kth row are a right

cyclic shift by k − 1 places of the entries on the first row, as suggested below.

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3

...
...

...
. . .

...

a1 a2 a3 . . . a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The circulant is a type of Toeplitz matrix. Thus the function defined by the product of a
Toeplitz matrix and a vector contains as a subfunction the function defined by the product of
a circulant matrix and a vector. Consequently, any algorithm to multiply a vector by a Toeplitz
matrix can be used to multiply a circulant by a vector.

As stated in Section 2.11, a permutation π : Rn �→ Rn of an n-tuple x = (x1, x2, . . . ,
xn) over the set R is a rearrangement π(x) = (xπ(1), xπ(2), . . . , xπ(n)) of the components
of x. A n × n permutation matrix P has entries from the set {0, 1} (here 0 and 1 are the
identities under addition and multiplication for a ring R) with the property that each row
and column of P has exactly one instance of 1. (See the example below.) Let A be an n × n
matrix. Then AP contains the columns of A in a permuted order determined by P . A similar
statement applies to PA. Shown below is a permutation matrix P and the result of multiplying
it on the right by a matrix A on the left. In this case P interchanges the first two columns of A.⎡⎢⎢⎢⎣

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
2 1 3 4

6 5 7 8

10 9 11 12

14 13 15 16

⎤⎥⎥⎥⎦

6.3 Matrix Multiplication
Matrix multiplication is defined in Section 6.2. The standard matrix multiplication algo-
rithm computes the matrix product using the formula for ci,j given in (6.1). It performs nmp
multiplications and n(m − 1)p additions. As shown in Section 6.3.1, however, matrices can
be multiplied with many fewer operations.

Boolean matrix multiplication is matrix multiplication for matrices over B when + de-
notes OR and ∗ denotes AND. Another example is matrix multiplication over the set of integers

c©John E Savage 6.3 Matrix Multiplication 245

modulo a prime p, a set that forms a finite field under addition and multiplication modulo p.
(See Problem 6.3.)

In the next section we describe Strassen’s algorithm, a straight-line program realizable by a
logarithmic-depth circuit of size O(n2.807). This is not the final word on matrix multiplication,
however. Winograd and Coppersmith [81] have improved the bound to O(n2.38). Despite
this progress, the smallest asymptotic bound on matrix multiplication remains unknown.

Since later in this chapter we design algorithms that make use of matrix multiplication,
it behooves us to make the following definition concerning the number of ring operations to
multiply two n× n matrices over a ring R.

DEFINITION 6.3.1 Let K ≥ 1. Then Mmatrix(n, K) is the size of the smallest circuit of depth
K log2 n over a commutative ring R for the multiplication of two n× n matrices.

The following assumptions on the rate of growth of Mmatrix(n, K) with n make subse-
quent analysis easier. They are satisfied by Strassen’s algorithm.

ASSUMPTION 6.3.1 We assume that for all c satisfying 0 ≤ c ≤ 1 and n ≥ 1,

Mmatrix(cn, K) ≤ c2Mmatrix(n, K)

ASSUMPTION 6.3.2 We assume there exists an integer n0 > 0 such that, for n ≥ n0,

2n2 ≤ Mmatrix(n, K)

6.3.1 Strassen’s Algorithm
Strassen [319] has developed a fast algorithm for multiplying two square matrices over a com-
mutative ring R. This algorithm makes use of the additive inverse of ring elements to reduce
the total number of operations performed.

Let n be even. Given two n × n matrices, A and B, we write them and their product C
as 2 × 2 matrices whose components are (n/2)× (n/2) matrices:

C =

[
u v

w x

]
= A×B =

[
a b

c d

]
×
[

e f

g h

]

Using the standard algorithm, we can form C with eight multiplications and four additions
of (n/2) × (n/2) matrices. Strassen’s algorithm exchanges one of these multiplications for
10 such additions. Since one multiplication of two (n/2) × (n/2) matrices is much more
costly than an addition of two such matrices, a large reduction in the number of operations is
obtained. We now derive Strassen’s algorithm.

Let D be the the 4 × 4 matrix shown below whose entries are (n/2) × (n/2) matrices.
(Thus, D is a 2n× 2n matrix.)

D =

⎡⎢⎢⎢⎣
a b 0 0

c d 0 0

0 0 a b

0 0 c d

⎤⎥⎥⎥⎦

246 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

The entries u, v, w, and x of the product A × B can also be produced by the following
matrix-vector product: ⎡⎢⎢⎢⎣

u

w

v

x

⎤⎥⎥⎥⎦ = D ×

⎡⎢⎢⎢⎣
e

g

f

h

⎤⎥⎥⎥⎦
We now write D as a sum of seven matrices as shown in Fig. 6.2; that is,

D = A1 + A2 + A3 + A4 + A5 + A6 + A7

Let P1, P2, . . . , P7 be the products of the (n/2)× (n/2) matrices

P1 = (a + d) × (e + h)
P2 = (c + d) × e

P3 = a × (f − h)
P4 = d × (−e + g)

P5 = (a + b)× h

P6 = (−a + c)× (e + f)
P7 = (b− d) × (g + h)

A1 =

⎡⎢⎢⎢⎣
a + d 0 0 a + d

0 0 0 0

0 0 0 0

a + d 0 0 a + d

⎤⎥⎥⎥⎦ A2 =

⎡⎢⎢⎢⎣
0 0 0 0

c + d 0 0 0

0 0 0 0

−(c + d) 0 0 0

⎤⎥⎥⎥⎦

A3 =

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 a −a

0 0 a −a

⎤⎥⎥⎥⎦ A4 =

⎡⎢⎢⎢⎣
−d d 0 0

−d d 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦

A5 =

⎡⎢⎢⎢⎣
0 0 0 −(a + b)
0 0 0 0

0 0 0 a + b

0 0 0 0

⎤⎥⎥⎥⎦ A6 =

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 0

−a + c 0 −a + c 0

⎤⎥⎥⎥⎦

A7 =

⎡⎢⎢⎢⎢⎣
0 b− d 0 b− d

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
Figure 6.2 The decomposition of the 4 × 4 matrix D as the sum of seven 4 × 4 matrices.

c©John E Savage 6.3 Matrix Multiplication 247

Then the product of the vector [e, g, f , h]T with D is the following sum of seven column
vectors.⎡⎢⎢⎢⎣

u

w

v

x

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
P1

0

0

P1

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0

P2

0

−P2

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0

0

P3

P3

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
P4

P4

0

0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
−P5

0

P5

0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0

0

0

P6

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
P7

0

0

0

⎤⎥⎥⎥⎦
It follows that u, v, w, and x are given by the following equations:

u = P1 + P4 − P5 + P7

w = P2 + P4

v = P3 + P5

x = P1 − P2 + P3 + P6

Associativity and commutativity under addition and distributivity of multiplication over ad-
dition are used to obtain this result. In particular, commutativity of the ring multiplication
operator is not assumed. This is important because it allows this algorithm to be used when
the entries in the original 2 × 2 matrices are themselves matrices, since matrix multiplication
is not commutative.

Thus, an algorithm exists to form the product of two n × n matrices with seven multi-
plications of (n/2) × (n/2) matrices and 18 additions or subtractions of such matrices. Let
n = 2k and M(k) be the number of operations over the ring R used by this algorithm to
multiply n× n matrices. Then, M(k) satisfies

M(k) = 7M(k − 1) + 18
(
2k−1

)2
= 7M(k − 1) + (18)4k−1

If the standard algorithm is used to multiply 2 × 2 matrices, M(1) = 12 and M(k) satisfies
the following recurrence:

M(k) = (36/7)7k − (18/3)4k

The depth (number of operations on the longest path), D(k), of this straight-line algo-
rithm for the product of two n × n matrices when n = 2k satisfies the following bound:

D(k) = D(k − 1) + 3

because one level of addition or subtraction is used before products are formed and one or two
levels are used after they are formed. Since D(1) = 2 if the standard algorithm is used to
multiply 2 × 2 matrices, D(k) = 3k − 1 = 3 log n− 1.

These size and depth bounds can be improved to those in the following theorem by using
the standard matrix multiplication algorithm on small matrices. (See Problem 6.8.)

THEOREM 6.3.1 The matrix multiplication function for n×n matrices over a commutative ring
R, f

(n)
A×B , has circuit size and depth satisfying the following bounds over the basis Ω containing

addition, multiplication, and additive inverse over R:

CΩ

(
f

(n)
A×B

)
≤ 4.77nlog2 7

DΩ

(
f

(n)
A×B

)
= O(log n)

248 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

We emphasize again that subtraction plays a central role in Strassen’s algorithm. Without
it we show in Section 10.4 that the standard algorithm is nearly best possible.

Strassen’s algorithm is practical for sufficiently large matrices, say with n ≥ 64. It can
also be used to multiply Boolean matrices even though the addition operator (OR) and the
multiplication operator (AND) over the set B do not constitute a ring. (See Problem 6.9.)

6.4 Transitive Closure
The edges of a directed graph G = (V , E), n = |V |, specify paths of length 1 between pairs of
vertices. (See Fig. 6.3.) This information is captured by the Boolean n × n adjacency matrix
A = [ai,j], 1 ≤ i, j ≤ n, where ai,j is 1 if there is an edge from vertex i to vertex j in E and
0 otherwise. (The adjacency matrix for the graph in Fig. 6.3 is given after Lemma 6.4.1.) Our
goal is to compute a matrix A∗ whose i, j entry a∗

i,j has value 1 if there is a path of length
0 or more between vertices i and j and value 0 otherwise. A∗ is called the transitive closure
of the matrix A. The transitive closure function f

(n)
A∗ : Bn2 �→ Bn2

maps an arbitrary n × n

Boolean matrix A onto its n × n transitive closure matrix; that is, f
(n)
A∗ (A) = A∗. In this

section we add and multiply Boolean matrices over the set B using OR as the element addition
operation and AND as the element multiplication operation. (Note that (B,∨,∧, 0, 1) is not
a ring; it satisfies all the rules for a ring except for the condition that each element of B have
an (additive) inverse under ∨.)

To compute A∗ we use the following facts: a) the entry in the rth row and sth column
of the Boolean matrix product A2 = A × A is 1 if there is a path containing two edges from
vertex r to vertex s and 0 otherwise (which follows from the definition of Boolean matrix
multiplication given in Section 6.3), and b) the entry in the rth row and sth column of
Ak = Ak−1 × A is 1 if there is a path containing k edges from vertex r to vertex s and 0
otherwise, as the reader is asked to show. (See Problem 6.11.)

LEMMA 6.4.1 Let A be the Boolean adjacency matrix for a directed graph and let Ak be the kth
power of A. Then the following identity holds for k ≥ 1, where + denotes the addition (OR) of
Boolean matrices:

(I + A)k = I + A + · · ·+ Ak (6.2)

Proof The proof is by induction. The base case is k = 1, for which the identity holds.
Assume that it holds for k ≤ K−1. We show that it holds for k = K. Since (I+A)K−1 =

2 3

4

5

1

Figure 6.3 A graph that illustrates transitive closure.

c©John E Savage 6.4 Transitive Closure 249

I + A + · · ·+ AK−1, multiply both sides by I + A:

(I + A)K = (I + A)× (I + A)K−1

= (I + A)× (I + A + · · ·+ AK−1)
= I + (A + A) + · · ·+ (AK−1 + AK−1) + AK

However, since Aj is a Boolean matrix, Aj + Aj = Aj for all j and the result follows.

The adjacency matrix A of the graph in Fig. 6.3 is given below along with its powers up to
the fifth power. Note that every non-zero entry appearing in A5 appears in at least one of the
other matrices. The reason for this fact is explained in the proof of Lemma 6.4.2.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ A2 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ A3 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

A4 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 1 1 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 1 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ A5 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 1 1

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
LEMMA 6.4.2 If there is a path between pairs of vertices in the directed graph G = (V , E),
n = |V |, there is a path of length at most n− 1.

Proof We suppose that the shortest path between vertices i and j in V has length k ≥ n.
Such a path has k + 1 vertices. Because k + 1 ≥ n + 1, some vertex is repeated more than
once. (This is an example of the pigeonhole principle.) Consider the subpath defined by the
edges between the first and last instance of this repeated vertex. Since it constitutes a loop,
it can be removed to produce a shorter path between vertices i and j. This contradicts the
hypothesis that the shortest path has length n or more. Thus, the shortest path has length
at most n − 1.

Because the shortest path has length at most n−1, any non-zero entries in Ak, k ≥ n, are
also found in one of the matrices Aj , j ≤ n − 1. Since the identity matrix I is the adjacency
matrix for the graph that has paths of length zero between two vertices, the transitive closure,
which includes such paths, is equal to:

A∗ = I + A + A2 + A3 + · · ·+ An−1 = (I + A)n−1

It also follows that A∗ = (I + A)k for all k ≥ n − 1, which leads to the following result.

THEOREM 6.4.1 Over the basis Ω = {AND, OR} the transitive closure function, f
(n)
A∗ , has circuit

size and depth satisfying the following bounds (that is, a circuit of this size and depth can be

250 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

constructed with AND and OR gates for it):

CΩ

(
f

(n)
A∗

)
≤ Mmatrix(cn, K)�log2 n�

DΩ

(
f

(n)
A∗

)
≤ K(log n)�log2 n�

Proof Let k = 2p be the smallest power of 2 such that k ≥ n−1. Then, p = �log2(n−1)�.
Since A∗ = (I + A)k, it can be computed with a circuit that squares the matrix I + A p
times. Each squaring can be done with a circuit for the standard matrix multiplication algo-
rithm described in (6.1) using Mmatrix(cn, K) = O(n3) operations and depth �log2 2n�.
The desired result follows.

The above statement says that the transitive closure function on n × n matrices has circuit
size and depth at most a factor O(log n) times that of matrix multiplication. We now show
that Boolean matrix multiplication is a subfunction of the transitive closure function, which
implies that the former has a circuit size and depth no larger than the latter. We subsequently
show that the size bound can be improved to a constant multiple of the size bound for matrix
multiplication. Thus the transitive closure and Boolean matrix multiplication functions have
comparable size.

THEOREM 6.4.2 The n × n matrix multiplication function f
(n)
A×B : R2n2 �→ Rn2

for Boolean

matrices is a subfunction of the transitive closure function f
(3n)
A∗ : R18n2 �→ R9n2

.

Proof Observe that the following relationship holds for n× n matrices A and B, since the
third and higher powers of the 3n × 3n matrix on the left are 0.⎡⎢⎣ 0 A 0

0 0 B

0 0 0

⎤⎥⎦
∗

=

⎡⎢⎣ I A AB

0 I B

0 A I

⎤⎥⎦
It follows that the product AB of n × n matrices is a subfunction of the transitive closure
function on a 3n× 3n matrix.

COROLLARY 6.4.1 It follows that

CΩ

(
f

(n)
A×B

)
≤ CΩ

(
f

(3n)
A∗

)
DΩ

(
f

(n)
A×B

)
≤ DΩ

(
f

(3n)
A∗

)
over the basis Ω = {AND, OR}.

Not only can a Boolean matrix multiplication algorithm be devised from one for transitive
closure, but the reverse is also true, as we show. Let n be a power of 2 and divide an n × n
matrix A into four (n/2)× (n/2) matrices:

A =

[
U V

W X

]
(6.3)

c©John E Savage 6.4 Transitive Closure 251

Compute X∗ recursively and use it to form Y = U + V X∗W by performing two multiplica-
tions of (n/2)× (n/2) matrices and one addition of such matrices. Recursively form Y ∗ and
then assemble the matrix B shown below with four further multiplications and one addition
of (n/2)× (n/2) matrices.

B =

[
Y ∗ Y ∗V X∗

X∗WY ∗ X∗ + X∗WY ∗V X∗

]
(6.4)

We now show that B = A∗.

THEOREM 6.4.3 Under Assumptions 6.3.1 and 6.3.2, a circuit of size O(Mmatrix(n, K)) and
depth O(n) exists to form the transitive closure of n × n matrices.

Proof We assume that n is a power of 2 and use the representation for the matrix A given
in (6.3). If n is not a power of 2, we augment the matrix A by embedding it in a larger
matrix in which all the new entries, are 0 except for the new diagonal entries, which are 1.
Given that 4M(n) ≤ M(2n), the bound applies.

We begin by showing that B = A∗. Let F ⊂ V and S ⊂ V be the first and second
sets of n/2 vertices, respectively, corresponding to the first and second halves of the rows
and columns of the matrix A. Then, F ∪ S = V and F ∩ S = ∅. Observe that X∗ is
the adjacency matrix for those paths originating on and terminating with vertices in F and
visiting no other vertices. Similarly, Y = U + V X∗W is the adjacency matrix for those
paths consisting of an edge from a vertex in F to a vertex in F or paths of length more
than 1 consisting of an edge from vertices in F to vertices in S, a path of length 0 or more
within vertices in S, and an edge from vertices in S to vertices in F . It follows that Y ∗ is
the adjacency matrix for all paths between vertices in F that may visit any vertices in V . A
similar line of reasoning demonstrates that the other entries of A∗ are correct.

The size of a circuit realizing this algorithm, T (n), satisfies

T (n) = 2T (n/2) + 6Mmatrix(n/2, K) + 2(n/2)2

because the above algorithm (see Fig. 6.4) uses two circuits for transitive closure on (n/2)×
(n/2) matrices, six circuits for multiplying, and two for adding two such matrices.

Because we assume that n2 ≤ Mmatrix(n, K), it follows that T (n) ≤ 2T (n/2) +
8Mmatrix(n/2, K). Let T (m) ≤ cMmatrix(cm, K) for m ≤ n/2 be the inductive hy-
pothesis. Then we have the inequalities

T (n) ≤ (2c + 8)Mmatrix(n/2, K) ≤ (c/2 + 2)Mmatrix(n, K)

which follow from Mmatrix(n/2, K) ≤ Mmatrix(n, K)/4 (see Assumption 6.3.2). Because
(c/2 + 2) ≤ c for c ≥ 4, for c = 4 we have the desired bound on circuit size.

The depth D(n) of the above circuit satisfies D(n) = 2D(n/2) + 6K log2 n, from
which we conclude that D(n) = O(n).

A semiring (S, +, ·, 0, 1) is a set S, two operations + and · and elements 0, 1 ∈ S with
the following properties:

a) S is closed under + and ·;

b) + and · are associative;

252 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

X∗W Y ∗ W

VYW

X∗WY ∗

V X∗

Y ∗V X∗

X∗ + X∗WY ∗V X∗

X∗WY ∗V X∗

X

f
(n/2)
A+B

f
(n/2)
A×B

f
(n/2)
A×B

f
(n/2)
A×B

f
(n/2)
A×B

f
(n/2)
A∗

f
(n/2)
A∗

X∗

f
(n/2)
A+B

f
(n/2)
A×B

U

f
(n/2)
A×B

Figure 6.4 A circuit for the transitive closure of a Boolean matrix based on the construction of
equation (6.4).

c) for all a ∈ S, a + 0 = 0 + a = a;

d) for all a ∈ S, a · 1 = 1 · a = a;

e) + is commutative and idempotent; i.e. a + a = a;

f) · distributes over +; i.e. for all a, b, c ∈ S, a · (b + c) = a · b + a · c
and (b + c) · a = b · a + c · a.

The above definitions and results generalize to matrices over semirings. To show this, it suf-
fices to observe that the properties used to derive these results are just these properties. (See
Problem 6.12.)

6.5 Matrix Inversion
The inverse of a non-singular n × n matrix M defined over a field R is another matrix M−1

whose product with M is the n× n identity matrix I ; that is,

MM−1 = M−1M = I

c©John E Savage 6.5 Matrix Inversion 253

Given a linear system of n equations in the column vector x of n unknowns defined by
the non-singular n × n coefficient matrix M and the vector b, namely,

Mx = b (6.5)

the solution x can be obtained through a matrix-vector multiplication with M−1:

x = M−1b

In this section we present two algorithms for matrix inversion. Such algorithms compute

the (partial) matrix inverse function f
(n)
A−1 : Rn2 �→ Rn2

that maps non-singular n × n
matrices over a field R onto their inverses. The first result, Theorem 6.5.4, demonstrates that
CΩ

(
f

(n)
A−1

)
= Θ(Mmatrix(n, K)) with a circuit whose depth is more than linear in n. The

second, Theorem 6.5.6, demonstrates that DΩ

(
f

(n)
A−1

)
= O(log2 n) with a circuit whose size

is O(nMmatrix(n, K)).
Before describing the two matrix inversion algorithms, we present a result demonstrating

that matrix multiplication of n×n matrices is no harder than inverting a 3n× 3n matrix; the
function defining the former task is a subfunction of the function defining the latter task.

LEMMA 6.5.1 The matrix inverse function f
(3n)
A−1 contains as a subfunction the function f

(n)
A×B :

R2n2 �→ Rn2
that maps two matrices over R to their product.

Proof The proof follows by writing a 3n × 3n matrix as a 3 × 3 matrix of n × n matrices
and then specializing the entries to be the identity matrix I , the zero matrix 0, or matrices
A and B: ⎡⎢⎣ I A 0

0 I B

0 0 I

⎤⎥⎦
−1

=

⎡⎢⎣ I −A AB

0 I −B

0 0 I

⎤⎥⎦
This identity is established by showing that the product of these two matrices is the identity
matrix.

6.5.1 Symmetric Positive Definite Matrices
Our first algorithm to invert a non-singular n × n matrix M has a circuit size linear in
Mmatrix(n, K), which, in light of Lemma 6.5.1, is optimal to within a constant multiplicative
factor. This algorithm makes use of symmetric positive definite matrices, the Schur comple-
ment, and LDLT factorization, terms defined below. This algorithm has depth O(n log2 n).

The second algorithm, Csanky’s algorithm, has circuit depth O(log2 n), which is smaller,
but circuit size O(nMmatrix(n, K)), which is larger. Symmetric positive definite matrices are
defined below.

DEFINITION 6.5.1 A matrix M is positive definite if for all non-zero vectors x the following
condition holds:

xT Mx =
∑

1≤i,j≤n

ximi,jxj > 0 (6.6)

A matrix is symmetric positive definite (SPD) if it is both symmetric and positive definite.

254 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

We now show that an algorithm to invert SPD matrices can be used to invert arbitrary
non-singular matrices by adding a circuit to multiply matrices.

LEMMA 6.5.2 If M is a non-singular n × n matrix, then the matrix P = MT M is symmetric
positive definite. M can be inverted by inverting P and then multiplying P−1 by MT . Let
f

(n)
SPD inverse : Rn2 �→ Rn2

be the inverse function for n × n SPD matrices over the field R.

Then the size and depth of f
(n)
A−1 over R satisfy the following bounds:

C
(
f

(n)
A−1

)
≤ C

(
f

(n)
SPD inverse

)
+ Mmatrix(n, K)

D
(
f

(n)
A−1

)
≤ D

(
f

(n)
SPD inverse

)
+ O(log n)

Proof To show that P is symmetric we note that
(
MT M

)T = MT M . To show that it is
positive definite, we observe that

xT Px = xT MT Mx

= (Mx)T
Mx

=
n∑

i=1

⎛⎝ n∑
j=1

mi,jxj

⎞⎠2

which is positive unless the product Mx is identically zero for the non-zero vector x. But
this cannot be true if M is non-singular. Thus, P is symmetric and positive definite.

To invert M , invert P to produce M−1
(
MT

)−1
. If we multiply this product on the

right by MT , the result is the inverse M−1.

6.5.2 Schur Factorization
We now describe Schur factorization. Represent an n × n matrix M as the 2 × 2 matrix

M =

[
M1,1 M1,2

M2,1 M2,2

]
(6.7)

where M1,1, M1,2, M2,1, and M2,2 are k×k, k×n−k, n−k×k, and n−k×n−k matrices,
1 ≤ k ≤ n − 1. Let M1,1 be invertible. Then by straightforward algebraic manipulation M
can be factored as

M =

[
I 0

M2,1M
−1
1,1 I

][
M1,1 0

0 S

][
I M−1

1,1 M1,2

0 I

]
(6.8)

Here I and O denote identity and zero matrices (all entries are zero) of a size that conforms
to the size of other submatrices of those matrices in which they are found. This is the Schur
factorization. Also,

S = M2,2 −M2,1M
−1
1,1 M1,2

is the Schur complement of M . To show that M has this factorization, it suffices to carry out
the product of the above three matrices.

c©John E Savage 6.5 Matrix Inversion 255

The first and last matrix in this product are invertible. If S is also invertible, the middle
matrix is invertible, as is the matrix M itself. The inverse of M , M−1, is given by the product

M−1 =

[
I −M−1

1,1 M1,2

0 I

][
M−1

1,1 0

0 S−1

][
I 0

−M2,1M
−1
1,1 I

]
(6.9)

This follows from three observations: a) the inverse of a product is the product of the inverses
in reverse order (see Lemma 6.2.1), b) the inverse of a 2 × 2 upper (lower) triangular matrix
is the matrix with the off-diagonal term negated, and c) the inverse of a 2 × 2 diagonal matrix
is a diagonal matrix in which the ith diagonal element is the multiplicative inverse of the ith
diagonal element of the original matrix. (See Problem 6.13 for the latter two results.)

The following fact is useful in inverting SPD matrices.

LEMMA 6.5.3 If M is an n× n SPD matrix, its Schur complement is also SPD.

Proof Represent M as shown in (6.7). In (6.6) let x = u · v; that is, let x be the concate-
nation of the two column vectors. Then

xT Mx =
[
uT , vT

] [M1,1u + M1,2v

M2,1u + M2,2v

]
= uT M1,1u + uT M1,2v + vT M2,1u + vT M2,2v

If we say that

u = −M−1
1,1 M1,2 v

and use the fact that MT
1,2 = M2,1 and

(
M−1

1,1

)T
=
(
MT

1,1

)−1 = M−1
1,1 , it is straightforward

to show that S is symmetric and

xT Mx = vT Sv

where S is the Schur complement of M . Thus, if M is SPD, so is its Schur complement.

6.5.3 Inversion of Triangular Matrices
Let T be n × n lower triangular and non-singular. Without loss of generality, assume that
n = 2r. (T can be extended to a 2r × 2r matrix by placing it on the diagonal of a 2r × 2r

matrix along with a 2r − n × 2r − n identity matrix.) Represent T as a 2 × 2 matrix of
n/2 × n/2 matrices:

T =

[
T1,1 0

T2,1 T2,2

]

The inverse of T , which is lower triangular, is given below, as can be verified directly:

T−1 =

[
T−1

1,1 0

−T−1
2,2 T2,1T

−1
1,1 T−1

2,2

]

256 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

TRI INV[n/2] TRI INV[n/2]

−T−1
2,2 T2,1T

−1
1,1

T2,1

T2,2

T−1
1,1

T1,1

T−1
2,2

MULT[n/2]

MULT[n/2]

Figure 6.5 A recursive circuit TRI INV[n] for the inversion of a triangular matrix.

This representation for the inverse of T defines the recursive algorithm TRI INV[n] in
Fig. 6.5. When n = 1 this algorithm requires one operation; on an n × n matrix it requires

two calls to TRI INV[n/2] and two matrix multiplications. Let f
(n)
tri inv : R(n2+n)/2 �→

R(n2+n)/2 be the function corresponding to the inversion of an n × n lower triangular ma-
trix. The algorithm TRI INV[n] provides the following bounds on the size and depth of the

smallest circuit to compute f
(n)
tri inv.

THEOREM 6.5.1 Let n be a power of 2. Then the matrix inversion function f
(n)
tri inv for n × n

lower triangular matrices satisfies the following bounds:

C
(
f

(n)
tri inv

)
≤ Mmatrix(n, K)

D
(
f

(n)
tri inv

)
= O(log2 n)

Proof From Fig. 6.5 it is clear that the following circuit size and depth bounds hold if the
matrix multiplication algorithm has circuit size Mmatrix(n, K) and depth K log2 n:

C
(
f

(n)
tri inv

)
≤ 2C

(
f

(n/2)
tri inv

)
+ 2Mmatrix(n/2, K)

D
(
f

(n)
tri inv

)
≤ D

(
f

(n/2)
tri inv

)
+ 2K log n

The solution to the first inequality follows by induction from the fact that Mmatrix(1, K) =
1 and the assumption that 4Mmatrix(n/2, K) ≤ Mmatrix(n, K). The second inequality
follows from the observation that d > 0 can be chosen so that d log2(n/2) + c log n ≤
d log2 n for any c > 0 for n sufficiently large.

c©John E Savage 6.5 Matrix Inversion 257

6.5.4 LDLT Factorization of SPD Matrices
Now that we know that the Schur complement S of M is SPD when M is SPD, we can show
that every SPD matrix M has a factorization as the product LDLT of a unit lower triangular
matrix L (each of its diagonal entries is the multiplicative unit of the field R), a diagonal
matrix D, and the transpose of L.

THEOREM 6.5.2 Every n × n SPD matrix M has a factorization as the product M = LDLT ,
where L is a unit lower triangular matrix and D is a diagonal matrix.

Proof The proof is by induction on n. For n = 1 the result is obvious because we can write
[m1,1] = [1][m1,1][1]. Assume that it holds for n ≤ N − 1. We show that it holds for
n = N .

Form the Schur factorization of the N ×N matrix M . Since the k× k submatrix M1,1

of M as well as the n− k × n− k submatrix S of M are SPD, by the inductive hypothesis
they can be factored in the same fashion. Let

M1,1 = L1D1L
T
1 , S = L2D2L

T
2

Then the middle matrix on the right-hand side of equation (6.8) can be represented as[
M1,1 0

0 S

]
=

[
L1 0

0 L2

][
D1 0

0 D2

][
LT

1 0

0 LT
2

]

Substituting the above product for the middle matrix in (6.8) and multiplying the two left
and two right matrices gives the following representation for M :

M =

[
L1 0

M2,1M
−1
1,1 L1 L2

][
D1 0

0 D2

][
LT

1 LT
1 M−1

1,1 M1,2

0 LT
2

]
(6.10)

Since M is symmetric, M1,1 is symmetric, M1,2 = MT
2,1, and

LT
1 M−1

1,1 M1,2 = LT
1 (M−1

1,1)T MT
2,1 = (M2,1M

−1
1,1 L1)T

Thus, it suffices to compute L1, D1, L2, D2, and M2,1M
−1
1,1 L1.

When n = 2r and k = n/2, the proof of Theorem 6.5.2 describes a recursive procedure,
LDLT[n], defined on n×n SPD matrices that produces their LDLT factorization. Figure 6.6
captures the steps involved. They are also described below.

• The LDLT factorization of the n/2 × n/2 matrix M1,1 is computed using the proce-
dure LDLT[n/2] to produce the n/2× n/2 triangular and diagonal matrices L1 and D1,
respectively.

• The product M2,1M
−1
1,1 L1 = M2,1

(
L−1

1

)T
D−1

1 which may be computed by inverting the
lower triangular matrix L1 with the operation TRI INV[n/2], computing the product

M2,1
(
L−1

1

)T
using MULT[n/2], and multiplying the result with D−1

1 using a procedure
SCALE[n/2] that inverts D1 and multiplies it by a square matrix.

258 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

L1 D1

D2L2

LDLT[n/2]

SUB[n/2]

MULT[n/2]

SCALE[n/2]

MULT[n/2]

TRI INV[n/2]

Transpose

Transpose
M2,2

M2,1(L−1
1)T

M2,1M
−1
1,1 M1,2

M2,1(L−1
1)T D−1

1

M2,1

L−1
1

S = M2,2 − M2,1M
−1
1,1 M1,2

M1,1

LDLT[n/2]

Figure 6.6 An algebraic circuit to produce the LDLT factorization of an SPD matrix.

• S = M2,2 − M2,1M
−1
1,1 M1,2 can be formed by multiplying M2,1

(
L−1

1

)T
D−1

1 by the

transpose of M2,1
(
L−1

1

)T
using MULT[n/2] and subtracting the result from M2,2 by the

subtraction operator SUB[n/2].

• The LDLT factorization of the n/2 × n/2 matrix S is computed using the procedure
LDLT[n/2] to produce the n/2 × n/2 triangular and diagonal matrices L2 and D2, re-
spectively.

Let’s now determine the size and depth of circuits to implement the algorithm for LDLT[n].

Let f
(n)
LDLT : Rn2 �→ R(n2+n)/2 be the function defined by the LDLT factorization of an n×n

SPD matrix, f
(n)
tri inv : R(n2+n)/2 �→ R(n2+n)/2 be the inversion of an n× n lower triangular

matrix, f
(n)
scale : Rn2+n �→ Rn2

be the computation of N(D−1) for an n × n matrix N and

a diagonal matrix D, f
(n)
mult : R2n2 �→ Rn2

be the multiplication of two n × n matrices, and

f
(n)
sub : R2n2 �→ Rn2

the subtraction of two n× n matrices. Since a transposition can be done

c©John E Savage 6.5 Matrix Inversion 259

without any operators, the size and depth of the circuit for LDLT[n] constructed above satisfy
the following inequalities:

C
(
f

(n)
LDLT

)
≤ C

(
f

(n/2)
tri inv

)
+ C

(
f

(n/2)
scale

)
+ 2C

(
f

(n/2)
mult

)
+ C

(
f

(n/2)
sub

)
+ 2C

(
f

(n/2)
LDLT

)
D
(
f

(n)
LDLT

)
≤ D

(
f

(n/2)
tri inv

)
+ D

(
f

(n/2)
scale

)
+ 2D

(
f

(n/2)
mult

)
+ D

(
f

(n/2)
sub

)
+ 2D

(
f

(n/2)
LDLT

)
The size and depth of a circuit for f

(n)
tri inv are Mmatrix(n, K) and O(log2 n), as shown in

Theorem 6.5.1. The circuits for f
(n)
scale and f

(n)
sub have size n2 and depth 1; the former multiplies

the elements of the jth column of N by the multiplicative inverse of jth diagonal element of
D1 for 1 ≤ j ≤ n, while the latter subtracts corresponding elements from the two input
matrices.

Let CSPD(n) = C
(
f

(n)
LDLT

)
and DSPD(n) = D

(
f

(n)
LDLT

)
. Since Mmatrix(n/2, K) ≤

(1/4)Mmatrix(n, K) is assumed (see Assumption 6.3.1), and 2m2 ≤ Mmatrix(m, K) (see
Assumption 6.3.2), the above inequalities become

CSPD(n) ≤ Mmatrix(n/2, K) + (n/2)2 + 2Mmatrix(n/2, K) + (n/2)2 + 2CSPD(n/2)
≤ 2CSPD(n/2) + Mmatrix(n, K) (6.11)

DSPD(n) ≤ O(log2(n/2)) + 1 + 2O(log(n/2)) + 1 + 2DSPD(n/2)
≤ 2DSPD(n/2) + K log2

2 n for some K > 0 (6.12)

As a consequence, we have the following results.

THEOREM 6.5.3 Let n be a power of two. Then there exists a circuit to compute the LDLT

factorization of an n× n matrix whose size and depth satisfy

C
(
f

(n)

LDLT

)
≤ 2Mmatrix(n, K)

D
(
f

(n)
LDLT

)
≤ O

(
n log2 n

)
Proof From (6.11) we have that

CSPD(n) ≤
log n∑
j=0

2jMmatrix(n/2j , K)

By Assumption 6.3.2, Mmatrix(n/2, K) ≤ (1/4)Mmatrix(n, K). It follows by induction
that Mmatrix(n/2j , K) ≤ (1/4)jMmatrix(n, K), which bounds the above sum by a geo-

metric series whose sum is at most 2Mmatrix(n, K). The bound on D
(
f

(n)

LDLT

)
follows

from the observation that (2c)(n/2) log2(n/2) + c log2 n ≤ cn log2 n for n ≥ 2 and
c > 0.

This result combined with earlier observations provides a matrix inversion algorithm for
arbitrary non-singular matrices.

260 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

THEOREM 6.5.4 The matrix inverse function f
(n)
A−1 for arbitrary non-singular n × n matrices

over an arbitrary field R can be computed by an algebraic circuit whose size and depth satisfy the
following bounds:

C
(
f

(n)
A−1

)
= Θ(Mmatrix(n, K))

D
(
f

(n)
A−1

)
= O(n log2 n)

Proof To invert a non-singular n × n matrix M that is not SPD, form the product P =
MT M (which is SPD) with one instance of MULT[n] and then invert it. Then multi-
ply P−1 by MT on the right with a second instance of MULT[n]. To invert P , compute

its LDLT factorization and invert it by forming
(
LT

)−1
D−1L−1. Inverting LDLT re-

quires one application of TRI INV[n], one application of SCALE[n], and one application of
MULT[n], in addition to the steps used to form the factorization. Thus, three applications
of MULT[n] are used in addition to the factorization steps. The following bounds hold:

C
(
f

(n)
A−1

)
≤ 4Mmatrix(n, K) + n2 ≤ 4.5Mmatrix(n)

D
(
f

(n)
A−1

)
= O

(
n log2 n

)
+ O(log n) = O

(
n log2 n

)
The lower bound on C

(
f

(n)
A−1

)
follows from Lemma 6.5.1.

6.5.5 Fast Matrix Inversion*
In this section we present a depth-O(log2 n) circuit for the inversion of n×n matrices known
as Csanky’s algorithm, which is based on the method of Leverrier. Since this algorithm uses
a number of well-known matrix functions and properties that space precludes explaining in
detail, advanced knowledge of matrices and polynomials is required for this section.

The determinant of an n× n matrix A, det(A), is defined below in terms of the set of all
permutations π of the integers {1, 2, . . . , n}. Here the sign of π, denoted σ(π), is the number
of swaps of pairs of integers needed to realize π from the identity permutation.

det(A) =
∑

π

(−1)σ(π)
n∏

i=1

ai,π(i)

Here
∏n

i=1 ai,π(i) is the product a1,π(1) · · · an,π(n). The characteristic polynomial of a
matrix A, namely, φA(x) in the variable x, is the determinant of xI−A, where I is the n×n
identity matrix:

φA(x) = det(xI −A)
= xn + cn−1x

n−1 + cn−2x
n−2 + · · ·+ c0

If x is set to zero, this equation implies that c0 = det(−A). Also, it can be shown that
φA(A) = 0, a fact known as the Cayley-Hamilton theorem: A matrix satisfies its own
characteristic polynomial. This implies that

A
(
An−1 + cn−1A

n−2 + cn−2A
n−3 + · · ·+ c1

)
= −c0I

Thus, when c0 �= 0 the inverse of A can be computed from

A−1 =
−1
c0

(
An−1 + cn−1A

n−2 + cn−2A
n−3 + · · ·+ c1

)

c©John E Savage 6.5 Matrix Inversion 261

Once the characteristic polynomial of A has been computed, its inverse can be computed
by forming the n−1 successive powers of A, namely, A, A2, A3, . . . , An−1, multiplying them
by the coefficients of φA(x), and adding the products together. These powers of A can be
computed using a prefix circuit having O(n) instances of the associative matrix multiplication
operator and depth O(log n) measured in the number of instances of this operator. We have
defined Mmatrix(n, K) to be the size of the smallest n × n matrix multiplication circuit with
depth K log n (Definition 6.3.1). Thus, the successive powers of A can be computed by a
circuit of size O(nMmatrix(n, K)) and depth O(log2 n). The size bound can be improved to
O(

√
nMmatrix(n, K)). (See Problem 6.15.)

To complete the derivation of the Csanky algorithm we must produce the coefficients of
the characteristic polynomial of A. For this we invoke Leverrier’s theorem. This theorem uses
the notion of the trace of a matrix A, that is, the sum of the elements on its main diagonal,
denoted tr(A).

THEOREM 6.5.5 (Leverrier) The coefficients of the characteristic polynomial of the n×n matrix
A satisfy the following identity, where sr = tr(Ar) for 1 ≤ r ≤ n:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

s1 2 0 · · · 0

s2 s1 3 0
...

. . .
...

sn−1 · · · s2 s1 n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cn−1

cn−2

cn−3

...

c0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

...

sn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.13)

Proof The degree-n characteristic polynomial φA(x) of A can be factored over a field of
characteristic zero. If λ1, λ2, . . . , λn are its roots, we write

φA(x) =
n∏

i=1

(x− λi)

From expanding this expression, it is clear that the coefficient cn−1 of xn−1 is −
∑n

j=1 λj .
Similarly, expanding det(xI −A), cn−1 is the negative sum of the diagonal elements of A,
that is, cn−1 = −tr(A). It follows that tr(A) =

∑n
j=1 λj .

The λj ’s are called the eigenvalues of A, that is, values such that there exists an n-vector
u (an eigenvector) such that Au = λju. It follows that Aru = λr

ju. It can be shown
that λr

1, . . ., λr
n are precisely the eigenvalues of Ar, so Πn

j=1(x − λr
j) is the characteristic

polynomial of Ar. Since sr = tr(Ar), sr =
∑n

j=1 λr
j .

Let s0 = 1 and sk = 0 for k < 0. Then, to complete the proof of (6.13), we must show
that the following identity holds for 1 ≤ i ≤ n:

si−1cn−1 + si−2cn−2 + · · ·+ s1cn−i+1 + icn−i = −si

Moving si to the left-hand side, substituting for the traces, and using the definition of the
characteristic polynomial yield

icn−i +
n∑

j=1

φA(λj) −
(
λn−i

j cn−i + λn−i−1
j cn−i−1 + · · ·+ λjc1 + c0

)
λn−i

j

= 0

262 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

Since φA(λj) = 0, when we substitute l for n − i it suffices to show the following for
0 ≤ l ≤ n− 1:

(n− l)cl =
n∑

j=1

l∑
k=0

ck

λl
j

(6.14)

This identity can be shown by induction using as the base case l = 0 and the following facts
about the derivatives of the characteristic polynomial of A, which are easy to establish:

c0 = (−1)n
n∏

j=1

λj

ck =
dkφA(x)

dxk

∣∣∣∣
x=0

= (−1)k c0
∑

j1
· · ·

∑
jk

jr �= js

k∏
t=1

1
λjt

The reader is asked to show that (6.14) follows from these identities. (See Problem 6.17.)

Csanky’s algorithm computes the traces of powers, namely the sr ’s, and then inverts the
lower triangular matrix given above, thereby solving for the coefficients of the characteristic
polynomial. The coefficients are then used with a prefix computation, as mentioned earlier, to
compute the inverse. Each of the n sr’s can be computed in O(n) steps once the powers of
A have been formed by the prefix computation described above. The lower triangular matrix
is non-singular and can be inverted by a circuit with Mmatrix(n, K) operations and depth
O(log2 n), as shown in Theorem 6.5.1. The following theorem summarizes these results.

THEOREM 6.5.6 The matrix inverse function for non-singular n × n matrices over a field of
characteristic zero, f

(n)
A−1 , has an algebraic circuit whose size and depth satisfy the following bounds:

C
(
f

(n)
A−1

)
= O(nMmatrix(n, K))

C
(
f

(n)
A−1

)
= O(log2 n)

The size bound can be improved to O(
√

nMmatrix(n, K)), as suggested in Problems 6.15
and 6.16.

6.6 Solving Linear Systems
A general linear system with n×n coefficient matrix M , n-vector x of unknowns and n-vector
b is defined in (6.5) and repeated below:

Mx = b

This system can be solved for x in terms of M and b using the following steps when M is not
SPD. If it is SPD, the first step is unnecessary and can be eliminated.

a) Premultiply both sides by the transpose of M to produce the following linear system in
which the coefficient matrix MT M is SPD:

MT Mx = MT b = b∗

c©John E Savage 6.7 Convolution and the FFT Algorithm 263

b) Compute the LDLT decomposition of MT M .

c) Solve the system (6.15) by solving three subsequent systems:

LDLT x = b∗ (6.15)

Lu = b∗ (6.16)

Dv = u (6.17)

LT x = v (6.18)

Clearly, Lu = LDv = LDLT x = b∗.
The vector b∗ is formed by a matrix-vector multiplication that can be done with n2 mul-

tiplications and n(n− 1) additions, for a total of 2n2 − n operations.
Since L is unit lower triangular, the system (6.16) is solved by forward elimination. The

value of u1 is b∗1 . The value of u2 is b∗1 − l2,1u1, obtained by eliminating u1 from the sec-
ond equation. Similarly, on the jth step, the values of u1, u2, . . . , uj−1 are known and their
weighted values can be subtracted from b∗j to provide the value of uj ; that is,

uj = b∗j − lj,1u1 − lj,2u2 − · · · − lj,j−1uj−1

for 1 ≤ j ≤ n. Here n(n− 1)/2 products are formed and n(n− 1)/2 subtractions taken for
a total of n(n− 1) operations.

Since D is diagonal, the system (6.17) is solved for v by multiplying uj by the multiplica-
tive inverse of dj,j ; that is,

vj = ujd
−1
j,j

for 1 ≤ j ≤ n. This is called normalization. Here n divisions are performed.
Finally, the system (6.18) is solved for x by backward substitution, which is forward

elimination applied to the elements of x in reverse order.

THEOREM 6.6.1 Let f
(n)
SPD solve : Rn2+n �→ Rn be the (partial) function that computes the

solution to a linear system of equations defined by an n × n symmetric positive definite coefficient
matrix M . Then

C(f (n)
SPD solve) ≤ C(f (n)

LDLT) + O(n2)

D(f (n)
SPD solve) ≤ C(f (n)

LDLT) + O(n)

If M is not SPD but is non-singular, an additional O(Mmatrix(n, K)) circuit elements and
depth O(log n) suffice to compute it.

6.7 Convolution and the FFT Algorithm
The discrete Fourier transform (DFT) and convolution are widely used techniques with im-
portant applications in signal processing and computer science.

In this section we introduce the DFT, describe the fast Fourier transform algorithm, and
derive the convolution theorem. The naive DFT algorithm on sequences of length n uses
O(n2) operations; the fast Fourier transform algorithm uses only O(n log n) operations, a
saving of a factor of at least 100 for n ≥ 1, 000. The convolution theorem provides a way
to use the DFT to convolve two sequences in O(n log n) steps, many fewer than the naive
algorithm for convolution, which uses O(n2) steps.

264 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.7.1 Commutative Rings*
Since the DFT is defined over commutative rings having an nth root of unity, we digress briefly
to discuss such rings. (Commutative rings are defined in Section 6.2.)

DEFINITION 6.7.1 A commutative ring R = (R, +, ∗, 0, 1) has a principal nth root of unity
ω if ω ∈ R satisfies the following conditions:

ωn = 1 (6.19)
n−1∑
k=0

ωlk = 0 for each 1 ≤ l ≤ n − 1 (6.20)

The elements ω0, ω1, ω2, . . . , ωn−1 are the nth roots of unity and the elements ω0, ω−1, ω−2,
. . . , ω−(n−1) are the nth inverse roots of unity. (Note that ω−j = ωn−j is the multiplicative
inverse of ωj since ωjωn−j = ωn = 1.)

Two commutative rings that have principal nth roots of unity are the complex numbers
and the ring �m of integers modulo m = 2tn/2 + 1 when t ≥ 2 and n = 2q, as we show.
The reader is asked to show that �m has a principal nth root of unity, as stated below. (See
Problem 6.24.)

LEMMA 6.7.1 Let �m be the ring of integers modulo m when m = 2tn/2 + 1, t ≥ 2 and
n = 2q. Then ω = 2t is a principal nth root of unity.

An example of the ring �m is given by t = 2, n = 4, and m = 24 + 1 = 17. In this
ring ω = 4 is a principal fourth root of unity. This is true because ωn = 44 = 16 · 16 =
(16+1)(16−1)+1 = 1 mod (16+1) and

∑n−1
j=0 ωpj = ((4p)n−1)/(4p−1) mod (17)

= ((4n)p − 1)/(4p − 1) mod (17) = (1p − 1)/(4p − 1) mod (17) = 0 mod (17).

LEMMA 6.7.2 e2πi/n = cos(2π/n) + i sin(2π/n) is a principal nth root of unity over the
complex numbers where i =

√
−1 is the “imaginary unit.”

Proof The first condition is satisfied because (e2πi/n)n = e2πi = 1. Also,
∑n−1

k=0 ωlk =
(ωln − 1)/(ωl − 1) = 0 if 1 ≤ l ≤ n− 1 for ω = e2πi/n.

6.7.2 The Discrete Fourier Transform
The discrete Fourier transform has many applications. In Section 6.7.4 we see that it can be
used to compute the convolution of two sequences efficiently, which is the same as computing
the coefficients of the product of two polynomials. The discrete Fourier transform can also be
used to construct a fast algorithm (circuit) for the multiplication of two binary integers [303].
It is widely used in processing analog data such as speech and music.

The n-point discrete Fourier transform Fn : Rn �→ Rn maps n-tuples a = (a0, a1, . . . ,
an−1) over R to n-tuples f = (f0, f1, . . . , fn−1) over R; that is, Fn(a) = f . The com-
ponents of f are defined as the values of the following polynomial p(x) at the nth roots of
unity:

p(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1 (6.21)

c©John E Savage 6.7 Convolution and the FFT Algorithm 265

Then fr, the rth component of Fn(a), is defined as

fr = p(ωr) =
n−1∑
k=0

akωrk (6.22)

This computation is equivalent to the following matrix-vector multiplication:

Fn(a) = [wij] × a (6.23)

where [ωij] is the n× n Vandermonde matrix whose i, j entry is ωij , 0 ≤ i, j ≤ n− 1, and
a is treated as a column vector.

The n-point inverse discrete Fourier transform F−1
n : Rn �→ Rn is defined as the values

of the following polynomial q(x) at the inverse nth roots of unity:

q(x) = (f0 + f1x + f2x
2 + · · ·+ fn−1x

n−1)/n (6.24)

That is, the inverse DFT maps an n-tuple f to an n-tuple g, namely, F−1
n (f) = g, where gs

is defined as follows:

gs = q(ω−s) =
1
n

n−1∑
l=0

flω
−ls (6.25)

This computation is equivalent to the following matrix-vector multiplication:

F−1
n (f) =

[
1
n

ω−ij

]
× f

Because of the following lemma it is legitimate to call F−1
n the inverse of Fn.

LEMMA 6.7.3 For all a ∈ Rn, a = F−1
n (Fn(a)).

Proof Let f = Fn(a) and g = F−1
n (f). Then gs satisfies the following:

gs =
1
n

n−1∑
l=0

flω
−ls =

1
n

n−1∑
l=0

n−1∑
k=0

akω(k−s)l

=
n−1∑
k=0

ak
1
n

n−1∑
l=0

ω(k−s)l

= as

The second equation results from a change in the order of summation. The last follows
from the definition of nth roots of unity. It follows that the matrix [ω−ij/n] is the inverse
of [ωij].

The computation of the n-point DFT and its inverse using the naive algorithms suggested
by their definitions requires O(n2) steps. Below we show that a fast DFT algorithm exists for
which only O(n log n) steps suffice.

266 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.7.3 Fast Fourier Transform
The fast Fourier transform algorithm is a consequence of the following observation: when
n is even, the polynomial p(x) in equation (6.21) can be decomposed as

p(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1

= (a0 + a2x
2 + · · ·+ an−2x

n−2)
+ x (a1 + a3x

2 + · · ·+ an−1x
n−2)

= pe(x2) + xpo(x2) (6.26)

Here pe(y) and po(y) are polynomials of degree (n/2)− 1.
Let n be a power of 2, that is, n = 2d. As stated above, the n-point DFT of a is

obtained by evaluating p(x) at the nth roots of unity. Because of the decomposition of
p(x), it suffices to evaluate pe(y) and po(y) at y = (ω0)2, (ω1)2, (ω2)2, . . . , (ωn−1)2 =
(ω2)0, (ω2)1, (ω2)2, . . . , (ω2)n−1 and combine their values with one multiplication and one
addition for each of the n roots of unity. However, because ω2 is a (n/2)th principal root
of unity (see Problem 6.25), (ω2)(n/2)+r = (ω2)r and the n powers of ω2 collapse to n/2
distinct powers of ω2, namely, the (n/2)th roots of unity. Thus, p(x) at the nth roots of unity
can be evaluated by evaluating pe(y) and po(y) at the (n/2)th roots of unity and combining
their values with one addition and multiplication for each of the nth roots of unity. In other
words, the n-point DFT of a can be done by performing the (n/2)-point DFT of its even
and odd subsequences and combining the results with O(n) additional steps. This is the fast
Fourier transform (FFT) algorithm.

We denote by F (d) the directed acyclic graph associated with the straight-line program
resulting from this realization of the FFT on n = 2d inputs. A circuit for the 16-point FFT
algorithm inputs, F (4), is shown in Fig. 6.7. It is computed from the eight-point FFT on
the even and odd components of a, as shown in the boxed regions. These components are
permuted because each of these smaller FFTs is computed recursively in turn. (The index of

f0 f1 f2 f3 f4 f5 f6 f8 f9 f14f7 f12f11f10 f13 f15

pe(x) po(x)

a15a0 a8 a4 a12 a2 a10 a6 a14 a1 a9 a7a11a3a13a5

Figure 6.7 A circuit F (4) for the FFT algorithm on 16 inputs.

c©John E Savage 6.7 Convolution and the FFT Algorithm 267

the ith input vertex from the left is obtained by writing the integer i as a binary number,
reversing the bits, and converting the resulting binary number to an integer. This is called the
bit-reverse permutation of the binary representation of the integer. For example, the third
input from the left has index 3, which is (011) in binary. Reversed, the binary number is (110),
which represents 12.) Inputs are associated with the open vertices at the bottom of the graph.
Each vertex except for input vertices is associated with an addition and a multiplication. For
example, the white vertex at the top of the graph computes f8 = pe((ω8)2) + ω8po((ω8)2),
where (ω8)2 = ω16 = ω.

Let C(F (d)) and D(F (d)) be the size and depth of circuits for the 2d-point FFT algorithm
for integer d ≥ 1. The construction given above leads to the following recurrences for these
two measures:

C
(
F (d)

)
≤ 2C

(
F (d−1)

)
+ 2d+1

D
(
F (d)

)
≤ D

(
F (d−1)

)
+ 2

Also, examination of the base case of n = 2 demonstrates that C
(
F (1)

)
= 3 and D

(
F (1)

)
=

2, from which we have the following theorem.

THEOREM 6.7.1 Let n = 2d. The circuit for the n-point FFT algorithm over a commutative
ring R has the following circuit size and depth bounds:

C
(
F (d)

)
≤ 2n log n

D
(
F (d)

)
≤ 2 log n

The FFT graph is used in later chapters to illustrate tradeoffs between space and time, space
and the number of I/O operations, and area and time for computation with VLSI machines.
For each of these applications we decompose the FFT graph into sub-FFT graphs. One such
decomposition is shown in Fig. 6.7. A more general decomposition is shown in Fig. 6.8 and
described below.

LEMMA 6.7.4 The 2d-point FFT graph F (d) can be decomposed into 2e 2d−e-point bottom

FFT graphs, {F (d−e)
b,j | 1 ≤ j ≤ 2e}, and 2d−e 2e-point top FFT graphs, {F (e)

t,j | 1 ≤ j ≤
2d−e}. The ith input of F

(e)
t,j is the jth output of F

(d−e)
b,i .

In Fig. 6.8 the vertices and edges have been grouped together as recognizable FFT graphs
and surrounded by shaded boxes. The edges between boxes are not edges of the FFT graph but
instead are used to identify vertices that are simultaneously outputs of bottom FFT subgraphs
and inputs to top FFT subgraphs.

COROLLARY 6.7.1 F (d) can be decomposed into �d/e� stages each containing 2d−e copies of
F (e) and one stage containing 2d−k copies of F (k), k = d − �d/e�e. (F (0) is a single vertex.)
The output vertices of one stage are the input vertices to the next.

Proof From Lemma 6.7.4, each of the 2e bottom FFT subgraphs F (d−e) can be further
decomposed into 2d−2e top FFT subgraphs F (e) and 2e bottom FFT subgraphs F (d−2e).
By repeating this process t times, t ≤ d/e, F (d) can be decomposed into t stages each

268 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

F
(2)
t,1 F

(2)
t,2 F

(2)
t,3 F

(2)
t,4 F

(2)
t,5 F

(2)
t,6 F

(2)
t,7 F

(2)
t,8

F
(3)
b,1 F

(3)
b,2 F

(3)
b,3 F

(3)
b,4

Figure 6.8 Decomposition of the 32-point FFT graph F (5) into four copies of F (3) and 8
copies of F (2). The edges between bottom and top sub-FFT graphs do not exist in the FFT
graph. They are used here to identify common vertices and highlight the communication needed
among sub-FFT graphs.

containing 2d−e copies of F (e) and one stage containing 2d−te copies of F (d−te). The
result follows by setting t = �d/e�.

6.7.4 Convolution Theorem
The convolution function f

(n,m)
conv : Rn+m �→ Rn+m−1 over a commutative ring R maps an

n-tuple a = (a0, a1, . . . , an−1) and an m-tuple b = (b0, b1, . . . , bm−1) onto an (n+m−1)-
tuple c, denoted c = a ⊗ b, where cj is defined as follows:

cj =
∑

r+s=j

ar ∗ bs for 0 ≤ j ≤ n + m − 2

Here
∑

and ∗ are addition and multiplication over the ring R. The direct computation of the
convolution function using the above formula takes O(nm) steps. The convolution theorem
given below and the fast Fourier transform algorithm described above allow the convolution
function to be computed in O(n log n) steps when n = m.

Associate with a and b the following polynomials in the variable x:

a(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1

b(x) = b0 + b1x + b2x
2 + · · ·+ bn−1x

n−1

Then the coefficient of the term xj in the product polynomial c(x) = a(x)b(x) is clearly the
term cj in the convolution c = a ⊗ b.

Convolution is used in signal processing and integer multiplication. In signal processing,
convolution describes the results of passing a signal through a linear filter. In binary integer

c©John E Savage 6.7 Convolution and the FFT Algorithm 269

multiplication the polynomials a(2) and b(2) represent binary numbers; convolution is related
to the computation of their product.

The convolution theorem is one of the most important applications of the DFT. It
demonstrates that convolution, which appears to require O(n2) operations when n = m,
can in fact be computed by a circuit with O(n) operations plus a small multiple of the number
needed to compute the DFT and its inverse.

THEOREM 6.7.2 Let R = (R, +, ∗, 0, 1) be a commutative ring and let a, b ∈ Rn. Let
F2n : R2n �→ R2n and F−1

2n : R2n �→ R2n be the 2n-point DFT and its inverse over R. Let
F2n(a)× F2n(b) denote the 2n-tuple obtained from the term-by-term product of the components
of F2n(a) and F2n(b). Then, the convolution a ⊗ b satisfies the following identity:

a ⊗ b = F−1
2n (F2n(a) × F2n(b))

Proof The n-point DFT Fn : Rn �→ Rn transforms the n-tuple of coefficients a of the
polynomial p(x) of degree n − 1 into the n-tuple f = Fn(a). In fact, the rth component
of f , fr, is the value of the polynomial p(x) at the rth of the n roots of unity, namely
fr = p(ωr). The n-point inverse DFT F−1

n : Rn �→ Rn inverts the process through a
similar computation. If q(x) is the polynomial of degree n−1 whose lth coefficient is fl/n,
then the sth component of the inverse DFT on f , namely F−1

n (f), is as = q(ω−s).
As stated above, to compute the convolution of n-tuples a and b it suffices to compute

the coefficients of the product polynomial c(x) = a(x)b(x). Since the product c(x) is of
degree 2n − 2, we can treat it as a polynomial of degree 2n − 1 and take the 2n-point
DFT, F2n, of it and its inverse, F−1

2n , of the result. This seemingly futile process leads to an
efficient algorithm for convolution. Since the DFT is obtained by evaluating a polynomial

Figure 6.9 The DAG associated with the straight-line program resulting from the application
of the FFT to the convolution theorem with sequences of length 8.

270 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

at the n roots of unity, the DFT of c(x) can be done at the 2n roots of unity by evaluating
a(x) and b(x) at the 2n roots of unity (that is, computing the DFTs of their coefficients
as if they had degree 2n − 1), multiplying their values together, and taking the 2n-point
inverse DFT, that is, performing the computation stated in the theorem.

The combination of the convolution theorem and the algorithm for the FFT provides a
fast straight-line program for convolution, as stated below. The directed acyclic graph for this
straight-line program is shown in Fig. 6.9 on page 269.

THEOREM 6.7.3 Let n = 2d. The convolution function f
(n,n)
conv : R2n �→ R2(n−1) over a

commutative ring R can be computed by a straight-line program over R with size and depth
satisfying the following bounds:

C
(
f (n,n)
conv

)
≤ 12n log 2n

D
(
f (n,n)
conv

)
≤ 4 log 2n

6.8 Merging and Sorting Networks
The sorting problem is to put into ascending or descending order a collection of items that
are drawn from a totally ordered set. A set is totally ordered if for every two distinct elements
of the set one is larger than the other. The merging problem is to merge two sorted lists into
one sorted list. Sorting and merging algorithms can be either straight-line or non-straight-line.
An example of a non-straight-line merging algorithm is the following:

Create a new sorted list from two sorted lists by removing the smaller item from the
two lists and appending it to the new list until one list is empty, at which point append
the non-empty list to the end of the new list.

The binary sorting function f
(n)
sort : Bn �→ Bn described in Section 2.11 sorts a Boolean n-

tuple into descending order. The combinational circuit given there is an example of a straight-
line sorting network, a network realized by a straight-line program. When the set of elements
to be sorted is not Boolean, sorting networks can become quite a bit more complicated, as we
see below.

In this section we describe sorting networks, circuits constructed from comparator oper-
ators that take n elements drawn from a finite totally ordered set A and put them into sorted
order. A comparator function ⊗ : A2 �→ A2 with arguments a and b returns their maximum
and minimum; that is, ⊗(a, b) = (max(a, b), min(a, b)).

It is convenient to show a comparator operator as a vertical edge between two lines carrying
values, as in Fig. 6.10(a). The values on the two lines to the right of the edge are the values to
its left in sorted order, the smaller being on the upper line. A sorting network is an example
of a comparator network, a circuit in which the only operator is a comparator. Input values
appear on the left and output values appear on the right in sorted order.

Shown in Fig. 6.10(b) is an insertion-sorting network on five inputs that inserts an ele-
ment into a previously sorted sublist. Two inputs are sorted at the wavefront labeled A. Between
wavefronts A and B a new item is inserted that is compared against the previously sorted sublist
and inserted into its proper position. The same occurs between wavefronts B and C and after

c©John E Savage 6.8 Merging and Sorting Networks 271

A B C

a

b

min(a, b)

max(a, b)

(b)(a)

Figure 6.10 (a) A comparison operator, and (b) an insertion-sorting network.

wavefront C. An insertion-sorting network can be realized with one comparator for the first
two inputs and k − 1 more for the kth input, 3 ≤ k ≤ n. Let Cinsert(n) and Dinsert(n)
denote the size and depth of an insertion-sorting network on n elements. Then C(2) = 1 and
D(2) = 1, and

Cinsert(n) ≤ Cinsert(n− 1) + n− 1 = n(n− 1)/2

Dinsert(n) ≤ max(Dinsert(n− 1) + 1, n− 1) = n− 1

The depth bound follows because there is a path of length n−1 through the chain of compara-
tors added at the last wavefront and every path through the sorting network is extended by one
comparator with the addition of the new wavefront. A simple proof by induction establishes
these results.

6.8.1 Sorting Via Bitonic Merging
We now describe Batcher’s bitonic merging network BM(m), which is the basis for a sorting
network. Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) be ordered sequences of
length m. That is, xj ≤ xj+1 and yj ≤ yj+1. As suggested in Fig. 6.11, the even-indexed
components of x are merged with the odd-indexed components of y, as are the odd-indexed
components of x and the even-indexed components of y. Each of the four lists that are merged
are themselves sorted. The two lists are interleaved and the kth and (k+1)st elements, k even,
are compared and swapped if necessary. To prove correctness of this circuit, we use the zero-one
principle which is stated below for sorting networks but applied later to merging networks.

THEOREM 6.8.1 (Zero-one principle) If a comparator network for inputs over a set A correctly
sorts all binary inputs, it correctly sorts all inputs.

Proof The proof is by contradiction. Suppose the network correctly sorts all 0-1 sequences
but fails to sort the input sequence (a1, a2, . . . , an). Then there are inputs ai and aj such
that ai < aj but the network puts aj before ai.

Since a sorting network contains only comparators, if we replace each entry ar in an
input sequence (a1, a2, . . . , an) with a new entry h(ar), where h(a) is monotonically
non-decreasing in a (h(a) is non-decreasing as a increases), each comparison of entries
ar and as is replaced by a comparison of entries h(ar) and h(as). Since ar < as only

272 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

BM(2)BM(2)

x0

x1

x2

x3

y1

y0

y3

y2

u0

v0

u1

v2

v1

u2

u3

v3

z1

z2

z3

z4

z5

z6

z7

z0

Figure 6.11 A recursive construction of the bitonic merging network BM(4). The even-
indexed elements of one sorted sequence are merged with the odd-indexed elements of the other,
the resulting sequences interleaved, and the even- and succeeding odd-indexed elements com-
pared. The inputs of one sequence are permuted to demonstrate that BM(4) uses two copies of
BM(2).

if h(ar) ≤ h(as), the set of comparisons made by the sorting network will be exactly
the same on (a1, a2, . . . , an) as on (h(a1), h(a2), . . . , h(an)). Thus, the original output
(b1, b2, . . . , bn) will be replaced by the output sequence (h(b1), h(b2), . . . , h(bn)).

Since it is presumed that the comparator network puts ai and aj in the incorrect order,
let h(x) be the following monotone function:

h(x) =

{
0 if x ≤ ai

1 if x > ai

Then the input and output sequences to the comparator network are binary. However,
the output sequence is not sorted (aj appears before ai but h(aj) = 1 and h(ai) = 0),
contradicting the hypothesis of the theorem. It follows that all sequences over A must be
sorted correctly.

We now show that Batcher’s bitonic merging circuit correctly merges two sorted lists. If
a correct m-sorter exists, then a correct 2m-sorter can be constructed by combining two m-
sorters with a correct 2m-input bitonic merging circuit. It follows that a correct 2m-input
bitonic merging circuit exists if and only if the resulting sorting network is correct. This is
the core idea in a proof by induction of correctness of the 2m-input bitonic merging circuit.
The basis for induction is the fact that individual comparators correctly sort sequences of two
elements.

Suppose that x and y are sorted 0 − 1 sequences of length m. Let x have k 0’s and
m− k 1’s, and let y have l 0’s and m− l 1’s. Then the leftmost merging network of Fig. 6.11
selects exactly �k/2� 0’s from x and �l/2� 0’s from y to produce the sequence u consisting of
a = �k/2� + �l/2� 0’s followed by 1’s. Similarly, the rightmost merging network produces

c©John E Savage 6.8 Merging and Sorting Networks 273

the sequence v consisting of b = �k/2� + �l/2� 0’s followed by 1’s. Since �x� − �x� is 0 or
1, it follows that either a = b, a = b − 1, or a = b + 1. Thus, when u and v are interleaved
to produce the sequence z it contains a sequence of a + b 0’s followed by 1’s when a = b or
a = b + 1, or 2a 0’s followed by 1 0 followed by 1’s when a = b− 1, as suggested below:

z =

2a︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 1, . . . , 1

Thus, if for each 0 ≤ k ≤ m − 1 the outputs in positions 2k and 2k + 1 are compared and
swapped, if necessary, the output will be properly sorted.

The graph of BM(4) of Fig. 6.11 illustrates that BM(4) is constructed of two copies of
BM(2). In addition, it demonstrates that the operations of each of the two BM(2) subnet-
works can be performed in parallel. Another important observation is that this graph is iso-
morphic to an FFT graph when the comparators are replaced by two-input butterfly graphs,
as shown in Fig. 6.12.

THEOREM 6.8.2 Batcher’s 2n-input bitonic merging circuit BM(n) for merging two sorted n-
sequences, n = 2k, has the following size and depth bounds over the basis Ω of comparators:

CΩ(BM(n)) ≤ n(log n + 1)
DΩ(BM(n)) ≤ log n + 1

Proof Let C(k) and D(k) be the size and depth of BM(n). Then C(0) = 1, D(0) = 1,
C(k) = 2C(k − 1) + 2k, and D(k) = D(k − 1) + 1. It follows that C(k) = (k + 1)2k

and D(k) = k + 1. (See Problem 6.29.)

This leads us to the recursive construction of a Batcher’s bitonic sorting network BS(n)
for sequences of length n, n = 2k. It merges the output of two copies of BS(n/2) using
a copy of Batcher’s n-input bitonic merging circuit BM(n/2). The proof of the following
theorem is left as an exercise. (See Problem 6.28.)

THEOREM 6.8.3 Batcher’s n-input bitonic sorting circuit BS(n) for n = 2k has the following
size and depth bounds over the basis Ω of comparators:

CΩ(BS(n)) =
n

4
[log2 n + log n]

z4

z2

z6

z1

z5

z3

z7

z0

y3

x2

y1

x1

y2

x3

y0

x0

Figure 6.12 The graph resulting from the replacement of comparators in Fig. 6.11 with two-
input butterfly graphs and the permutation of inputs. All edges are directed from left to right.

274 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

DΩ(BS(n)) =
1
2

log n(log n − 1)

6.8.2 Fast Sorting Networks
Ajtai, Komlós, and Szemerédi [14] have shown the existence of a sorting network (known
as the AKS sorting network) on n inputs whose circuit size and depth are O(n log n) and
O(log n), respectively. The question had been open for many years whether such a sorting
network existed. Prior to [14] it was thought that sorting networks required Ω(log2 n) depth.

. .
Problems
MATHEMATICAL PRELIMINARIES

6.1 Show that (�, +, ∗, 0, 1) is a commutative ring, where + and ∗ denote integer addition
and multiplication and 0 and 1 denote the first two integers.

6.2 Let �p be the set of integers modulo p, p > 0, under addition and multiplication
modulo p with additive identity 0 and multiplicative identity 1. Show that�p is a ring.

6.3 A field F is a commutative ring in which each element other than 0 has a multiplicative
inverse. Show that (�p, +, ∗, 0, 1) is a field when p is a prime.

MATRICES

6.4 Let Mn×n be the set of n× n matrices over a ring R. Show that (Mn×n, +n,×n, 0n,
In) is a ring, where +n and ×n are the matrix addition and multiplication operators
and 0n and In are the n× n zero and identity matrices.

6.5 Show that the maximum number of linearly independent rows and of linearly indepen-
dent columns of an n ×m matrix A over a field are the same.

Hint: Use the fact that permuting the rows and/or columns of A and adding a scalar
product of one row (column) of A to any other row (column) does not change its rank.
Use row and column permutations as well as additions of scalar products to rows and/or
columns of A to transform A into a matrix that contains the largest possible identity
matrix in its upper left-hand corner. This is called Gaussian elimination.

6.6 Show that (A B)T = BT AT for all m × n matrices A and n × p matrices B over a
commutative ring R.

MATRIX MULTIPLICATION

6.7 The standard matrix-vector multiplication algorithm for a general n×n matrix requires
O(n2) operations. Show that at most O(nlog2 3) operations are needed when the matrix
is Toeplitz.

Hint: Assume that n is a power of two and treat the matrix as a 2 × 2 matrix of
n/2 × n/2 matrices. Also note that only 2n − 1 values determine all the entries in a
Toeplitz matrix. Thus, the difference between two n × n Toeplitz matrices does not
require n2 operations.

c©John E Savage Problems 275

6.8 Generalize Strassen’s matrix multiplication algorithm to matrices that are m × m for
m = p2k, p and k both integers. Derive bounds on the size and depth of a circuit
realizing this version of the algorithm.

For arbitrary n, show how n × n matrices can be embedded into m × m matrices,
m = p2k, so that this new version of the algorithm can be used. Show that upper
bounds of 4.77nlog2 7 and O(log n) on the size and depth of this algorithm can be
obtained.

6.9 Show that Strassen’s matrix multiplication algorithm can be used to multiply square
Boolean matrices by replacing OR by addition modulo n + 1. Derive a bound on the
size and depth of a circuit to realize this algorithm.

6.10 Show that, when one of two n × n Boolean matrices A and B is fixed and known in
advance, A and B can be multiplied by a circuit with O(n3/ log n) operations and
depth O(log n) to produce the product C = AB using the information provided
below.

a) Multiplication of A and B is equivalent to n multiplications of A with an n × 1
vector x, a column of B.

b) Since A is a 0 − 1 matrix, the product Ax consists of sums of variables in x.

c) The product Ax can be further decomposed into the sum A1x1 + A2x2 + · · ·+
Akxk where k = �n/�log n��, Aj is the n × �log n� submatrix consisting of
columns (j − 1)�log n� + 1 through j�log n� of A, and xj is the jth set of
�log n� rows (variables) in x.

d) There are at most n distinct sums of �log n� variables each of which can be formed
in at most 2n addition steps, thereby saving a factor of �log n�.

TRANSITIVE CLOSURE

6.11 Let A = [ai,j], 1 ≤ i, j ≤ n, be a Boolean matrix that is the adjacency matrix of
a directed graph G = (V , E) on n = |V | vertices. Give a proof by induction that
the entry in the rth row and sth column of Ak = Ak−1 × A is 1 if there is a path
containing k edges from vertex r to vertex s and 0 otherwise.

6.12 Consider a directed graph G = (V , E) in which each edge carries a label drawn from
a semiring. Let the entry in the ith row and jth column of the adjacency matrix of G
contain the label of the edge between vertices i and j if there is such an edge and the
empty set otherwise. Assume that the labels of edges in G are drawn from a semiring.
Show that Theorems 6.4.1, 6.4.2, and 6.4.3 hold for such labeled graphs.

MATRIX INVERSION

6.13 Show that over fields the following properties hold for matrix inversion:

a) The inverse of a 2 × 2 upper (lower) triangular matrix is the matrix with the off-
diagonal term negated.

b) The inverse of a 2×2 diagonal matrix is a diagonal matrix in which the ith diagonal
element is the multiplicative inverse of the ith diagonal element of the original
matrix.

276 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.14 Show that a lower triangular Toeplitz matrix T can be inverted by a circuit of size
O(n log n) and depth O(log2 n).
Hint: Assume that n = 2k, write T as a 2 × 2 matrix of n/2 × n/2 matrices, and
devise a recursive algorithm to invert T .

6.15 Exhibit a circuit to compute the characteristic polynomial φA(x) of an n × n matrix
A over a field R that has O(max(n3,

√
nMmatrix(n))) field operations and depth

O(log2 n).
Hint: Consider the case n = k2. Represent the integer i, 0 ≤ i ≤ n−1, by the unique
pair of integers (r, s), 0 ≤ r, s ≤ k − 1, where i = rk + s. Represent the coefficient
ci+1, 0 ≤ i ≤ n − 2, of φA(x) by cr,s. Then we can write φA(x) as follows:

φA(x) =
k−1∑
r=0

Ark

(
k−1∑
s=0

cr,sA
s

)
Show that it suffices to perform k2n2 = n3 scalar multiplications and k(k−1)n2 ≤ n3

additions to form the inner sums, k multiplications of n × n matrices, and kn2 scalar
additions to combine these products. In addition, A2, A3, . . . , Ak−1and Ak, A2k, . . . ,
A(k−1)k must be computed.

6.16 Show that the traces of powers, sr, 1 ≤ r ≤ n, for an n × n matrix A over a field can
be computed with O(

√
nMmatrix(n)) operations.

Hint: By definition sr =
∑n

j=1 a
(r)
j,j , where a

(r)
j,j is the jth diagonal term of the matrix

Ar. Let n be a square. Represent r uniquely by a pair (a, b), where 1 ≤ a, b ≤ √
n−1

and r = a
√

n + b. Then Ar = Aa
√

nAb. Thus, a
(r)
j,j can be computed as the product

of the jth row of Aa
√

n with the jth column of Ab. Then, for each j, 1 ≤ j ≤ n,
form the

√
n×n matrix Rj whose ath row is the jth row of Aa

√
n, 0 ≤ a ≤

√
n− 1.

Also form the n×
√

n matrix Cj whose bth column is the jth column of Ab, 1 ≤ b ≤√
n − 1. Show that the product RjCj contains each of the terms a

(r)
j,j for all values

of r, 0 ≤ r ≤ n − 1 and that the products RjCj , 1 ≤ j ≤ n, can be computed
efficiently.

6.17 Show that (6.14) holds by applying the properties of the coefficients of the characteristic
polynomial of an n × n matrix stated in (6.15).
Hint: Use proof by induction on l to establish (6.14).

CONVOLUTION

6.18 Consider the convolution f
(n,m)
conv : Rn+m �→ Rn+m−2 of an n-tuple a with an m-

tuple b when n ! m. Develop a circuit for this problem whose size is O(m log n)
that uses the convolution theorem multiple times.

Hint: Represent the m-tuple b as sequence of �m/n� n-tuples.

6.19 The wrapped convolution f
(n)
wrapped : R2n �→ Rn maps n-tuples a = (a0, a1, . . . ,

an−1) and b = (b0, b1, . . . , bn−1), denoted a � b, to the n-tuple c the jth component
of which, cj , is defined as follows:

cj =
∑

r+s = j mod n

ar ∗ bs

c©John E Savage Problems 277

Show that the wrapped convolution on n-tuples contains the standard convolution on
�(n + 1)/2�-tuples as a subfunction and vice versa.

Hint: In both halves of the problem, it helps to characterize the standard and wrapped
convolutions as matrix-vector products. It is straightforward to show that the wrapped
convolution contains the standard convolution as a subfunction. To show the other re-
sult, observe that the matrix characterizing the standard convolution contains a Toeplitz
matrix as a submatrix. Consider, for example, the standard convolution of two six-
tuples. The matrix associated with the wrapped convolution contains a special type of
Toeplitz matrix.

6.20 Show that the standard convolution function f
(n,n)
conv : R2n �→ R2n−2 is a subfunction

of the integer multiplication function, f
(n)
mult : B2n�log n� �→ B2n�log n� of Section 2.9

when R is the ring of integers modulo 2.

Hint: Represent the two sequences to be convolved as binary numbers that have been
padded with zeros so that at most one bit in a sequence appears among �log n� posi-
tions.

DISCRETE FOURIER TRANSFORM

6.21 Let n = 2k. Use proof by induction to show that for all elements a of a commutative
ring R the following identity holds, where

∏
is the product operation:

n−1∑
j=0

aj =
k−1∏
j=0

(1 + a2j

)

6.22 Let n = 2k and let R be a commutative ring. For ω ∈ R, ω �= 0, let m = ωn/2 + 1.
Show that for 1 ≤ p < n

n−1∑
j=0

ωpj = 0 mod m

Hint: Represent p as the product of the largest power of 2 with an odd integer and
apply the result of Problem 6.21.

6.23 Let n and ω be positive powers of two. Let m = ωn/2 + 1. Show that in the ring �m

of integers modulo m the integer n has a multiplicative inverse and that ω is a principal
nth root of unity.

6.24 Let n be even. Use the results of Problems 6.21, 6.22, and 6.23 to show that �m,
the set of integers modulo m, m = 2tn/2 + 1 for any positive integer t ≥ 2, is a
commutative ring in which ω = 2t is a principal nth root of unity.

6.25 Let ω be a principal nth root of unity of the commutative ring R = (R, +, ∗, 0, 1).
Show that ω2 is a principal (n/2)th root of unit.

6.26 A circulant is an n × n matrix in which the rth row is the rth cyclic shift of the first
row, 2 ≤ r ≤ n. When n is a prime, show that computing the DFT of a vector of
length n is equivalent to multiplying by an (n− 1) × (n− 1) circulant.

6.27 Show that the multiplication of circulant matrix with a vector can be done by a circuit
of size O(n log n) and depth O(log n).

278 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

x1

x2

x3

x4

x5

x6

x7

Figure 6.13 A bitonic sorter on seven inputs.

MERGING AND SORTING

6.28 Prove Theorem 6.8.3.

6.29 Show that the recurrences given below and stated in the proof of Theorem 6.8.2 have
the solutions shown, where C(0) = 1 and D(0) = 1:

C(k) = 2C(k − 1) + 2k = (k + 1)2k

D(k) = D(k − 1) + 1 = k + 1

6.30 A sequence (x1, x2, . . . , xn) is bitonic if there is an integer 0 ≤ k ≤ n such that
x1 > . . . > xk ≤ . . . ≤ xn.

a) Show that a bitonic sorting network can be constructed as follows: i) sort (x1,
x3, x5, . . .) and (x2, x4, x6, . . .) in bitonic sorters whose lines are interleaved, ii)
compare and interchange the outputs in pairs, beginning with the least significant
pairs. (See Fig. 6.13.)

b) Show that two ordered lists can be merged with a bitonic sorter and that an n-sorter
can be constructed from bitonic sorters.

c) Determine the number of comparators in a 2k-sorter based on merging with bitonic
sorters.

Chapter Notes
The bulk of this chapter concerns matrix computations, a topic with a long history. Many
books have been written on this subject to which the interested reader may refer. (See [25],
[44], [105], [198], and [362].)

Among the more important recent results in this area are the matrix multiplication algo-
rithm of Strassen [319]. Many other improvements have been made on this work, among the
most significant of which is the demonstration by Coppersmith and Winograd [81] that two
n × n matrices can be multiplied with O(n2.376) ring operations.

The relationships between transitive closure and matrix multiplication embodied in Theo-
rems 6.4.2 and 6.4.3 as well as the generalization of these results to closed semirings are taken
from the book by Aho, Hopcroft, and Ullman [10].

c©John E Savage Chapter Notes 279

Winograd [364] demonstrated that matrix multiplication is no harder than matrix inver-
sion, whereas Aho, Hopcroft, and Ullman [10] demonstrated the converse.

Csanky’s algorithm for matrix inversion is reported in [82]. Leverrier’s method for com-
puting the characteristic function of a matrix is described in [98].

Although the FFT algorithm became well known through the work of Cooley and Tukey
[80], the idea actually begins with Gauss in 1805! (See Heideman, Johnson, and Burrus [130].)

The zero-one principle for the study of comparator networks is due to Knuth [170]. Oddly
enough, Batcher’s odd-even merging network is due to Batcher [29].

Borodin and Munro [56] is a good early source for arithmetic complexity, the size and
depth of arithmetic circuits for problems related to matrices and polynomials. More recent
work on the parallel evaluation of arithmetic circuits is surveyed by JáJá [148, Chapter 8] and
von zur Gathen [111].

C H A P T E R

Parallel Computation

Parallelism takes many forms and appears in many guises. It is exhibited at the CPU level when
microinstructions are executed simultaneously. It is also present when an arithmetic or logic
operation is realized by a circuit of small depth, as with carry-save addition. And it is present
when multiple computers are connected together in a network. Parallelism can be available but
go unused, either because an application was not designed to exploit parallelism or because a
problem is inherently serial.

In this chapter we examine a number of explicitly parallel models of computation, includ-
ing shared and distributed memory models and, in particular, linear and multidimensional
arrays, hypercube-based machines, and the PRAM model. We give a broad introduction to
a large and representative set of models, describing a handful of good parallel programming
techniques and showing through analysis the limits on parallelization. Because of the limited
use so far of parallel algorithms and machines, the wide range of hardware and software models
developed by the research community has not yet been fully digested by the computer industry.

Parallelism in logic and algebraic circuits is also examined in Chapters 2 and 6. The block
I/O model, which characterizes parallelism at the disk level, is presented in Section 11.6 and
the classification of problems by their execution time on parallel machines is discussed in Sec-
tion 8.15.2.

281

282 Chapter 7 Parallel Computation Models of Computation

7.1 Parallel Computational Models
A parallel computer is any computer that can perform more than one operation at time.
By this definition almost every computer is a parallel computer. For example, in the pursuit
of speed, computer architects regularly perform multiple operations in each CPU cycle: they
execute several microinstructions per cycle and overlap input and output operations (I/O) (see
Chapter 11) with arithmetic and logical operations. Architects also design parallel computers
that are either several CPU and memory units attached to a common bus or a collection of
computers connected together via a network. Clearly parallelism is common in computer
science today.

However, several decades of research have shown that exploiting large-scale parallelism is
very hard. Standard algorithmic techniques and their corresponding data structures do not
parallelize well, necessitating the development of new methods. In addition, when parallelism
is sought through the undisciplined coordination of a large number of tasks, the sheer number
of simultaneous activities to which one human mind must attend can be so large that it is
often difficult to insure correctness of a program design. The problems of parallelism are
indeed daunting.

Small illustrations of this point are seen in Section 2.7.1, which presents an O(log n)-step,
O(n)-gate addition circuit that is considerably more complex than the ripple adder given in
Section 2.7. Similarly, the fast matrix inversion straight-line algorithm of Section 6.5.5 is more
complex than other such algorithms (see Section 6.5).

In this chapter we examine forms of parallelism that are more coarse-grained than is typ-
ically found in circuits. We assume that a parallel computer consists of multiple processors
and memories but that each processor is primarily serial. That is, although a processor may
realize its instructions with parallel circuits, it typically executes only one or a small number of
instructions simultaneously. Thus, most of the parallelism exhibited by our parallel computer
is due to parallel execution by its processors.

We also describe a few programming styles that encourage a parallel style of programming
and offer promise for user acceptance. Finally, we present various methods of analysis that
have proven useful in either determining the parallel time needed for a problem or classifying
a problem according to its need for parallel time.

Given the doubling of CPU speed every two or three years, one may ask whether we can’t
just wait until CPU performance catches up with demand. Unfortunately, the appetite for
speed grows faster than increases in CPU speed alone can meet. Today many problems, es-
pecially those involving simulation of physical systems, require teraflop computers (those per-
forming 1012 floating-point operations per second (FLOPS)) but it is predicted that petaflop
computers (performing 1015 FLOPS) are needed. Achieving such high levels of performance
with a handful of CPUs may require CPU performance beyond what is physically possible at
reasonable prices.

7.2 Memoryless Parallel Computers
The circuit is the premier parallel memoryless computational model: input data passes through
a circuit from inputs to outputs and disappears. A circuit is described by a directed acyclic
graph in which vertices are either input or computational vertices. Input values and the re-
sults of computations are drawn from a set associated with the circuit. (In the case of logic

c©John E Savage 7.3 Parallel Computers with Memory 283

f+, ω2f+, ω0f+, ω2f+, ω0

f+, ω3f+, ω1f+, ω0

9 10 11

f+, ω2

8

12

75

1 2 3 4

a2a0

6

(a) (b)

a1 a3

pj

vj uj cj

gj

sj

cj+1

Figure 7.1 Examples of Boolean and algebraic circuits.

circuits, these values are drawn from the set B = {0, 1} and are called Boolean.) The function
computed at a vertex is defined through functional composition with values associated with
computational and input vertices on which the vertex depends. Boolean logic circuits are dis-
cussed at length in Chapters 2 and 9. Algebraic and combinatorial circuits are the subject of
Chapter 6. (See Fig. 7.1.)

A circuit is a form of unstructured parallel computer. No order or structure is assumed
on the operations that are performed. (Of course, this does not prevent structure from being
imposed on a circuit.) Generally circuits are a form of fine-grained parallel computer; that
is, they typically perform low-level operations, such as AND, OR, or NOT in the case of logic
circuits, or addition and multiplication in the case of algebraic circuits. However, if the set
of values on which circuits operate is rich, the corresponding operations can be complex and
coarse-grained.

The dataflow computer is a parallel computer designed to simulate a circuit computation.
It maintains a list of operations and, when all operands of an operation have been computed,
places that operation on a queue of runnable jobs.

We now examine a variety of structured computational models, most of which are coarse-
grained and synchronous.

7.3 Parallel Computers with Memory
Many coarse-grained, structured parallel computational models have been developed. In this
section we introduce these models as well as a variety of performance measures for parallel
computers.

284 Chapter 7 Parallel Computation Models of Computation

There are many ways to characterize parallel computers. A fine-grained parallel computer
is one in which the focus is on its constituent components, which themselves consist of low-
level entities such as logic gates and binary memory cells. A coarse-grained parallel computer
is one in which we ignore the low-level components of the computer and focus instead on its
functioning at a high level. A complex circuit, such as a carry-lookahead adder, whose details
are ignored is a single coarse-grained unit, whereas one whose details are studied explicitly is
fine-grained. CPUs and large memory units are generally viewed as coarse-grained.

A parallel computer is a collection of interconnected processors (CPUs or memories). The
processors and the media used to connect them constitute a network. If the processors are
in close physical proximity and can communicate quickly, we often say that they are tightly
coupled and call the machine a parallel computer rather than a computer network. How-
ever, when the processors are not in close proximity or when their operating systems require a
large amount of time to exchange messages, we say that they are loosely coupled and call the
machine a computer network.

Unless a problem is trivially parallel, it must be possible to exchange messages between
processors. A variety of low-level mechanisms are generally available for this purpose. The use
of software for the exchange of potentially long messages is called message passing. In a tightly
coupled parallel computer, messages are prepared, sent, and received quickly relative to the
clock speed of its processors, but in a loosely coupled parallel computer, the time required for
these steps is much larger. The time Tm to transmit a message from one processor to another
is generally assumed to be of the form Tm = α + lβ, where l is the length of the message in
words, α (latency) is the time to set up a communication channel, and β (bandwidth) is the
time to send and receive one word. Both α and β are constant multiples of the duration of
the CPU clock cycle of the processors. Thus, α + β is the time to prepare, send, and receive
a single-word message. In a tightly coupled machine α and β are small, whereas in a loosely
coupled machine α is large.

An important classification of parallel computers with memory is based on the degree to
which they share access to memory. A shared-memory computer is characterized by a model
in which each processor can address locations in a common memory. (See Fig. 7.2(a).) In
this model it is generally assumed that the time to make one access to the common mem-

P2 Pp

Pp

P1

M3

Common Memory

Mp

...

P3

(a)

M1 P1 M2 P2

Network

...

(b)

Figure 7.2 (a) A shared-memory computer; (b) a distributed-memory computer.

c©John E Savage 7.3 Parallel Computers with Memory 285

ory is relatively close to the time for a processor to access one of its registers. Processors in a
shared-memory computer can communicate with one another via the common memory. The
distributed-memory computer is characterized by a model in which processors can commu-
nicate with other processors only by sending messages. (See Fig. 7.2(b).) In this model it is
generally assumed that processors also have local memories and that the time to send a message
from one processor to another can be large relative to the time to access a local memory. A third
type of computer, a cross between the first two, is the distributed shared-memory computer.
It is realized on a distributed-memory computer on which the time to process messages is large
relative to the time to access a local memory, but a layer of software gives the programmer the
illusion of a shared-memory computer. Such a model is useful when programs can be executed
primarily from local memories and only occasionally must access remote memories.

Parallel computers are synchronous if all processors perform operations in lockstep and
asynchronous otherwise. A synchronous parallel machine may alternate between executing
instructions and reading from local or common memory. (See the PRAM model of Sec-
tion 7.9, which is a synchronous, shared-memory model.) Although a synchronous parallel
computational model is useful in conveying concepts, in many situations, as with loosely cou-
pled distributed computers, it is not a realistic one. In other situations, such as in the design
of VLSI chips, it is realistic. (See, for example, the discussion of systolic arrays in Section 7.5.)

7.3.1 Flynn’s Taxonomy
Flynn’s taxonomy of parallel computers distinguishes between four extreme types of paral-
lel machine on the basis of the degree of simultaneity in their handling of instructions and
data. The single-instruction, single-data (SISD) model is a serial machine that executes one
instruction per unit time on one data item. An SISD machine is the simplest form of serial
computer. The single-instruction, multiple-data (SIMD) model is a synchronous parallel
machine in which all processors that are not idle execute the same instruction on potentially
different data. (See Fig. 7.3.) The multiple-instruction, single-data (MISD) model de-
scribes a synchronous parallel machine that performs different computations on the same data.
While not yet practical, the MISD machine could be used to test the primality of an inte-
ger (the single datum) by having processors divide it by independent sets of integers. The

...

Common Memory

PpP2P1

Control Unit

Figure 7.3 In the SIMD model the same instruction is executed on every processor that is
not idle.

286 Chapter 7 Parallel Computation Models of Computation

multiple-instruction, multiple-data (MIMD) model describes a parallel machine that runs
a potentially different program on potentially different data on each processor but can send
messages among processors.

The SIMD machine is generally designed to have a single instruction decoder unit that
controls the action of each processor, as suggested in Fig. 7.3. SIMD machines have not been a
commercial success because they require specialized processors rather than today’s commodity
processors that benefit from economies of scale. As a result, most parallel machines today are
MIMD. Nonetheless, the SIMD style of programming remains appealing because programs
having a single thread of control are much easier to code and debug. In addition, a MIMD
model, the more common parallel model in use today, can be programmed in a SIMD style.

While the MIMD model is often assumed to be much more powerful than the SIMD
one, we now show that the former can be converted to the latter with at most a constant
factor slowdown in execution time. Let K be the maximum number of different instructions
executable by a MIMD machine and index them with integers in the set {1, 2, 3, . . . , K}.
Slow down the computation of each machine by a factor K as follows: 1) identify time intervals
of length K, 2) on the kth step of the jth interval, execute the kth instruction of a processor if
this is the instruction that it would have performed on the jth step of the original computation.
Otherwise, let the processor be idle by executing its NOOP instruction. This construction
executes the instructions of a MIMD computation in a SIMD fashion (all processors either
are idle or execute the instruction with the same index) with a slowdown by a factor K in
execution time.

Although for most machines this simulation is impractical, it does demonstrate that in the
best case a SIMD program is at worst a constant factor slower than the corresponding MIMD
program for the same problem. It offers hope that the much simpler SIMD programming style
can be made close in performance to the more difficult MIMD style.

7.3.2 The Data-Parallel Model
The data-parallel model captures the essential features of the SIMD style. It has a single
thread of control in which serial and parallel operations are intermixed. The parallel opera-
tions possible typically include vector and shifting operations (see Section 2.5.1), prefix and
segmented prefix computations (see Sections 2.6), and data-movement operations such as are
realized by a permutation network (see Section 7.8.1). They also include conditional vector
operations, vector operations that are performed on those vector components for which the
corresponding component of an auxiliary flag vector has value 1 (others have value 0).

Figure 7.4 shows a data-parallel program for radix sort. This program sorts n d-bit inte-
gers, {x[n], . . . , x[1]}, represented in binary. The program makes d passes over the integers.
On each pass the program reorders the integers, placing those whose jth least significant bit
(lsb) is 1 ahead of those for which it is 0. This reordering is stable; that is, the previous or-
dering among integers with the same jth lsb is retained. After the jth pass, the n integers are
sorted according to their j least significant bits, so that after d passes the list is fully sorted.

The prefix function P(n)
+ computes the running sum of the jth lsb on the jth pass. Thus, for

k such that x[k]j = 1 (0), bk (ck) is the number of integers with index k or higher whose
jth lsb is 1 (0). The value of ak = bkx[k]j + (ck + b1)x[k]j is bk or ck + b1, depending on
whether the lsb of x[k] is 1 or 0, respectively. That is, ak is the index of the location in which
the kth integer is placed after the jth pass.

c©John E Savage 7.3 Parallel Computers with Memory 287

{ x[n]j is the jth least significant bit of the nth integer. }
{ After the jth pass, the integers are sorted by their j least significant bits. }
{ Upon completion, the kth location contains the kth largest integer. }

for j := 0 to d− 1
begin

(bn, . . . , b1) := P(n)
+ (x[n]j , . . . , x[1]j);

{ bk is the number of 1’s among x[n]j , . . . , x[k]j . }
{ b1 is the number of integers whose jth bit is 1. }

(cn, . . . , c1) := P(n)
+ (x[n]j , . . . , x[1]j);

{ ck is the number of 0’s among x[n]j , . . ., x[k]j . }

(an, . . . , a1) :=
(
bnx[n]j + (cn + b1)x[n]j , . . . , b1x[1]j + (c1 + b1)x[1]j

)
;

{ ak = bkx[k]j + (ck + b1)x[k]j is the rank of the kth key. }

(x[n + 1 − an], x[n + 1 − an−1], . . . , x[n + 1 − a1]) := (x[n], x[n− 1], . . . , x[1])
{ This operation permutes the integers. }

end

Figure 7.4 A data-parallel radix sorting program to sort n d-bit binary integers that makes two
uses of the prefix function P(n)

+ .

The data-parallel model is often implemented using the single-program multiple-data
(SPMD) model. This model allows copies of one program to run on multiple processors with
potentially different data without requiring that the copies run in synchrony. It also allows
the copies to synchronize themselves periodically for the transfer of data. A convenient ab-
straction often used in the data-parallel model that translates nicely to the SPMD model is the
assumption that a collection of virtual processors is available, one per vector component. An
operating system then maps these virtual processors to physical ones. This method is effective
when there are many more virtual processors than real ones so that the time for interprocessor
communication is amortized.

7.3.3 Networked Computers
A networked computer consists of a collection of processors with direct connections between
them. In this context a processor is a CPU with memory or a sequential machine designed
to route messages between processors. The graph of a network has a vertex associated with
each processor and an edge between two connected processors. Properties of the graph of a
network, such as its size (number of vertices), its diameter (the largest number of edges on
the shortest path between two vertices), and its bisection width (the smallest number of edges
between a subgraph and its complement, both of which have about the same size) characterize
its computational performance. Since a transmission over an edge of a network introduces
delay, the diameter of a network graph is a crude measure of the worst-case time to transmit

288 Chapter 7 Parallel Computation Models of Computation

(a) (b)

Figure 7.5 Completely balanced (a) and unbalanced (b) trees.

a message between processors. Its bisection width is a measure of the amount of information
that must be transmitted in the network for processors to communicate with their neighbors.

A large variety of networks have been investigated. The graph of a tree network is a tree.
Many simple tasks, such as computing sums and broadcasting (sending a message from one
processor to all other processors), can be done on tree networks. Trees are also naturally suited
to many recursive computations that are characterized by divide-and-conquer strategies, in
which a problem is divided into a number of like problems of similar size to yield small results
that can be combined to produce a solution to the original problem. Trees can be completely
balanced or unbalanced. (See Fig. 7.5.) Balanced trees of fixed degree have a root and bounded
number of edges associated with each vertex. The diameter of such trees is logarithmic in
the number of vertices. Unbalanced trees can have a diameter that is linear in the number of
vertices.

A mesh is a regular graph (see Section 7.5) in which each vertex has the same degree except
possibly for vertices on its boundary. Meshes are well suited to matrix operations and can be
used for a large variety of other problems as well. If, as some believe, speed-of-light limitations
will be an important consideration in constructing fast computers in the future [43], the one-,
two-, and three-dimensional mesh may very well become the computer organization of choice.
The diameter of a mesh of dimension d with n vertices is proportional to n1/d. It is not as
small as the diameter of a tree but acceptable for tasks for which the cost of communication
can be amortized over the cost of computation.

The hypercube (see Section 7.6) is a graph that has one vertex at each corner of a mul-
tidimensional cube. It is an important conceptual model because it has low (logarithmic)
diameter, large bisection width, and a connectivity for which it is easy to construct efficient
parallel algorithms for a large variety of problems. While the hypercube and the tree have sim-
ilar diameters, the superior connectivity of the hypercube leads to algorithms whose running
time is generally smaller than on trees. Fortunately, many hypercube-based algorithms can be
efficiently translated into algorithms for other network graphs, such as meshes.

We demonstrate the utility of each of the above models by providing algorithms that are
naturally suited to them. For example, linear arrays are good at performing matrix-vector
multiplications and sorting with bubble sort. Two-dimensional meshes are good at matrix-
matrix multiplication, and can also be used to sort in much less time than linear arrays. The
hypercube network is very good at solving a variety of problems quickly but is much more
expensive to realize than linear or two-dimensional meshes because each processor is connected
to many more other processors.

c©John E Savage 7.4 The Performance of Parallel Algorithms 289

Figure 7.6 A crossbar connection network. Any two processors can be connected.

In designing parallel algorithms it is often helpful to devise an algorithm for a particular
parallel machine model, such as a hypercube, and then map the hypercube and the algo-
rithm with it to the model of the machine on which it will be executed. In doing this, the
question arises of how efficiently one graph can be embedded into another. This is the graph-
embedding problem. We provide an introduction to this important question by discussing
embeddings of one type of machine into another.

A connection network is a network computer in which all vertices except for peripheral
vertices are used to route messages. The peripheral vertices are the computers that are con-
nected by the network. One of the simplest such networks is the crossbar network, in which
a row of processors is connected to a column of processors via a two-dimensional array of
switches. (See Fig. 7.6.) The crossbar switch with 2n computational processors has n2 routing
vertices. The butterfly network (see Fig. 7.15) provides a connectivity similar to that of the
crossbar but with many fewer routing vertices. However, not all permutations of the inputs to
a butterfly can be mapped to its outputs. For this purpose the Beneš network (see Fig. 7.20)
is better suited. It consists of two butterfly graphs with the outputs of one graph connected to
the outputs of the second and the order of edges of the second reversed. Many other permuta-
tion networks exist. Designers of connection networks are very concerned with the variety of
connections that can be made among computational processors, the time to make these con-
nections, and the number of vertices in the network for the given number of computational
processors. (See Section 7.8.)

7.4 The Performance of Parallel Algorithms
We now examine measures of performance of parallel algorithms. Of these, computation time
is the most important. Since parallel computation time Tp is a function of p, the number of
processors used for a computation, we seek a relationship among p, Tp, and other measures of
the complexity of a problem.

Given a p-processor parallel machine that executes Tp steps, in the spirit of Chapter 3, we
can construct a circuit to simulate it. Its size is proportional to pTp, which plays the role of

290 Chapter 7 Parallel Computation Models of Computation

serial time Ts. Similarly, a single-processor RAM of the type used in a p-processor parallel
machine but with p times as much memory can simulate an algorithm on the parallel machine
in p times as many steps; it simulates each step of each of the p RAM processors in succession.
This observation provides the following relationship among p, Tp, and Ts when storage space
for the serial and parallel computations is comparable.

THEOREM 7.4.1 Let Ts be the smallest number of steps needed on a single RAM with storage
capacity S, in bits, to compute a function f . If f can be computed in Tp steps on a network of p
RAM processors, each with storage S/p, then Tp satisfies the following inequality:

pTp ≥ Ts (7.1)

Proof This result follows because, while the serial RAM can simulate the parallel machine
in pTp steps, it may be able to compute the function in question more quickly.

The speedup S of a parallel p-processor algorithm over the best serial algorithm for a prob-
lem is defined as S = Ts/Tp. We see that, with p processors, a speedup of at most p is possible;
that is, S ≤ p. This result can also be stated in terms of the computational work done by serial
and parallel machines, defined as the number of equivalent serial operations. (Computational
work is defined in terms of the equivalent number of gate operations in Section 3.1.2. The
two measures differ only in terms of the units in which work is measured, CPU operations in
this section and gate operations in Section 3.1.2.) The computational work Wp done by an
algorithm on a p-processor RAM machine is Wp = pTp. The above theorem says that the
minimal parallel work needed to compute a function is at least the serial work required for it,
that is, Wp ≥ Ws = Ts. (Note that we compare the work on a serial processor to a collection
of p identical processors, so that we need not take into account differences among processors.)

A parallel algorithm is efficient if the work that it does is close to the work done by the
best serial algorithm. A parallel algorithm is fast if it achieves a nearly maximal speedup. We
leave unspecified just how close to optimal a parallel algorithm must be for it to be classified as
efficient or fast. This will often be determined by context. We observe that parallel algorithms
may be useful if they complete a task with acceptable losses in efficiency or speed, even if they
are not optimal by either measure.

7.4.1 Amdahl’s Law
As a warning that it is not always possible with p processors to obtain a speedup of p, we intro-
duce Amdahl’s Law, which provides an intuitive justification for the difficulty of parallelizing
some tasks. In Sections 3.9 and 8.9 we provide concrete information on the difficulty of par-
allelizing individual problems by introducing the P-complete problems, problems that are the
hardest polynomial-time problems to parallelize.

THEOREM 7.4.2 (Amdahl’s Law) Let f be the fraction of a program’s execution time on a serial
RAM that is parallelizable. Then the speedup S achievable by this program on a p-processor RAM
machine must satisfy the following bound:

S ≤ 1
(1 − f) + f/p

Proof Given a Ts-step serial computation, fTs/p is the smallest possible number of steps
on a p-processor machine for the parallelizable serial steps. The remaining (1 − f)Ts serial

c©John E Savage 7.4 The Performance of Parallel Algorithms 291

steps take at least the same number of steps on the parallel machine. Thus, the parallel time
Tp satisfies Tp ≥ Ts[(1 − f) + f/p] from which the result follows.

This result shows that if a fixed fraction f of a program’s serial execution time can be
parallelized, the speedup achievable with that program on a parallel machine is bounded above
by 1/(1 − f) as p grows without limit. For example, if 90% of the time of a serial program
can be parallelized, the maximal achievable speed is 10, regardless of the number of parallel
processors available.

While this statement seems to explain the difficulty of parallelizing certain algorithms, it
should be noted that programs for serial and parallel machines are generally very different.
Thus, it is not reasonable to expect that analysis of a serial program should lead to bounds on
the running time of a parallel program for the same problem.

7.4.2 Brent’s Principle
We now describe how to convert the inherent parallelism of a problem into an efficient parallel
algorithm. Brent’s principle, stated in Theorem 7.4.3, provides a general schema for exploiting
parallelism in a problem.

THEOREM 7.4.3 Consider a computation C that can be done in t parallel steps when the time
to communicate between operations can be ignored. Let mi be the number of primitive operations
done on the ith step and let m =

∑t
i=1 mi. Consider a p-processor machine M capable of the

same primitive operations, where p ≤ maxi mi. If the communication time between the operations
in C on M can be ignored, the same computation can be performed in Tp steps on M , where Tp

satisfies the following bound:
Tp ≤ (m/p) + t

Proof A parallel step in which mi operations are performed can be simulated by M in
�mi/p� < (mi/p) + 1 steps, from which the result follows.

Brent’s principle provides a schema for realizing the inherent parallelism in a problem.
However, it is important to note that the time for communication between operations can
be a serious impediment to the efficient implementation of a problem on a parallel machine.
Often, the time to route messages between operations can be the most important limitation
on exploitation of parallelism.

We illustrate Brent’s principle with the problem of adding n integers, x1, . . . , xn, n = 2k.
Under the assumption that at most two integers can be added in one primitive operation, we
see that the sum can be formed by performing n/2 additions, n/4 additions of these results,
etc., until the last sum is formed. Thus, mi = n/2i for i ≤ �log2 n�. When only p processors
are available, we assign �n/p� integers to p−1 processors and n−(p−1)�n/p� integers to the
remaining processor. In �n/p� steps, the p processors each compute their local sums, leaving
their results in a reserved location. In each subsequent phase, half of the processors active in the
preceding phase are active in this one. Each active processor fetches the partial sum computed
by one other processor, adds it to its partial sum, and stores the result in a reserved place. After
O(log p) phases, the sum of the n integers has been computed. This algorithm computes the
sum of the n integers in O(n/p + log p) time steps. Since the maximal speedup possible is
p, this algorithm is optimal to within a constant multiplicative factor if log p ≤ (n/p) or
p ≤ n/ log n.

292 Chapter 7 Parallel Computation Models of Computation

It is important to note that the time to communicate between processors is often very
large relative to the length of a CPU cycle. Thus, the assumption that it takes zero time to
communicate between processors, the basis of Brent’s principle, holds only for tightly coupled
processors.

7.5 Multidimensional Meshes
In this section we examine multidimensional meshes. A one-dimensional mesh or linear
array of processors is a one-dimensional (1D) array of computing elements connected via
nearest-neighbor connections. (See Fig. 7.7.) If the vertices of the array are indexed with
integers from the set {1, 2, 3, . . . , n}, then vertex i, 2 ≤ i ≤ n − 1, is connected to vertices
i − 1 and i + 1. If the linear array is a ring, vertices 1 and n are also connected. Such an
end-to-end connection can be made with short connections by folding the linear array about
its midpoint.

The linear array is an important model that finds application in very large-scale integrated
(VLSI) circuits. When the processors of a linear array operate in synchrony (which is the
usual way in which they are used), it is called a linear systolic array (a systole is a recurrent
rhythmic contraction, especially of the heart muscle). A systolic array is any mesh (typically
1D or 2D) in which the processors operate in synchrony. The computing elements of a systolic
array are called cells. A linear systolic array that convolves two binary sequences is described
in Section 1.6.

A multidimensional mesh (see Fig. 7.8) (or mesh) offers better connectivity between pro-
cessors than a linear array. As a consequence, a multidimensional mesh generally can compute
functions more quickly than a 1D one. We illustrate this point by matrix multiplication on
2D meshes in Section 7.5.3.

Figure 7.8 shows 2D and 3D meshes. Each vertex of the 2D mesh is numbered by a pair
(r, c), where 0 ≤ r ≤ n − 1 and 0 ≤ c ≤ n − 1 are its row and column indices. (If the cell

0

0

0

0

0

A3,1

A1,1

A2,1

0

0

0

0

A3,2

A2,2

A1,2

0

0

A1,3

A2,3

A3,3

0

0

x1

S1

x2

S2

x3

S3

Figure 7.7 A linear array to compute the matrix-vector product Ax, where A = [ai,j] and
xT = (x1, . . . , xn). On each cycle, the ith processor sets its current sum, Si, to the sum to its
right, Si+1, plus the product of its local value, xi, with its vertical input.

c©John E Savage 7.5 Multidimensional Meshes 293

(a) (b)

(0, 1)(0, 0)

(1, 0) (1, 1)

(2, 0) (2, 1)

(0, 2)

(1, 2) (1, 3)

(2, 3)(2, 2)

(3, 1) (3, 2) (3, 3)(3, 0)

(0, 3)

Figure 7.8 (a) A two-dimensional mesh with optional connections between the boundary
elements shown by dashed lines. (b) A 3D mesh (a cube) in which elements are shown as subcubes.

(r, c) is associated with the integer rn + c, this is the row-major order of the cells. Cells are
numbered left-to-right from 0 to 3 in the first row, 4 to 7 in the second, 8 to 11 in the third,
and 12 to 15 in the fourth.) Vertex (r, c) is adjacent to vertices (r − 1, c) and (r + 1, c) for
1 ≤ r ≤ n − 2. Similarly, vertex (r, c) is adjacent to vertices (r, c − 1) and (r, c + 1) for
1 ≤ c ≤ n − 2. Vertices on the boundaries may or may not be connected to other boundary
vertices, and may be connected in a variety of ways. For example, vertices in the first row
(column) can be connected to those in the last row (column) in the same column (row) (this is
a toroidal mesh) or the next larger column (row). The second type of connection is associated
with the dashed lines in Fig. 7.8(a).

Each vertex in a 3D mesh is indexed by a triple (x, y, z), 0 ≤ x, y, z ≤ n−1, as suggested
in Fig. 7.8(b). Connections between boundary vertices, if any, can be made in a variety of
ways. Meshes with larger dimensionality are defined in a similar fashion.

A d-dimensional mesh consists of processors indexed by a d-tuple (n1, n2, . . . , nd) in
which 0 ≤ nj ≤ Nj−1 for 1 ≤ j ≤ d. If processors (n1, n2, . . . , nd) and (m1, m2, . . . , md)
are adjacent, there is some j such that ni = mi for j �= i and |nj −mj | = 1. There may also
be connections between boundary processors, that is, processors for which one component of
their index has either its minimum or maximum value.

7.5.1 Matrix-Vector Multiplication on a Linear Array
As suggested in Fig. 7.7, the cells in a systolic array can have external as well as nearest-neighbor
connections. This systolic array computes the matrix-vector product Ax of an n × n matrix
with an n-vector. (In the figure, n = 3.) The cells of the systolic array beat in a rhythmic
fashion. The ith processor sets its current sum, Si, to the product of xi with its vertical input
plus the value of Si+1 to its right (the value 0 is read by the rightmost cell). Initially, Si = 0 for
1 ≤ i ≤ n. Since alternating vertical inputs are 0, the alternating values of Si are 0. In Fig. 7.7
the successive values of S3 are A1,3x3, 0, A2,3x3, 0, A3,3x3, 0, 0. The successive values of S2

294 Chapter 7 Parallel Computation Models of Computation

are 0, A1,2x2 +A1,3x3, 0, A2,2x2 +A2,3x3, 0, A3,2x2 +A3,3x3, 0. The successive values of S1

are 0, 0, A1,1x1 +A1,2x2 +A1,3x3, 0, A2,1x1 +A2,2x2 +A2,3x3, 0, A3,1x1 +A3,2x2 +A3,3x3.
The algorithm described above to compute the matrix-vector product for a 3 × 3 matrix

clearly extends to arbitrary n × n matrices. (See Problem 7.8.) Since the last element of an
n×n matrix arrives at the array after 3n− 2 time steps, such an array will complete its task in
3n−1 time steps. A lower bound on the time for this problem (see Problem 7.9) can be derived
by showing that the n2 entries of the matrix A and the n entries of the matrix x must be read
to compute Ax correctly by an algorithm, whether serial or not. By Theorem 7.4.1 it follows
that all systolic algorithms using n processors require n steps. Thus, the above algorithm is
nearly optimal to within a constant multiplicative factor.

THEOREM 7.5.1 There exists a linear systolic array with n cells that computes the product of an
n × n matrix with an n-vector in 3n − 1 steps, and no algorithm on such an array can do this
computation in fewer than n steps.

Since the product of two n × n matrices can be realized as n matrix-vector products with
an n × n matrix, an n-processor systolic array exists that can multiply two matrices nearly
optimally.

7.5.2 Sorting on Linear Arrays
A second application of linear systolic arrays is bubble sorting of integers. A sequential version
of the bubble sort algorithm passes over the entries in a tuple (x1, x2, . . . , xn) from left to
right multiple times. On the first pass it finds the largest element and moves it to the rightmost
position. It applies the same procedure to the first n−1 elements of the resultant list, stopping
when it finds a list containing one element. This sequential procedure takes time proportional
to n + (n− 1) + (n− 2) + · · ·+ 2 + 1 = n(n + 1)/2.

A parallel version of bubble sort, sometimes called odd-even transposition sort, is natu-
rally realized on a linear systolic array. The n entries of the array are placed in n cells. Let ci

be the word in the ith cell. We assume that in one unit of time two adjacent cells can read
words stored in each other’s memories (ci and ci+1), compare them, and swap them if one (ci)
is larger than the other (ci+1). The odd-even transposition sort algorithm executes n stages.
In the even-numbered stages, integers in even-numbered cells are compared with integers in
the next higher numbered cells and swapped, if larger. In the odd-numbered stages, the same
operation is performed on integers in odd-numbered cells. (See Fig. 7.9.) We show that in n
steps the sorting is complete.

THEOREM 7.5.2 Bubble sort of n elements on a linear systolic array can be done in at most n steps.
Every algorithm to sort a list of n elements on a linear systolic array requires at least n − 1 steps.
Thus, bubble sort on a linear systolic array is almost optimal.

Proof To derive the upper bound we use the zero-one principle (see Theorem 6.8.1), which
states that if a comparator network for inputs over an ordered set A correctly sorts all binary
inputs, it correctly sorts all inputs. The bubble sort systolic array maps directly to a com-
parator network because each of its operations is data-independent, that is, oblivious. To
see that the systolic array correctly sorts binary sequences, consider the position, r, of the
rightmost 1 in the array.

c©John E Savage 7.5 Multidimensional Meshes 295

3

4

2

5

1

3

3

4

5

5

12

4

1

3

2

52

5

4

5

3

34

2

2

1

4

1

1

Figure 7.9 A systolic implementation of bubble sort on a sequence of five items. Underlined
pairs of items are compared and swapped if out of order. The bottom row shows the first set of
comparisons.

If r is even, on the first phase of the algorithm this 1 does not move. However, on all
subsequent phases it moves right until it arrives at its final position. If r is odd, it moves
right on all phases until it arrives in its final position. Thus by the second step the rightmost
1 moves right on every step until it arrives at its final position. The second rightmost 1 is
free to move to the right without being blocked by the first 1 after the second phase. This
second 1 will move to the right by the third phase and continue to do so until it arrives at
its final position. In general, the kth rightmost 1 starts moving to the right by the (k + 1)st
phase and continues until it arrives at its final position. It follows that at most n phases are
needed to sort the 0-1 sequence. By the zero-one principle, the same applies to all sequences.

To derive the lower bound, assume that the sorted elements are increasing from left to
right in the linear array. Let the elements initially be placed in decreasing order from left
to right. Thus, the process of sorting moves the largest element from the leftmost location
in the array to the rightmost. This requires at least n − 1 steps. The same lower bound
holds if some other permutation of the n elements is desired. For example, if the kth largest
element resides in the rightmost cell at the end of the computation, it can reside initially in
the leftmost cell, requiring at least n− 1 operations to move to its final position.

7.5.3 Matrix Multiplication on a 2D Mesh
2D systolic arrays are natural structures on which to compute the product C = A × B of
matrices A and B. (Matrix multiplication is discussed in Section 6.3.) Since C = A ×B can
be realized as n matrix-vector multiplications, C can be computed with n linear arrays. (See
Fig. 7.7.) If the columns of B are stored in successive arrays and the entries of A pass from
one array to the next in one unit of time, the nth array receives the last entry of B after 4n−2
time steps. Thus, this 2D systolic array computes C = A × B in 4n − 1 steps. Somewhat
more efficient 2D systolic arrays can be designed. We describe one of them below.

296 Chapter 7 Parallel Computation Models of Computation

Figure 7.10 shows a 2D mesh for matrix multiplication. Each cell of this mesh adds to
its stored value the product of the value arriving from above and to its left. These two values
pass through the cells to those below and to their right, respectively. When the entries of A are
supplied on the left and those of B are supplied from above in the order shown, the cell Ci,j

computes ci,j , the (i, j) entry of the product matrix C. For example, cell C2,3 accumulates the
value c2,3 = a2,1 ∗ b1,3 + a2,2 ∗ b2,3 + a2,3 ∗ b3,3. After the entries of C have been computed,
they are produced as outputs by shifting the entries of the mesh to one side of the array. When
generalized to n×n matrices, this systolic array requires 2n− 1 steps for the last of the matrix
components to enter the array, and another n − 1 steps to compute the last entry cn,n. An
additional n steps are needed to shift the components of the product matrix out of the array.
Thus, this systolic array performs matrix multiplication in 4n − 2 steps.

We put the following requirements on every systolic array (of any dimension) that com-
putes the matrix multiplication function: a) each component of each matrix enters the array
at one location, and b) each component of the product matrix is computed at a unique cell.
We now show that the systolic matrix multiplication algorithm is optimal to within a constant
multiplicative factor.

THEOREM 7.5.3 Two n×n matrices can be multiplied by an n×n systolic array in 4n−2 steps
and every two-dimensional systolic array for this problem requires at least (n/2)− 1 steps.

Proof The proof that two n × n matrices can be multiplied in 4n − 2 steps by a two-
dimensional systolic array was given above. We now show that Ω(n) steps are required to
multiply two n × n matrices, A and B, to produce the matrix C = A × B. Observe that
the number of cells in a two-dimensional array that are within d moves from any particular
cell is at most σ(d), where σ(d) = 2d2 + 2d + 1. The maximum occurs at the center of the
array. (See Problem 7.11.)

a1,1

b2,3

b3,3

b1,3

00

b1,2

b2,2

b3,2

b3,1

b2,1

b1,1

c3,3c3,2c3,10

c2,3c2,2c2,1a2,3

c1,3c1,2c1,1a1,2 a1,3

a3,2a3,1

a2,1 0a2,2

0a3,3

0

Figure 7.10 A two-dimensional mesh for the multiplication of two matrices. The entries in
these matrices are supplied in successive time intervals to processors on the boundary of the mesh.

c©John E Savage 7.5 Multidimensional Meshes 297

Given a systolic array with inputs supplied externally over time (see Fig. 7.10), we enlarge
the array so that each component of each matrix is initially placed in a unique cell. The
enlarged array contains the original n× n array.

Let C = [ci,j]. Because ci,j =
∑

u ai,ubu,j , it follows that for each value of i, j, t, and
u there is a path from ai,u to the cell at which ci,j is computed as well as a path from bt,j to
this same cell. Thus, it follows that there is a path in the array between arbitrary entries ai,u

and bt,j of the matrices A = [ai,u] and B = [bt,j]. Let s be the maximum number of array
edges between an element of A or B and an element of C on which it depends. It follows
that at least s steps are needed to form C and that every element of A and B is within dis-
tance 2s. Furthermore, each of the 2n2 elements of A and B is located initially in a unique
cell of the expanded systolic array. Since there are at most σ(2s) vertices within a distance
of 2s, it follows that σ(2s) = 2(2s)2 + 2(2s)+ 1 ≥ 2n2, from which we conclude that the
number of steps to multiply n × n matrices is at least s ≥ 1

2 (n2 − 1
4)1/2 − 1

4 ≥ n
2 − 1.

7.5.4 Embedding of 1D Arrays in 2D Meshes
Given an algorithm for a linear array, we ask whether that algorithm can be efficiently realized
on a 2D mesh. This is easily determined: we need only specify a mapping of the cells of a linear
array to cells in the 2D mesh. Assuming that the two arrays have the same number of cells, a
natural mapping is obtained by giving the cells of an n×n mesh the snake-row ordering. (See
Fig. 7.11.) In this ordering cells of the first row are ordered from left to right and numbered
from 0 to n − 1; those in the second row are ordered from right to left and numbered from
n to 2n − 1. This process repeats, alternating between ordering cells from left to right and
right to left and numbering the cells in succession. Ordering the cells of a linear array from
left to right and numbering them from 0 to n2 − 1 allows us to map the linear array directly
to the 2D mesh. Any algorithm for the linear array runs in the same time on a 2D mesh if the
processors in the two cases are identical.

Now we ask if, given an algorithm for a 2D mesh, we can execute it on a linear array. The
answer is affirmative, although the execution time of the algorithm may be much greater on the
1D array than on the 2D mesh. As a first step, we map vertices of the 2D mesh onto vertices
of the 1D array. The snake-row ordering of the cells of an n × n array provides a convenient

12131415

111098

4567

0 321

Figure 7.11 Snake-row ordering of the vertices of a two-dimensional mesh.

298 Chapter 7 Parallel Computation Models of Computation

mapping of the cells of the 2D mesh onto the cells of the linear array with n2 cells. We assume
that each of the cells of the linear array is identical to a cell in the 2D mesh.

We now address the question of communication between cells. When mapped to the 1D
array, cells can communicate only with their two immediate neighbors in the array. However,
cells on the n×n mesh can communicate with as many as four neighbors. Unfortunately, cells
in one row of the 2D mesh that are neighbors of cells in an adjacent row are mapped to cells
that are as far as 2n − 1 cells away in the linear array. We show that with a factor of 8n − 2
slowdown, the linear array can simulate the 2D mesh. A slowdown by at least a factor of n/2
is necessary for those problems and data for which a datum moves from the first to the last
entry in the array (in n2 − 1 steps) to simulate a movement that takes 2n − 1 steps on the
array. ((n2 − 1)/(2n− 1) ≥ n/2 for n ≥ 2.)

Given an algorithm for a 2D mesh, slow it down as follows:

a) Subdivide each cycle into six subcycles.

b) In the first of these subcycles let each cell compute using its local data.

c) In the second subcycle let each cell communicate with neighbor(s) in adjacent columns.

d) In the third subcycle let cells in even-numbered rows send messages to cells in the next
higher numbered rows.

e) In the fourth subcycle let cells in even-numbered rows receive messages from cells in the
next higher numbered rows.

f) In the fifth subcycle let cells in odd-numbered rows send messages to cells in next higher
numbered rows.

g) In the sixth subcycle let cells in odd-numbered rows receive messages from cells in next
higher numbered rows.

When the revised 2D algorithm is executed on the linear array, computation occurs in the
first subcycle in unit time. During the second subcycle communication occurs in unit time
because cells that are column neighbors in the 2D mesh are adjacent in the 1D array. The
remaining four subcycles involve communication between pairs of groups of n cells each. This
can be done for all pairs in 2n − 1 time steps: each cell shifts a datum in the direction of the
cell for which it is destined. After 2n− 1 steps it arrives and can be processed. We summarize
this result below.

THEOREM 7.5.4 Any T-step systolic algorithm on an n × n array can be simulated on a linear
systolic array with n2 cells in at most (8n − 2)T steps.

In the next section we demonstrate that hypercubes can be embedded into meshes. From
this result we derive mesh-based algorithms for a variety of problems from hypercube-based
algorithms for these problems.

7.6 Hypercube-Based Machines
A d-dimensional hypercube has 2d vertices. When they are indexed by binary d-tuples (ad,
ad−1, . . . , a0), adjacent vertices are those whose tuples differ in one position. Thus, the 2D

c©John E Savage 7.6 Hypercube-Based Machines 299

11110111

000 001

101100

011

111110

01010

0100

11

Figure 7.12 Hypercubes in two, three, and four dimensions.

hypercube is a square, the 3D hypercube is the traditional 3-cube, and the four-dimensional
hypercube consists of two 3-cubes with edges between corresponding pairs of vertices. (See
Fig. 7.12.) The d-dimensional hypercube is composed of two (d−1)-dimensional hypercubes
in which each vertex in one hypercube has an edge to the corresponding vertex in the other.
The degree of each vertex in a d-dimensional hypercube is d and its diameter is d as well.

While the hypercube is a very useful model for algorithm development, the construction
of hypercube-based networks can be costly due to the high degree of the vertices. For example,
each vertex in a hypercube with 4,096 vertices has degree 12; that is, each vertex is connected to
12 other vertices, and a total of 49,152 connections are necessary among the 4,096 processors.
By contrast, a 26 × 26 2D mesh has the same number of processors but at most 16,384 wires.
The ratio between the number of wires in a d-dimensional hypercube and a square mesh with
the same number of vertices is d/4. This makes it considerably more difficult to realize a
hypercube of high dimensionality than a 2D mesh with a comparable number of vertices.

7.6.1 Embedding Arrays in Hypercubes
Given an algorithm designed for an array, we ask whether it can be efficiently realized on
a hypercube network. The answer is positive. We show by induction that if d is even, a
2d/2 × 2d/2 array can be embedded into a d-dimensional, 2d-vertex hypercube and if d is odd,
a 2(d+1)/2 × 2(d−1)/2 array can be embedded into a d-dimensional hypercube. The base cases
are d = 2 and d = 3.

1011 1010

0110 0111 1111 1110

01010100 1101 1100

0010

1000

0011

1001

11

0001000000

101100

111110

011010

00101

10

000

Figure 7.13 Mappings of 2 × 2, 4 × 2, and 4 × 4 arrays to two-, three-, and four-dimensional
hypercubes. The binary tuples identify vertices of a hypercube.

300 Chapter 7 Parallel Computation Models of Computation

When d = 2, a 2d/2 × 2d/2 array is a 2 × 2 array that is itself a four-vertex hypercube.
When d = 3, a 2(d+1)/2 × 2(d−1)/2 array is a 4 × 2 array. (See Fig. 7.13, page 299.) It
can be embedded into a three-dimensional hypercube by mapping the top and bottom 2 × 2
subarrays to the vertices of the two 2-cubes contained in the 3-cube. The edges between the
two subarrays correspond directly to edges between vertices of the 2-cubes.

Applying the same kind of reasoning to the inductive hypothesis, we see that the hypothesis
holds for all values of d ≥ 2. If a 2D array is not of the form indicated, it can be embedded
into such an array whose sides are a power of 2 by at most quadrupling the number of vertices.

7.6.2 Cube-Connected Cycles
A reasonable alternative to the hypercube is the cube-connected cycles (CCC) network shown
in Fig. 7.14. Each of its vertices has degree 3, yet the graph has a diameter only a constant factor
larger than that of the hypercube. The (d, r)-CCC is defined in terms of a d-dimensional hy-
percube when r ≥ d. Let (ad−1, ad−2, . . . , a0) and (bd−1, bd−2, . . . , b0) be the indices of two
adjacent vertices on the d-dimensional hypercube. Assume that these tuples differ in the jth
component, 0 ≤ j ≤ d−1; that is, aj = bj ⊕1 and ai = bi for i �= j. Associated with vertex
(ad−1, . . . , ap, . . . , a0) of the hypercube are the vertices (p, ad−1, . . . , ap, . . . , a0), 0 ≤ p ≤
r − 1, of the CCC that form a ring; that is, vertex (p, ad−1, . . . , ap, . . . , a0) is adjacent to
vertices ((p + 1) mod r, ad−1, . . . ap, . . . , a0) and ((p− 1) mod r, ad−1, . . . , ap, . . . , a0).
In addition, for 0 ≤ p ≤ d − 1, vertex (p, ad−1, . . . , ap, . . . , a0) is adjacent to vertex
(p, ad−1, . . . , ap ⊕ 1, . . . , a0) on the ring associated with vertex (ad−1, . . . , ap ⊕ 1, . . . , a0)
of the hypercube.

Figure 7.14 The cube-connected cycles network replaces each vertex of a d-dimensional hyper-
cube with a ring of r ≥ d vertices in which each vertex is connected to its neighbor on the ring.
The jth ring vertex, 0 ≤ j ≤ d− 1, is also connected to the jth ring vertex at an adjacent corner
of the original hypercube.

c©John E Savage 7.7 Normal Algorithms 301

The diameter of the CCC is at most 3r/2 + d, as we now show. Given two vertices
v1 = (p, ad−1, . . . , a0) and v2 = (q, bd−1, . . . , b0), let their hypercube addresses a =
(ad−1, . . . , a0) and b = (bd−1, . . . , b0) differ in k positions. To move from v1 to v2, move
along the ring containing v1 by decreasing processor numbers until reaching the next lower
index at which a and b differ. (Wrap around to the highest index, if necessary.) Move from
this ring to the ring whose hypercube address differs in this index. Move around this ring until
arriving at the next lower indexed processor at which a and b differ. Continue in this fashion
until reaching the ring with hypercube address b. The number of edges traversed in this phase
of the movement is at most one for each vertex on the ring plus at most one for each of the
k ≤ d positions on which the addresses differ. Finally, move around the last ring toward the
vertex v2 along the shorter path. This requires at most r/2 edge traversals. Thus, the maximal
distance between two vertices, the diameter of the graph, is at most 3r/2 + d.

7.7 Normal Algorithms
Normal algorithms on hypercubes are systolic algorithms with the property that in each cycle
some bit position in an address is chosen and data is exchanged only between vertices whose
addresses differ in this position. An operation is then performed on this data in one or both
vertices. Thus, if the hypercube has three dimensions and the chosen dimension is the second,
the following pairs of vertices exchange data and perform operations on them: (0, 0, 0) and
(0, 1, 0), (0, 0, 1) and (0, 1, 1), (1, 0, 0) and (1, 1, 0), and (1, 0, 1) and (1, 1, 1). A fully nor-
mal algorithm is a normal algorithm that visits each of the dimensions of the hypercube in
sequence. There are two kinds of fully normal algorithms, ascending and descending algo-
rithms; ascending algorithms visit the dimensions of the hypercube in ascending order, whereas
descending algorithms visit them in descending order. We show that many important algo-
rithms are fully normal algorithms or combinations of ascending and descending algorithms.
These algorithms can be efficiently translated into mesh-based algorithms, as we shall see.

The fast Fourier transform (FFT) (see Section 6.7.3) is an ascending algorithm. As sug-
gested in the butterfly graph of Fig. 7.15, if each vertex at each level in the FFT graph on
n = 2d inputs is indexed by a pair (l, a), where a is a binary d-tuple and 0 ≤ l ≤ d, then
at level l pairs of vertices are combined whose indices differ in their lth component. (See
Problem 7.14.) It follows that the FFT graph can be computed in levels on the d-dimensional
hypercube by retaining the values corresponding to the column indexed by a in the hypercube
vertex whose index is a. It follows that the FFT graph has exactly the minimal connectiv-
ity required to execute an ascending fully normal algorithm. If the directions of all edges
are reversed, the graph is exactly that needed for a descending fully normal algorithm. (The

convolution function f
(n,m)
conv : Rn+m �→ Rn+m−1 over a commutative ring R can also be

implemented as a normal algorithm in time O(log n) on an n-vertex hypercube, n = 2d. See
Problem 7.15.)

Similarly, because the graph of Batcher’s bitonic merging algorithm (see Section 6.8.1) is
the butterfly graph associated with the FFT, it too is a normal algorithm. Thus, two sorted lists
of length n = 2d can be merged in d = log2 n steps. As stated below, because the butterfly
graph on 2d inputs contains butterfly subgraphs on 2k inputs, k < d, a recursive normal
sorting algorithm can be constructed that sorts on the hypercube in O(log2 n) steps. The
reader is asked to prove the following theorem. (See Problem 6.29.)

302 Chapter 7 Parallel Computation Models of Computation

1st lsb

2nd lsb

3rd lsb

000111 110 101 010100 011 001

Figure 7.15 The FFT butterfly graph with column numberings. The predecessors of vertices
at the kth level differ in their kth least significant bits.

THEOREM 7.7.1 There exists a normal sorting algorithm on the p-vertex hypercube, p = 2d, that
sorts p items in time O(log2 p).

Normal algorithms can also be used to perform a sum on the hypercube and broadcast
on the hypercube, as we show. We give an ascending algorithm for the first problem and a
descending algorithm for the second.

7.7.1 Summing on the Hypercube
Let the hypercube be d-dimensional and let a = (ad−1, ad−2, . . . , a0) denote an address of a
vertex. Associate with a the integer |a| = ad−12d−1 + ad−22d−2 + · · · + a0. Thus, when
d = 3, the addresses {0, 1, 2, . . . , 7} are associated with the eight 3-tuples {(0, 0, 0), (0, 0, 1),
(0, 1, 0), . . . , (1, 1, 1)}, respectively.

Let V (|a|) denote the value stored at the vertex with address a. For each (d − 1) tuple
(ad−1, . . . , a1), send to vertex (ad−1, . . . , a1, 0) the value stored at vertex (ad−1, . . . , a1, 1).
In the summing problem we store at vertex (ad−1, . . . , a1, 0) the sum of the original values
stored at vertices (ad−1, . . . , a1, 0) and (ad−1, . . . , a1, 1). Below we show the transmission
(e.g. V (0) ← V (1)) and addition (e.g. V (0) ← V (0) + V (1)) that result for d = 3:

V (0) ← V (1),
V (2) ← V (3),
V (4) ← V (5),
V (6) ← V (7),

V (0) ← V (0) + V (1)
V (2) ← V (2) + V (3)
V (4) ← V (4) + V (5)
V (6) ← V (6) + V (7)

For each (d − 2) tuple (ad−1, . . . , a2) we then send to vertex (ad−1, . . . , a2, 0, 0) the value
stored at vertex (ad−1, . . . , a2, 1, 0). Again for d = 3, we have the following data transfers and
additions:

c©John E Savage 7.7 Normal Algorithms 303

V (0) ← V (2),
V (4) ← V (6),

V (0) ← V (0) + V (2),
V (4) ← V (4) + V (6),

We continue in this fashion until reaching the lowest dimension of the d-tuples at which point
we have the following actions when d = 3:

V (0) ← V (4), V (0) ← V (0) + V (4)

At the end of this computation, V (0) is the sum of the values stored in all vertices. This
algorithm for computing V (0) can be extended to any associative binary operator.

7.7.2 Broadcasting on the Hypercube
The broadcast operation is obtained by reversing the directions of each of the transmissions
described above. Thus, in the example, V (0) is sent to V (4) in the first stage, in the second
stage V (0) and V (4) are sent to V (2) and V (6), respectively, and in the last stage, V (0),
V (2), V (4), and V (6) are sent to V (1), V (3), V (5), and V (7), respectively.

The algorithm given above to broadcast from one vertex to all others in a hypercube can be
modified to broadcast to just the vertices in a subhypercube that is defined by those addresses
a = (ad−1, ad−2, . . . , a0) in which all bits are fixed except for those in some k positions.
For example, {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)} are the vertices of a subhypercube of the
three-dimensional hypercube (the rightmost bit is fixed). To broadcast to each of these vertices
from (0, 1, 0), say, on the first step send the message to its pair along the second dimension,
namely, (0, 0, 0). On the second step, let these pairs send messages to their pairs along the
third dimension, namely, (0, 1, 0) → (1, 1, 0) and (0, 0, 0) → (1, 0, 0). This algorithm can be
generalized to broadcast from any vertex in a hypercube to all other vertices in a subhypercube.
Values at all vertices of a subhypercube can be associatively combined in a similar fashion.

The performance of these normal algorithms is summarized below.

THEOREM 7.7.2 Broadcasting from one vertex in a d-dimensional hypercube to all other vertices
can be done with a normal algorithm in O(d) steps. Similarly, the associative combination of the
values stored at the vertices of a d-dimensional hypercube can be done with a normal algorithm
in O(d) steps. Broadcasting and associative combining can also be done on the vertices of k-
dimensional subcube of the d-dimensional hypercube in O(k) steps with a normal algorithm.

7.7.3 Shifting on the Hypercube
Cyclic shifting can also be done on a hypercube as a normal algorithm. For n = 2d, consider
shifting the n-tuple x = (xn−1, . . . , x0) cyclically left by k places on a d-dimensional hyper-
cube. If k ≤ n/2 (see Fig. 7.16(a)), the largest element in the right half of x, namely xn/2−1,
moves to the left half of x. On the other hand, if k > n/2 (see Fig. 7.16(b)), xn/2−1 moves
to the right half of x.

Thus, to shift x left cyclically by k places, k ≤ n/2, divide x into two (n/2)-tuples,
shift each of these tuples cyclically by k places, and then swap the rightmost k components
of the two halves, as suggested in Fig. 7.16(a). The swap is done via edges across the highest

304 Chapter 7 Parallel Computation Models of Computation

����������
����������
����������
����������

�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����

n/2 n/2k k − n/2

k k

k − n/2k

Figure 7.16 The two cases of a normal algorithm for cyclic shifting on a hypercube.

dimension of the hypercube. When k > n/2, cyclically shift each (n/2)-tuple by k − n/2
positions and then swap the high-order n − k positions from each tuple across the highest
dimension of the hypercube. We have the following result.

THEOREM 7.7.3 Cyclic shifting of an n-tuple, n = 2d, by any amount can be done recursively by
a normal algorithm in log2 n communication steps.

7.7.4 Shuffle and Unshuffle Permutations on Linear Arrays
Because many important algorithms are normal and hypercubes are expensive to realize, it
is preferable to realize normal algorithms on arrays. In this section we introduce the shuffle
and unshuffle permutations, show that they can be used to realize normal algorithms, and then
show that they can be realized on linear arrays. We use the unshuffle algorithms to map normal
hypercube algorithms onto one- and two-dimensional meshes.

Let �(n) = {0, 1, 2, . . . , n − 1} and n = 2d. The shuffle permutation π
(n)
shuffle :

�(n) �→�(n) moves the item in position a to position π
(n)
shuffle(a), where π

(n)
shuffle(a) is the

integer represented by the left cyclic shift of the d-bit binary number representing a. For exam-
ple, when n = 8 the integer 3 is represented by the binary number 011 and its left cyclic shift

is 110. Thus, π
(8)
shuffle(3) = 6. The shuffle permutation of the sequence {0, 1, 2, 3, 4, 5, 6, 7}

is the sequence {0, 4, 1, 5, 2, 6, 3, 7}. A shuffle operation is analogous to interleaving of the
two halves of a sorted deck of cards. Figure 7.17 shows this mapping for n = 8.

The unshuffle permutation π
(n)
unshuffle :�(n) �→�(n) reverses the shuffle operation: it

moves the item in position b to position a where b = π
(n)
shuffle(a); that is, a = π

(n)
unshuffle(b) =

πunshuffle(πshuffle(a)). Figure 7.18 shows this mapping for n = 8. The shuffle permutation
is obtained by reversing the directions of edges in this graph.

An unshuffle operation can be performed on an n-cell linear array, n = 2d, by assuming
that the cells contain the integers {0, 1, 2, . . . , n − 1} from left to right represented as d-
bit binary integers and then sorting them by their least significant bit using a stable sorting
algorithm. (A stable sorting algorithm is one that does not change the original order of keys

c©John E Savage 7.7 Normal Algorithms 305

410

7

2

51

5 3 6 7

0 1 2 4 3 5 6

76543210

36

7

240

Figure 7.17 The shuffle permutation can be realized by a series of swaps of the contents of cells.
The cells between which swaps are done have a heavy bar above them. The result of swapping cells
of one row is shown in the next higher row, so that the top row contains the result of shuffling the
bottom row.

with the same value.) When this is done, the sequence {0, 1, 2, 3, 4, 5, 6, 7} is mapped to the
sequence {0, 2, 4, 6, 1, 3, 5, 7}, the unshuffled sequence, as shown in Fig. 7.18. The integer
b is mapped to the integer a whose binary representation is that of b shifted cyclically right
by one position. For example, position 1 (001) is mapped to position 4 (100) and position 6
(110) is mapped to position 3 (011).

Since bubble sort is a stable sorting algorithm, we use it to realize the unshuffle permuta-
tion. (See Section 7.5.2.) In each phase keys (binary tuples) are compared based on their least
significant bits. In the first phase values in positions i and i + 1 are compared for i even. The
next comparison is between such pairs for i odd. Comparisons of this form continue, alternat-
ing between even and odd values for i, until the sequence is sorted. Since the first phase has
no effect on the integers {0, 1, 2, . . . , n − 1}, it is not done. Subsequent phases are shown in
Fig. 7.18. Pairs that are compared are connected by a light line; a darker line joins pairs whose
values are swapped. (See Problem 7.16.)

We now show how to implement efficiently a fully normal ascending algorithm on a linear
array. (See Fig. 7.19.) Let the exchange locations of the linear array be locations i and i + 1
of the array for i even. Only elements in exchange locations are swapped. Swapping between
the first dimension of the hypercube is done by swaps across exchange locations. To simulate
exchanges across the second dimension, perform a shuffle operation (by reversing the order of
the operations of Fig. 7.18) on each group of four elements. This places into exchange locations
elements whose original indices differed by two. Performing a shuffle on eight, sixteen, etc.

7

0 2

1 2 3 4 5 6 7

0 2 4 6 1 3

75634120

753614

5

0

Figure 7.18 An unshuffle operation is obtained by bubble sorting the integers {0, 1, 2, . . . , n−
1} based on the value of their least significant bits. The cells with bars over them are compared.
The first set of comparisons is done on elements in the bottom row. Those pairs with light bars
contain integers whose values are in order.

306 Chapter 7 Parallel Computation Models of Computation

5 3 7 8 12 101 13 11 15

15

6 14 9

35911461021248

240

0 2 1 3 4 6 5 7 8 10 9 11 12 14 13 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

711

15

130

Figure 7.19 A normal ascending algorithm realized by shuffle operations on 2k elements,
k = 2, 3, 4, . . ., places into exchange locations elements whose indices differ by increasing powers
of two. Exchange locations are paired together.

positions places into exchange locations elements whose original indices differed by four, eight,
etc. The proof of correctness of this result is left to the reader. (See Problem 7.17.)

Since a shuffle on n = 2d elements can be done in 2d−1 − 1 steps on a linear array
with n cells (see Theorem 7.5.2), it follows that this fully normal ascending algorithm uses
T (n) = φ(d) steps, where T (2) = φ(1) = 0 and

φ(d) = φ(d− 1) + 2d−1 − 1 = 2d − d− 1

Do a fully normal descending algorithm by a shuffle followed by its steps in reverse order.

THEOREM 7.7.4 A fully normal ascending (descending) algorithm that runs in d = log2 n steps
on a d-dimensional hypercube containing 2d vertices can be realized on a linear array of n = 2d

elements with T (n) = n− log2 n− 1 (2T(n)) additional parallel steps.

From the discussion of Section 7.7 it follows that broadcasting, associative combining,
and the FFT algorithm can be executed on a linear array in O(n) steps because each can be
implemented as a normal algorithm on the n-vertex hypercube. Also, a list of n items can
be sorted on a linear array in O(n) steps by translating Batcher’s sorting algorithm based on
bitonic merging, a normal sorting algorithm, to the linear array. (See Problem 7.20.)

7.7.5 Fully Normal Algorithms on Two-Dimensional Arrays
We now consider the execution of a normal algorithm on a rectangular array. We assume
that the n = 22d vertices of a 2d-dimensional hypercube are mapped onto an m × m mesh,
m = 2d, in row-major order. Since each cell is indexed by a pair consisting of row and column
indices, (r, c), and each of these satisfies 0 ≤ r ≤ m−1 and 0 ≤ c ≤ m−1, they can each be
represented by a d-bit binary number. Let r and c be these binary numbers. Thus cell (r, c)
is indexed by the 2d-bit binary number rc.

Cells in positions (r, c) and (r, c + 1) have associated binary numbers that agree in their
d most significant positions. Cells in positions (r, c) and (r + 1, c) have associated binary

c©John E Savage 7.7 Normal Algorithms 307

numbers that agree in their d least significant positions. To simulate a normal hypercube algo-
rithm on the 2D mesh, in each row simulate a normal hypercube algorithm on 2d vertices after
which in each column simulate a normal hypercube algorithm on 2d vertices. The correctness
of this procedure follows because every adjacent pair of vertices of the simulated hypercube is
at some time located in adjacent cells of the 2D array.

From Theorem 7.7.4 it follows that hypercube exchanges across the lower d dimensions
can be simulated in time proportional to the length of a row, that is, in time O(

√
n). Similarly,

it also follows that hypercube exchanges across the higher d dimensions can be simulated in
time proportional to O(

√
n). We summarize this result below.

THEOREM 7.7.5 A fully normal 2d-dimensional hypercube algorithm (ascending or descending),
n = 22d, can be realized in O(

√
n) steps on an

√
n ×

√
n array of cells.

It follows from the discussion of Section 7.7 that broadcasting, associative combining,
and the FFT algorithm can be executed on a 2D mesh in O(

√
n) steps because each can be

implemented as a normal algorithm on the n-vertex hypercube.
Also, a list of n items can be sorted on an

√
n ×√

n array in O(
√

n) steps by translating
a normal merging algorithm to the

√
n×

√
n array and using it recursively to create a sorting

network. (See Problem 7.21.) No sorting algorithm can sort in fewer than 2
√

m− 2 steps on
an

√
m×

√
m array because whatever element is positioned in the lower right-hand corner of

the array could originate in the upper left-hand corner and have to traverse at least 2
√

m − 2
edges to arrive there.

7.7.6 Normal Algorithms on Cube-Connected Cycles
Consider now processors connected as a d-dimensional cube-connected cycle (CCC) network
in which each ring has r = 2k ≥ d processors. In particular, let r be the smallest power of 2
greater than or equal to d, so that d ≤ r < 2d. (Thus k = O(log d).) We call such a CCC
network a canonical CCC network on n vertices. It has n = r2d vertices, d2d ≤ n < (2d)2d.
(Thus d = O(log n).) We show that a fully normal algorithm can be executed efficiently on
such CCC networks.

Let each ring of the CCC network be indexed by a d-tuple corresponding to the corner
of the hypercube at which it resides. Let each processor be indexed by a (d + k)-tuple in
which the d low-order bits are the ring index and the k high-order bits specify the position of
a processor on the ring.

A fully normal algorithm on a canonical CCC network is implemented in two phases. In
the first phase, the ring is treated as an array and a fully normal algorithm on the k high-order
bits is simulated in O(d) steps. In the second phase, exchanges are made across hypercube
edges. Rotate the elements on each ring so that ring processors whose k-bit indices are 0 (call
these the lead elements) are adjacent along the first dimension of the original hypercube. Ex-
change information between them. Now rotate the rings by one position so that lead elements
are adjacent along the second dimension of the original hypercube. The elements immediately
behind the lead elements on the rings are now adjacent along the first hypercube dimension
and are exchanged in parallel with the lead elements. (This simultaneous execution is called
pipelining.) Subsequent rotations of the rings place successive ring elements in alignment
along increasing bit positions. After O(d) rotations all exchanges are complete. Thus, a total
of O(d) time steps suffice to execute a fully normal algorithm. We have the following result.

308 Chapter 7 Parallel Computation Models of Computation

THEOREM 7.7.6 A fully normal algorithm (ascending or descending) for an n-vertex hypercube
can be realized in O(log n) steps on a canonical n-vertex cube-connected cycle network.

Thus, a fully normal algorithm on an n-vertex hypercube can be simulated on a CCC
network in time proportional to the time on the hypercube. However, the vertices of the CCC
have bounded degree, which makes them much easier to realize in hardware than high-degree
networks.

7.7.7 Fast Matrix Multiplication on the Hypercube
Matrix multiplication can be done more quickly on the hypercube than on a two-dimensional
array. Instead of O(n) steps, only O(log n) steps are needed, as we show.

Consider the multiplication of n×n matrices A and B for n = 2r to produce the product
matrix C = A × B. We describe a normal systolic algorithm to multiply these matrices on a
d-dimensional hypercube, d = 3r.

Since d = 3r, the vertices of the d-dimensional hypercube are addressed by a binary 3r-
tuple, a = (a3r−1, a3r−2, . . . , a0). Let the r least significant bits of a denote an integer i, let
the next r lsb’s denote an integer j, and let the r most significant bits denote an integer k.
Then, we have |a| = kn2 + jn + i since n = 2r. Because of this identity, we represent the
address a by the triple (i, j, k). We speak of the processor Pi,j,k located at the vertex (i, j, k)
of the d-dimensional hypercube, d = 3r. We denote by HCi,j,− the subhypercube in which i
and j are fixed and by HCi,−,k and HC−,j,k the subhypercubes in which the two other pairs
of indices are fixed. There are 22r subhypercubes of each kind.

We assume that each processor Pi,j,k contains three local variables, Ai,j,k, Bi,j,k, and
Ci,j,k. We also assume that initially Ai,j,0 = ai,j and Bi,j,0 = bi,j , where 0 ≤ i, j ≤ n − 1.
The multiplication algorithm has the following five phases:

a) For each subhypercube HCi,j,− and for 1 ≤ k ≤ n−1, broadcast Ai,j,0 (containing ai,j)
to Ai,j,k and Bi,j,0 (containing bi,j) to Bi,j,k.

b) For each subhypercube HCi,−,k and for 0 ≤ j ≤ n − 1, j �= k, broadcast Ai,k,k

(containing ai,k) to Ai,j,k.

c) For each subhypercube HC−,j,k and for 0 ≤ i ≤ n − 1, i �= k, broadcast Bk,j,k (con-
taining bk,j) to Bi,j,k.

d) At each processor Pi,j,k compute Ci,j,k = Ai,j,k ·Bi,j,k = ai,kbk,j .

e) At processor Pi,j,0 compute the sum Ci,j,0 =
∑

k Ci,j,k (Ci,j,0 now contains ci,j =∑
k ai,kbk,j).

From Theorem 7.7.2 it follows that each of these five steps can be done in O(r) steps,
where r = log2 n. We summarize this result below.

THEOREM 7.7.7 Two n×n matrices, n = 2r, can be multiplied by a normal systolic algorithm on
a d-dimensional hypercube, d = 3r, with n3 processors in O(log n) steps. All normal algorithms
for n× n matrix multiplication require Ω(log n) steps.

Proof The upper bound follows from the construction. The lower bound follows from the
observation that each processor that is participating in the execution of a normal algorithm

c©John E Savage 7.8 Routing in Networks 309

combines two values, one that it owns and one owned by one of its neighbors. Thus, if
t steps are executed to compute a value, that value cannot depend on more than 2t other
values. Since each entry in an n× n product matrix is a function of 2n other values, t must
be at least log2(2n).

The lower bound stated above applies only to normal algorithms. If a non-normal algo-
rithm is used, each processor can combine up to d values. Thus, after k steps, up to dk values
can be combined. If 2n values must be combined, as in n × n matrix multiplication, then
k ≥ logd(2n) = (log2 2n)/ log2 d. If an n3-processor hypercube is used for this problem,
d = 3 log2 n and k = Ω (log n/ log log n).

The normal matrix multiplication algorithm described above can be translated to linear
arrays and 2D meshes using the mappings based on the shuffle and unshuffle operations. The
2D mesh version has a running time O(

√
n log n), which is inferior to the running time of

the algorithm given in Section 7.5.3.

7.8 Routing in Networks
A topic of major concern in the design of distributed memory machines is routing, the task of
transmitting messages among processors via nodes of a network. Routing becomes challenging
when many messages must travel simultaneously through a network because they can produce
congestion at nodes and cause delays in the receipt of messages.

Some routing networks are designed primarily for the permutation-routing problem, the
problem of establishing a one-to-one correspondence between n senders and n receivers. (A
processor can be both a sender and receiver.) Each sender sends one message to a unique
receiver and each receiver receives one message from a unique sender. (We examine in Sec-
tion 7.9.3 routing methods when the numbers of senders and receivers differ and more than
one message can be received by one processor.) If many messages are targeted at one receiver,
a long delay will be experienced at this receiver. It should be noted that network congestion
can occur at a node even when messages are uniformly distributed throughout the network,
because many messages may have to pass through this node to reach their destinations.

7.8.1 Local Routing Networks
In a local routing network each message is accompanied by its destination address. At each
network node (switch) the routing algorithm, using only these addresses and not knowing the
global state of the network, finds a path for messages.

A sorting network, suitably modified to transmit messages, is a local permutation-routing
network. Batcher’s bitonic sorting network described in Section 6.8.1 will serve as such a
network. As mentioned in Section 7.7, this network can be realized as a normal algorithm on
a hypercube, with running time on an n-vertex hypercube O(log2 n). (See Problem 6.28.)
On the two-dimensional mesh its running time is O(

√
n) (see Problem 7.21), whereas on the

linear array it is O(n) (see Problem 7.20).
Batcher’s bitonic sorting network is data-oblivious; that is, it performs the same set of op-

erations for all values of the input data. The outcomes of these operations are data-dependent,
but the operations themselves are data-independent. Non-oblivious sorting algorithms per-
form operations that depend on the values of the input data. An example of a local non-

310 Chapter 7 Parallel Computation Models of Computation

oblivious algorithm is one that sends a message from the current network node to the neigh-
boring node that is closest to the destination.

7.8.2 Global Routing Networks
In a global routing network, knowledge of the destinations of all messages is used to set the
network switches and select paths for the messages to follow. A global permutation-routing
network realizes permutations of the destination addresses. We now give an example of such a
network, the Beneš permutation network.

A permutation network is constructed of two-input, two-output switches. Such a switch
either passes its inputs, labeled A and B, to its outputs, labeled X and Y, or it swaps them. That
is, the switch is set so that either X = A and Y = B or X = B and Y = A. A permutation
network on n inputs and n outputs is a directed acyclic graph of these switches such that for
each permutation of the n inputs, switches can be set to create n disjoint paths from the n
inputs to the n outputs.

A Beneš permutation network is shown in Fig. 7.20. This graph is produced by con-
necting two copies of an FFT graph on 2k−1 inputs back to back and replacing the nodes
by switches and edges by pairs of edges. (FFT graphs are described in Section 6.7.3.) It fol-
lows that a Beneš permutation network on n inputs can be realized by a normal algorithm

2
1

4
3

5
6

7
8

15
16

10
9

12
11

14
13

2
1

4
3

5
6

7
8

15
16

10
9

12
11

14
13

P8

P8

P4

Figure 7.20 A Beneš permutation network.

c©John E Savage 7.9 The PRAM Model 311

that executes O(log n) steps. Thus, a permutation is computed much more quickly (in time
O(log n)) with the Beneš offline permutation network than it can be done on Batcher’s online
bitonic sorting network (in time O(log2 n)). However, the Beneš network requires time to
collect the destinations at some central location, compute the switch settings, and transmit
them to the switches themselves.

To understand how the Beneš network works, we provide an alternative characterization
of it. Let Pn be the Beneš network on n inputs, n = 2k, defined as back-to-back FFT graphs
with nodes replaced by switches. Then Pn may be defined recursively, as suggested in Fig. 7.20.
Pn is obtained by making two copies of Pn/2, placing n/2 copies of a two-input, two-output
switch at the input and the same number at the output. For 1 ≤ i ≤ n/4 (n/4+1 ≤ i ≤ n/2)
the top output of switch i is connected to the top input of the ith switch in the upper (lower)
copy of Pn/2 and the bottom output is connected to the bottom input of the ith switch in the
lower (upper) copy of Pn/2. The connections of output switches are the mirror image of the
connections of the input switches.

Consider the Beneš network P2. It consists of a single switch and generates the two possible
permutations of the inputs. We show by induction that Pn generates all n! permutations of its
n inputs. Assume that this property holds for n = 2, 4, . . . , 2k−1. We show that it holds for
m = 2k. Let π = (π(1), π(2), . . . , π(m)) be an arbitrary permutation to be realized by Pm.
This means that the ith input must be connected to the π(i)th output. Suppose that π(3) is
2, as shown in Fig. 7.20. We can arbitrarily choose to have the third input pass through the
first or second copy of Pm/2. We choose the second. The path taken through the second copy
of Pm/2 must emerge on its second output so that it can then pass to the first switch in the
column of output switches. This output switch must pass its inputs without swapping them.
The other output of this switch, namely 1, must arrive via a path through the first copy of
Pm/2 and emerge on its first output. To determine the input at which it must arrive, we find
the input of Pm associated with the output of 1 and set its switch so that it is directed to the
first copy of Pm/2. Since the other input to this input switch must go to the other copy of
Pm/2, we follow its path through Pm to the output and then reason in the same way about the
other output at the output switch at which it arrives. If by tracing paths back and forth this
way we do not exhaust all inputs and outputs, we pick another input and repeat the process
until all inputs have been routed to outputs.

Now let’s determine the number of switches, S(k), in a Beneš network Pn on n = 2k

inputs. It follows that S(1) = 1 and

S(k) = 2S(k − 1) + 2k

It is straightforward to show that S(k) = (k − 1
2)2k = n(log2 n − 1

2).
Although a global permutation network sends messages to their destinations more quickly

than a local permutation network, the switch settings must be computed and distributed glob-
ally, both of which impose important limitations on the time to realize particular permutations.

7.9 The PRAM Model
The parallel random-access machine (PRAM) (see Fig. 7.21), the canonical structured par-
allel machine, consists of a bounded set of processors and a common memory containing a
potentially unlimited number of words. Each processor is similar to the random-access ma-
chine (RAM) described in Section 3.4 except that its CPU can access locations in both its local

312 Chapter 7 Parallel Computation Models of Computation

Common Memory

Pp

RAM

P2

RAM

P1

RAM

Figure 7.21 The PRAM consists of synchronous RAMs accessing a common memory.

random-access memory and the common memory. During each PRAM step, the RAMs exe-
cute the following steps in synchrony: they (a) read from the common memory, (b) perform
a local computation, and (c) write to the common memory. Each RAM has its own program
and program counter as well as a unique identifying number idj that it can access to make
processor-dependent decisions. The PRAM is primarily an abstract programming model, not
a machine designed to be built (unlike mesh-based computers, for example).

The power of the PRAM has been explored by considering a variety of assumptions about
the length of local computations and the type of instruction allowed. In designing parallel
algorithms it is generally assumed that each local computation consists of a small number of
instructions. However, when this restriction is dropped and the PRAM is allowed an unlim-
ited number of computations between successive accesses to the common memory (the ideal
PRAM), the information transmitted between processors reflects the minimal amount of in-
formation that must be exchanged to solve a problem on a parallel computer.

Because the size of memory words is potentially unbounded, very large numbers can be
generated very quickly on a PRAM if a RAM can multiply and divide integers and perform
vector operations. This allows each RAM to emulate a parallel machine with an unbounded
number of processors. Since the goal is to understand the power of parallelism, however, this
form of hidden parallelism is usually disallowed, either by not permitting these instructions or
by assuming that in t steps a PRAM generates numbers whose size is bounded by a polynomial
in t. To simplify the discussion, we limit instructions in a RAM’s repertoire to addition,
subtraction, vector comparison operations, conditional branching, and shifts by fixed amounts.
We also allow load and store instructions for moving words between registers, local memories,
and the common memory. These instructions are sufficiently rich to compute all computable
functions.

As yet we have not specified the conditions under which access to the common memory oc-
curs in the first and third substeps of each PRAM step. If access by more than one RAM to the
same location is disallowed, access is exclusive. If this restriction does not apply, access is con-
current. Four combinations of these classifications apply to reading and writing. The strongest

c©John E Savage 7.9 The PRAM Model 313

restriction is placed on the Exclusive Read/Exclusive Write (EREW) PRAM, with succes-
sively weaker restrictions placed on the Concurrent Read/Exclusive Write (CREW) PRAM,
the Exclusive Read/Concurrent Write (ERCW) PRAM, and the Concurrent Read/Con-
current Write (CRCW) PRAM. When concurrent writing is allowed, conflicts are resolved
in one of the following ways: a) the COMMON model requires that all RAMs writing to a
common location write the same value, b) the ARBITRARY model allows an arbitrary value
to be written, and c) the PRIORITY model writes into the common location the value being
written by the lowest numbered RAM.

Observe that any algorithm written for the COMMON CRCW PRAM runs without
change on the ARBITRARY CRCW PRAM. Similarly, an ARBITRARY CRCW PRAM al-
gorithm runs without change on the PRIORITY CRCW PRAM. Thus, the latter is the most
powerful of the PRAM models.

In performing a computation on a PRAM it is typically assumed that the input is written
in the lowest numbered locations of the common memory. PRAM computations are charac-
terized by p, the number of processors (RAMs) in use, and T (time), the number of PRAM
steps taken. Both measures are usually stated as a function of the size of a problem instance,
namely m, the number of input words, and n, their total length in bits.

After showing that tree, array, and hypercube algorithms translate directly to a PRAM
algorithm with no loss in efficiency, we explore the power of concurrency. This is followed by a
brief discussion of the simulation of a PRAM on a hypercube and a circuit on a CREW PRAM.
We close by referring the reader to connections established between PRAMs and circuits and
to the discussion of serial space and parallel time in Chapter 8.

7.9.1 Simulating Trees, Arrays, and Hypercubes on the PRAM
We have shown that 1D arrays can be embedded into 2D meshes and that d-dimensional
meshes can be embedded into hypercubes while preserving the neighborhood structure of the
first graph in the second. Also, we have demonstrated that any balanced tree algorithm can be
simulated as a normal algorithm on a hypercube. As a consequence, in each case, an algorithm
designed for the first network carries over to the second without any increase in the number of
steps executed. We now show that normal hypercube algorithms are efficiently simulated on
an EREW PRAM.

With each d-dimensional hypercube processor, associate an EREW PRAM processor and
a reserved location in the common memory. In a normal algorithm each hypercube processor
communicates with its neighbor along a specified direction. To simulate this communication,
each associated PRAM processor writes the data to be communicated into its reserved location.
The processor for which the message is destined knows which hypercube neighbor is providing
the data and reads the value stored in its associated memory location.

When a hypercube algorithm is not normal, as many as d−1 neighbors can send messages
to one processor. Since EREW PRAM processors can access only one cell per unit time,
simulation of the hypercube can require a running time that is about d times that of the
hypercube.

THEOREM 7.9.1 Every T-step normal algorithm on the d-dimensional, n-vertex hypercube, n =
2d, can be simulated in O(T) steps on an n-processor EREW PRAM. Every T-step hypercube
algorithm, normal or not, can be simulated in O(Td) steps.

314 Chapter 7 Parallel Computation Models of Computation

An immediate consequence of Theorems 7.7.1 and 7.9.1 is that a list of n items can be
sorted on an n-processor PRAM in O(log2 n) steps by a normal oblivious algorithm. Data-
dependent sorting algorithms for the hypercube exist with running time O(log n).

It also follows from Section 7.6.1 that algorithms for trees, linear arrays, and meshes trans-
late directly into PRAM algorithms with the same running time as on these less general models.
Of course, the superior connectivity between PRAM processors might be used to produce faster
algorithms.

7.9.2 The Power of Concurrency
The CRCW PRAM is a very powerful model. As we show, any Boolean function can be
computed with it in a constant number of steps if a sufficient number of processors is available.
For this reason, the CRCW PRAM is of limited interest: it represents an extreme that does
not reflect reality as we know it. The CREW and EREW PRAMs are more realistic. We
first explore the power of the CRCW and then show that an EREW PRAM can simulate a
p-processor CRCW PRAM with a slowdown by a factor of O(log2 p).

THEOREM 7.9.2 The CRCW PRAM can compute an arbitrary Boolean function in four steps.

Proof Given a Boolean function f : Bn �→ B, represent it by its disjunctive normal form;
that is, represent it as the OR of its minterms where a minterm is the AND of each literal of
f . (A literal is a variable, xi, or its complement, xi.) Assume that each variable is stored in
a separate location in the common memory.

Given a minterm, we show that it can be computed by a CRCW PRAM in two steps.
Assign one location in the common memory to the minterm and initialize it to the value 1.
Assign one processor to each literal in the minterm. The processor assigned to the jth literal
reads the value of the jth variable from the common memory. If the value of the literal is 0,
this processor writes the value 0 to the memory location associated with the minterm. Thus,
the minterm has value 1 exactly when each literal has value 1. Note that these processors read
concurrently with processors associated with other minterms and may write concurrently if
more than one of their literals has value 0.

Now assume that a common memory location has been reserved for the function itself
and initialized to 0. One processor is assigned to each minterm and if the value of its
minterm is 1, it writes the value 1 in the location associated with the function. Thus, in two
more steps the function f is computed.

Given the power of concurrency, especially as applied to writing, we now explore the cost
in performance of not allowing concurrency, whether in reading or writing.

THEOREM 7.9.3 A p-processor priority CRCW PRAM can be simulated by a p-processor EREW
PRAM with a slowdown by a factor equal to the time to sort p elements on this machine. Conse-
quently, this simulation can be done by a normal algorithm with a slowdown factor of O(log2 p).

Proof The jth EREW PRAM processor simulates a memory access by the jth CRCW
PRAM processor by first writing into a special location, Mj , a pair (aj , j) indicating that
processor j wishes to access (read or write) location aj . If processors are writing to common
memory, the value to be written is attached to this pair. If processors are reading from
common memory, a return message containing the requested value is provided. If a processor
chooses not to access any location, a dummy address larger than all other addresses is used for

c©John E Savage 7.9 The PRAM Model 315

aj . The contents of the locations M1, M2, . . . , Mp are sorted, which creates a subsequence
in which pairs with a common address occur together and within which the pairs are sorted
by processor numbers. From Theorem 7.7.1 it follows that this step can be performed in
time O(log2 p) by a normal algorithm. So far no concurrent reads or writes occur.

A processor is now assigned to each pair in the sorted sequence. We consider two cases:
a) processors are reading from or b) writing to common memory. Each processor now
compares the address of its pair to that of the preceding pair. If a processor finds these
addresses to be different and case a holds, it reads the item in common memory and sets a
flag bit to 1; all other processors except the first set their flag bits to 0; the first sets its bit to 1.
(This bit is used later to distribute the value that was read.) However, if case b holds instead,
the processor writes its value. Since this processor has the lowest index of all processors and
the priority CRCW is the strongest model, the value written is the same value written by
either the common or arbitrary CRCW models.

Returning now to case a, the flag bits mark the first pair in each subsequence of pairs
that have the same address in the common memory. Associated with the leading pair is the
value read at this address. We now perform a segmented prefix computation using as the
associative rule the copy-right operation. (See Problem 2.20.) It distributes to each pair
(aj , j) the value the processor wished to read from the common memory. By Problem 2.21
this problem can be solved by a p-processor EREW PRAM in O(log p) steps. The pairs
and their accompanying value are then sorted by the processor number so that the value
read from the common memory is in a location reserved for the processor that requested the
value.

7.9.3 Simulating the PRAM on a Hypercube Network
As stated above, each PRAM cycle involves reading from the global memory, performing a
local computation, and writing to the common memory. Of course, a processor need not
access common memory when given the chance. Thus, to simulate a PRAM on a network
computer, one has to take into account the fact that not all PRAM processors necessarily read
from or write to common memory locations on each cycle.

It is important to remember that the latency of network computers can be large. Thus, for
the simulation described below to be useful, each PRAM processor must be able to do a lot of
work between network accesses.

The EREW PRAM is simulated on a network computer by executing three phases, two of
which correspond to reading and writing common memory. (To simulate the CRCW PRAM,
we need only add the time given above to simulate a CRCW PRAM by an EREW PRAM.)
We simulate an access to common memory by routing a message over the network to the site
containing the simulated common memory location. It follows that a message must contain
the name of a site as well as the address of a memory location at that site. If the simulated
access is a memory read, a return message is generated containing the value of the memory
location. If it is a memory write, the transmitted message must also contain the datum to write
into the memory location. We assume that the sites are numbered consecutively from 1 to p,
the number of processors.

The first problem to be solved is the routing of messages from source to destination pro-
cessors. This routing problem was partially addressed in Section 7.8. The new wrinkle here is
that the mapping from source to destination sites defined by a set of messages is not necessarily
a permutation. Not all sources may send a message and not all destinations are guaranteed to

316 Chapter 7 Parallel Computation Models of Computation

receive only one message. In fact, some destination may be sent many messages, which can
result in their waiting a long time for receipt.

To develop an appreciation for the various approaches to this problem, we describe an
algorithm that distributes messages from sources to destinations, though not as efficiently as
possible. Each processor prepares a message to be sent to other processors. Processors not
accessing the common memory send messages containing dummy site addresses larger than any
other address. All messages are sorted by destination address cooperatively by the processors.
As seen in Theorem 7.7.1, they can be sorted by a normal algorithm on an p-vertex hypercube,
p = 2d, in O(log2 p) steps using Batcher’s bitonic sorting network described in Section 6.8.1.
The k ≤ p non-dummy messages are the first k messages in this sorted list. If the sites at
which these messages reside after sorting are the sites for which they were destined, the message
routing problem is solved. Unfortunately, this is generally not the case.

To route the messages from their positions in the sorted list to their destinations, we first
identify duplicates of destination addresses and compute D, the maximum number of dupli-
cates. We then route messages in D stages. In each stage at most one of the D duplicates
of each message is routed to its destination. To identify duplicates, we assign a processor to
each message in the sorted list that compares its destination site with that of its predecessor,
setting a flag bit to 0 if equal and to 1 otherwise. To compare destinations, move messages
to adjacent vertices on the hypercube, compare, and then reverse the process. (Move them by
sorting by appropriate addresses.) The first processor also sets its flag bit to 1. A segmented
integer addition prefix operation that segments its messages with these flag bits assigns to each
message an integer (a priority) between 1 and D that is q if the site address of this message is
the qth such address. (Prefix computations can be done on a p-vertex hypercube in O(log p)
steps. See Problem 7.23.) A message with priority q is routed to its destination in the qth stage.
An unsegmented prefix operation with max as the operator is then used to determine D.

In the qth stage, 1 ≤ q ≤ D, all non-dummy messages with priority q are routed to their
destination site on the hypercube as follows:

a) one processor is assigned to each message;

b) each such processor computes the gap, the difference between the destination and current
site of its message;

c) each gap g is represented as a binary d-tuple g = (gd−1, . . . , g0);

d) For t = d − 1, d − 2, . . . , 0, those messages whose gap contains 2t are sent to the site
reached by crossing the tth dimension of the hypercube.

We show that in at most O(D log p) steps all messages are routed to their destinations.
Let the sorted message sites form an ascending sequence. If there are k non-dummy messages,
let gapi, 0 ≤ i ≤ k − 1, be the gap of the ith message. Observe that these gaps must also
form a nondecreasing sequence. For example, shown below is a sorted set of destinations and
a corresponding sequence of gaps:

gapi 1 1 2 2 3 6 7 8
desti 1 2 4 5 7 11 13 15

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15

All the messages whose gaps contain 2d−1 must be the last messages in the sequence be-
cause the gaps would otherwise be out of order. Thus, advancing messages with these gaps by

c©John E Savage 7.10 The BSP and LogP Models 317

2d−1 positions, which is done by moving them across the largest dimension of the hypercube,
advances them to positions in the sequence that cannot be occupied by any other messages,
even after these messages have been advanced by their full gaps. For example, shown below are
the positions of the messages given above after those whose gaps contain 8 and 4 have been
moved by this many positions:

desti 1 2 4 5 7 11 13 15
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15

Repeating this argument on subsequent smaller powers of 2, we find that no two messages
that are routed in a given stage occupy the same site. As a consequence, after D stages, each
taking d steps, all messages are routed. We summarize this result below.

THEOREM 7.9.4 Each computation cycle of a p-processor EREW PRAM can be simulated by a
normal algorithm on a p-vertex hypercube in O(D log p+log2 p) steps, where D is the maximum
number of processors accessing memory locations stored at a given vertex of the hypercube.

This result can be improved to O(log p) [158] with a probabilistic algorithm that replicates
each datum at each hypercube processor a fixed number of times.

Because the simulation described above of a EREW PRAM on a hypercube consists of a
fixed number of normal steps and fully normal sequences of steps, O(D

√
p)- and O(Dp)-

time simulations of a PRAM on two-dimensional meshes and linear arrays follow. (See Prob-
lems 7.32 and 7.33.)

7.9.4 Circuits and the CREW PRAM
Algebraic and logic circuits can also be simulated on PRAMs, in particular the CREW PRAM.
For simplicity we assign one processor to each vertex of a circuit (a gate). We also assume that
each vertex has bounded fan-in, which for concreteness is assumed to be 2. We also reserve one
memory location for each gate and one for each input variable. Each processor now alternates
between reading values from its two inputs (concurrently with other processors, if necessary)
and exclusively writing values to the location reserved for its value. Two steps are devoted to
reading the values of gate inputs. Let DΩ(f) be the depth of the circuit for a function f . After
2DΩ(f) steps the input values have propagated to the output gates, the values computed by
them are correct and the computation is complete.

In Section 8.14 we show a stronger result, that CREW PRAMs and circuits are equivalent
as language recognizers. We also explore the parallel computation thesis, which states that
sequential space and parallel time are polynomially related. It follows that the PRAM and the
logic circuit are both excellent models in terms of which to measure the minimal computation
time required for a problem on a parallel machine. In Section 8.15 we exhibit complexity
classes, that is, classes of languages defined in terms of the depth of circuits recognizing them.

7.10 The BSP and LogP Models
Bulk synchronous parallelism (BSP) extends the MIMD model to potentially different asyn-
chronous programs running on the physical processors of a parallel computer. Its developers
believe that the BSP model is both built on realistic assumptions and sufficiently simple to
provide an attractive model for programming parallel computers. They expect it will play a

318 Chapter 7 Parallel Computation Models of Computation

role similar to that of the RAM for serial computation, that is, that programs written for the
BSP model can be translated into efficient code for a variety of parallel machines.

The BSP model explicitly assumes that a) computations are divided into supersteps, b) all
processors are synchronized after each superstep, c) processors can send and receive messages
to and from all other processors, d) message transmission is non-blocking (computation can
resume after sending a message), and e) all messages are delivered by the end of a superstep.
The important parameters of this model are p, the number of processors, s, the speed of each
processor, l, the latency of the system, which is the number of processor steps to synchronize
processors, and g, the additional number of processor steps per word to deliver a message.
Here g measures the time per word to transmit a message between processors after the path
between them has been set up; l measures the time to set up paths between processors and/or
to synchronize all p processors. Each of these parameters must be appraised under “normal”
computational and communication loads if the model is to provide useful estimates of the time
to complete a task.

For the BSP model to be effective, it must be possible to keep the processors busy while
waiting for communications to be completed. If the latency of the network is too high, this
will not be possible. It will also not be possible if algorithms are not designed properly. For
example, if all processors attempt to send messages to a single processor, network congestion
will prevent the messages from being answered quickly. It has been shown that for many
important problems data can be distributed and algorithms designed to make good use of the
BSP model [348]. It should also be noted that the BSP model is not effective on problems that
are not parallelizable, such as may be the case for P-complete problems (see Section 8.9).

Although for many problems and machines the BSP model is a good one, it does not
take into account network congestion due to the number of messages in transit. The LogP
model extends the BSP model by explicitly accounting for the overhead time (the o in LogP)
to prepare a message for transmission. The model is also characterized by the parameters L, g,
and P that have the same meaning as the parameters l, g, and p in the BSP model. The LogP
and BSP models are about equally good at predicting algorithm performance.

Many other models have been proposed to capture one aspect or another of practical par-
allel computation. Chapter 11 discusses some of the parallel I/O issues.

. .
Problems
PARALLEL COMPUTERS WITH MEMORY

7.1 Consider the design of a bus arbitration sequential circuit for a computer containing
four CPUs. This circuit has four Boolean inputs and outputs, one per CPU. A CPU
requesting bus access sets its input to 1 and waits until its output is set to 1, after which
it puts its word and destination address on the bus. CPUs not requesting bus access set
their bus arbitration input variable to 0.

At the beginning of each cycle the bus arbitration circuit reads the input variables and,
if at least one of them has value 1, sets one output variable to 1. If all input variables
are 0, it sets all output variables to 0.
Design two such arbitration circuits, one that grants priority to the lowest indexed
input that is 1 and a second that grants priority alternately to the lowest and highest
indexed input if more than one input variable is 1.

c©John E Savage Problems 319

Figure 7.22 A four-by-four mesh-of-trees network.

7.2 Sketch a data-parallel program that operates on a sorted list of keys and finds the largest
number of times that a key is repeated.

7.3 Sketch a data-parallel program to find the last record in a linked list where initially each
record contains the address of the next item in the list (except for the last item, whose
next address is null).

Hint: Assign one processor to each list item and assume that accesses to two or more
distinct addresses can be done simultaneously.

7.4 The n × n mesh-of-trees network, n = 2r, is formed from a n × n mesh by replac-
ing each linear connection forming a row or column by a balanced binary tree. (See
Fig. 7.22.) Let the entries of two n×n matrices be uniformly distributed on the vertices
of original mesh. Give an efficient matrix multiplication algorithm on this network and
determine its running time.

7.5 Identify problems that arise in a crossbar network when more than one source wishes
to connect to the same destination. Describe how to insure that only one source is
connected to one destination at the same time.

THE PERFORMANCE OF PARALLEL ALGORITHMS

7.6 Describe how you might apply Amdahl’s Law to a data-parallel program to estimate its
running time.

7.7 Consider the evaluation of the polynomial p(x) = anxn+xn−1x
n−1 + · · ·+a1x+a0

on a p-processor shared-memory machine. Sketch an algorithm whose running time is
O(n

p + log n) for this problem.

320 Chapter 7 Parallel Computation Models of Computation

LINEAR ARRAYS

7.8 Generalize the example of Section 7.5.1 to show that the product of an n × n matrix
and an n-vector can be realized in 3n − 1 steps on a linear systolic array.

7.9 Show that every algorithm on a linear array to compute the product of an n×n matrix
and an n-vector requires at least n steps. Assume that components of the matrix and
vector enter cells individually.

7.10 Design an algorithm for a linear array of length O(n) that convolves two sequences
each of length n in O(n) steps. Show that no substantially faster algorithm for such a
linear array exists.

MULTIDIMENSIONAL ARRAYS

7.11 Show that at most σ(d) = 2d2 + 2d + 1 cells are at most d edges away from any cell
in a two-dimensional systolic array.

7.12 Derive an expression for the distance between vertices (n1, n2, . . . , nd) and (m1, m2,
. . . , md) in a d-dimensional toroidal mesh and determine the maximum distance be-
tween two such vertices.

7.13 Design efficient algorithms to multiply two n × n matrices on a k × k mesh, k ≤ n.

HYPERCUBE-BASED MACHINES

7.14 Show that the vertices of the 2d-input FFT graph can be numbered so that edges be-
tween levels correspond to swaps across the dimensions of a d-dimensional hypercube.

7.15 Show that the convolution function f
(n,m)
conv : Rn+m �→ Rn+m−1 over a commutative

ring R can be implemented by a fully normal algorithm in time O(log n).

7.16 Prove that the unshuffle operation on a linear array of n = 2d cells can be done with
2d − 1 comparison/exchange steps.

7.17 Prove that the algorithm described in Section 7.7.4 to simulate a normal hypercube
algorithm on a linear array of n = 2d elements correctly places into exchange locations
elements whose indices differ by successive powers of 2.

7.18 Describe an efficient algorithm for a linear array that merges two sorted sequences of
the same length.

7.19 Show that Batcher’s sorting algorithm based on bitonic merging can be realized on an
p-vertex hypercube by a normal algorithm in O(log2 p) steps.

7.20 Show that Batcher’s sorting algorithm based on bitonic merging can be realized on a
linear array of n = 2d cells in O(n) steps.

7.21 Show that Batcher’s sorting algorithm based on bitonic merging can be realized on an√
n ×√n array in O(

√
n) steps.

7.22 Design an O(
√

n)-step algorithm to implement an arbitrary permutation of n items
placed one per cell of an

√
n ×

√
n mesh.

7.23 Describe a normal algorithm to realize a prefix computation on a p-vertex hypercube in
O(log p) steps.

c©John E Savage Problems 321

7.24 Design an algorithm to perform a prefix computation on an
√

n ×
√

n mesh in 3
√

n
steps. Show that no other algorithm for this problem on this mesh has substantially
better performance.

ROUTING IN NETWORKS

7.25 Give a complete description of a procedure to set up the switches in a Beneš network.

7.26 Show how to perform an arbitrary permutation on a linear array.

THE PRAM MODEL

7.27 a) Design an O(1)-step CRCW PRAM algorithm to find the maximum element in a
list.

b) Design an O(log log n)-step CRCW PRAM algorithm to find the maximum ele-
ment in a list that uses O(n) processors.

Hint: Construct a tree in which the root and every other vertex has a number of
immediate descendants that is about equal to the square root of the number of leaves
that are its descendants.

7.28 The goal of the list-ranking problem is to assign a rank to each record in a linked
list; the rank of a record is its position relative to the last element in the list where the
last element has rank zero. Each record has two fields, one for its rank and another for
the address of its successor record. The address field of the last record contains its own
address.

Describe an efficient p-processor EREW PRAM algorithm to solve the list-ranking
problem for a list of p items stored one per location in the common memory.

Hint: Use pointer doubling in which each address is replaced by the address of its
current successor.

7.29 Consider an n-vertex directed graph in which each vertex knows the address of its
parent and the roots have themselves as parents. Under the assumption that each vertex
is placed in a unique cell in a common PRAM memory, show that the roots can be
found in O(log n) steps.

7.30 Design an efficient PRAM algorithm to find the item in a list that occurs most often.

7.31 Figure 7.23 shows two trees containing one and three copies of a computational ele-
ment, respectively. This element accepts three inputs and produces three outputs using
�, an associative operator. Tree (a) accepts a, b, and c as input and produces a, a � b,
and b � c as output. Tree (b) accepts a, b, c, d, and e as input and produces a, a � b,
a�b�c, a�b�c�d, and b�c�d�e as output. If the input and output at the root
of the trees are combined with �, the output of each tree is the prefix computation on
its inputs.

Generalize the constructions of Fig. 7.23 to produce a circuit for the prefix function on
n inputs, n arbitrary. Give a convincing argument that your construction is correct and
derive good upper bounds on the size and depth of your circuit. Show that to within
multiplicative factors your construction has minimal size and depth.

322 Chapter 7 Parallel Computation Models of Computation

b a � b

a � b� c eca

d a � b� c � d

a � b� ca b� c

a

a b � c� d � e

(b)

a � bb

d� e

b� ca

a c

(a)

Figure 7.23 Components of an efficient prefix circuit.

7.32 Show that each computation cycle of a p-processor EREW PRAM can be simulated on
a
√

p ×√
p mesh in O(D

√
p) steps, where D is the maximum number of processors

accessing memory locations stored at a given vertex of the mesh.

7.33 Show that each computation cycle of a p-processor EREW PRAM can be simulated
on a p-processor linear array in O(Dp) steps, where D is the maximum number of
processors accessing memory locations stored at a given vertex of the array.

THE BSP AND LOGP MODELS

7.34 Design an algorithm for the p-processor BSP and/or LogP models to multiply two n×n
matrices when each matrix entry occurs once and entries are uniformly distributed over
the p processors. Given the parameters of the models, determine for which values of n
your algorithm is efficient.

Hint: The performance of your algorithm will be dependent on the initial placement
of data.

7.35 Design an algorithm for the p-processor BSP and/or LogP models for the segmented
prefix function. Given the parameters of the models, determine for which values of n
your algorithm is efficient.

Chapter Notes
A discussion of parallel algorithms and architectures up to about 1980 can be found in the book
by Hockney and Jesshope [135]. A number of recent textbooks provide extensive coverage of

c©John E Savage Chapter Notes 323

parallel algorithms and architectures. They include the books by Akl [16], Bertsekas and
Tsitsiklis [38], Gibbons and Spirakis [113], JáJá [148], Leighton [192], Quinn [265], and Reif
[277]. In addition, the survey article by Karp and Ramachandran [161] gives an overview
of parallel algorithmic methods. References to results on circuit complexity can be found in
Chapters 2, 6, and 9.

Flynn introduced the taxonomy of parallel computers that carries his name [102]. The
data-parallel style of computing was anticipated in the APL [146] and FP programming lan-
guages [26] as well as by Preparata and Vuillemin [262] in their study of parallel algorithms
for networked machines. It was developed as the style of choice for programming the Connec-
tion Machine [133]. (See also the books by Hatcher and Quinn [129] and Blelloch [45] on
data-parallel computing.) The simulation of the MIMD computer by a SIMD one given in
Section 7.3.1 is due to Wloka [365].

Amdahl’s Law [21] and Brent’s principle [58] are widely cited; the latter is used extensively
to design efficient parallel algorithms.

Systolic algorithms for convolution, matrix multiplication, and the fast Fourier transform
are given by Kung and Leiserson [180] (see also [181]). Odd-even transposition sort is de-
scribed by Knuth [170]. The lower bound on the time to multiply two matrices given in
Theorem 7.5.3 is due to Gentleman [112]. The shuffle network was introduced by Stone
[318].

Preparata and Vuillemin [262] give normal algorithms for a variety of problems (including
that for shifting in Section 7.7.3) and introduce the cube-connected cycles machine. They also
give embeddings of fully normal algorithms into linear arrays and meshes. Dekel, Nassimi, and
Sahni [85] developed the fast algorithm for matrix multiplication on the hypercube described
in Section 7.7.7.

Batcher [29] introduced odd-even and bitonic sorting methods and noted that they could
be used for routing messages in networks. Beneš [36] is the author of the Beneš permutation
network.

Variants of the PRAM were introduced by Fortune and Wyllie [103], Goldschlager [118],
Savitch and Stimson [298] as generalizations of the idealized RAM model of Cook and Reck-
how [77]. The method given in Theorem 7.9.3 to simulate a CRCW PRAM on an EREW
PRAM is due to Eckstein [95] and Vishkin [353]. Simulations of PRAMs on networked com-
puters have been developed by Mehlhorn and Vishkin [221], Upfal [340], Upfal and Wigder-
son [341], Karlin and Upfal [158], Alt, Hagerup, Mehlhorn, and Preparata [19], and Ranade
[267]. Cypher and Plaxton [84] have developed a deterministic O(log p log log p)-step sort-
ing algorithm for the hypercube. However, it is superior to Batcher’s algorithm only for very
large and impractical values of p.

The bulk synchronous parallel (BSP) model [348] has been proposed as a bridging model
between the needs of programmers and parallel machines. The LogP model [83] is offered as
a more realistic variant of the BSP model. Juurlink and Wijshoff [154] and Bilardi, Herley,
Pietracaprina, Pucci, and Spirakis [39] report empirical evidence that the BSP and LogP models
are about equally good as predictors of performance on real parallel computers.

Part III
COMPUTATIONAL

COMPLEXITY

C H A P T E R

Complexity Classes

In an ideal world, each computational problem would be classified at least approximately by its
use of computational resources. Unfortunately, our ability to so classify some important prob-
lems is limited. We must be content to show that such problems fall into general complexity
classes, such as the polynomial-time problems P, problems whose running time on a determin-
istic Turing machine is a polynomial in the length of its input, or NP, the polynomial-time
problems on nondeterministic Turing machines.

Many complexity classes contain “complete problems,” problems that are hardest in the
class. If the complexity of one complete problem is known, that of all complete problems is
known. Thus, it is very useful to know that a problem is complete for a particular complexity
class. For example, the class of NP-complete problems, the hardest problems in NP, contains
many hundreds of important combinatorial problems such as the Traveling Salesperson Prob-
lem. It is known that each NP-complete problem can be solved in time exponential in the size
of the problem, but it is not known whether they can be solved in polynomial time. Whether
P and NP are equal or not is known as the P

?= NP question. Decades of research have been
devoted to this question without success. As a consequence, knowing that a problem is NP-
complete is good evidence that it is an exponential-time problem. On the other hand, if one
such problem were shown to be in P, all such problems would be been shown to be in P, a
result that would be most important.

In this chapter we classify problems by the resources they use on serial and parallel ma-
chines. The serial models are the Turing and random-access machines. The parallel models
are the circuit and the parallel random-access machine (PRAM). We begin with a discussion
of tasks, machine models, and resource measures, after which we examine serial complexity
classes and relationships among them. Complete problems are defined and the P-complete,
NP-complete, and PSPACE-complete problems are examined. We then turn to the PRAM
and circuit models and conclude by identifying important circuit complexity classes such as
NC and P/poly.

327

328 Chapter 8 Complexity Classes Models of Computation

8.1 Introduction
The classification of problems requires a precise definition of those problems and the com-
putational models used. Problems are accurately classified only when we are sure that they
have been well defined and that the computational models against which they are classified are
representative of the computational environment in which these problems will be solved. This
requires the computational models to be general. On the other hand, to be useful, problem
classifications should not be overly dependent on the characteristics of the machine model used
for classification purposes. For example, because of the obviously inefficient use of memory on
the Turing machine, the set of problems that runs in time linear in the length of their input on
a random-access machine is likely to be different from the set that runs in linear time on the
Turing machine. On the other hand, the set of problems that run in polynomial time on both
machines is the same.

8.2 Languages and Problems
Before formally defining decision problems, a major topic of this chapter, we give two examples
of them, SATISFIABILITY and UNSATISFIABILITY. A set of clauses is satisfiable if values can
be assigned to Boolean variables in these clauses such that each clause has at least one literal
with value 1.

SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of clauses
C = (c1, c2, . . . , cm) where each clause ci is a subset of X .
Answer: “Yes” if for some assignment of Boolean values to variables in {x1, x2, . . . , xn}, at
least one literal in each clause has value 1.

The complement of the decision problem SATISFIABILITY, UNSATISFIABILITY, is defined
below.

UNSATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of clauses
C = (c1, c2, . . . , cm) where each clause ci is a subset of X .
Answer: “Yes” if for all assignments of Boolean values to variables in {x1, x2, . . . , xn}, all
literals in at least one clause have value 0.

The clauses C1 = ({x1, x2, x3}, {x1, x2}, {x2, x3}) are satisfied with x1 = x2 = x3 = 1,
whereas the clauses C2 = ({x1, x2, x3}, {x1, x2}, {x2, x3}, {x3, x1}, {x1, x2, x3}) are not
satisfiable. SATISFIABILITY consists of collections of satisfiable clauses. C1 is in SATISFIABIL-
ITY. The complement of SATISFIABILITY, UNSATISFIABILITY, consists of instances of clauses
not all of which can be satisfied. C2 is in UNSATISFIABILITY.

We now introduce terminology used to classify problems. This terminology and the asso-
ciated concepts are used throughout this chapter.

DEFINITION 8.2.1 Let Σ be an arbitrary finite alphabet. A decision problem P is defined by a
set of instances I ⊆ Σ∗ of the problem and a condition φP : I �→ B that has value 1 on “Yes”
instances and 0 on “No” instances. Then Iyes = {w ∈ I |φP(w) = 1} are the “Yes” instances.
The “No” instances are Ino = I − Iyes.

c©John E Savage 8.2 Languages and Problems 329

The complement of a decision problem P , denoted coP , is the decision problem in which
the “Yes” instances of coP are the “No” instances of P and vice versa.

The “Yes” instances of a decision problem are encoded as binary strings by an encoding func-
tion σ : Σ∗ �→ B∗ that assigns to each w ∈ I a string σ(w) ∈ B∗.

With respect to σ, the language L(P) associated with a decision problem P is the set
L(P) = {σ(w) |w ∈ Iyes}. With respect to σ, the language L(coP) associated with coP is the
set L(coP) = {σ(w) |w ∈ Ino}.

The complement of a language L, denoted L, is B∗ − L; that is, L consists of the strings
that are not in L.

A decision problem can be generalized to a problem P characterized by a function f : B∗ �→
B∗ described by a set of ordered pairs (x, f(x)), where each string x ∈ B∗ appears once as the
left-hand side of a pair. Thus, a language is defined by problems f : B∗ �→ B and consists of the
strings on which f has value 1.

SATISFIABILITY and all other decision problems in NP have succinct “certificates” for
“Yes” instances, that is, choices on a nondeterministic Turing machine that lead to acceptance
of a “Yes” instance in a number of steps that is a polynomial in the length of the instance. A
certificate for an instance of SATISFIABILITY consists of values for the variables of the instance
on which each clause has at least one literal with value 1. The verification of such a certificate
can be done on a Turing machine in a number of steps that is quadratic in the length of the
input. (See Problem 8.3.)

Similarly, UNSATISFIABILITY and all other decision problems in coNP can be disqualified
quickly; that is, their “No” instances can be “disqualified” quickly by exhibiting certificates for
them (which are certificates for the “Yes” instance of the complementary decision problem).
For example, a disqualification for UNSATISFIABILITY is a satisfiable assignment for a “No”
instance, that is, a satisfiable set of clauses.

It is not known how to identify a certificate for a “Yes” instance of SATISFIABILITY or any
other NP-complete problem in time polynomial in length of the instance. If a “Yes” instance
has n variables, an exhaustive search of the 2n values for the n variables is about the best general
method known to find an answer.

8.2.1 Complements of Languages and Decision Problems
There are many ways to encode problem instances. For example, for SATISFIABILITY we
might represent xi as i and xi as ∼i and then use the standard seven-bit ASCII encodings for
characters. Then we would translate the clause {x4, x7} into {4,∼7} and then represent it as
123 052 044 126 055 125, where each number is a decimal representing a binary 7-tuple and
4, comma, and ∼ are represented by 052, 044, and 126, respectively, for example.

All the instances I of decision problems P considered in this chapter are characterized
by regular expressions. In addition, the encoding function of Definition 8.2.1 can be chosen
to map strings in I to binary strings σ(I) describable by regular expressions. Thus, a finite-
state machine can be used to determine if a binary string is in σ(I) or not. We assume that
membership of a string in σ(I) can be determined efficiently.

As suggested by Fig. 8.1, the strings in L(P), the complement of L(P), are either strings
in L(coP) or strings in σ(Σ∗ − I). Since testing of membership in σ(Σ∗ − I) is easy, testing
for membership in L(P) and L(coP) requires about the same space and time. For this reason,
we often equate the two when discussing the complements of languages.

330 Chapter 8 Complexity Classes Models of Computation

σ(Σ∗ − I)
Encodings of Instances

L(coP)
L(P)

Figure 8.1 The language L(P) of a decision problem P and the language of its complement
L(coP). The languages L(P) and L(coP) encode all instances of I . The complement of L(P),
L(P), is the union of L(coP) with σ(Σ∗ − I), strings that are in neither L(P) nor L(coP).

8.3 Resource Bounds
One of the most important problems in computer science is the identification of the computa-
tionally feasible problems. Currently a problem is considered feasible if its running time on a
DTM (deterministic Turing machine) is polynomial. (Stated by Edmonds [96], this is known
as the serial computation thesis.) Note, however, that some polynomial running times, such
as n1000, where n is the length of a problem instance, can be enormous. In this case doubling
n increases the time bound by a factor of 21000, which is approximately 10301!

Since problems are classified by their use of resources, we need to be precise about resource
bounds. These are functions r :� �→� from the natural numbers� = {0, 1, 2, 3, . . .} to
the natural numbers. The resource functions used in this chapter are:

Logarithmic function r(n) = O(log n)
Poly-logarithmic function r(n) = logO(1) n
Linear function r(n) = O(n)
Polynomial function r(n) = nO(1)

Exponential function r(n) = 2nO(1)

A resource function that grows faster than any polynomial is called a superpolynomial func-
tion. For example, the function f(n) = 2log2 n grows faster than any polynomial (the ratio
log f(n)/ log n is unbounded) but more slowly than any exponential (for any k > 0 the ratio
(log2 n)/nk becomes vanishingly small with increasing n).

Another note of caution is appropriate here when comparing resource functions. Even
though one function, r(n), may grow more slowly asymptotically than another, s(n), it may
still be true that r(n) > s(n) for very large values of n. For example, r(n) = 10 log4 n >
s(n) = n for n ≤ 1,889,750 despite the fact that r(n) is much smaller than s(n) for large n.

Some resource functions are so complex that they cannot be computed in the time or space
that they define. For this reason we assume throughout this chapter that all resource functions
are proper. (Definitions of time and space on Turing machines are given in Section 8.4.2.)

DEFINITION 8.3.1 A function r :� �→� is proper if it is nondecreasing (r(n + 1) ≥ r(n))
and for some tape symbol a there is a deterministic multi-tape Turing machine M that, on all

c©John E Savage 8.4 Serial Computational Models 331

inputs of length n in time O(n+ r(n)) and temporary space r(n), writes the string ar(n) (unary
notation for r(n)) on one of its tapes and halts.

Thus, if a resource function r(n) is proper, there is a DTM, Mr, that given an input of length
n can write r(n) markers on one of its tapes within time O(n+r(n)) and space r(n). Another
DTM, M , can use a copy of Mr to mark r(n) squares on a tape that can be used to stop M
after exactly Kr(n) steps for some constant K. The resource function can also be used to
insure that M uses no more than Kr(n) cells on its work tapes.

8.4 Serial Computational Models
We consider two serial computational models in this chapter, the random-access machine
(RAM) introduced in Section 3.4 and the Turing machine defined in Chapter 5.

In this section we show that, up to polynomial differences in running time, the random-
access and Turing machines are equivalent. As a consequence, if the running time of a problem
on one machine grows at least as fast as a polynomial in the length of a problem instance, then
it grows equally fast on the other machine. This justifies using the Turing machine as basis for
classifying problems by their serial complexity.

In Sections 8.13 and 8.14 we examine two parallel models of computation, the logic circuit
and the parallel random-access machine (PRAM).

Before beginning our discussion of models, we note that any model can be considered
either serial or parallel. For example, a finite-state machine operating on inputs and states
represented by many bits is a parallel machine. On the other hand, a PRAM that uses one
simple RAM processor is serial.

8.4.1 The Random-Access Machine
The random-access machine (RAM) is introduced in Section 3.4. (See Fig. 8.2.) In this section
we generalize the simulation results developed in Section 3.7 by considering a RAM in which
words are of potentially unbounded length. This RAM is assumed to have instructions for

ALU

rega

regb

CPU
cmd

Random-Access Memory

Decode

prog ctr

out wrd

in wrd

addr

Figure 8.2 A RAM in which the number and length of words are potentially unbounded.

332 Chapter 8 Complexity Classes Models of Computation

addition, subtraction, shifting left and right by one place, comparison of words, and Boolean
operations of AND, OR, and NOT (the operations are performed on corresponding components
of the source vectors), as well as conditional and unconditional jump instructions. The RAM
also has load (and store) instructions that move words to (from) registers from (to) the random-
access memory. Immediate and direct addressing are allowed. An immediate address contains
a value, a direct address is the address of a value, and an indirect address is the address of
the address of a value. (As explained in Section 3.10 and stated in Problem 3.10, indirect
addressing does not add to the computing power of the RAM and is considered only in the
problems.)

The time on a RAM is the number of steps it executes. The space is the maximum number
of bits of storage used either in the CPU or the random-access memory during a computation.

We simplify the RAM without changing its nature by eliminating its registers, treating
location 0 of the random-access memory as the accumulator, and using memory locations as
registers. The RAM retains its program counter, which is incremented on each instruction
execution (except for a jump instruction, when its value is set to the address supplied by the
jump instruction). The word length of the RAM model is typically allowed to be unlimited,
although in Section 3.4 we limited it to b bits. A RAM program is a finite sequence of RAM
instructions that is stored in the random-access memory. The RAM implements the stored-
program concept described in Section 3.4.

In Theorem 3.8.1 we showed that a b-bit standard Turing machine (its tape alphabet con-
tains 2b characters) executing T steps and using S bits of storage (S/b words) can be simulated
by the RAM described above in O(T) steps with O(S) bits of storage. Similarly, we showed
that a b-bit RAM executing T steps and using S bits of memory can be simulated by an O(b)-
bit standard Turing machine in O(ST log2 S) steps and O(S log S) bits of storage. As seen
in Section 5.2, T -step computations on a multi-tape TM can be simulated in O(T 2) steps on
a standard Turing machine.

If we could insure that a RAM that executes T steps uses a highest address that is O(T) and
generates words of fixed length, then we could use the above-mentioned simulation to establish
that a standard Turing machine can simulate an arbitrary T -step RAM computation in time
O(T 2 log2 T) and space O(S log S) measured in bits. Unfortunately, words can have length
proportional to O(T) (see Problem 8.4) and the highest address can be much larger than T due
to the use of jumps. Nonetheless, a reasonably efficient polynomial-time simulation of a RAM
computation by a DTM can be produced. Such a DTM places one (address, contents)
pair on its tape for each RAM memory location visited by the RAM. (See Problem 8.5.)

We leave the proof of the following result to the reader. (See Problem 8.6.)

THEOREM 8.4.1 Every computation on the RAM using time T can be simulated by a deterministic
Turing machine in O(T 3) steps.

In light of the above results and since we are generally interested in problems whose time
is polynomial in the length of the input, we use the DTM as our model of serial computation.

8.4.2 Turing Machine Models
The deterministic and nondeterministic Turing machines (DTM and NDTM) are discussed
in Sections 3.7, 5.1, and 5.2. (See Fig. 8.3.) In this chapter we use multi-tape Turing machines
to define classes of problems characterized by their use of time and space. As shown in The-

c©John E Savage 8.4 Serial Computational Models 333

Unit

0 1 m − 12

Control

Tape Unit

b

Choice Input

Figure 8.3 A one-tape nondeterministic Turing machine whose control unit has an external
choice input that disambiguates the value of its next state.

orem 5.2.2, the general language-recognition capability of DTMs and NDTMs is the same,
although, as we shall see, their ability to recognize languages within the same resource bounds
is very different.

We recognize two types of Turing machine, the standard one-tape DTM and NDTM and
the multi-tape DTM and NDTM. The multi-tape versions are defined here to have one read-
only input tape, one write-only output tape, and one or more work tapes. The space on these
machines is defined to be the number of work tape cells used during a computation. This
measure allows us to classify problems by a storage that may be less than linear in the size of
the input. Time is the number of steps they execute. It is interesting to compare these measures
with those for the RAM. (See Problem 8.7.) As shown on Section 5.2, we can assume without
loss of generality that each NDTM has either one or two choices for next state for any given
input letters and state.

As stated in Definitions 3.7.1 and 5.1.1, a DTM M accepts the language L if and only if
for each string in L placed left-adjusted on the otherwise blank input tape it eventually enters
the accepting halt state. A language accepted by a DTM M is recursive if M halts on all
inputs. Otherwise it is recursively enumerable. A DTM M computes a partial function f
if for each input string w for which f is defined, it prints f(w) left-adjusted on its otherwise
blank output tape. A complete function is one that is defined on all points of its domain.

As stated in Definition 5.2.1, an NDTM accepts the language L if for each string w in
L placed left-adjusted on the otherwise blank input tape there is a choice input c for M that
leads to an accepting halt state. A NDTM M computes a partial function f : B∗ �→ B∗ if
for each input string w for which f is defined, there is a sequence of moves by M that causes
it to print f(w) on its output tape and enter a halt state and there is no choice input for which
M prints an incorrect result.

The oracle Turing machine (OTM), the multi-tape DTM or NDTM with a special oracle
tape, defined in Section 5.2.3, is used to classify problems. (See Problem 8.15.) Time on an
OTM is the number of steps it takes, where one consultation of the oracle is one step, whereas
space is the number of cells used on its work tapes not including the oracle tape.

334 Chapter 8 Complexity Classes Models of Computation

A precise Turing machine M is a multi-tape DTM or NDTM for which there is a func-
tion r(n) such that for every n ≥ 1, every input w of length n, and every (possibly nondeter-
ministic) computation by M , M halts after precisely r(n) steps.

We now show that if a total function can be computed by a DTM, NDTM, or OTM
within a proper time or space bound, it can be computed within approximately the same
resource bound by a precise TM of the same type. The following theorem justifies the use of
proper resource functions.

THEOREM 8.4.2 Let r(n) be a proper function with r(n) ≥ n. Let M be a multi-tape DTM,
NDTM, or OTM with k work tapes that computes a total function f in time or space r(n). Then
there is a constant K > 0 and a precise Turing machine of the same type that computes f in time
and space Kr(n).

Proof Since r(n) is a proper function, there is a DTM Mr that computes its value from an
input of length n in time K1r(n) for some constant K1 > 0 and in space r(n). We design
a precise TM Mp computing the same function.

The TM Mp has an “enumeration tape” that is distinct from its work tapes. Mp initially
invokes Mr to write r(n) instances of the letter a on the enumeration tape in K1r(n) steps,
after which it returns the head on this tape to its initial position.

Suppose that M computes f within a time bound of r(n). Mp then alternates between
simulating one step of M on its work tapes and advancing its head on the enumeration
tape. When M halts, Mp continues to read and advance the head on its enumeration tape
on alternate steps until it encounters a blank. Clearly, Mp halts in precisely (K1 + 2)r(n)
steps.

Suppose now that M computes f in space r(n). Mp invokes Mr to write r(n) special
blank symbols on each of its work tapes. It then simulates M , treating the special blank
symbols as standard blanks. Thus, Mp uses precisely kr(n) cells on its k work tapes.

Configuration graphs, defined in Section 5.3, are graphs that capture the state of Turing
machines with potentially unlimited storage capacity. Since all resource bounds are proper, as
we know from Theorem 8.4.2, all DTMs and NDTMs used for decision problems halt on all
inputs. Furthermore, NDTMs never give an incorrect answer. Thus, configuration graphs can
be assumed to be acyclic.

8.5 Classification of Decision Problems
In this section we classify decision problems by the resources they consume on deterministic
and nondeterministic Turing machines. We begin with the definition of complexity classes.

DEFINITION 8.5.1 Let r(n) :� �→� be a proper resource function. Then TIME(r(n)) and
SPACE(r(n)) are the time and space Turing complexity classes containing languages that
can be recognized by DTMs that halt on all inputs in time and space r(n), respectively, where n is
the length of an input. NTIME(r(n)) and NSPACE(r(n)) are the nondeterministic time
and space Turing complexity classes, respectively, defined for NDTMs instead of DTMs. The
union of complexity classes is also a complexity class.

Let k be a positive integer. Then TIME(kn) and NSPACE(nk) are examples of complexity
classes. They are the decision problems solvable in deterministic time kn and nondeterministic

c©John E Savage 8.5 Classification of Decision Problems 335

space nk, respectively, for n the length of the input. Since time and space on a Turing machine
are measured by the number of steps and number of tape cells, it is straightforward to show
that time and space for a given Turing machine, deterministic or not, can each be reduced by
a constant factor by modifying the Turing machine description so that it acts on larger units
of information. (See Problem 8.8.) Thus, for a constant K > 0 the following classes are the
same: a) TIME(kn) and TIME(Kkn), b) NTIME(kn) and NTIME(Kkn), c) SPACE(nk)
and SPACE(Knk), and d) NSPACE(nk) and NSPACE(Knk).

To emphasize that the union of complexity classes is another complexity class, we define
as unions two of the most important Turing complexity classes, P, the class of deterministic
polynomial-time decision problems, and NP, the class of nondeterministic polynomial-time
decision problems.

DEFINITION 8.5.2 The classes P and NP are sets of decision problems solvable in polynomial time
on DTMs and NDTMs, respectively; that is, they are defined as follows:

P =
⋃
k≥0

TIME(nk)

NP =
⋃
k≥0

NTIME(nk)

Thus, for each decision problem P in P there is a DTM M and a polynomial p(n) such
that M halts on each input string of length n in p(n) steps, accepting this string if it is an
instance w of P and rejecting it otherwise.

Also, for each decision problem P in NP there is an NDTM M and a polynomial p(n)
such that for each instance w of P , |w| = n, there is a choice input of length p(n) such that
M accepts w in p(n) steps.

Problems in P are considered feasible problems because they can be decided in time poly-
nomial in the length of their input. Even though some polynomial functions, such as n1000,
grow very rapidly in their one parameter, at the present time problems in P are considered
feasible. Problems that require exponential time are not considered feasible.

The class NP includes the decision problems associated with many hundreds of important
searching and optimization problems, such as TRAVELING SALESPERSON described below.
(See Fig. 8.4.) If P is equal to NP, then these important problems have feasible solutions. If
not, then there are problems in NP that require superpolynomial time and are therefore largely

infeasible. Thus, it is very important to have the answer to the question P
?= NP.

TRAVELING SALESPERSON

Instance: An integer k and a set of n2 symmetric integer distances {di,j | 1 ≤ i, j ≤ n}
between n cities where di,j = dj,i.
Answer: “Yes” if there is a tour (an ordering) {i1, i2, . . . , in} of the cities such that the
length l = di1,i2 + di2,i3 + · · ·+ din,i1 of the tour satisfies l ≤ k.

The TRAVELING SALESPERSON problem is in NP because a tour satisfying l ≤ k can
be chosen nondeterministically in n steps and the condition l ≤ k then verified in a polyno-
mial number of steps by finding the distances between successive cities on the chosen tour in
the description of the problem and adding them together. (See Problem 3.24.) Many other
important problems are in NP, as we see in Section 8.10. While it is unknown whether a
deterministic polynomial-time algorithm exists for this problem, it can clearly be solved deter-

336 Chapter 8 Complexity Classes Models of Computation

Figure 8.4 A graph on which the TRAVELING SALESPERSON problem is defined. The heavy
edges identify a shortest tour.

ministically in exponential time by enumerating all tours and choosing the one with smallest
length. (See Problem 8.9.)

The TRAVELING SALESPERSON decision problem is a reduction of the traveling sales-
person optimization problem, whose goal is to find the shortest tour that visits each city
once. The output of the optimization problem is an ordering of the cities that has the short-
est tour. By contrast, the TRAVELING SALESPERSON decision problem reports that there is
or is not a tour of length k or less. Given an algorithm for the optimization problem, the
decision problem can be solved by calculating the length of an optimal tour and comparing
it to the parameter k of the decision problem. Since the latter steps can be done in polyno-
mial time, if the optimization algorithm can be done in polynomial time, so can the decision
problem. On the other hand, given an algorithm for the decision problem, the optimization
problem can be solved through bisection as follows: a) Since the length of the shortest tour
is in the interval [n mini,j di,j , n maxi,j di,j], invoke the decision algorithm with k equal to
the midpoint of this interval. b) If the instance is a “yes” instance, let k be the midpoint
of the lower half of the current interval; if not, let it be the midpoint of the upper half. c)
Repeat the previous step until the interval is reduced to one integer. The interval is bisected
O(log n(maxi,j di,j − mini,j di,j)) times. Thus, if the decision problem can be solved in
polynomial time, so can the optimization problem.

Whether P
?= NP is one of the outstanding problems of computer science. The current

consensus of complexity theorists is that nondeterminism is such a powerful specification de-
vice that they are not equal. We return to this topic in Section 8.8.

8.5.1 Space and Time Hierarchies
In this section we state without proof the following time and space hierarchy theorems. (See
[127,128].) These theorems state that if one space (or time) resource bound grows sufficiently
rapidly relative to another, the set of languages recognized within the first bound is strictly
larger than the set recognized within the second bound.

THEOREM 8.5.1 (Time Hierarchy Theorem) If r(n) ≥ n is a proper complexity function,
then TIME(r(n)) is strictly contained in TIME(r(n) log r(n)).

c©John E Savage 8.5 Classification of Decision Problems 337

Let r(n) and s(n) be proper functions. If for all K > 0 there exists an N0 such that
s(n) ≥ Kr(n) for n ≥ N0, we say that r(n) is little oh of s(n) and write r(n) = o(s(n)).

THEOREM 8.5.2 (Space Hierarchy Theorem) If r(n) and s(n) are proper complexity func-
tions and r(n) = o(s(n)), then SPACE(r(n)) is strictly contained in SPACE(s(n)).

Theorem 8.5.3 states that there is a recursive but not proper resource function r(n) such
that TIME(r(n)) and TIME(2r(n)) are the same. That is, for some function r(n) there is a
gap of at least 2r(n) − r(n) in time over which no new decision problems are encountered.
This is a weakened version of a stronger result in [334] and independently reported by [51].

THEOREM 8.5.3 (Gap Theorem) There is a recursive function r(n) : B∗ �→ B∗ such that
TIME(r(n)) = TIME(2r(n)).

8.5.2 Time-Bounded Complexity Classes
As mentioned earlier, decision problems in P are considered to be feasible while the class
NP includes many interesting problems, such as the TRAVELING SALESPERSON problem,
whose feasibility is unknown. Two other important complexity classes are the deterministic
and nondeterministic exponential-time problems. By the remarks on page 336, TRAVELING

SALESPERSON clearly falls into the latter class.

DEFINITION 8.5.3 The classes EXPTIME and NEXPTIME consist of those decision problems
solvable in deterministic and nondeterministic exponential time, respectively, on a Turing machine.
That is,

EXPTIME =
⋃
k≥0

TIME(2nk

)

NEXPTIME =
⋃
k≥0

NTIME(2nk

)

We make the following observations concerning containment of these complexity classes.

THEOREM 8.5.4 The following complexity class containments hold:

P ⊆ NP ⊆ EXPTIME ⊆ NEXPTIME

However, P ⊂ EXPTIME, that is, P is strictly contained in EXPTIME.

Proof Since languages in P are recognized in polynomial time by a DTM and such machines
are included among the NDTMs, it follows immediately that P ⊆ NP. By similar reasoning,
EXPTIME ⊆ NEXPTIME.

We now show that P is strictly contained in EXPTIME. P ⊆ TIME(2n) follows be-
cause TIME(nk) ⊆ TIME(2n) for each k ≥ 0. By the Time Hierarchy Theorem (The-
orem 8.5.1), we have that TIME(2n) ⊂ TIME(n2n). But TIME(n2n) ⊆ EXPTIME.
Thus, P is strictly contained in EXPTIME.

Containment of NP in EXPTIME is deduced from the proof of Theorem 5.2.2 by
analyzing the time taken by the deterministic simulation of an NDTM. If the NDTM
executes T steps, the DTM executes O(kT) steps for some constant k.

338 Chapter 8 Complexity Classes Models of Computation

The relationships P ⊆ NP and EXPTIME ⊆ NEXPTIME are examples of a more general
result, namely, TIME(r(n)) ⊆ NTIME(r(n)), where these two classes of decision problems
can respectively be solved deterministically and nondeterministically in time r(n), where n
is the length of the input. This result holds because every P ∈ TIME(r(n)) of length n is
accepted in r(n) steps by some DTM MP and a DTM is also a NDTM. Thus, it is also true
that P ∈ NTIME(r(n)).

8.5.3 Space-Bounded Complexity Classes
Many other important space complexity classes are defined by the amount of space used to
recognize languages and compute functions. We highlight five of them here: the determin-
istic and nondeterministic logarithmic space classes L and NL, the square-logarithmic space
class L2, and the deterministic and nondeterministic polynomial-space classes PSPACE and
NPSPACE.

DEFINITION 8.5.4 L and NL are the decision problems solvable in logarithmic space on a DTM
and NDTM, respectively. L2 are the decision problems solvable in space O(log2 n) on a DTM.
PSPACE and NPSPACE are the decision problems solvable in polynomial space on a DTM and
NDTM, respectively.

Because L and PSPACE are deterministic complexity classes, they are contained in NL and
NPSPACE, respectively: that is, L ⊆ NL and PSPACE ⊆ NPSPACE.

We now strengthen the latter result and show that PSPACE = NPSPACE, which means
that nondeterminism does not increase the recognition power of Turing machines if they al-
ready have access to a polynomial amount of storage space.

The REACHABILITY problem on directed acyclic graphs defined below is used to show this
result. REACHABILITY is applied to configuration graphs of deterministic and nondetermin-
istic Turing machines. Configuration graphs are introduced in Section 5.3.

REACHABILITY

Instance: A directed graph G = (V , E) and a pair of vertices u, v ∈ V .
Answer: “Yes” if there is a directed path in G from u to v.

REACHABILITY can be decided by computing the transitive closure of the adjacency matrix
of G in parallel. (See Section 6.4.) However, a simple serial RAM program based on depth-
first search can also solve the reachability problem. Depth-first search (DFS) on an undirected
graph G visits each edge in the forward direction once. Edges at each vertex are ordered. Each
time DFS arrives at a vertex it traverses the next unvisited edge. If DFS arrives at a vertex from
which there are no unvisited edges, it retreats to the previously visited vertex. Thus, after DFS
visits all the descendants of a vertex, it backs up, eventually returning to the vertex from which
the search began.

Since every T -step RAM computation can be simulated by an O(T 3)-step DTM computa-
tion (see Problem 8.6), a cubic-time DTM program based on DFS exists for REACHABILITY.
Unfortunately, the space to execute DFS on the RAM and Turing machine both can be linear
in the size of the graph. We give an improved result that allows us to strengthen PSPACE ⊆
NPSPACE to PSPACE = NPSPACE.

Below we show that REACHABILITY can be realized in quadratic logarithmic space. This
fact is then used to show that NSPACE(r(n)) ⊆ SPACE(r2(n)) for r(n) = Ω(log n).

c©John E Savage 8.5 Classification of Decision Problems 339

THEOREM 8.5.5 (Savitch) REACHABILITY is in SPACE(log2 n).

Proof As mentioned three paragraphs earlier, the REACHABILITY problem on a graph G =
(V , E) can be solved with depth-first search. This requires storing data on each vertex visited
during a search. This data can be as large as O(n), n = |V |. We exhibit an algorithm that
uses much less space.

Given an instance of REACHABILITY defined by G = (V , E) and u, v ∈ V , for each
pair of vertices (a, b) and integer k ≤ �log2 n� we define predicates PATH

(
a, b, 2k

)
whose

value is true if there exists a path from a to b in G whose length is at most 2k and false other-
wise. Since no path has length more than n, the solution to the REACHABILITY problem is
the value of PATH

(
u, v, 2�log2 n�). The predicates PATH

(
a, b, 20

)
are true if either a = b

or there is a path of length 1 (an edge) between the vertices a and b. Thus, PATH
(
a, b, 20

)
can be evaluated directly by consulting the problem instance on the input tape.

The algorithm that computes PATH
(
u, v, 2�log2 n�) with space O(log2 n) uses the

fact that any path of length at most 2k can be decomposed into two paths of length at
most 2k−1. Thus, if PATH

(
a, b, 2k

)
is true, then there must be some vertex z such that

PATH
(
a, z, 2k−1

)
and PATH

(
z, b, 2k−1

)
are both true. The truth of PATH

(
a, b, 2k

)
can

be established by searching for a z such that PATH
(
a, z, 2k−1

)
is true. Upon finding one,

we determine the truth of PATH
(
z, b, 2k−1

)
. Failing to find such a z, PATH

(
a, b, 2k

)
is

declared to be false. Each evaluation of a predicate is done in the same fashion, that is, re-
cursively. Because we need evaluate only one of PATH

(
a, z, 2k−1

)
and PATH

(
z, b, 2k−1

)
at a time, space can be reused.

We now describe a deterministic Turing machine with an input tape and two work tapes
computing PATH

(
u, v, 2�log2 n�). The input tape contains an instance of REACHABILITY,

which means it has not only the vertices u and v but also a description of the graph G. The
first work tape will contain triples of the form (a, b, k), which are called activation records.
This tape is initialized with the activation record (u, v, �log2 n�). (See Fig. 8.5.)

The DTM evaluates the last activation record, (a, b, k), on the first work tape as de-
scribed above. There are three kinds of activation records, complete records of the form
(a, b, k), initial segments of the form (a, z, k−1), and final segments of the form (z, b, k−
1). The first work tape is initialized with the complete record (u, v, �log2 n�).

An initial segment is created from the current complete record (a, b, k) by selecting a
vertex z to form the record (a, z, k − 1), which becomes the current complete record. If
it evaluates to true, it can be determined to be an initial or final segment by examining the
previous record (a, b, k). If it evaluates to false, (a, z, k − 1) is erased and another value
of z, if any, is selected and another initial segment placed on the work tape for evaluation.
If no other z exists, (a, z, k − 1) is erased and the expression PATH

(
a, b, 2k

)
is declared

false. If (a, z, k − 1) evaluates to true, the final record (z, b, k − 1) is created, placed on the
work tape, and evaluated in the same fashion. As mentioned in the second paragraph of this

u v xz()d−1zu()d d−2)(...

Figure 8.5 A snapshot of the stack used by the REACHABILITY algorithm in which the com-
ponents of an activation record (a, b, k) are distributed over several cells.

340 Chapter 8 Complexity Classes Models of Computation

proof, (a, b, 0) is evaluated by consulting the description of the graph on the input tape. The
second work tape is used for bookkeeping, that is, to enumerate values of z and determine
whether a segment is initial or final.

The second work tape uses space O(log n). The first work tape contains at most
�log2 n� activation records. Each activation record (a, b, k) can be stored in O(log n) space
because each vertex can be specified in O(log n) space and the depth parameter k can be
specified in O(log k) = O(log log n) space. It follows that the first work tape uses at most
O(log2 n) space.

The following general result, which is a corollary of Savitch’s theorem, demonstrates that
nondeterminism does not enlarge the space complexity classes if they are defined by space
bounds that are at least logarithmic. In particular, it implies that PSPACE = NPSPACE.

COROLLARY 8.5.1 Let r(n) be a proper Turing computable function r : � �→ � satisfying
r(n) = Ω(log n). Then NSPACE(r(n)) ⊆ SPACE(r2(n)).

Proof Let MND be an NDTM with input and output tapes and s work tapes. Let it recog-
nize a language L ∈ NSPACE(r(n)). For each input string w, we generate a configuration
graph G(MND, w) of MND. (See Fig. 8.6.) We use this graph to determine whether or not
w ∈ L. MND has at most |Q| states, each tape cell can have at most c values (there are
c(s+2)r(n) configurations for the s + 2 tapes), the s work tape heads and the output tape
head can assume values in the range 1 ≤ hj ≤ r(n), and the input head hs+1 can assume
one of n positions (there are nr(n)s+1 configurations for the tape heads). It follows that
MND has at most |Q|c(s+2)r(n)(n r(n)s+1) ≤ klog n+r(n) configurations. G(MND, w)
has the same number of vertices as there are configurations and a number of edges at most
the square of its number of vertices.

Let L ∈ NSPACE(r(n)) be recognized by an NDTM MND. We describe a determin-
istic r2(n)-space Turing machine MD recognizing L. For input string w ∈ L of length n,
this machine solves the REACHABILITY problem on the configuration graph G(MND, w)
of MND described above. However, instead of placing on the input tape the entire configu-
ration graph, we place the input string w and the description of MND. We keep configura-
tions on the work tape as part of activation records (they describe vertices of G(MND, w)).

Figure 8.6 The acyclic configuration graph G(MND, w) of a nondeterministic Turing machine
MND on input w has one vertex for each configuration of MND. Here heavy edges identify the
nondeterministic choices associated with a configuration.

c©John E Savage 8.5 Classification of Decision Problems 341

Each of the vertices (configurations) adjacent to a particular vertex can be deduced from the
description of MND.

Since the number of configurations of MND is N = O
(
klog n+r(n)

)
, each configura-

tion or activation record can be stored as a string of length O(r(n)).
From Theorem 8.5.5, the reachability in G(MND, w) of the final configuration from

the initial one can be determined in space O(log2 N). But N = O
(
klog n+r(n)

)
, from

which it follows that NSPACE(r(n)) ⊆ SPACE(r2(n)).

The classes NL, L2 and PSPACE are defined as unions of deterministic and nondetermin-
istic space-bounded complexity classes. Thus, it follows from this corollary that NL ⊆ L2 ⊆
PSPACE. However, because of the space hierarchy theorem (Theorem 8.5.2), it follows that
L2 is contained in but not equal to PSPACE, denoted L2 ⊂ PSPACE.

8.5.4 Relations Between Time- and Space-Bounded Classes
In this section we establish a number of complexity class containment results involving both
space- and time-bounded classes. We begin by proving that the nondeterministic O(r(n))-
space class is contained within the deterministic O

(
kr(n)

)
-time class. This implies that NL ⊆

P and NPSPACE ⊆ EXPTIME.

THEOREM 8.5.6 The classes NSPACE(r(n)) and TIME(r(n)) of decision problems solvable in
nondeterministic space and deterministic time r(n), respectively, satisfy the following relation for
some constant k > 0:

NSPACE(r(n)) ⊆ TIME(klog n+r(n))

Proof Let MND accept a language L ∈ NSPACE(r(n)) and let G(MND, w) be the
configuration graph for MND on input w. To determine if w is accepted by MND and
therefore in L, it suffices to determine if there is a path in G(MND, w) from the initial
configuration of MND to the final configuration. This is the REACHABILITY problem,
which, as stated in the proof of Theorem 8.5.5, can be solved by a DTM in time polynomial
in the length of the input. When this algorithm needs to determine the descendants of a
vertex in G(MND, w), it consults the definition of MND to determine the configurations
reachable from the current configuration. It follows that membership of w in L can be
determined in time O

(
klog n+r(n)

)
for some k > 1 or that L is in TIME

(
klog n+r(n)

)
.

COROLLARY 8.5.2 NL ⊆ P and NPSPACE ⊆ EXPTIME

Later we explore the polynomial-time problems by exhibiting other important complexity
classes that reside inside P. (See Section 8.15.) We now show containment of the nondeter-
ministic time complexity classes in deterministic space classes.

THEOREM 8.5.7 The following containment holds:

NTIME(r(n)) ⊆ SPACE(r(n))

Proof We use the construction of Theorem 5.2.2. Let L be a language in NTIME(r(n)).
We note that the choice string on the enumeration tape converts the nondeterministic recog-
nition of L into deterministic recognition. Since L is recognized in time r(n) for some
accepting computation, the deterministic enumeration runs in time r(n) for each choice

342 Chapter 8 Complexity Classes Models of Computation

coNPNP
L2

P

L

NL

PSPACE = NPSPACE

PRIMALITY

NP ∩ coNP

NP ∪ coNP

Figure 8.7 The relationships among complexity classes derived in this section. Containment is
indicated by arrows.

string. Thus, O(r(n)) cells are used on the work and enumeration tapes in this determinis-
tic simulation and L is in PSPACE.

An immediate corollary to this theorem is that NP ⊆ PSPACE. This implies that P ⊆
EXPTIME. However, as mentioned above, P is strictly contained within EXPTIME.

Combining these results, we have the following complexity class inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

where PSPACE = NPSPACE. We also have L2 ⊂ PSPACE, and P ⊂ EXPTIME, which
follow from the space and time hierarchy theorems. These inclusions and those derived below
are shown in Fig. 8.7.

In Section 8.6 we develop refinements of this partial ordering of complexity classes by using
the complements of complexity classes.

We now digress slightly to discuss space-bounded functions.

8.5.5 Space-Bounded Functions
We digress briefly to specialize Theorem 8.5.6 to log-space computations, not just log-space
language recognition. As the following demonstrates, log-space computable functions are com-
putable in polynomial time.

THEOREM 8.5.8 Let M be a DTM that halts on all inputs using space O(log n) to process inputs
of length n. Then M executes a polynomial number of steps.

Proof In the proof of Corollary 8.5.1 the number of configurations of a Turing machine M
with input and output tapes and s work tapes is counted. We repeat this analysis. Let r(n)

c©John E Savage 8.6 Complements of Complexity Classes 343

be the maximum number of tape cells used and let c be the maximal size of a tape alphabet.
Then, M can be in one of at most χ ≤ c(s+2)r(n)(n r(n)s+1) = O(kr(n)) configurations
for some k ≥ 1. Since M always halts, by the pigeonhole principle, it passes through at
most χ configurations in at most χ steps. Because r(n) = O(log n), χ = O(nd) for some
integer d. Thus, M executes a polynomial number of steps.

8.6 Complements of Complexity Classes
As seen in Section 4.6, the regular languages are closed under complementation. However, we
have also seen in Section 4.13 that the context-free languages are not closed under comple-
mentation. Thus, complementation is a way to develop an understanding of the properties of
a class of languages. In this section we show that the nondeterministic space classes are closed
under complements. The complements of languages and decision problems were defined at
the beginning of this chapter.

Consider REACHABILITY. Its complement REACHABILITY is the set of directed graphs
G = (V , E) and pairs of vertices u, v ∈ V such that there are no directed paths between u
and v. It follows that the union of these two problems is not the entire set of strings over B∗

but the set of all instances consisting of a directed graph G = (V , E) and a pair of vertices
u, v ∈ V . This set is easily detected by a DTM. It must only verify that the string describing a
putative graph is in the correct format and that the representations for u and v are among the
vertices of this graph.

Given a complexity class, it is natural to define the complement of the class.

DEFINITION 8.6.1 The complement of a complexity class of decision problems C, denoted
coC, is the set of decision problems that are complements of decision problems in C.

Our first result follows from the definition of the recognition of languages by DTMs.

THEOREM 8.6.1 If C is a deterministic time or space complexity class, then coC = C.

Proof Every L ∈ C is recognized by a DTM M that halts within the resource bound
of C for every string, whether in L or L, the complement of L. Create M from M by
complementing the accept/reject status of states of M ’s control unit. Thus, L, which by
definition is in coC, is also in C. That is, coC ⊆ C. Similarly, C ⊆ coC. Thus, coC = C.

In particular, this result says that the class P is closed under complements. That is, if the
“yes” instances of a decision problem can be answered in deterministic polynomial time, then
so can the “No” instances.

We use the above theorem and Theorem 5.7.6 to give another proof that there are problems
that are not in P.

COROLLARY 8.6.1 There are languages not in P, that is, languages that cannot be recognized
deterministically in polynomial time.

Proof Since every language in P is recursive and L1 defined in Section 5.7.2 is not recursive,
it follows that L1 is not in P.

We now show that all nondeterministic space classes with a sufficiently large space bound
are also closed under complements. This leaves open the question whether the nondetermin-

344 Chapter 8 Complexity Classes Models of Computation

istic time classes are closed under complement. As we shall see, this is intimately related to the

question P
?= NP.

As stated in Definition 5.2.1, for no choices of moves is an NDTM allowed to produce an
answer for which it is not designed. In particular, when computing a function it is not allowed
to give a false answer for any set of nondeterministic choices.

THEOREM 8.6.2 (Immerman-Szelepscényi) Given a graph G = (V , E) and a vertex v, the
number of vertices reachable from v can be computed by an NDTM in space O(log n), n = |V |.

Proof Let V = {1, 2, . . . , n}. Any node reachable from a vertex v must be reachable via a
path of length (number of edges) of at most n − 1, n = |V |. Let R(k, u) be the number
of vertices of G reachable from u by paths of length k or less. The goal is to compute
R(n − 1, u). A deterministic program for this purpose could be based on the predicate
PATH(u, v, k) that has value 1 if there is a path of length k or less from vertex u to vertex
v and 0 otherwise and the predicate ADJACENT-OR-IDENTICAL(x, v) that has value 1 if
x = v or there is an edge in G from x to v and 0 otherwise. (See Fig. 8.8.) If we let the
vertices be associated with the integers in the interval [1, . . . , n], then R(n − 1, u) can be
evaluated as follows:

R(n− 1, u) =
∑

1≤v≤n

PATH(u, v, n− 1)

=
∨

1≤v≤n

∑
1≤x≤n

PATH(u, x, n− 2)ADJACENT-OR-EQUAL(x, v)

When this description of R(n− 1, u) is converted to a program, the amount of storage
needed grows more rapidly than O(log n). However, if the inner use of PATH(u, x, n− 2)
is replaced by the nonrecursive and nondeterministic test EXISTS-PATH-FROM-u-TO-v-≤
LENGTH of Fig. 8.9 for a path from u to x of length n − 2, then the space can be kept to
O(log n). This test nondeterministically guesses paths but verifies deterministically that all
paths have been explored.

The procedure COUNTING-REACHABILITY of Fig. 8.9 is a nondeterministic program
computing R(n − 1, u). It uses the procedure #-VERTICES-AT-≤-DISTANCE-FROM-u
to compute the number of vertices at distance dist or less from u in order of increasing
values of dist. (It computes dist correctly or fails.) This procedure has prev num dist
as a parameter, which is the number of vertices at distance dist − 1 or less. It passes this

u

x
v

(a)

u

x = v

(b)

Figure 8.8 Paths explored by the REACHABILITY algorithm. Case (a) applies when x and v are
different and (b) when they are the same.

c©John E Savage 8.6 Complements of Complexity Classes 345

COUNTING-REACHABILITY(u)
{R(k, u) = number of vertices at distance ≤ k from u in G = (V , E)}

prev num dist := 1; {num dist = R(0, u)}
for dist := 1 to n − 1

num dist := #-VERTICES-AT-≤-DIST-FROM-u(dist, u, prev num dist)
prev num dist := num dist
{num dist = R(dist, u)}

return(num dist)

#-VERTICES-AT-≤-DISTANCE-FROM-u(dist, u, prev num dist)
{Returns R(dist, u) given prev num dist = R(dist− 1, u) or fails}

num nodes := 0
for last node := 1 to n

if IS-NODE-AT-≤-DIST-FROM-u(dist, u, last node, prev num dist) then
num nodes := num nodes + 1

return (num nodes)

IS-NODE-AT-≤-DIST-FROM-u(dist, u, last node, prev num dist)
{num node = number of vertices at distance ≤ dist from u found so far}
num node := 0;
reply := false
for next to last node := 1 to n

if EXISTS-PATH-FROM-u-TO-v-≤-LENGTH(u, next to last node, dist− 1) then
num node := num node + 1 {count number of next-to-last nodes or fail}
if ADJACENT-OR-IDENTICAL(next to last node, last node) then

reply := true
if num node < prev num dist then

fail
else return(reply)

EXISTS-PATH-FROM-u-TO-v-≤-LENGTH(u, v, dist)
{nondeterministically choose at most dist vertices, fail if they don’t form a path}
node 1 := u
for count := 1 to dist

node 2 := NONDETERMINISTIC-GUESS([1, .., n])
if not ADJACENT-OR-IDENTICAL(node 1, node 2) then

fail
else node 1 := node 2

if node 2 = v then
return(true)

else
return(false)

Figure 8.9 A nondeterministic program counting vertices reachable from u. Comments are
enclosed in braces {, }.

346 Chapter 8 Complexity Classes Models of Computation

value to the procedure IS-NODE-AT-≤-DIST-FROM-u, which examines and counts all pos-
sible next to last nodes reachable from u. #-VERTICES-AT-≤-DISTANCE-FROM-u ei-
ther fails to find all possible vertices at distance dist − 1, in which case it fails, or finds all
such vertices. Thus, it nondeterministically verifies that all possible paths from u have been
explored. IS-NODE-AT-≤-DIST-FROM-u uses the procedure EXISTS-PATH-FROM-u-TO-
v-≤-LENGTH that either correctly verifies that a path of length dist − 1 exists from u to
next to last node or fails. In turn, EXISTS-PATH-FROM-u-TO-v-≤-LENGTH uses the
command NONDETERMINISTIC-GUESS([1, .., n]) to nondeterministically choose nodes
on a path from u to v.

Since this program is not recursive, it uses a fixed number of variables. Because these
variables assume values in the range [1, 2, 3, . . . , n], it follows that space O(log n) suffices
to implement it on an NDTM.

We now extend this result to nondeterministic space computations.

COROLLARY 8.6.2 If r(n) = Ω(log n) is proper, NSPACE(r(n)) = coNSPACE(r(n)).

Proof Let L ∈ NSPACE(r(n)) be decided by an r(n)-space bounded NDTM M . We
show that the complement of L can be decided by a nondeterministic r(n)-space bounded
Turing machine M , stopping on all inputs. We modify slightly the program of Fig. 8.9 for
this purpose. The graph G is the configuration graph of M . Its initial state is determined
by the string w that is initially written on M ’s input tape. To determine adjacency between
two vertices in the configuration graph, computations of M are simulated on one of M ’s
work tapes.

M computes a slightly modified version of COUNTING-REACHABILITY. First, if the
procedure IS-NODE-AT-LENGTH-≤-DIST-FROM-u returns true for a vertex u that is a
halting accepting configuration of M , then M halts and rejects the string. If the procedure
COUNTING-REACHABILITY completes successfully without rejecting any string, then M
halts and accepts the input string because every possible accepting computation for the input
string has been examined and none of them is accepting. This computation is nondetermin-
istic.

The space used by M is the space needed for COUNTING-REACHABILITY, which
means it is O(log N), where N is the number of vertices in the configuration graph of
M plus the space for a simulation of M , which is O(r(n)). Since N = O(klog n+r(n))
(see the proof of Theorem 8.5.6), the total space for this computation is O(log n + r(n)),
which is O(r(n)) if r(n) = Ω(log n). By definition L ∈ coNSPACE(r(n)). From the
above construction L ∈ NSPACE(r(n)). Thus, coNSPACE(r(n)) ⊆ NSPACE(r(n)).

By similar reasoning, if L ∈ coNSPACE(r(n)), then L ∈ NSPACE(r(n)), which im-
plies that NSPACE(r(n)) ⊆ coNSPACE(r(n)); that is, they are equal.

The lowest class in the space hierarchy that is known to be closed under complements is
the class NL; that is, NL = coNL. This result is used in Section 8.11 to show that the problem
2-SAT, a specialization of the NP-complete problem 3-SAT, is in P.

From Theorem 8.6.1 we know that all deterministic time and space complexity classes are
closed under complements. From Corollary 8.6.2 we also know that all nondeterministic space
complexity classes with space Ω(log n) are closed under complements. However, we do not
yet know whether the nondeterministic time complexity classes are closed under complements.

c©John E Savage 8.6 Complements of Complexity Classes 347

This important question is related to the question whether P
?= NP, because if NP �= coNP,

then P �= NP because P is closed under complements but NP is not.

8.6.1 The Complement of NP
The class coNP is the class of decision problems whose complements are in NP. That is,
coNP is the language of “No” instances of problems in NP. The decision problem VALIDITY

defined below is an example of a problem in coNP. In fact, it is log-space complete for coNP.
(See Problem 8.10.) VALIDITY identifies SOPEs (the sum-of-products expansion, defined in
Section 2.3) that can have value 1.

VALIDITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of products
P = (p1, p2, . . . , pm), where each product pi is a subset of X .
Answer: “Yes” if for all assignments of Boolean values to variables in {x1, x2, . . . , xn} every
literal in at least one product has value 1.

Given a language L in NP, a string in L has a certificate for its membership in L consisting
of the set of choices that cause its recognizing Turing machine to accept it. For example, a
certificate for SATISFIABILITY is a set of values for its variables satisfying at least one literal
in each sum. For an instance of a problem in coNP, a disqualification is a certificate for the
complement of the instance. An instance in coVALIDITY is disqualified by an assignment that
causes all products to have value 0. Thus, each “Yes” instance in VALIDITY is disqualified by
an assignment that prevents the expression from being valid. (See Problem 8.11.)

As mentioned just before the start of this section, if NP �= coNP, then P �= NP because P
is closed under complements. Because we know of no way to establish NP �= coNP, we try to
identify a problem that is in NP but is not known to be in P. A problem that is NP and coNP
simultaneously (the class NP ∩ coNP) is a possible candidate for a problem that is in NP but
not P, which would show that P �= NP. We show that PRIMALITY is in NP ∩ coNP. (It is
straightforward to show that P ⊆ NP ∩ coNP. See Problem 8.12.)

PRIMALITY

Instance: An integer n written in binary notation.
Answer: “Yes” if n is a prime.

A disqualification for PRIMALITY is an integer that is a factor of n. Thus, the complement
of PRIMALITY is in NP, so PRIMALITY is in coNP. We now show that PRIMALITY is also in
NP or that it is in NP ∩ coNP. To prove the desired result we need the following result from
number theory, which we do not prove (see [235, p. 222] for a proof).

THEOREM 8.6.3 An integer p > 2 is prime if and only if there is an integer 1 < r < p such that
rp−1 = 1 mod p and for all prime divisors q of p − 1, r(p−1)/q �= 1 mod p.

As a consequence, to give evidence of primality of an integer p > 1, we need only provide
an integer r, 1 < r < p, and the prime divisors {q1, . . . , qk} other than 1 of p − 1 and then
show that rp−1 = 1 mod p and r(p−1)/q �= 1 mod p for q ∈ {q1, . . . , qk}. By the theorem,
such integers exist if and only if p is prime. In turn, we must give evidence that the integers
{q1, . . . , qk} are prime divisors of p − 1, which requires showing that they divide p − 1 and
are prime. We must also show that k is small and that the recursive check of the primes does

348 Chapter 8 Complexity Classes Models of Computation

not grow exponentially. Evidence of the primality of the divisors can be given in the same way,
that is, by exhibiting an integer rj for each prime as well as the prime divisors of qj − 1 for
each prime qj . We must then show that all of this evidence can be given succinctly and verified
deterministically in time polynomial in the length n of p.

THEOREM 8.6.4 PRIMALITY is in NP ∩ coNP.

Proof We give an inductive proof that PRIMALITY is in NP. For a prime p we give its
evidence E(p) as (p; r, E(q1), . . . , E(qk)), where E(qj) is evidence for the prime qj . We
let the evidence for the base case p = 2 be E(2) = (2). Then, E(3) = (3; 2, (2)) because
r = 2 works for this case and 2 is the only prime divisor of 3−1, and (2) is the evidence for
it. Also, E(5) = (5; 3, (2)). The length |E(p)| of the evidence E(p) on p is the number
of parentheses, commas and bits in integers forming part of the evidence.

We show by induction that |E(p)| is at most 4 log2
2 p. The base case satisfies the hy-

pothesis because |E(2)| = 4.
Because the prime divisors {q1, . . . , qk} satisfy qi ≥ 2 and q1q2 · · · qk ≤ p−1, it follows

that k ≤ �log2 p� ≤ n. Also, since p is prime, it is odd and p − 1 is divisible by 2. Thus,
the first prime divisor of p− 1 is 2.

Let E(p) = (p; r, E(2), E(q2), . . . , E(qk)). Let the inductive hypothesis be that
|E(p)| ≤ 4 log2

2 p. Let nj = log2 qj . From the definition of E(p) we have that |E(p)|
satisfies the following inequality because at most n bits are needed for p and r, there are
k − 1 ≤ n − 1 commas and three other punctuation marks, and |E(2)| = 4.

|E(p)| ≤ 3n + 6 + 4
∑

2≤j≤k

n2
j

Since the qj are the prime divisors of p − 1 and some primes may be repeated in p − 1,
their product (which includes q1 = 2) is at most p − 1. It follows that

∑
2≤j≤k nj ≤

log2 Π2≤j≤kqj ≤ log((p − 1)/2). Since the sum of the squares of nj is less than or equal
to the square of the sum of nj , it follows that the sum in the above expression is at most
(log2 p− 1)2 ≤ (n− 1)2. But 3n + 6 + 4(n− 1)2 = 4n2 − 5n + 10 ≤ 4n2 when n ≥ 2.
Thus, the description of a certificate for the primality of p is polynomial in the length n of p.

We now show by induction that a prime p can be verified in O(n4) steps on a RAM.
Assume that the divisors q1, . . . , qk for p − 1 have been verified. To verify p, we compute
rp−1 mod p from r and p as well as r(p−1)/q mod p for each of the prime divisors q of
p − 1 and compare the results with 1. The integers (p − 1)/q can be computed through
subtraction of n-bit numbers in O(n2) steps on a RAM. To raise r to an exponent e, rep-
resent e as a binary number. For example, if e = 7, write it as p = 22 + 21 + 20. If t

is the largest such power of 2, t ≤ log2(p − 1) ≤ n. Compute r2j

mod p by squaring
r j times, each time reducing it by p through division. Since each squaring/reduction step
takes O(n2) RAM steps, at most O(jn2) RAM steps are required to compute r2j

. Since
this may be done for 2 ≤ j ≤ t and

∑
2≤j≤t j = O(t2), at most O(n3) RAM steps suffice

to compute one of rp−1 mod p or r(p−1)/q mod p for a prime divisor q. Since there are at
most n of these quantities to compute, O(n4) RAM steps suffice to compute them.

To complete the verification of the prime p, we also need to verify the divisors q1, . . . , qk

of p− 1. We take as our inductive hypothesis that an arbitrary prime q of n bits can be veri-
fied in O(n5) steps. Since the sum of the number of bits in q2, . . . , qk is (log2(p−1)/2−1)
and the sum of the kth powers is no more than the kth power of the sum, it follows that

c©John E Savage 8.7 Reductions 349

O(n5) RAM steps suffice to verify p. Since a polynomial number of RAM steps can be
executed in a polynomial number of Turing machine steps, PRIMALITY is in NP.

Since NP ∩ coNP ⊆ NP and NP ∩ coNP ⊆ coNP as well as NP ⊆ NP ∪ coNP and
coNP ⊆ NP ∪ coNP, we begin to have the makings of a hierarchy. If we add that coNP
⊆ PSPACE (see Problem 8.13), we have the relationships between complexity classes shown
schematically in Fig. 8.7.

8.7 Reductions
In this section we specialize the reductions introduced in Section 2.4 and use them to classify
problems into categories. We show that if problem A is reduced to problem B by a function
in the set R and A is hard relative to R, then B cannot be easy relative to R because A can
be solved easily by reducing it to B and solving B with an easy algorithm, contradicting the
fact that A is hard. On the other hand, if B is easy to solve relative to R, then A must be
easy to solve. Thus, reductions can be used to show that some problems are hard or easy. Also,
if A can be reduced to B by a function in R and vice versa, then A and B have the same
complexity relative to R.

Reductions are widely used in computer science; we use them whenever we specialize one
procedure to realize another. Thus, reductions in the form of simulations are used throughout
Chapter 3 to exhibit circuits that compute the same functions that are computed by finite-
state, random-access, and Turing machines, with and without nondeterminism. Simulations
prove to be an important type of reduction. Similarly, in Chapter 10 we use simulation to show
that any computation done in the pebble game can be simulated by a branching program.

Not only did we simulate machines with memory by circuits in Chapter 3, but we demon-
strated in Sections 3.9.5 and 3.9.6 that the languages CIRCUIT VALUE and CIRCUIT SAT

describing circuits are P-complete and NP-complete, respectively. We demonstrated that each
string x in an arbitrary language in P (NP) could be translated into a string in CIRCUIT VALUE

(respectively, CIRCUIT SAT) by a program whose running time is polynomial in the length of
x and whose space is logarithmic in its length.

In this chapter we extend these results. We consider primarily transformations (also called
many-one reductions and just reductions in Section 5.8.1), a type of reduction in which an
instance of one decision problem is translated to an instance of a second problem such that the
former is a “yes” instance if and only if the latter is a “yes” instance. A Turing reduction is a
second type of reduction that is defined by an oracle Turing machine. (See Section 8.4.2 and
Problem 8.15.) In this case the Turing machine may make more than one call to the second
problem (the oracle). A transformation is equivalent to an oracle Turing reduction that makes
one call to the oracle. Turing reductions subsume all previous reductions used elsewhere in this
book. (See Problems 8.15 and 8.16.) However, since the results of this section can be derived
with the weaker transformations, we limit our attention to them.

DEFINITION 8.7.1 If L1 and L2 are languages, a transformation h from L1 to L2 is a DTM-
computable function h : B∗ �→ B∗ such that x ∈ L1 if and only if h(x) ∈ L2. A resource-
bounded transformation is a transformation that is computed under a resource bound such as
deterministic logarithmic space or polynomial time.

350 Chapter 8 Complexity Classes Models of Computation

The classification of problems is simplified by considering classes of transformations. These
classes will be determined by bounds on resources such as space and time on a Turing machine
or circuit size and depth.

DEFINITION 8.7.2 For decision problems P1 and P2, the notation P1 ≤R P2 means that P1 can
be transformed to P2 by a transformation in the class R.

Compatibility among transformation classes and complexity classes helps determine con-
ditions under which problems are hard.

DEFINITION 8.7.3 Let C be a complexity class, R a class of resource-bounded transformations, and
P1 and P2 decision problems. A set of transformations R is compatible with C if P1 ≤R P2

and P2 ∈ C, then P1 ∈ C.

It is easy to see that the polynomial-time transformations (denoted ≤p) are compatible
with P. (See Problem 8.17.) Also compatible with P are the log-space transformations (de-
noted ≤log-space) associated with transformations that can be computed in logarithmic space.
Log-space transformations are also polynomial transformations, as shown in Theorem 8.5.8.

8.8 Hard and Complete Problems
Classes of problems are defined above by their use of space and time. We now set the stage for
the identification of problems that are hard relative to members of these classes. A few more
definitions are needed before we begin this task.

DEFINITION 8.8.1 A class R of transformations is transitive if the composition of any two trans-
formations in R is also in R and for all problems P1, P2, and P3, P1 ≤R P2 and P2 ≤R P3

implies that P1 ≤R P3.

If a class R of transformations is transitive, then we can compose any two transformations
in the class and obtain another transformation in the class. Transitivity is used to define hard
and complete problems.

The transformations ≤p and ≤log-space described above are transitive. Below we show
that ≤log-space is transitive and leave to the reader the proof of transitivity of ≤p and the
polynomial-time Turing reductions. (See Problem 8.19.)

THEOREM 8.8.1 Log-space transformations are transitive.

Proof A log-space transformation is a DTM that has a read-only input tape, a write-only
output tape, and a work tape or tapes on which it uses O(log n) cells to process an input
string w of length n. As shown in Theorem 8.5.8, such DTMs halt within polynomial time.
We now design a machine T that composes two log-space transformations in logarithmic
space. (See Fig. 8.10.)

Let M1 and M2 denote the first and second log-space DTMs. When M1 and M2 are
composed to form T , the output tape of M1, which is also the input tape of M2, becomes
a work tape of T . Since M1 may execute a polynomial number of steps, we cannot store all
its output before beginning the computation by M2. Instead we must be more clever. We
keep the contents of the work tapes of both machines as well as (and this is where we are

c©John E Savage 8.8 Hard and Complete Problems 351

Control

Unit

Master
...

...

...

...
Output Tape

Work Tape

Work Tape

Input Tape

Unit2

Control

Unit1

Control

Common Head

Input to Unit2

Output of Unit1

Position of
Common Head

h1

Figure 8.10 The composition of two deterministic log-space Turing machines.

clever) an integer h1 recording the position of the input head of M2 on the output tape of
M1. If M2 moves its input head right by one step, M1 is simulated until one more output
is produced. If its head moves left, we decrement h1, restart M1, and simulate it until h1

outputs are produced and then supply this output as an input to M2.

The space used by this simulation is the space used by M1 and M2 plus the space for
h1, the value under the input head of M2 and some temporary space. The total space is
logarithmic in n since h1 is at most a polynomial in n.

We now apply transitivity of reductions to define hard and complete problems.

DEFINITION 8.8.2 Let R be a class of reductions, let C be a complexity class, and let R be com-
patible with C. A problem Q is hard for C under R-reductions if for every problem P ∈ C,
P ≤R Q. A problem Q is complete for C under R-reductions if it is hard for C under
R-reductions and is a member of C.

Problems are hard for a class if they are as hard to solve as any other problem in the class.
Sometimes problems are shown hard for a class without showing that they are members of that
class. Complete problems are members of the class for which they are hard. Thus, complete
problems are the hardest problems in the class. We now define three important classes of
complete problems.

352 Chapter 8 Complexity Classes Models of Computation

DEFINITION 8.8.3 Problems in P that are hard for P under log-space reductions are called P-
complete. Problems in NP that are hard for NP under polynomial-time reductions are called NP-
complete. Problems in PSPACE that are hard for PSPACE under polynomial-time reductions are
called PSPACE-complete.

We state Theorem 8.8.2, which follows directly from Definition 8.7.3 and transitivity of
log-space and polynomial-time reductions, because it incorporates as conditions the goals of
the study of P-complete, NP-complete, and PSPACE-complete problems, namely, to show
that all problems in P can be solved in log-space and all problems in NP and PSPACE can be
solved in polynomial time. It is unlikely that any of these goals can be reached.

THEOREM 8.8.2 If a P-complete problem can be solved in log-space, then all problems in P can
be solved in log-space. If an NP-complete problem is in P, then P = NP. If a PSPACE-complete
problem is in P, then P = PSPACE.

In Theorem 8.14.2 we show that if a P-complete problem can be solved in poly-logarithmic
time with polynomially many processors on a CREW PRAM (they are fully parallelizable),
then so can all problems in P. It is considered unlikely that all languages in P can be fully par-
allelized. Nonetheless, the question of the parallelizability of P is reduced to deciding whether
P-complete problems are parallelizable.

8.9 P-Complete Problems
To show that a problem P is P-complete we must show that it is in P and that all problems
in P can be reduced to P via a log-space reduction. (See Section 3.9.5.) The task of showing
this is simplified by the knowledge that log-space reductions are transitive: if another problem
Q has already been shown to be P-complete, to show that P is P-complete it suffices to show
there is a log-space reduction from Q to P and that P ∈ P.

CIRCUIT VALUE

Instance: A circuit description with fixed values for its input variables and a designated
output gate.
Answer: “Yes” if the output of the circuit has value 1.

In Section 3.9.5 we show that the CIRCUIT VALUE problem described above is P-complete
by demonstrating that for every decision problem P in P an instance w of P and a DTM M
that recognizes “Yes” instances of P can be translated by a log-space DTM into an instance c
of CIRCUIT VALUE such that w is a “Yes” instance of P if and only if c is a “Yes” instance of
CIRCUIT VALUE.

Since P is closed under complements (see Theorem 8.6.1), it follows that if the “Yes” in-
stances of a decision problem can be determined in polynomial time, so can the “No” instances.
Thus, the CIRCUIT VALUE problem is equivalent to determining the value of a circuit from its
description. Note that for CIRCUIT VALUE the values of all variables of a circuit are included
in its description.

CIRCUIT VALUE is in P because, as shown in Theorem 8.13.2, a circuit can be evaluated
in a number of steps proportional at worst to the square of the length of its description. Thus,
an instance of CIRCUIT VALUE can be evaluated in a polynomial number of steps.

c©John E Savage 8.9 P-Complete Problems 353

Monotone circuits are constructed of AND and OR gates. The functions computed by
monotone circuits form an asymptotically small subset of the set of Boolean functions. Also,
many important Boolean functions are not monotone, such as binary addition. But even
though monotone circuits are a very restricted class of circuits, the monotone version of CIR-
CUIT VALUE, defined below, is also P-complete.

MONOTONE CIRCUIT VALUE

Instance: A description for a monotone circuit with fixed values for its input variables and
a designated output gate.
Answer: “Yes” if the output of the circuit has value 1.

CIRCUIT VALUE is a starting point to show that many other problems are P-complete. We
begin by reducing it to MONOTONE CIRCUIT VALUE.

THEOREM 8.9.1 MONOTONE CIRCUIT VALUE is P-complete.

Proof As shown in Problem 2.12, every Boolean function can be realized with just AND

and OR gates (this is known as dual-rail logic) if the values of input variables and their
complements are made available. We reduce an instance of CIRCUIT VALUE to an instance
of MONOTONE CIRCUIT VALUE by replacing each gate with the pair of monotone gates
described in Problem 2.12. Such descriptions can be written out in log-space if the gates in
the monotone circuit are numbered properly. (See Problem 8.20.) The reduction must also
write out the values of variables of the original circuit and their complements.

The class of P-complete problems is very rich. Space limitations require us to limit our
treatment of this subject to two more problems. We now show that LINEAR INEQUALITIES

described below is P-complete. LINEAR INEQUALITIES is important because it is directly re-
lated to LINEAR PROGRAMMING, which is widely used to characterize optimization problems.
The reader is asked to show that LINEAR PROGRAMMING is P-complete. (See Problem 8.21.)

LINEAR INEQUALITIES

Instance: An integer-valued m × n matrix A and column m-vector b.
Answer: “Yes” if there is a rational column n-vector x>0 (all components are non-negative
and at least one is non-zero) such that Ax ≤ b.

We show that LINEAR INEQUALITIES is P-hard, that is, that every problem in P can be
reduced to it in log-space. The proof that LINEAR INEQUALITIES is in P, an important and
difficult result in its own right, is not given here. (See [165].)

THEOREM 8.9.2 LINEAR INEQUALITIES is P-hard.

Proof We give a log-space reduction of CIRCUIT VALUE to LINEAR INEQUALITIES. That
is, we show that in log-space an instance of CIRCUIT VALUE can be transformed to an in-
stance of LINEAR INEQUALITIES so that an instance of CIRCUIT VALUE is a “Yes” instance
if and only if the corresponding instance of LINEAR INEQUALITIES is a “Yes” instance.

The log-space reduction that we use converts each gate and input in an instance of a
circuit into a set of inequalities. The inequalities describing each gate are shown below. (An
equality relation a = b is equivalent to two inequality relations, a ≤ b and b ≤ a.) The
reduction also writes the equality z = 1 for the output gate z. Since each variable must
be non-negative, this last condition insures that the resulting vector of variables, x, satisfies
x > 0.

354 Chapter 8 Complexity Classes Models of Computation

Input Gates

Type TRUE FALSE NOT AND OR

Function xi = 1 xi = 0 w = ¬u w = u ∧ v w = u ∨ v

Inequalities xi = 1 xi = 0 0 ≤ w ≤ 1 0 ≤ w ≤ 1 0 ≤ w ≤ 1

w = 1 − u w ≤ u u ≤ w

w ≤ v v ≤ w

u + v − 1 ≤ w w ≤ u + v

Given an instance of CIRCUIT VALUE, each assignment to a variable is translated into
an equality statement of the form xi = 0 or xi = 1. Similarly, each AND, OR, and NOT

gate is translated into a set of inequalities of the form shown above. Logarithmic temporary
space suffices to hold gate numbers and to write these inequalities because the number of
bits needed to represent each gate number is logarithmic in the length of an instance of
CIRCUIT VALUE.

To see that an instance of CIRCUIT VALUE is a “Yes” instance if and only if the instance
of LINEAR INEQUALITIES is also a “Yes” instance, observe that inputs of 0 or 1 to a gate
result in the correct output if and only if the corresponding set of inequalities forces the
output variable to have the same value. By induction on the size of the circuit instance, the
values computed by each gate are exactly the same as the values of the corresponding output
variables in the set of inequalities.

We give as our last example of a P-complete problem DTM ACCEPTANCE, the problem
of deciding if a string is accepted by a deterministic Turing machine in a number of steps
specified as a unary number. (The integer k is represented as a unary number by a string of k
characters.) For this problem it is more convenient to give a direct reduction from all problems
in P to DTM ACCEPTANCE.

DTM ACCEPTANCE

Instance: A description of a DTM M , a string w, and an integer n written in unary.
Answer: “Yes” if and only if M , when started with input w, halts with the answer “Yes” in
at most n steps.

THEOREM 8.9.3 DTM ACCEPTANCE is P-complete.

Proof To show that DTM ACCEPTANCE is log-space complete for P, consider an arbitrary
problem P in P and an arbitrary instance of P , namely x. There is some Turing machine,
say MP , that accepts instances x of P of length n in time p(n), p a polynomial. We assume
that p is included with the specification of MP . For example, if p(y) = 2y4 + 3y2 + 1, we
can represent it with the string ((2, 4), (3, 2), (1, 0)). The log-space Turing machine that
translates MP and x into an instance of DTM ACCEPTANCE writes the description of MP
together with the input x and the value of p(n) in unary. Constant temporary space suffices
to move the descriptions of MP and x to the output tape. To complete the proof we need
only show that O(log n) temporary space suffices to write the value in p(n) in unary, where
n is the length of x.

c©John E Savage 8.10 NP-Complete Problems 355

Since the length of the input x is provided in unary, that is, by the number of characters
it contains, its length n can be written in binary on a work tape in space O(log n) by
counting the number of characters in x. Since it is not difficult to show that any power of
a k-bit binary number can be computed by a DTM in work space O(k), it follows that any
fixed polynomial in n can be computed by a DTM in work space O(k) = O(log n). (See
Problem 8.18.)

To show that DTM ACCEPTANCE is in P, we design a Turing machine that accepts the
“Yes” instances in polynomial time. This machine copies the unary string of length n to one
of its work tapes. Given the description of the DTM M , it simulates M with a universal
Turing machine on input w. When it completes a step, it advances the head on the work
tape containing n in unary, declaring the instance of DTM ACCEPTANCE accepted if M
terminates without using more than n steps. By definition, it will complete its simulation of
M in at most n of M ’s steps each of which uses a constant number of steps on the simulating
machine. That is, it accepts a “Yes” instance of DTM ACCEPTANCE in time polynomial in
the length of the input.

8.10 NP-Complete Problems
As mentioned above, the NP-complete problems are the problems in NP that are the most
difficult to solve. We have shown that NP ⊆ PSPACE ⊆ EXPTIME or that every problem in
NP, including the NP-complete problems, can be solved in exponential time. Since the NP-
complete problems are the hardest problems in NP, each of these is at worst an exponential-
time problem. Thus, we know that the NP-complete problems require either polynomial or
exponential time, but we don’t know which.

The CIRCUIT SAT problem is to determine from a description of a circuit whether it can
be satisfied; that is, whether values can be assigned to its inputs such that the circuit output
has value 1. As mentioned above, this is our canonical NP-complete problem.

CIRCUIT SAT

Instance: A circuit description with n input variables {x1, x2, . . . , xn} for some integer n
and a designated output gate.
Answer: “Yes” if there is an assignment of values to the variables such that the output of the
circuit has value 1.

As shown in Section 3.9.6, CIRCUIT SAT is an NP-complete problem. The goal of this
problem is to recognize the “Yes” instances of CIRCUIT SAT, instances for which there are
values for the input variables such that the circuit has value 1.

In Section 3.9.6 we showed that CIRCUIT SAT described above is NP-complete by demon-
strating that for every decision problem P in NP an instance w of P and an NDTM M that
accepts “Yes” instances of P can be translated by a polynomial-time (actually, a log-space)
DTM into an instance c of CIRCUIT SAT such that w is a “Yes” instance of P if and only if c
is a “Yes” instance of CIRCUIT SAT.

Although it suffices to reduce problems in NP via a polynomial-time transformation to an
NP-complete problem, each of the reductions given in this chapter can be done by a log-space
transformation. We now show that a variety of other problems are NP-complete.

356 Chapter 8 Complexity Classes Models of Computation

8.10.1 NP-Complete Satisfiability Problems
In Section 3.9.6 we showed that SATISFIABILITY defined below is NP-complete. In this sec-
tion we demonstrate that two variants of this language are NP-complete by simple extensions
of the basic proof that CIRCUIT SAT is NP-complete.

SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn} and a sequence of clauses
C = (c1, c2, . . . , cm), where each clause ci is a subset of X .
Answer: “Yes” if there is a (satisfying) assignment of values for the variables {x1, x2, . . . ,
xn} over the set B such that each clause has at least one literal whose value is 1.

The two variants of SATISFIABILITY are 3-SAT, which has at most three literals in each
clause, and NAESAT, in which not all literals in each clause have the same value.

3-SAT

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of clauses
C = (c1, c2, . . . , cm), where each clause ci is a subset of X containing at most three
literals.
Answer: “Yes” if there is an assignment of values for variables {x1, x2, . . . , xn} over the set
B such that each clause has at least one literal whose value is 1.

THEOREM 8.10.1 3-SAT is NP-complete.

Proof The proof that SATISFIABILITY is NP-complete also applies to 3-SAT because each
of the clauses produced in the transformation of instances of CIRCUIT SAT has at most three
literals per clause.

NAESAT

Instance: An instance of 3-SAT.
Answer: “Yes” if each clause is satisfiable when not all literals have the same value.

NAESAT contains as its “Yes” instances those instances of 3-SAT in which the literals in
each clause are not all equal.

THEOREM 8.10.2 NAESAT is NP-complete.

Proof We reduce CIRCUIT SAT to NAESAT using almost the same reduction as for 3-SAT.
Each gate is replaced by a set of clauses. (See Fig. 8.11.) The only difference is that we
add the new literal y to each two-literal clause associated with AND and OR gates and to
the clause associated with the output gate. Clearly, this reduction can be performed in de-
terministic log-space. Since a “Yes” instance of NAESAT can be verified in nondeterministic
polynomial time, NAESAT is in NP. We now show that it is NP-hard.

Given a “Yes” instance of CIRCUIT SAT, we show that the instance of 3-SAT is a “Yes”
instance. Since every clause is satisfied in a “Yes” instance of CIRCUIT SAT, every clause of
the corresponding instance of NAESAT has at least one literal with value 1. The clauses that
don’t contain the literal y by their nature have not all literals equal. Those containing y can
be made to satisfy this condition by setting y to 0, thereby providing a “Yes” instance of
NAESAT.

Now consider a “Yes” instance of NAESAT produced by the mapping from CIRCUIT

SAT. Replacing every literal by its complement generates another “Yes” instance of NAESAT

c©John E Savage 8.10 NP-Complete Problems 357

Step Type Corresponding Clauses

(i READ x) (gi ∨ x) (gi ∨ x)
(i NOT j) (gi ∨ gj) (gi ∨ gj)
(i OR j k) (gi ∨ gj ∨ y) (gi ∨ gk ∨ y) (gi ∨ gj ∨ gk)
(i AND j k) (gi ∨ gj ∨ y) (gi ∨ gk ∨ y) (gi ∨ gj ∨ gk)
(i OUTPUT j) (gj ∨ y)

Figure 8.11 A reduction from CIRCUIT SAT to NAESAT is obtained by replacing each gate
in a “Yes” instance of CIRCUIT SAT by a set of clauses. The clauses used in the reduction from
CIRCUIT SAT to 3-SAT (see Section 3.9.6) are those shown above with the literal y removed. In
the reduction to NAESAT the literal y is added to the 2-literal clauses used for AND and OR gates
and to the output clause.

since the literals in each clause are not all equal, a property that applies before and after
complementation. In one of these “Yes” instances y is assigned the value 0. Because this is a
“Yes” instance of NAESAT, at least one literal in each clause has value 1; that is, each clause
is satisfiable. This implies that the original CIRCUIT SAT problem is satisfiable. It follows
that an instance of CIRCUIT SAT has been translated into an instance of NAESAT so that the
former is a “Yes” instance if and only if the latter is a “Yes” instance.

8.10.2 Other NP-Complete Problems
This section gives a sampling of additional NP-complete problems. Following the format of
the previous section, we present each problem and then give a proof that it is NP-complete.
Each proof includes a reduction of a problem previously shown NP-complete to the current
problem. The succession of reductions developed in this book is shown in Fig. 8.12.

INDEPENDENT SET

Instance: A graph G = (V , E) and an integer k.
Answer: “Yes” if there is a set of k vertices of G such that there is no edge in E between
them.

THEOREM 8.10.3 INDEPENDENT SET is NP-complete.

Proof INDEPENDENT SET is in NP because an NDTM can propose and then verify in
polynomial time a set of k independent vertices. We show that INDEPENDENT SET is NP-
hard by reducing 3-SAT to it. We begin by showing that a restricted version of 3-SAT, one
in which each clause contains exactly three literals, is also NP-complete. If for some variable
x, both x and x are in the same clause, we eliminate the clause since it is always satisfied.
Second, we replace each 2-literal clause (a∨ b) with the two 3-literal clauses (a∨ b∨ z) and
(a∨ b∨ z), where z is a new variable. Since z is either 0 or 1, if all clauses are satisfied then
(a∨ b) has value 1 in both causes. Similarly, a clause with a single literal can be transformed
to one containing three literals by introducing two new variables and replacing the clause
containing the single literal with four clauses each containing three literals. Since adding

358 Chapter 8 Complexity Classes Models of Computation

SUBSET SUMTASK SEQUENCING

INDEPENDENT SET 3-COLORING

SATISFIABILITY NAESAT

CIRCUIT SAT

3-SAT

EXACT COVER

0-1 INT. PROGR.

Figure 8.12 The succession of reductions used in this chapter.

distinct new variables to each clause that contains fewer than three literals can be done in
log-space, this new problem, which we also call 3-SAT, is also NP-complete.

We now construct an instance of INDEPENDENT SET from this new version of 3-SAT

in which k is equal to the number of clauses. (See Fig. 8.13.) Its graph G has one triangle
for each clause and vertices carry the names of the three literals in a clause. G also has an
edge between vertices carrying the labels of complementary literals.

Consider a “Yes” instance of 3-SAT. Pick one literal with value 1 from each clause.
This identifies k vertices, one per triangle, and no edge exists between these vertices. Thus,
the instance of INDEPENDENT SET is a “Yes” instance. Conversely, a “Yes” instance of
INDEPENDENT SET on G has k vertices, one per triangle, and no two vertices carry the
label of a variable and its complement because all such vertices have an edge between them.
The literals associated with these independent vertices are assigned value 1, causing each
clause to be satisfied. Variables not so identified are assigned arbitrary values.

x3x2

x1

x3

x1

x2x3

x1

x2

Figure 8.13 A graph for an instance of INDEPENDENT SET constructed from the following
instance of 3-SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

c©John E Savage 8.10 NP-Complete Problems 359

3-COLORING

Instance: The description of a graph G = (V , E).
Answer: “Yes” if there is an assignment of three colors to vertices such that adjacent vertices
have different colors.

THEOREM 8.10.4 3-COLORING is NP-complete.

Proof To show that 3-COLORING is in NP, observe that a three-coloring of a graph can
be proposed in nondeterministic polynomial time and verified in deterministic polynomial
time.

We reduce NAESAT to 3-COLORING. Recall that an instance of NAESAT is an instance
of 3-SAT. A “Yes” instance of NAESAT is one for which each clause is satisfiable with not
all literals equal. Let an instance of NAESAT consist of m clauses C = (c1, c2, . . . , cm)
containing exactly three literals from the set X = {x1, x1, x2, x2, . . . , xn, xn} of literals in
n variables. (Use the technique introduced in the proof of Theorem 8.10.3 to insure that
each clause in an instance of 3-SAT has exactly three literals per clause.)

Given an instance of NAESAT, we construct a graph G in log-space and show that this
graph is three-colorable if and only if the instance of NAESAT is a “Yes” instance.

The graph G has a set of n variable triangles, one per variable. The vertices of the
triangle associated with variable xi are {ν, xi, xi}. (See Fig. 8.14.) Thus, all the variable
triangles have one vertex in common. For each clause containing three literals we construct
one clause triangle per clause. If clause cj contains literals λj1 , λj2 , and λj3 , its associated
clause triangle has vertices labeled (j, λj1), (j, λj2), and (j, λj3). Finally, we add an edge
between the vertex (j, λjk

) and the vertex associated with the literal λjk
.

We now show that an instance of NAESAT is a “Yes” instance if and only if the graph G
is three-colorable. Suppose the graph is three-colorable and the colors are {0, 1, 2}. Since

(2, x1)(1, x1)

(1, x2) (2, x3)

x1 x1 x2 x3 x3

(1, x3) (2, x2)

x2

ν

Variable Triangle

Clause Triangle

Figure 8.14 A graph G corresponding to the clauses c1 = {x1, x2, x3} and c2 = {x1, x2, x3}
in an instance of NAESAT. It has one variable triangle for each variable and one clause triangle for
each clause.

360 Chapter 8 Complexity Classes Models of Computation

three colors are needed to color the vertices of a triangle and the variable triangles have a
vertex labeled ν in common, assume without loss of generality that this common vertex has
color 2. The other two vertices in each variable triangle are assigned value 0 or 1, values we
give to the associated variable and its complement.

Consider now the coloring of clause triangles. Since three colors are needed to color
vertices of a clause triangle, consider vertices with colors 0 and 1. The edges between these
clause vertices and the corresponding vertices in variable triangles have different colors at
each end. Let the literals in the clause triangles be given values that are the Boolean comple-
ment of their colors. This provides values for literals that are consistent with the values of
variables and insures that not all literals in a clause have the same value. The third vertex in
each triangle has color 2. Give its literal a value consistent with the value of its variable. It
follows that the clauses are a “Yes” instance of NAESAT.

Suppose, on the other hand, that a set of clauses is a “Yes” instance of NAESAT. We
show that the graph G is three-colorable. Assign color 2 to vertex ν and colors 0 and 1 to
vertices labeled xi and xi based on the values of these literals in the “Yes” instance. Consider
two literals in clause cj that are not both satisfied. If xi (xi) is one of these, give the vertex
labeled (j, xi) ((j, xi)) the value that is the Boolean complement of the color of xi (xi) in
its variable triangle. Do the same for the other literal. Since the third literal has the same
value as one of the other two literals (they have different values), let its vertex have color 2.
Then G is three-colorable. Thus, G is a “Yes” instance of 3-COLORING if and only if the
corresponding set of clauses is a “Yes” instance of NAESAT.

EXACT COVER

Instance: A set S = {u1, u2, . . . , up} and a family {S1, S2, . . . , Sn} of subsets of S.
Answer: “Yes” if there are disjoint subsets Sj1 , Sj2 , . . . , Sjt

such that ∪1≤i≤tSji
= S.

THEOREM 8.10.5 EXACT COVER is NP-complete.

Proof It is straightforward to show that EXACT COVER is in NP. An NDTM can simply
select the subsets and then verify in time polynomial in the length of the input that these
subsets are disjoint and that they cover the set S.

We now give a log-space reduction from 3-COLORING to EXACT COVER. Given an
instance of 3-COLORING, that is, a graph G = (V , E), we construct an instance of EXACT

COVER, namely, a set S and a family of subsets of S such that G is a “Yes” instance of
3-COLORING if and only if the family of sets is a “Yes” instance of EXACT COVER.

As the set S we choose S = V ∪ {< e, i > | e ∈ E, 0 ≤ i ≤ 2} and as the family
of subsets of S we choose the sets Sv,i and Re,i defined below for v ∈ V , e ∈ E and
0 ≤ i ≤ 2:

Sv,i = {v} ∪ {< e, i > | e is incident on v ∈ V }
Re,i = {< e, i >}

Let G be three-colorable. Then let cv , an integer in {0, 1, 2}, be the color of vertex v.
We show that the subsets Sv,cv

for v ∈ V and Re,i for < e, i > �∈ Sv,cv
for any v ∈ V

are an exact cover. If e = (v, w) ∈ E, then cv �= cw and Sv,cv
and Sw,cw

are disjoint. By
definition the sets Re,i are disjoint from the other sets. Furthermore, every element of S is
in one of these sets.

On the other hand, suppose that S has an exact cover. Then, for each v ∈ V , there is a
unique cv , 0 ≤ cv ≤ 2, such that v ∈ Sv,cv

. To show that G has a three-coloring, assume

c©John E Savage 8.10 NP-Complete Problems 361

that it doesn’t and establish a contradiction. Since G doesn’t have a three-coloring, there is
an edge e = (v, w) such that cv = cw, which contradicts the assumption that S has an
exact cover. It follows that G has a three-coloring if and only if S has an exact cover.

SUBSET SUM

Instance: A set Q = {a1, a2, . . . , an} of positive integers and a positive integer d.
Answer: “Yes” if there is a subset of Q that adds to d.

THEOREM 8.10.6 SUBSET SUM is NP-complete.

Proof SUBSET SUM is in NP because a subset can be nondeterministically chosen in time
equal to n and an accepting choice verified in a polynomial number of steps by adding up
the chosen elements of the subset and comparing the result to d.

To show that SUBSET SUM is NP-hard, we give a log-space reduction of EXACT COVER

to it. Given an instance of EXACT COVER, namely, a set S = {u1, u2, . . . , up} and a family
{S1, S2, . . . , Sn} of subsets of S, we construct the instance of SUBSET SUM characterized
as follows. We let β = n + 1 and d = βn−1 + βn−2 + · · ·+ β0 = (βn − 1) /(β − 1). We
represent the element ui ∈ S by the integer βi−1, 1 ≤ i ≤ n, and represent the set Sj by
the integer aj that is the sum of the integers associated with the elements contained in Sj .
For example, if p = n = 3, S1 = {u1, u3}, S2 = {u1, u2}, and S3 = {u2}, we represent
S1 by a1 = β2 + β0, S2 by a2 = β + β0, and S3 by a3 = β. Since S1 and S3 forms an
exact cover of S, a1 + a3 = β2 + β + 1 = d.

Thus, given an instance of EXACT COVER, this polynomial-time transformation pro-
duces an instance of SUBSET SUM. We now show that the instance of the former is a “Yes”
instance if and only if the instance of the latter is a “Yes” instance. To see this, observe that
in adding the integers corresponding to the sets in an EXACT COVER in base β there is no
carry from one power of β to the next. Thus the coefficient of βk is exactly the number
of times that uk+1 appears in each of the sets corresponding to a set of subsets of S. The
subsets form a “Yes” instance of EXACT COVER exactly when the corresponding integers
contain each power of β exactly once, that is, when the integers sum to d.

TASK SEQUENCING

Instance: Positive integers t1, t2, . . . , tr, which are execution times, d1, d2, . . . , dr, which
are deadlines, p1, p2, . . . , pr, which are penalties, and integer k ≥ 1.
Answer: “Yes” if there is a permutation π of {1, 2, . . . , r} such that⎛⎝ r∑

j=1

[if tπ(1) + tπ(2) + · · ·+ tπ(j) > dπ(j) then pπ(j) else 0]

⎞⎠ ≤ k

THEOREM 8.10.7 TASK SEQUENCING is NP-complete.

Proof TASK SEQUENCING is in NP because a permutation π for a “Yes” instance can be
verified as a satisfying permutation in polynomial time. We now give a log-space reduction
of SUBSET SUM to TASK SEQUENCING.

An instance of SUBSET SUM is a positive integer d and a set Q = {a1, a2, . . . , an} of
positive integers. A “Yes” instance is one such that a subset of Q adds to d. We translate
an instance of SUBSET SUM to an instance of TASK SEQUENCING by setting r = n,
ti = pi = ai, di = d, and k = (

∑
i ai) − d. Consider a “Yes” instance of this TASK

362 Chapter 8 Complexity Classes Models of Computation

SEQUENCING problem. Then the following inequality holds:⎛⎝ r∑
j=1

[if aπ(1) + aπ(2) + · · ·+ aπ(j) > d, then aπ(j) else 0]

⎞⎠ ≤ k

Let q be the expression in parentheses in the above inequality. Then q = aπ(l+1) + aπ(l+2)

+ · · · + aπ(n), where l is the integer for which p = aπ(1) + aπ(2) + · · · + aπ(l) ≤ d and
p + aπ(l+1) > d. By definition p + q =

∑
i ai. It follows that q ≥

∑
i ai − d. Since

q ≤ k =
∑

i ai − d, we conclude that p = d or that the instance of TASK SEQUENCING

corresponds to a “Yes” instance of SUBSET SUM. Similarly, consider a “Yes” instance of
SUBSET SUM. It follows from the above argument that there is a permutation such that the
instance of TASK SEQUENCING is a “Yes” instance.

The following NP-complete problem is closely related to the P-complete problem LINEAR

INEQUALITIES. The difference is that the vector x must be a 0-1 vector in the case of 0-1
INTEGER PROGRAMMING, whereas in LINEAR INEQUALITIES it can be a vector of rationals.
Thus, changing merely the conditions on the vector x elevates the problem from P to NP and
makes it NP-complete.

0-1 INTEGER PROGRAMMING

Instance: An n × m matrix A and a column n-vector b, both over the ring of integers for
integers n and m.
Answer: “Yes” if there is a column m-vector x over the set {0, 1} such that Ax = b.

THEOREM 8.10.8 0-1 INTEGER PROGRAMMING is NP-complete.

Proof To show that 0-1 INTEGER PROGRAMMING is in NP, we note that a 0-1 vector x
can be chosen nondeterministically in n steps, after which verification that it is a solution to
the problem can be done in O(n2) steps on a RAM and O(n4) steps on a DTM.

To show that 0-1 INTEGER PROGRAMMING is NP-hard we give a log-space reduc-
tion of 3-SAT to it. Given an instance of 3-SAT, namely, a set of literals X = (x1,
x1, x2, x2, . . . , xn, xn) and a sequence of clauses C = (c1, c2, . . . , cm), where each clause ci

is a subset of X containing at most three literals, we construct an m×p matrix A = [B | C],
where B = [bi,j] for 1 ≤ i, j ≤ n and C = [cr,s] for 1 ≤ r ≤ n and 1 ≤ s ≤ pm. We
also construct a column p-vector d as shown below, where p = (m + 1)n. The entries of B
and C are defined below.

bi,j =

{
1 if xj ∈ ci for 1 ≤ j ≤ n

−1 if xj ∈ ci for 1 ≤ j ≤ n

cr,s =

{
−1 if (r − 1)n + 1 ≤ s ≤ rn

0 otherwise

Since no one clause contains both xj and xj , this definition of ai,j is consistent.
We also let di, the ith component of d, satisfy di = 1 − qi, where qi is the number of

complemented variables in ci. Thus, the matrix A has the form given below, where B is an
m×n matrix and each row of A contains n instances of –1 outside of B in non-overlapping

c©John E Savage 8.11 The Boundary Between P and NP 363

columns:

A =

⎡⎢⎢⎢⎢⎢⎣ B

−1 −1 . . . −1 0 . . . 0 0 . . . 0

0 0 0 −1 . . . −1
... 0

...
...

. . . 0 . . . 0

0 0 . . . 0 0 . . . 0 −1 . . . −1

⎤⎥⎥⎥⎥⎥⎦
We show that the instance of 3-SAT is a “Yes” instance if and only if this instance of 0-1

INTEGER PROGRAMMING is a “Yes” instance, that is, if and only if Ax = d.
We write the column p-vector x as the concatenation of the column m-vector u and

the column mn-vector v. It follows that Ax = b if and only if Au ≥ b. Now consider
the ith component of Au. Let u select ki uncomplemented and li complemented variables
of clause ci. Then, Au ≥ b if and only if ki − li ≥ di = 1 − qi or ki + (qi − li) ≥ 1
for all i. Now let xi = ui for 1 ≤ i ≤ n. Then ki and qi − li are the numbers of
uncomplemented and complemented variables in ci that are set to 1 and 0, respectively.
Since ki + (qi − li) ≥ 1, ci is satisfied, as are all clauses, giving us the desired result.

8.11 The Boundary Between P and NP
It is important to understand where the boundary lies between problems in P and the NP-
complete problems. While this topic is wide open, we shed a modest amount of light on it by
showing that 2-SAT, the version of 3-SAT in which each clause has at most two literals, lies on
the P-side of this boundary, as shown below. In fact, it is in NL, which is in P.

THEOREM 8.11.1 2-SAT is in NL.

Proof Given an instance I of 2-SAT, we first insure that each clause has exactly two distinct
literals by adding to each one-literal clause a new literal z that is not used elsewhere. We
then construct a directed graph G = (V , E) with vertices V labeled by the literals x and x
for each variable x appearing in I . This graph has an edge (α, β) in E directed from vertex
α to vertex β if the clause (α ∨ β) is in I . If (α ∨ β) is in I , so is (β ∨ α) because of
commutativity of ∨. Thus, if (α, β) ∈ E, then (β, α) ∈ E also. (See Fig. 8.15.) Note
that (α, β) �= (β, α) because this requires that β = α, which is not allowed. Let α �= γ.
It follows that if there is a path from α to γ in G, there is a distinct path from γ to α
obtained by reversing the directions of each edge on the path and replacing the literals by
their complements.

To understand why these edges are chosen, note that if all clauses of I are satisfied and
(α∨ β) is in I , then α = 1 implies that β = 1. This implication relation, denoted α ⇒ β,
is transitive. If there is a path (α1, α2, . . . , αk) in G, then there are clauses (α1 ∨ α2),
(α2 ∨ α3), . . . , (αk−1 ∨ αk) in I . If all clauses are satisfied and if the literal α1 = 1, then
each un-negated literal on this path must have value 1.

We now show that an instance I is a “No” instance if and only if there is a variable x
such that there is a path in G from x to x and one from x to x.

If there is a variable x such that such paths exists, this means that x ⇒ x and x ⇒ x
which is a logical contradiction. This implies that the instance I is a “No” instance.

Conversely, suppose I is a “No” instance. To prove there is a variable x such that there
are paths from vertex x to vertex x and from x to x, assume that for no variable x does this

364 Chapter 8 Complexity Classes Models of Computation

x1

x2 x2

x1

x3

x3

Figure 8.15 A graph capturing the implications associated with the following satisfiable instance
of 2-SAT: (x3 ∨ x2) ∧ (x3 ∨ x1) ∧ (x3 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x1).

condition hold and show that I is a “Yes” instance, that is, every clause is satisfied, which
contradicts the assumption that I is a “No” instance.

Identify a variable that has not been assigned a value and let α be one of the two cor-
responding literals such that there is no directed path in G from the vertex α to α. (By
assumption, this must hold for at least one of the two literals associated with x.) Assign
value 1 to α and each literal λ reachable from it. (This assigns values to the variables iden-
tified by these literals.) If these assignments can be made without assigning a variable both
values 0 and 1, each clause can be satisfied and I is “Yes” instance rather than a “No” one, as
assumed. To show that each variable is assigned a single value, we assume the converse and
show that the conditions under which values are assigned to variables by this procedure are
contradicted. A variable can be assigned contradictory values in two ways: a) on the current
step the literals λ and λ are both reachable from α and assigned value 1, and b) a literal λ
is reachable from α on the current step that was assigned value 0 on a previous step. For
the first case to happen, there must be a path from α to vertices λ and λ. By design of the
graph, if there is a path from α to λ, there is a path from λ to α. Since there is a path from
α to λ, there must be a path from α to α, contradicting the assumption that there are no
such paths. In the second case, let a λ be assigned 1 on the current step that was assigned 0
on a previous step. It follows that λ was given value 1 on that step. Because there is a path
from α to λ, there is one from λ to α and our procedure, which assigned λ value 1 on the
earlier step, must have assigned α value 1 on that step also. Thus, α had the value 0 before
the current step, contradicting the assumption that it was not assigned a value.

To show that 2-SAT is in NL, recall that NL is closed under complements. Thus, it suf-
fices to show that “No” instances of 2-SAT can be accepted in nondeterministic logarithmic
space. By the above argument, if I is a “No” instance, there is a variable x such that there is
a path in G from x to x and from x to x. Since the number of vertices in G is at most linear
in n, the length of I (it may be as small as O(

√
n)), an NDTM can propose and then verify

in space O(log n) a path in G from x to x and back by checking that the putative edges are
edges of G, that x is the first and last vertex on the path, and that x is encountered before
the end of the path.

c©John E Savage 8.12 PSPACE-Complete Problems 365

8.12 PSPACE-Complete Problems
PSPACE is the class of decision problems that are decidable by a Turing machine in space poly-
nomial in the length of the input. Problems in PSPACE are potentially much more complex
than problems in P.

The hardest problems in PSPACE are the PSPACE-complete problems. (See Section 8.8.)
Such problems have two properties: a) they are in PSPACE and b) every problem in PSPACE
can be reduced to them by a polynomial-time Turing machine. The PSPACE-complete prob-
lems are the hardest problems in PSPACE in the sense that if they are in P, then so are all
problems in PSPACE, an unlikely prospect.

We now establish that QUANTIFIED SATISFIABILITY defined below is PSPACE-complete.
We also show that GENERALIZED GEOGRAPHY, a game played on a graph, is PSPACE-
complete by reducing QUANTIFIED SATISFIABILITY to it. A characteristic shared by many
important PSPACE-complete problems and these two problems is that they are equivalent to
games on graphs.

8.12.1 A First PSPACE-Complete Problem
Quantified Boolean formulas use existential quantification, denoted ∃, and universal quan-
tification, denoted ∀. Existential quantification on variable x1, denoted ∃x1, means “there
exists a value for the Boolean variable x1,” whereas universal quantification on variable x2,
denoted ∀x2, means “for all values of the Boolean variable x2.” Given a Boolean formula such
as (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3), a quantification of it is a collection of
universal or existential quantifiers, one per variable in the formula, followed by the formula.
For example,

∀x1∃x2∀x3[(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)]

is a quantified formula. Its meaning is “for all values of x1, does there exist a value for x2 such
that for all values of x3 the formula (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3) is satisfied?”
In this case the answer is “No” because for x1 = 1, the function is not satisfied with x3 = 0
when x2 = 0 and is not satisfied with x3 = 1 when x2 = 1. However, if the third quantifier
is changed from universal to existential, then the quantified formula is satisfied. Note that the
order of the quantifiers is important. To see this, observe that under the quantification order
∀x1∀x3∃x2 that the quantified formula is satisfied.

QUANTIFIED SATISFIABILITY consists of satisfiable instances of quantified Boolean for-
mulas in which each formula is expressed as a set of clauses.

QUANTIFIED SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, a sequence of clauses C =
(c1, c2, . . . , cm), where each clause ci is a subset of X , and a sequence of quantifiers
(Q1, Q2, . . . , Qn), where Qj ∈ {∀, ∃}.
Answer: “Yes” if under the quantifiers Q1x1Q2x2 · · ·Qnxn, the clauses c1, c2, . . . , cm are
satisfied, denoted

Q1x1Q2x2 · · ·Qnxn [φ]

where the formula φ = c1∧c2∧· · ·∧cm is in the product-of-sums form. (See Section 2.2.)

366 Chapter 8 Complexity Classes Models of Computation

In this section we establish the following result, stronger than PSPACE-completeness of
QUANTIFIED SATISFIABILITY: we show it is complete for PSPACE under log-space trans-
formations. Reductions of this type are potentially stronger than polynomial-time reductions
because the transformation is executed in logarithmic space, not polynomial time. While it
is true that every log-space transformation is a polynomial-time transformation (see Theo-
rem 8.5.8), it is not known if the reverse is true. We prove this result in two stages: we first
show that QUANTIFIED SATISFIABILITY is in PSPACE and then that it is hard for PSPACE.

LEMMA 8.12.1 QUANTIFIED SATISFIABILITY is in PSPACE.

Proof To show that QUANTIFIED SATISFIABILITY is in PSPACE we evaluate in polyno-
mial space a circuit, Cqsat, whose value is 1 if and only if the instance of QUANTIFIED

SATISFIABILITY is a “Yes” instance. The circuit Cqsat is a tree all of whose paths from the
inputs to the output (root of the tree) have the same length, each vertex is either an AND

gate or an OR gate, and each input has value 0 or 1. (See Fig. 8.16.) The gate at the root of
the tree is associated with the variable x1, the gates at the next level are associated with x2,
etc. The type of gate at the jth level is determined by the jth quantifier Qj and is AND if
Qj = ∀ and OR if Qj = ∃. The leaves correspond to all 2n the values of the n variables:
at each level of the tree the left and right branches correspond to the values 0 and 1 for the
corresponding quantified variable. Each leaf of the tree contains the value of the formula φ
for the values of the variables leading to that leaf. In the example of Fig. 8.16 the leftmost
leaf has value 1 because on input x1 = x2 = x3 = 0 each of the three clauses {x1, x2, x3},
{x1, x2, x3} and {x1, x2, x3} is satisfied.

It is straightforward to see that the value at the root of the tree is 1 if all clauses are
satisfied under the quantifiers Q1x1Q2x2 · · ·Qnxn and 0 otherwise. Thus, the circuit solves
the QUANTIFIED SATISFIABILITY problem and its complement. (Note that PSPACE =
coPSPACE, as shown in Theorem 8.6.1.)

0 1

x3

0 1

x2

x1

10

0010

0111 1001

0

1 0

Figure 8.16 A tree circuit constructed from the instance ∀x1∃x2∀x3φ for φ = (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) of QUANTIFIED SATISFIABILITY. The eight values at
the leaves of the tree are the values of φ on the eight different assignments to (x1, x2, x3).

c©John E Savage 8.12 PSPACE-Complete Problems 367

tree eval(n, φ, Q, d, w);
if d = n then

return(evaluate(φ, w));
else

if first(Q) = ∃ then
return(tree eval(n, φ, rest(Q), d + 1, w0)

OR tree eval(n, φ, rest(Q), d + 1, w1));
else
return(tree eval(n, φ, rest(Q), d + 1, w0)

AND tree eval(n, φ, rest(Q), d + 1, w1));

Figure 8.17 A program for the recursive procedure tree eval(n, φ, Q, d, w). The tuple w
keeps track of the path taken into the tree.

The circuit Cqsat has size exponential in n because there are 2n values for the n variables.
However, it can be evaluated in polynomial space, as we show. For this purpose consider the
recursive procedure tree eval(n, φ, Q, d, w) in Fig. 8.17 that evaluates Cqsat. Here n is
the number of variables in the quantization, d is the depth of recursion, φ is the expression
over which quantification is done, Q is a sequence of quantifiers, and w holds the values for
d variables. Also, first(Q) and rest(Q) are the first and all but the first components of
Q, respectively. When d = 0, Q = (Q1, Q2, . . . , Qn) and Q1x1Q2x2 · · ·Qnxn φ is the
expression to evaluate. We show that tree eval(n, φ, Q, 0, ε) can be computed in space
quadratic in the length of an instance of QUANTIFIED SATISFIABILITY.

When d = n, the procedure has reached a leaf of the tree and the string w contains
values for the variables x1, x2, . . . , xn, in that order. Since all variables of φ are known when
d = n, φ can be evaluated. Let evaluate(φ, w) be the function that evaluates φ with values
specified by w. Clearly tree eval(n, φ, Q, 0, ε) is the value of Q1x1Q2x2 · · ·Qnxn φ.

We now determine the work space needed to compute tree eval(n, φ, Q, d, w) on
a DTM. (The discussion in the proof of Theorem 8.5.5 is relevant.) Evaluation of this
procedure amounts to a depth-first traversal of the tree. An activation record is created for
each call to the procedure and is pushed onto a stack. Since the depth of the tree is n, at most
n + 1 records will be on the stack. Since each activation record contains a string of length at
most O(n), the total space used is O(n2). And the length of Q1x1Q2x2 · · ·Qnxn φ is at
least n, the space is polynomial in the length of this formula.

LEMMA 8.12.2 QUANTIFIED SATISFIABILITY is log-space hard for PSPACE.

Proof Our goal is to show that every decision problem P ∈ PSPACE can be reduced in
log-space to an instance of QUANTIFIED SATISFIABILITY. Instead, we show that every such
P can be reduced in log-space to a “No” instance of QUANTIFIED SATISFIABILITY (we call
this QUANTIFIED UNSATISFIABILITY). But a “No” instance is one for which the formula
φ, which is in product-of-sums form, is not satisfied under the specified quantification or
that its Boolean complement, which is in sum-of-products expansion (SOPE) form, is sat-
isfied under a quantification in which ∀ is replaced by ∃ and vice versa. Exchanging “Yes”
and “No” instances of decision problems (which we can do since PSPACE is closed un-

368 Chapter 8 Complexity Classes Models of Computation

der complements), we have that every problem in coPSPACE can be reduced in log-space
to QUANTIFIED SATISFIABILITY. However, since PSPACE = coPSPACE, we have the
desired result.

Our task now is to show that every problem P ∈ PSPACE can be reduced in log-space
to an instance of QUANTIFIED UNSATISFIABILITY. Let L ∈ PSPACE be the language
of “Yes” instances of P and let M be the DTM deciding L. Instances of QUANTIFIED

UNSATISFIABILITY will be quantified formulas in SOPE form that describe conditions on
the configuration graph G(M , w) of M on input w. We associate a Boolean vector with
each vertex in G(M , w) and assume that G(M , w) has one initial and final vertex associated
with the vectors a and b, respectively. (We can make the last assumption because M can be
designed to enter a cleanup phase in which it prints blanks in all non-blank tape cells.)

Let c and d be vector encodings of arbitrary configurations c and d of G(M , w). We
construct formulas ψi(c, d), 0 ≤ i ≤ k, in SOPE form that are satisfied if and only if
there exists a path from c to d in G(M , w) of length at most 2i (it computes the predi-
cate PATH(c, d, 2i) introduced in the proof of Theorem 8.5.5). Then a “Yes” instance of
QUANTIFIED UNSATISFIABILITY is the formula ψk(a, b), where a and b are encodings
of the initial and final vertices of G(M , w) for k sufficiently large that a polynomial-space
computation can be done in time 2k. Since, as seen in Theorem 8.5.6, a deterministic com-
putation in space S is done in time O(2S), it suffices for k to be polynomial in the length
of the input.

The formula ψ0(c, d) is satisfiable if either c = d or d follows from c in one step. Such
formulas are easily computed from the descriptions of M and w. ψi(c, d) can be expressed
as shown below, where the existential quantification is over all possible intermediate config-
urations e of M . (See the proof of Theorem 8.5.5 for the representation of PATH(c, d, 2i)
in terms of PATH(c, e, 2i−1) and PATH(e, d, 2i−1).)

ψi(c, d) = ∃e [ψi−1(c, e) ∧ ψi−1(e, d)] (8.1)

Note that ∃e is equivalent to ∃e1∃e2 · · · ∃eq , where q is the length of e. Universal quantifi-
cation over a vector is expanded in a similar fashion.

Unfortunately, for i = k this recursively defined formula requires space exponential
in the size of the input. Fortunately, we can represent ψi(c, d) more succinctly using the
implication operator x ⇒ y, as shown below, where x ⇒ y is equivalent to x ∨ y. Note
that if x ⇒ y is TRUE, then either x is FALSE or x and y are both TRUE.

ψi(c, d) = ∃e [∀x∀y [(x = c ∧ y = e) ∨ (x = e ∧ y = d)] ⇒ ψi−1(x, y)] (8.2)

Here x = y denotes (x1 = y1) ∧ (x2 = y2) ∧ · · · ∧ (xq = yq), where (xi = yi) denotes
xiyi ∨ xiyi. Then, the formula in the outer square brackets of (8.2) is true when either
(x = c∧y = e)∨ (x = e∧y = d) is FALSE or this expression is TRUE and ψi−1(x, y) is
also TRUE. Because the contents of the outer square brackets are TRUE, the quantization on
x and y requires that ψi−1(c, e) and ψi−1(e, d) both be TRUE or that the formula given
in (8.1) be satisfied.

It remains to convert the expression for ψi(c, d) given above to SOPE form in log-space.
But this is straightforward. We replace g ⇒ h by g ∨ h, where g = (r ∧ s) ∨ (t ∧ u) and
r = (x = c), s = (y = e), t = (x = e), and u = (y = d). It follows that

g = (r ∨ s) ∧ (t ∨ u)
= (r ∧ t) ∨ (r ∧ u) ∨ (s ∧ t) ∨ (s ∧ u)

c©John E Savage 8.12 PSPACE-Complete Problems 369

Since each of r, s, t, and u can be expressed as a conjunction of q terms of the form
(xj = yj) and (xj = yj) = (xjyj ∨ xjyj), 1 ≤ i ≤ q, it follows that r, s, t, and u
can each be expressed as a disjunction of 2q terms. Each of the four terms of the form
(r ∧ t) consists of 4q2 terms, each of which is a conjunction of four literals. Thus, g is the
disjunction of 16q2 terms of four literals each.

Given the regular structure of this formula for ψi, it can be generated from a formula for
ψi−1 in space O(log q). Since 0 ≤ i ≤ k and k is polynomial in the length of the input, all
the formulas, including that for ψk, can be generated in log-space. By the above reasoning,
this formula is a “Yes” instance of QUANTIFIED UNSATISFIABILITY if and only if there is a
path in the configuration graph G(M , w) between the initial and final states.

Combining the two results, we have the following theorem.

THEOREM 8.12.1 QUANTIFIED SATISFIABILITY is log-space complete for PSPACE.

8.12.2 Other PSPACE-Complete Problems
An important version of QUANTIFIED SATISFIABILITY is ALTERNATING QUANTIFIED SAT-
ISFIABILITY.

ALTERNATING QUANTIFIED SATISFIABILITY

Instance: Instances of QUANTIFIED SATISFIABILITY that have an even number of quanti-
fiers that alternate between ∃ and ∀, with ∃ the first quantifier.
Answer: “Yes” if the instance is a “Yes” instance of QUANTIFIED SATISFIABILITY.

THEOREM 8.12.2 ALTERNATING QUANTIFIED SATISFIABILITY is log-space complete for
PSPACE.

Proof ALTERNATING QUANTIFIED SATISFIABILITY is in PSPACE because it is a special
case of QUANTIFIED SATISFIABILITY. We reduce QUANTIFIED SATISFIABILITY to AL-
TERNATING QUANTIFIED SATISFIABILITY in log-space as follows. If two universal quan-
tifiers appear in succession, we add an existential quantifier between them in a new variable,
say xl, and add the new clause {xl, xl} at the end of the formula φ. If two existential quan-
tifiers appear in succession, add universal quantification over a new variable and a clause
containing it and its negation. If the number of quantifiers is not even, repeat one or the
other of the above steps. This transformation at most doubles the number of variables and
clauses and can be done in log-space. The instance of ALTERNATING QUANTIFIED SATIS-
FIABILITY is a “Yes” instance if and only if the instance of QUANTIFIED SATISFIABILITY is
a “Yes” instance.

The new version of QUANTIFIED SATISFIABILITY is akin to a game in which universal
and existential players alternate. The universal player attempts to show a fact for all values of
its Boolean variable, whereas the existential player attempts to deny that fact by the choice of
its existential variable. It is not surprising, therefore, that many games are PSPACE-complete.
The geography game described below is of this type.

The geography game is a game for two players. They alternate choosing names of cities
in which the first letter of the next city is the last letter of the previous city until one of the two
players (the losing player) cannot find a name that has not already been used. (See Fig. 8.18.)
This game is modeled by a graph in which each vertex carries the name of a city and there is

370 Chapter 8 Complexity Classes Models of Computation

an edge from vertex u1 to vertex u2 if the last letter in the name associated with u1 is the first
letter in the name associated with u2. In general this graph is directed because an edge from
u1 to u2 does not guarantee an edge from u2 to u1.

GENERALIZED GEOGRAPHY

Instance: A directed graph G = (V , E) and a vertex v.
Answer: “Yes” if there is a sequence of (at most |V |) alternating vertex selections by two
players such that vertex v is the first selection by the first player and for each selection of
the first player and all selections of the second player of vertices adjacent to the previous
selection, the second player arrives at a vertex from which it cannot select a vertex not
previously selected.

THEOREM 8.12.3 GENERALIZED GEOGRAPHY is log-space complete for PSPACE.

Proof To show that GENERALIZED GEOGRAPHY is log-space complete for PSPACE, we
show that it is in PSPACE and that QUANTIFIED SATISFIABILITY can be reduced to it
in log-space. To establish the first result, we show that the outcome of GENERALIZED

GEOGRAPHY can be determined by evaluating a graph similar to the binary tree used to
show that QUANTIFIED SATISFIABILITY is realizable in PSPACE.

Given the graph G = (V , E) (see Fig. 8.18(a)), we construct a search graph (see
Fig. 8.18(b)) by performing a variant of depth-first search of G from v. At each vertex
we visit the next unvisited descendant, continuing until we encounter a vertex on the cur-
rent path, at which point we backtrack and try the next sibling of the current vertex, if any.
In depth-first search if a vertex has been visited previously, it is not visited again. In this
variant of the algorithm, however, a vertex is revisited if it is not on the current path. The
length of the longest path in this tree is at most |V | − 1 because each path can contain no
more than |V | vertices. The tree may have a number of vertices exponential in |V |.

At a leaf vertex a player has no further moves. The first player wins if it is the second
player’s turn at a leaf vertex and loses otherwise. Thus, a leaf vertex is labeled 1 (0) if the
first player wins (loses). To insure that the value at a vertex u is 1 if the two players reach u
and the first player wins, we assign OR operators to vertices at which the first player makes
selections and AND operators otherwise. (The output of a one-input AND or OR gate is the

OROR OR

ANDANDAND

OR 00OR
11

(a) (b)

Saugus

Danvers

Marblehead

Dedham

OR
Marblehead

ANDDanvers DedhamAND

Salem Mansfield

Figure 8.18 (a) A graph for the generalized geography game and (b) the search tree associated
with the game in which the start vertex is Marblehead.

c©John E Savage 8.12 PSPACE-Complete Problems 371

value of its input.) This provides a circuit that can be evaluated just as was the circuit Cqsat

used in the proof of Theorem 8.12.1. The “Yes” instances of GENERALIZED GEOGRAPHY

are such that the first player can win by choosing a first city. In Fig. 8.18 the value of the
root vertex is 0, which means that the first player loses by choosing to start with Marblehead
as the first city.

Vertices labeled AND or OR in the tree generated by depth-first search can have arbitrary
in-degree because the number of vertices that can be reached from a vertex in the original
graph is not restricted. The procedure tree eval described in the proof of Theorem 8.12.1
can be modified to apply to the evaluation of this DAG whose vertex in-degree is potentially
unbounded. (See Problem 8.30.) This modified procedure runs in space polynomial in the
size of the graph G.

We now show that ALTERNATING QUANTIFIED SATISFIABILITY (abbreviated AQSAT)
can be reduced in log-space to GENERALIZED GEOGRAPHY. Given an instance of AQSAT

such as that shown below, we construct an instance of GENERALIZED GEOGRAPHY, as
shown in Fig. 8.19. We assume without loss of generality that the number of quantifiers is
even. If not, add a dummy variable and quantify on it:

∃x1∀x2∃x3∀x4[(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x4)]

x1 ∨ x2 ∨ x3x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x4 ∨ x4

m

m

m

m

m

t

m

x3

x4

x2

x1

01

x1

01

x2

01

x3

01

x4

x1

x2

x4

x3

b

Figure 8.19 An instance of GENERALIZED GEOGRAPHY corresponding to an instance of
ALTERNATING QUANTIFIED SATISFIABILITY.

372 Chapter 8 Complexity Classes Models of Computation

The instance of GENERALIZED GEOGRAPHY corresponding to an instance of AQSAT

is formed by cascading a set of diamond-shaped subgraphs, one per variable (see Fig. 8.19),
and connecting the bottom vertex b in the last diamond to a set of vertices, one per clause.
An edge is drawn from a clause to a vertex associated with a literal (xi or xi) if that literal
is in the clause. The literal xi (xi) is associated with the middle vertex on the right-hand
(left-hand) side of a diamond. Thus, in the example, there is an edge from the leftmost
clause vertex to the left-hand vertex in the diamond for x3 and to the right-hand vertices in
diamonds for x1 and x2.

Let the geography game be played on this graph starting with the first player from the
topmost vertex labeled t. The first player can choose either the left or right path. The second
player has only one choice, taking it to the bottom of the first diamond, and the first player
now has only one choice, taking it to the top of the second diamond. The second player
now can choose a path to follow. Continuing in this fashion, we see that the first (second)
player can exercise a choice on the odd- (even-) numbered diamonds counting from the top.
Since the number of quantifiers is even, the choice at the bottom vertex labeled b belongs to
the second player. Observe that whatever choices are made within the diamonds, the vertices
labeled m and b are visited.

Because the goal of each player is to force the other player into a position from which
it has no moves, at vertex b the second player attempts to choose a clause vertex such that
the first player has no moves: that is, every vertex reachable from the clause vertex chosen by
the second player has already been visited. On the other hand, if all clauses are satisfiable,
then for every clause chosen by the second player there should be an edge from its vertex to
a diamond vertex that has not been previously visited. To insure that the first player wins if
and only if the instance of AQSAT used to construct this graph is a “Yes” instance, the first
player always chooses an edge according to the directions in Fig. 8.19. For example, it visits
the vertex labeled x1 if it wishes to set x1 = 1 because this means that the vertex labeled x1

is not visited on the path from t to b and can be visited by the first player on the last step of
the game. Since each vertex labeled m and b is visited before a clause vertex is visited, the
second player does not have a move and loses.

8.13 The Circuit Model of Computation
The complexity classes seen so far in this chapter are defined in terms of the space and
time needed to recognize languages with deterministic and nondeterministic Turing machines.
These classes generally help us to understand the complexity of serial computation. Circuit
complexity classes, studied in this section, help us to understand parallel computation.

Since a circuit is a fixed interconnection of gates, each circuit computes a single Boolean
function on a fixed number of inputs. Thus, to compute the unbounded set of functions
computed by a Turing machine, a family of circuits is needed. In this section we investigate
uniform and non-uniform circuit families. A uniform family of circuits is a potentially un-
bounded set of circuits for which there is a Turing machine that, given an integer n in unary
notation, writes a description of the nth circuit. We show that uniform circuits compute the
same functions as Turing machines.

As mentioned below, non-uniform families of circuits are so powerful that they can com-
pute functions not computed by Turing machines. Given the Church-Turing thesis, it doesn’t
make sense to assume non-uniform circuits as a model of computation. On the other hand, if

c©John E Savage 8.13 The Circuit Model of Computation 373

we can develop large lower bounds on the size or depth of circuits without regard to whether or
not they are drawn from a uniform family, then such lower bounds apply to uniform families
as well and, in particular, to other models of computation, such as Turing machines. For this
reason non-uniform circuits are important.

A circuit is a form of unstructured parallel machine, since its gates can operate in parallel.
The parallel random-access machine (PRAM) introduced in Chapter 1 and examined in Chap-
ter 7 is another important parallel model of computation in terms of which the performance
of many other parallel computational models can be measured. In Section 8.14 we show that
circuit size and depth are related to number of processors and time on the PRAM. These results
emphasize the important role of circuits not only in the construction of machines, but also in
measuring the serial and parallel complexity of computational problems.

Throughout the following sections we assume that circuits are constructed from gates cho-
sen from the standard basis Ω0 = {AND, OR, NOT}.

We now explore uniform and non-uniform circuit families, thereby setting the stage for
the next chapter, in which methods for deriving lower bounds on the size of circuits are devel-
oped. After introducing uniform circuits we show that uniform families of circuits and Turing
machines compute the same functions. We then introduce a number of languages defined in
terms of the properties of families of circuits that recognize them.

8.13.1 Uniform Families of Circuits
Families of circuits are useful in characterizing decision problems in which the set of instances
is unbounded. One circuit in each family is associated with the “Yes” instances of each length:
it has value 1 on the “Yes” instances and value 0 otherwise.

Families of circuits are designed in Chapter 3 to simulate computations by finite-state,
random-access, and Turing machines on arbitrary numbers of inputs. For each machine M
of one of these types, there is a DTM S(M) such that on an input of length n, S(M) can
produce as output the description of a circuit on n inputs that computes exactly the same
function as does M on n inputs. (See the program in Fig. 3.27.) These circuits are generated
in a uniform fashion.

On the other hand, non-uniform circuit families can be used to define non-computable
languages. For example, consider the family in which the nth circuit, Cn, is designed to have
value 1 on those strings w of length n in the language L1 defined in Section 5.7 and value 0
otherwise. Such a circuit realizes the minterm defined by w. As shown in Theorem 5.7.4, L1

is not recursively enumerable; that is, there is no Turing machine that can recognize it.
This example motivates the need to identify families of circuits that compute functions

computable by Turing machines, that is, uniform families of circuits.

DEFINITION 8.13.1 A circuit family C = {C1, C2, C3, . . .} is a collection of logic circuits in
which Cn has n inputs and m(n) outputs for some function m :� �→�.

A time-r(n) (space-r(n)) uniform circuit family is a circuit family for which there is a
deterministic Turing machine M such that for each integer n supplied in unary notation, namely
1n, on its input tape, M writes the description of Cn on its output tape using time (space) r(n).

A log-space uniform circuit family is one for which the temporary storage space used by a
Turing machine that generates it is O(log n), where n is the length of the input. The function
f : B∗ �→ B∗ is computed by C if for each n ≥ 1, f restricted to n inputs is the function
computed by Cn.

374 Chapter 8 Complexity Classes Models of Computation

8.13.2 Uniform Circuits Are Equivalent to Turing Machines
We now show that the functions computed by log-space uniform families of circuits and by
polynomial-time DTMs are the same. Since the family of functions computed by one-tape
and multi-tape Turing machines are the same (see Theorem 5.2.1), we prove the result only
for the standard one-tape Turing machine and proper resource functions (see Section 8.3).

THEOREM 8.13.1 Let p(n) be a polynomial and a proper function. Then every total function
f : B∗ �→ B∗ computed by a DTM in time p(n) on inputs of length n can be computed by a
log-space uniform circuit family C.

Proof Let fn : Bn �→ B∗ be the restriction to inputs of length n of the function f : B∗ �→
B∗ computed by a DTM M in time p(n). It follows that the number of bits in the word
fn(w) is at most p(n). Since the function computed by a circuit has a fixed-length output
and the length of fn(w) may vary for different inputs w of length n, we show how to create
a DTM M∗, a modified version of M , that computes f∗

n, a function that contains all the
information in the function fn. The value of f∗

n has at most 2p(n) bits on inputs of length
n. We show that M∗ produces its output in time O(p2(n)).

Let M∗ place a mark in the 2p(n)th cell on its tape (a cell beyond any reached during
a computation). Let it now simulate M , which is assumed to print its output in the first
k locations on the tape, k ≤ p(n). M∗ now recodes and expands this binary string into a
longer string. It does so by marking k cells to right of the output string (in at most k2 steps),
after which it writes every letter in the output string twice. That is, 0 appears as 00 and 1
as 11. Finally, the remaining 2(p(n)− k) cells are filled with alternating 0s and 1s. Clearly,
the value of fn can be readily deduced from the output, but the length of the value f∗

n is the
same on all inputs of length n.

A Turing machine MC that constructs the nth circuit from n represented in unary and a
description of M∗ invokes a slightly revised version of the program of Fig. 3.27 to construct
the circuit computing fn. This revised circuit contains placeholders for the values of the
n letters representing the input to M . The program uses space O(log p2(n)), which is
logarithmic in n.

We now show that the function computed by a log-space uniform family of circuits can be
computed by a polynomial-time Turing machine.

THEOREM 8.13.2 Let C be a log-space uniform circuit family. Then there exists a polynomial-time
Turing machine M that computes the same set of functions computed by the circuits in C.

Proof Let MC be the log-space TM that computes the circuit family C. We design the TM
M to compute the same set of functions on an input w of length n. M uses w to obtain a
unary representation for the input MC . It uses MC to write down a description of the nth
circuit on its work tape. It then computes the outputs of this circuit in time quadratic in the
length of the circuit. Since the length of the circuit is a polynomial in n because the circuit
is generated by a log-space TM (see Theorem 8.5.8), the running time of M is polynomial
in the length of w.

These two results can be generalized to uniform circuit families and Turing machines that
use more than logarithmic space and polynomial time, respectively. (See Problem 8.32.)

c©John E Savage 8.13 The Circuit Model of Computation 375

In the above discussion we examine functions computed by Turing machines. If these
functions are characteristic functions, f : B∗ �→ B; that is, they have value 0 or 1, then
those strings for which f has value 1 define a language Lf . Also, associated with each language
L ⊆ B∗ is a characteristic function fL : B∗ �→ B that has value 1 on only those strings in L.

Consider now a language L ⊆ B∗. For each n ≥ 1 a circuit can be constructed whose
value is 1 on binary strings in L ∩ Bn and 0 otherwise. Similarly, given a family C of circuits
such that for each natural number n ≥ 1 the nth circuit, Cn, computes a Boolean function
on n inputs, the language L associated with this circuit family contains only those strings of
length n for which Cn has value 1. We say that L is recognized by C. At the risk of confusion,
we use the same name for a circuit family and the languages they define.

In Theorem 8.5.6 we show that NSPACE(r(n)) ⊆ TIME(klog n+r(n)). We now use
the ideas of that proof together with the parallel algorithm for transitive closure given in Sec-
tion 6.4 to show that languages in NSPACE(r(n)), r(n) ≥ log n, are recognized by a uniform
family of circuits in which the nth circuit has size O(klog n+r(n)) and depth O(r2(n)). When
r(n) = O(log n), the circuit family in question is contained in the class NC2 introduced in
the next section.

THEOREM 8.13.3 If language L ⊆ B∗ is in NSPACE(r(n)), r(n) ≥ log n, there exists a time-
r(n) uniform family of circuits recognizing L such that the nth circuit has size O(klog n+r(n))
and depth O(r2(n)) for some constant k.

Proof We assume without loss of generality that the NDTM accepting L has one accepting
configuration. We then construct the adjacency matrix for the configuration graph of M .
This matrix has a 1 entry in row i, column j if there is a transition from the ith to the
jth configuration. All other entries are 0. From the analysis of Corollary 8.5.1, this graph
has O(klog n+r(n)) configurations. The initial configuration is determined by the word w
written initially on the tape of the NDTM accepting L. If the transitive closure of this
matrix has a 1 in the row and column corresponding to the initial and final configurations,
respectively, then the word w is accepted.

From Theorem 6.4.1 the transitive closure of a Boolean p×p matrix A can be computed
by computing (I + A)q for q ≥ p − 1. This can be done by squaring A s times for
s ≥ log2 p. From this we conclude that the transitive closure can be computed by a circuit
of depth O(log2 m), where m is the number of configurations. Since m = O(klog n+r(n)),
we have the desired circuit size and depth bounds.

A program to compute the dth power of an p × p matrix A is shown in Fig. 8.20. This
program can be converted to one that writes the description of a circuit for this purpose,
and both the original and converted programs can be realized in space O(d log p). (See

trans(A, n, d, i, j)
if d = 0 then

return(ai,j)
else

return(
∑n

k=1 trans(A, n, d− 1, i, k) * trans(A, n, d− 1, k, j))

Figure 8.20 A recursive program to compute the dth power of an n × n matrix A.

376 Chapter 8 Complexity Classes Models of Computation

Problem 8.33.) Invoking this procedure to write a program for the above problem, we see
that an O(r2(n))-depth circuit recognizing L can be written by an O(r2(n))-time DTM.

8.14 The Parallel Random-Access Machine Model
The PRAM model, introduced in Section 7.9, is an abstraction of realistic parallel models that
is sufficiently rich to permit the study of parallel complexity classes. (See Fig. 7.21, repeated as
Fig. 8.21.) The PRAM consists of a set of RAM processors with a bounded number of memory
locations and a common memory. The words of the common memory are allowed to be of
unlimited size, but the instructions that the RAM processors can apply to them are restricted.
These processors can perform addition, subtraction, vector comparison operations, conditional
branching, and shifts by fixed amounts. We also allow load and store instructions for moving
words between registers, local memories, and the common memory. These instructions are
sufficiently rich to compute all computable functions.

In the next section we show that the CREW (concurrent read/exclusive write) PRAM that
runs in polynomial time and the log-space uniform circuits characterize the same complexity
classes. We then go on to explore the parallel complexity thesis, which states that sequential
space and parallel time are polynomially related.

8.14.1 Equivalence of the CREW PRAM and Circuits
Because a parallel machine with p processors can provide a speedup of at most a factor of p over
a comparable serial machine (see Theorem 7.4.1), problems that are computationally infeasi-
ble on serial machines are computationally infeasible on parallel machines with a reasonable
number of processors. For this reason the study of parallelism is usually limited to feasible
problems, that is, problems that can be solved in serial polynomial time (the class P). We limit
our attention to such problems here.

Common Memory

Pp

RAM

P2

RAM

P1

RAM

Figure 8.21 The PRAM consists of synchronous RAMs accessing a common memory.

c©John E Savage 8.14 The Parallel Random-Access Machine Model 377

Connections between PRAMs and circuits can be derived that are similar to those stated
for Turing machines and circuits in Section 8.13.2. In this section we consider only log-space
uniform families of circuits.

Given a PRAM, we now construct a circuit simulating it. This construction is based
on that given in Section 3.4. With a suitable definition of log-space uniform family of
PRAMs the circuits described in the following lemma constitute a log-space uniform family
of circuits. (See Problem 8.35.) Also, this theorem can be extended to PRAMs that access
memory locations with addresses much larger than O(p(n)t(n)), perhaps through indirect
addressing. (See Problem 8.37.)

LEMMA 8.14.1 Consider a function on input words of total length n bits computed by a CREW
PRAM P in time t(n) with a polynomial number of processors p(n) in which the largest common
memory address is O(p(n)t(n)). This function can be computed by a circuit of size O(p2(n)t(n)
+ p(n)t2(n)) and depth O (log(p(n)t(n))).

Proof Since P executes at most t(n) steps, by a simple extension to Problem 8.4 (only one
RAM CPU at a time writes a word), we know that after t(n) steps each word in the common
memory of the PRAM has length at most b = t(n) + n + K for some constant K ≥ 0,
because the PRAM can only compare or add numbers or shift them left by one position on
each time step. This follows because each RAM CPU uses integers of fixed length and the
length of the longest word in the common memory is initially n.

We exhibit a circuit for the computation by P by modifying and extending the circuit
sketched in Section 3.4 to simulate one RAM CPU. This circuit uses the next-state/output
circuit for the RAM CPU together with the next-state/output circuit for the random-access
memory of Fig. 3.21 (repeated in Fig. 8.22). The circuit of Fig. 8.22(a) either writes a new
value dj for w∗

i,j , the jth component of the ith memory word of the random-access memory,
or it writes the old value wi,j . The circuit simulating the common memory of the PRAM
is obtained by replacing the three gates at the output of the circuit in Fig. 8.22(a) with a
subcircuit that assigns to w∗

i,j the value of wi,j if ci = 0 for each RAM CPU and the OR of
the values of dj supplied by each RAM CPU if ci = 1 for some CPU. Here we count on the
fact that at most one CPU addresses a given location for writing. Thus, if a CPU writes to
a location, all other CPUs cannot do so. Concurrent reading is simulated by allowing every
component of every memory cell to be used as input by every CPU.

Since the longest word that can be constructed by the CREW PRAM has length b =
t(n)+n+K, it follows from Lemma 3.5.1 that the next-state/output circuit for the random-
access memory designed for one CPU has size O(p(n)t2(n)) and depth O (log(p(n)t(n))).
The modifications described in the previous paragraph add size O(p2(n)t(n)) (each of the
p(n)t(n) memory words has O(p(n)) new gates) and depth O(log p(n)) (each OR tree
has p(n) inputs) to this circuit. As shown at the end of Section 3.10, the size and depth
of a circuit for the next-state/output circuit of the CPU are O(t(n) + log(p(n)t(n))) and
O(log t(n) + log log(p(n)t(n))), respectively. Since these sizes and depths add to those
for the common memory, the total size and depth for the next-state/output circuit for the
PRAM are O(p2(n)t(n) + p(n)t2(n)) and O (log(p(n)t(n))), respectively.

We now show that the function computed by a log-space uniform circuit family can be
computed in poly-logarithmic time on a PRAM.

378 Chapter 8 Complexity Classes Models of Computation

......

......y0 ∧ w0,j yi ∧ wi,j

uj

ym−1 ∧ wm−1,j

y2 ∧ w2,j

z∗j

s0 zj s0

f
(μ)
decode

y1 ∧ w1,j

(a) (b)

aμ−1 aμ−2 a0

w∗
i,j

ci

wi,j

dj

yi ∧ wi,j

yiym−1 y0

wi,j

s1

Figure 8.22 A circuit for the next-state and output function of the random-access memory.
The circuit in (a) computes the next values for components of memory words, whereas that in (b)
computes components of the output word. This circuit is modified to generate a circuit for the
PRAM.

LEMMA 8.14.2 Let C = (C1, C2, . . .} be a log-space uniform family of circuits. There exists a
CREW PRAM that computes in poly-logarithmic time and a polynomial number of processors the
function f : B∗ �→ B∗ computed by C.

Proof The CREW PRAM is given a string w on which to compute the function f . First
it computes the length n of w. Second it invokes the CREW PRAM described below to
simulate with a polynomial number of processors in poly-logarithmic time the log-space
DTM M that writes a description of the nth circuit, C(M , n). Finally we show that the
value of C(M , n) can be evaluated from this description by a CREW PRAM in O(log2 n)
steps with polynomially many processors.

Let M be a three-tape DTM that realizes a log-space transformation. This DTM has
a read-only input tape, a work tape, and a write-only output tape. Given a string w on its
input tape, it provides on its output tape the result of the transformation. Since M uses
O(log n) cells on its work tape on inputs of length n, it can be modeled by a finite-state
machine with 2O(log n) states. The circuit C(M , n) described in Theorem 3.2.2 for the
simulation of the FSM M is constructed to simulate M on inputs of length n. We show
that C(M , n) has size and depth that are polynomial and poly-logarithmic in n, respectively.
We then demonstrate that a CREW PRAM can simulate C(M , n) (and write its output into
its common memory) in O(log2 n) steps with a polynomial number of processors.

c©John E Savage 8.14 The Parallel Random-Access Machine Model 379

From Theorem 8.5.8 we know that the log-space DTM M generating C(M , n) does
not execute more than p(n) steps, p(n) a polynomial in n. Since p(n) is assumed proper,
we can assume without loss of generality that M executes p(n) steps on all inputs of length
n. Thus, M has exactly |Q| = O(p(n)) configurations.

The input string w is placed in the first n locations of the otherwise blank common
memory. To determine the length of the input, for each i the ith CREW PRAM processor
examines the words in locations i and i + 1. If location i + 1 is blank but location i is not,
i = n. The nth processor then computes p(n) in O(log2 n) serial steps (see Problem 8.2)
and places it in common memory.

The circuit C(M , n) is constructed from representations of next-state mappings, one
mapping for every state transition. Since there are no external inputs to M (all inputs are
recorded on the input tape before the computation begins), all next-state mappings are the
same. As shown in Section 3.2, let this one mapping be defined by a Boolean |Q| × |Q|
matrix MΔ whose rows and columns are indexed by configurations of M . A configuration
of M is a tuple (q, h1, h2, h3, x) in which q is the current state, h1, h2, and h3 are the
positions of the heads on the input, output, and work tapes, respectively, and x is the cur-
rent contents of the work tape. Since M computes a log-space transformation, it executes a
polynomial number of steps. Thus, each configuration has length O(log n). Consequently,
a single CREW PRAM can determine in O(log n) time whether an entry in row r and
column c, where r and c are associated with configurations, has value 0 or 1. For concrete-
ness, assign PRAM processor i to row r and column c of MΔ, where r = �i/p(n)� and
c = i− r × p(n), quantities that can be computed in O(log2 n) steps.

The circuit C(M , n) simulating M is obtained via a prefix computation on p(n) copies
of the matrix MΔ using matrix multiplication as the associative operator. (See Section 3.2.)

Once C(M , n) has been written into the common memory, it can be evaluated by
assigning one processor per gate and then computing its value as many times as the depth of
C(M , n). This involves a four-phase operation in which the jth processor reads each of the
at most two arguments of the jth gate in the first two phases, computes its value in the third,
and then writes it to common memory in the fourth. This process is repeated as many times
as the depth of the circuit C(M , n), thereby insuring that correct values for gates propagate
throughout the circuit. Again concurrent reads and exclusive writes suffice.

These two results (and Problem 8.37) imply the result stated below, namely, that the bi-
nary functions computed by circuits with polynomial size and poly-logarithmic depth are the
same as those computed by the CREW PRAM with polynomially many processors and poly-
logarithmic time.

THEOREM 8.14.1 The functions f : B∗ �→ B∗ computed by circuits of polynomial-size and poly-
logarithmic depth are the same as those computed by the CREW PRAM with a polynomial number
of processors and poly-logarithmic time.

8.14.2 The Parallel Computation Thesis
A deep connection exists between serial space and parallel time. The parallel computation
thesis states that sequential space and parallel time are polynomially related; that is, if there
exists a sequential algorithm that uses space S, then there exists a parallel algorithm using time
p(S) for some polynomial p and vice versa. There is strong evidence that this hypothesis holds.

380 Chapter 8 Complexity Classes Models of Computation

In this section we set the stage for discussing the parallel computation thesis in a limited
way by showing that every log-space reduction (on a Turing machine) can be realized by a
CREW PRAM in time O

(
log2 n

)
with polynomially many processors. This implies that if a

P-complete problem can be solved on a PRAM with polynomially many processors in poly-
logarithmic time, then so can every problem in P, an unlikely prospect.

LEMMA 8.14.3 Log-space transformations can be realized by CREW PRAMs with polynomially
many processors in time O(log2 n).

Proof We use the CREW PRAM described in the proof of Lemma 8.14.2. The processors
in this PRAM are then assigned to perform the matrix operations in the order required
for a parallel prefix computation. (See Section 2.6.) If we assign |Q(n)|2 processors per
matrix multiplication operation, each operation can be done in O(log |Q(n)|2) = O(log n)
steps. Since the prefix computation has depth O(log n), the PRAM can perform the prefix
computation in time O(log2 n). The number of processors used is p(n)·O(|Q(n)|2), which
is a polynomial in n. Concurrent reads and exclusive writes suffice for these operations.

Since a log-space transformation can be realized in poly-logarithmic time with polynomi-
ally many processors on a CREW PRAM, if a CREW PRAM solves a P-complete problem in
poly-logarithmic time, we can compose such machines to form a CREW PRAM with poly-
logarithmic time and polynomially many processors to solve an arbitrary problem in P.

THEOREM 8.14.2 If a P-complete problem can be solved in poly-logarithmic time with polyno-
mially many processors on a CREW PRAM, then so can all problems in P and all problems in P
are fully parallelizable.

8.15 Circuit Complexity Classes
In this section we introduce several important circuit complexity classes including NC, the
languages recognized by uniform families of circuits whose size and depth are polynomial and
poly-logarithmic in n, respectively, and P/poly, the largest set of languages L ⊂ B∗ with the
property that L is recognized by a (non-uniform) circuit family of polynomial size. We also
derive relationships among these classes and previously defined classes.

8.15.1 Efficiently Parallelizable Languages
DEFINITION 8.15.1 The class NCk contains those languages L recognized by a uniform family of
Boolean circuits of polynomial size and depth O(logk n) in n, the length of an input. The class
NC is the union of the classes NCk, k ≥ 1; that is,

NC =
⋃
k≥1

NCk

In Section 8.14 we explored the connection between circuit size and depth and PRAM
time and number of processors and concluded that circuits having polynomial size and poly-
logarithmic depth compute the same languages as do PRAMs with a polynomial number of
processors and poly-logarithmic parallel time.

c©John E Savage 8.15 Circuit Complexity Classes 381

The class NC is considered to be the largest feasibly parallelizable class of languages. By fea-
sible we mean that the number of gates (equivalently processors) is no more than polynomial
in the length n of the input and by parallelizable we mean that circuit depth (equivalently
computation time) must be no more than poly-logarithmic in n. Feasibly parallelizable lan-
guages meet both requirements.

The prefix circuits introduced in Section 2.6 belong to NC1, as do circuits constructed
with prefix operations, such as binary addition and subtraction (see Section 2.7) and the cir-
cuits for solutions of linear recurrences (see Problem 2.24). (Strictly speaking, these functions
are not predicates and do not define languages. However, comparisons between their values
and a threshold converts them to predicates. In this section we liberally mix functions and
predicates.) The class NC1 also contains functions associated with integer multiplication and
division.

The fast Fourier transform (see Section 6.7.3) and merging networks (see Section 6.8) can
both be realized by algebraic and combinatorial circuits of depth O(log n), where n is the
number of circuit inputs. If the additions and multiplications of the FFT are done over a ring
of integers modulo m for some m, the FFT can be realized by a circuit of depth O(log2 n). If
the items to be merged are represented in binary, a comparison operator can be realized with
depth O(log n) and merging can also be done with a circuit of depth O(log2 n). Thus, both
problems are in NC2.

When matrices are defined over a field of characteristic zero, the inverse of invertible ma-
trices (see Section 6.5.5) can be computed by an algebraic circuit of depth O(log2 n). If the
matrix entries when represented as binary numbers have size n, the ring operations may be
realized in terms of binary addition and multiplication, and matrix inversion is in NC3.

Also, it follows from Theorem 8.13.3 that the nth circuit in the log-space uniform families
of circuits has polynomial size and depth O(log2 n); that is, it is contained in NC2. Also
contained in this set is the transitive closure of a Boolean matrix (see Section 6.4). Since the
circuits constructed in Chapter 3 to simulate finite-state machines as well as polynomial-time
Turing machines are log-space uniform (see Theorem 8.13.1), each of these circuit families is
in NC2.

We now relate these complexity classes to one another and to P.

THEOREM 8.15.1 For k ≥ 2, NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NCk ⊆ NC ⊆ P.

Proof The containment L ⊆ NL is obvious. The containment NL ⊆ NC2 is a restriction
of the result of Theorem 8.13.3 to r(n) = O(log n). The containments NC2 ⊆ NCk ⊆
NC follow from the definitions. The last containment, NC ⊆ P, is a consequence of the
fact that the circuit on n inputs in a log-space uniform family of circuits, call it Cn, can
be generated in polynomial time by a Turing machine that can then evaluate Cn in a time
quadratic in its length, that is, in polynomial time. (Theorems 8.5.8 and 8.13.2 apply.)

The first containment, namely NC1 ⊆ L, is slightly more difficult to establish. Given a
language L ∈ NC1, consider the problem of recognizing whether or not a string w is in L.
This recognition task is done in log-space by invoking two log-space transformations, as is
now explained.

The first log-space transformation generates the nth circuit, Cn, in the family recogniz-
ing L. Cn has value 1 if w is in L and 0 otherwise. By definition, Cn has size polynomial
in n. Also, each circuit is described by a straight-line program, as explained in Section 2.2.

382 Chapter 8 Complexity Classes Models of Computation

The second log-space transformation evaluates the circuit with temporary work space
proportional to the maximal length of such strings. If the strings identifying gates have
larger length, their transformation would use more space. (Note that it is easy to identify
gates with an O(log2 n)-length string(s) by concatenating the number of each gate on the
path to it, including itself.) For this reason we give an efficient encoding of gate locations.

The gates of circuits in NC1 generally have fan-out exceeding 1. That is, they have more
than one parent gate in the circuit. We describe how to identify gates with strings that may
associate multiple strings with a gate. We walk the graph, which is the circuit, starting from
the output vertex and moving toward input vertices. The output gate is identified with the
empty string string ε. If we reach a gate g via a parent whose string is p, g is identified by
p0 or p1. If the parent has only one descendant, as would be the case for NOT gates and
inputs, we represent g by p0. If it has two descendants, as would be the case for AND and
OR, and g has the smaller gate number, its string is p0; otherwise it is p1.

The algorithm to produce each of these binary strings can be executed in logarithmic
space because one need only walk each path in the circuit from the output to inputs. The
tuple defining each gate contains the gate numbers of its predecessors, O(log n)-length
numbers, and the algorithm need only carry one such number at a time in its working mem-
ory to find the location of a predecessor gate in the input string containing the description
of the circuit.

The second log-space transformation evaluates the circuit using the binary strings de-
scribing the circuit. It visits the input vertex with the lexicographically smallest string and
determines its value. It then evaluates the gate whose string is that of the input vertex minus
the last bit. Even though it may have to revisit all gates on the path to this vertex to do this,
O(log n) space is used. If this gate is either a) AND and the input has value 0, b) OR and
the input has value 1, or c) NOT, the value of the gate is decided. If the gate has more than
one input and its value is not decided, the other input to it is evaluated (the one with suffix
1). Because the second input to the gate is evaluated only if needed, its value determines
the value of the gate. This process is repeated at each gate in the circuit until the output
gate is reached and its value computed. Since this procedure keeps only one path of length
O(log n) active at a time, the algorithm uses space O(log n).

An important open question is whether the complexity hierarchy of this theorem collapses
and, if so, where. For example, is it true that a problem in P is also in NC? If so, all serial
polynomial-time problems are parallelizable with a number of processing elements polynomial
in the length of the input and poly-logarithmic time, an unlikely prospect.

8.15.2 Circuits of Polynomial Size
We now examine the class of languages P/poly and show that they are exactly the languages
recognized by Boolean circuits of polynomial size. To set the stage we introduce advice and
pairing functions.

DEFINITION 8.15.2 An advice function a :� �→ B∗ maps natural numbers to binary strings.
A polynomial advice function is an advice function for which |a(n)| ≤ p(n) for p(n) a
polynomial function in n.

DEFINITION 8.15.3 A pairing function <, >: B∗ × B∗ �→ B∗ encodes pairs of binary strings
x and y with two end markers and a separator (a comma) into the binary string < x, y >.

c©John E Savage Problems 383

Pairing functions can be very easy to describe and compute. For example, < x, y > can
be implemented by representing 0 by 01, 1 by 10, both < and > by 11, and , (comma) by 00.
Thus, < 0010, 110 > is encoded as 11010110010010100111. It is clearly trivial to identify,
extract, and decode each component of the pair. We are now prepared to define P/poly.

DEFINITION 8.15.4 Let a : � �→ B∗ be a polynomial advice function. P/poly is the set of
languages L = {w | < w, a(|w|) > ∈ A} for which there is a language A in P.

The advice a(|w|) given on a string w in a language L ∈ P/poly is the same for all
strings of the same length. Furthermore, < w, a(|w|) > must be easy to recognize, namely,
recognizable in polynomial time.

The subset of the languages in P/poly for which the advice function is the empty string is
exactly the languages in P, that is, P ⊆ P/poly.

The following result is the principal result of this section. It gives two different interpreta-
tions of the advice given on strings.

THEOREM 8.15.2 A language L is recognizable by a family of circuits of polynomial size if and
only if L ∈ P/poly.

Proof Let L be recognizable by a family C of circuits of polynomial size. We show that it is
in P/poly.

Let Cn be an encoding of the circuit Cn in C that recognizes strings in L ∩ Bn. Let the
advice function a(n) = Cn and let w ∈ B∗ have length n. Then, w ∈ Bn if and only if
the value of Cn on w is 1. Since w has length polynomial in n, w ∈ Bn if and only if the
pairing function < w, a(|w|) > is an instance of CIRCUIT SAT, which has been shown to
be in P. (See Theorem 8.13.2.)

On the other hand, suppose that L ∈ P/poly. We show that L is recognizable by circuits
of polynomial size. By definition there is an advice function a : � �→ B∗ and a language
A ∈ P for L such that for all w ∈ L, < w, a(|w|) > ∈ A. Since A ∈ P, there is a
polynomial-time DTM that accepts < w, a(|w|) >. By Theorem 8.13.1 there is a circuit
of polynomial size that recognizes < w, a(|w|) >. The string a(|w|) is constant for strings
w of length n. Thus, the circuit for A∩Bn to which is supplied the constant string a(|w|)
is a circuit of length polynomial in n that accepts strings w in L.

. .
Problems
MATHEMATICAL PRELIMINARIES

8.1 Show that if strings over an alphabet A with at least two letters are encoded over a
one-letter alphabet (a unary encoding), then strings of length n over A require strings
of length exponential in n in the unary encoding.

8.2 Show that the polynomial function p(n) = K1n
k can be computed in O(log2 n) serial

steps from n and for constants K1 ≥ 1 and k ≥ 1 on a RAM when additions require
one unit of time.

384 Chapter 8 Complexity Classes Models of Computation

SERIAL COMPUTATIONAL MODELS

8.3 Given an instance of satisfiability, namely, a set of clauses over a set of literals and values
for the variables, show that the clauses can be evaluated in time quadratic in the length
of the instance.

8.4 Consider the RAM of Section 8.4.1. Let l (I) be the length, measured in bits, of the
contents I of the RAMs input registers. Similarly, let l (v) be the maximal length of any
integer addressed by an instruction in the RAMs program. Show that after k steps the
contents of any RAM memory location is at most k + l(I) + l(v).
Given an example of a computation that produces a word of length k.

Hint: Consider which instructions have the effect of increasing the length of an integer
used or produced by the RAM program.

8.5 Consider the RAM of Section 8.4.1. Assume the RAM executes T steps. Describe a
Turing-machine simulation of this RAM that uses space proportional to T 2 measured
in bits.
Hint: Represent each RAM memory location visited during a computation by an
(address, contents) pair. When a RAM location is updated, fill the cells on the
second tape containing the old (address, contents) pair with a special “blank” char-
acter and add the new (address, contents) pair to the end of the list of such pairs.
Use the results of Problem 8.4 to bound the length of individual words.

8.6 Consider the RAM of Section 8.4.1. Using the result of Problem 8.5, describe a multi-
tape Turing machine that simulates in O(T 3) steps a T -step computation by the RAM.

Hint: Let your machine have seven tapes: one to hold the input, a second to hold
the contents of RAM memory recorded as (address, contents) pairs separated and
terminated by appropriate markers, a third to hold the current value of the program
counter, a fourth to hold the memory address being sought, and three tapes for operands
and results. On the input tape place the program to be executed and the input on which
it is to be executed. Handle the second tape as suggested in Problem 8.5. When per-
forming an operation that has two operands, place them on the fifth and sixth tapes
and the result on the seventh tape.

8.7 Justify using the number of tape cells as a measure of space for the Turing machine
when the more concrete measure of bits is used for the space measure for the RAM.

CLASSIFICATION OF DECISION PROBLEMS

8.8 Given a Turing machine, deterministic or not, show that there exists another Turing
machine with a larger tape alphabet that performs the same computation but in a num-
ber of steps and number of tape cells that are smaller by constant factors.

8.9 Show that strings in TRAVELING SALESPERSON can be accepted by a deterministic
Turing machine in an exponential number of steps.

COMPLEMENTS OF COMPLEXITY CLASSES

8.10 Show that VALIDITY is log-space complete for coNP.

8.11 Prove that the complements of NP-complete problems are coNP-complete.

c©John E Savage Problems 385

8.12 Show that the complexity class P is contained in the intersection of NP and coNP.

8.13 Demonstrate that coNP ⊆ PSPACE.

8.14 Prove that if a coNP-complete problem is in NP, then NP = coNP.

REDUCTIONS

8.15 If P1 and P2 are decision problems, a Turing reduction from P1 to P2 is any OTM
that solves P1 given an oracle for P2. Show that the reductions of Section 2.4 are
Turing reductions.

8.16 Prove that the reduction given in Section 10.9.1 of a pebble game to a branching com-
putation is a Turing reduction. (See Problem 8.15.)

8.17 Show that if a problem P1 can be Turing-reduced to problem P2 by a polynomial-time
OTM and P2 is in P, then P1 is also in P.
Hint: Since each invocation of the oracle can be done deterministically in polynomial
time in the length of the string written on the oracle tape, show that it can be done in
time polynomial in the length of the input to the OTM.

8.18 a) Show that every fixed power of an integer written as a binary k-tuple can be com-
puted by a DTM in space O(k).

b) Show that every fixed polynomial in an integer written as a binary k-tuple can be
computed by a DTM in space O(k).

Hint: Show that carry-save addition can be used to multiply two k-bit integers with
work space O(k).

HARD AND COMPLETE PROBLEMS

8.19 The class of polynomial-time Turing reductions are Turing reductions in which the
OTM runs in time polynomial in the length of its input. Show that the class of Turing
reductions is transitive.

P-COMPLETE PROBLEMS

8.20 Show that numbers can be assigned to gates in an instance of MONOTONE CIRCUIT

VALUE that corresponds to an instance of CIRCUIT VALUE in Theorem 8.9.1 so that
the reduction from it to MONOTONE CIRCUIT VALUE can be done in logarithmic
space.

8.21 Prove that LINEAR PROGRAMMING described below is P-complete.

LINEAR PROGRAMMING

Instance: Integer-valued m× n matrix A and column m-vectors b and c.
Answer: “Yes” if there is a rational column n-vector x > 0 such that Ax < b and x
maximizes cT x.

NP-COMPLETE PROBLEMS

8.22 A Horn clause has at most one positive literal (an instance of xi). Every other literal
in a Horn clause is a negative literal (an instance of xi). HORN SATISFIABILITY is an

386 Chapter 8 Complexity Classes Models of Computation

instance of SATISFIABILITY in which each clause is a Horn clause. Show that HORN

SATISFIABILITY is in P.

Hint: If all literals in a clause are negative, the clause is satisfied only if some associated
variables have value 0. If a clause has one positive literal, say y, and negative literals, say
x1, x2, . . . , xk, then the clause is satisfied if and only if the implication x1 ∧x2 ∧ · · · ∧
xk ⇒ y is true. Thus, y has value 1 when each of these variables has value 1. Let T
be a set variables that must have value 1. Let T contain initially all positive literals that
appear alone in a clause. Cycle through all implications and for each implication all
of whose left-hand side variables appear in T but whose right-hand side variable does
not, add this variable to T . Since T grows until all left-hand sides are satisfied, this
procedure terminates. Show that all satisfying assignments contain T .

8.23 Describe a polynomial-time algorithm to determine whether an instance of CIRCUIT

SAT is a “yes” instance when the circuit in question consists of a layer of AND gates
followed by a layer of OR gates. Inputs are connected to AND gates and the output gate
is an OR gate.

8.24 Prove that the CLIQUE problem defined below is NP-complete.

CLIQUE

Instance: The description of an undirected graph G = (V , E) and an integer k.
Answer: “Yes” if there is a set of k vertices of G such that all vertices are adjacent.

8.25 Prove that the HALF CLIQUE problem defined below is NP-complete.

HALF CLIQUE

Instance: The description of an undirected graph G = (V , E) in which |V | is even and
an integer k.
Answer: “Yes” if G contains a clique on |V |/2 vertices or has more than k edges.

Hint: Try reducing an instance of CLIQUE on a graph with m vertices and a clique of
size k to this problem by expanding the number of vertices and edges to create a graph
that has |V | ≥ m vertices and a clique of size |V |/2. Show that a test for the condition
that G contains more than k edges can be done very efficiently by counting the number
of bits among the variables describing edges.

8.26 Show that the NODE COVER problem defined below is NP-complete.

NODE COVER

Instance: The description of an indirected graph G = (V , E) and an integer k.
Answer: “Yes” if there is a set of k vertices such that every edge contains at least one of
these vertices.

8.27 Prove that the HAMILTONIAN PATH decision problem defined below is NP-complete.

HAMILTONIAN PATH

Instance: The description of an undirected graph G.
Answer: “Yes” if there is a path visiting each node once.

Hint: 3-SAT can be reduced to HAMILTONIAN PATH, but the construction is chal-
lenging. First, add literals to clauses in an instance of 3-SAT so that each clause has

c©John E Savage Problems 387

e

b

c

d

(a)

G2,j,v

a

f

(b) (c)

G
2,
j,

w

G
2,j,u

Figure 8.23 Gadgets used to reduce 3-SAT to HAMILTONIAN PATH.

three literals. Second, construct and interconnect three types of subgraphs (gadgets).
Figures 8.23(a) and (b) show the first and second of theses gadgets, G1 and G2.

There is one first gadget for each variable xi, 1 ≤ i ≤ n, denoted G1,i. The left path
between the two middle vertices in G1,i is associated with the value xi = 1 and the
right path is associated with the complementary value, xi = 0. Vertex f of G1,i is
identified with vertex e of G1,i+1 for 1 ≤ i ≤ n− 1, vertex e of G1,1 is connected only
to a vertex in G1,1, and vertex f of G1,n is connected to the clique described below.

There is one second gadget for each literal in each clause. Thus, if xi (xi) is a literal in
clause cj , then we create a gadget G2,j,i,1 (G2,j,i,0).

Since a HAMILTONIAN PATH touches every vertex, a path through G2,j,i,v for v ∈
{0, 1} passes either from a to c or from b to d.

For each 1 ≤ i ≤ n the two parallel edges of G1,i are broken open and two vertices
appear in each of them. For each instance of the literal xi (xi), connect the vertices a
and c of G2,j,i,1 (G2,j,i,0) to the pair of vertices on the left (right) that are created in
G1,i. Connect the b vertex of one literal in clause cj to the d vertex of another one, as
suggested in Fig. 8.23(c).

The third gadget has vertices g and h and a connecting edge. One of these two vertices,
h, is connected in a clique with the b and d vertices of the gadgets G2,j,i,v and the f
vertex of G1,n.

This graph has a Hamiltonian path between g and the e vertex of G1,1 if and only if
the instance of 3-SAT is a “yes” instance.

8.28 Show that the TRAVELING SALESPERSON decision problem defined below is NP-
complete.

TRAVELING SALESPERSON

Instance: An integer k and a set of n(n− 1)/2 distances {d1,2, d1,3, . . . , d1,n, d2,3, . . . ,
d2,n, . . . , dn−1,n} between n cities.
Answer: “Yes” if there is a tour (an ordering) {i1, i2, . . . , in} of the cities such that the
length l = di1,i2 + di2,i3 + · · ·+ din ,i1 of the tour satisfies l ≤ k.

Hint: Try reducing HAMILTONIAN PATH to TRAVELING SALESPERSON.

388 Chapter 8 Complexity Classes Models of Computation

8.29 Give a proof that the PARTITION problem defined below is NP-complete.

PARTITION

Instance: A set Q = {a1, a2, . . . , an} of positive integers.
Answer: “Yes” if there is a subset of Q that adds to 1

2

∑
1≤i≤n ai.

PSPACE-COMPLETE PROBLEMS

8.30 Show that the procedure tree eval described in the proof of Theorem 8.12.1 can
be modified slightly to apply to the evaluation of the trees generated in the proof of
Theorem 8.12.3.

Hint: A vertex of in-degree k can be replaced by a binary tree of k leaves and depth
log2 k.

THE CIRCUIT MODEL OF COMPUTATION

8.31 Prove that the class of circuits described in Section 3.1 that simulate a finite-state ma-
chine are uniform.

8.32 Generalize Theorems 8.13.1 and 8.13.2 to uniform circuit families and Turing ma-
chines that use more than logarithmic space and polynomial time, respectively.

8.33 Write a O(log2 n)-space program based on the one in Fig. 8.20 to describe a circuit for
the transitive closure of an n× n matrix based on matrix squaring.

THE PARALLEL RANDOM-ACCESS MACHINE MODEL

8.34 Complete the proof of Lemma 8.14.2 by making specific assignments of data to mem-
ory locations. Also, provide formulas for the assignment of processors to tasks.

8.35 Give a definition of a log-space uniform family of PRAMs for which Lemma 8.14.1
can be extended to show that the function f : B∗ �→ B∗ computed by a log-space fam-
ily of PRAMs can also be computed by a log-space uniform family of circuits satisfying
the conditions of Lemma 8.14.1.

8.36 Exhibit a non-uniform family of PRAMs that can solve problems that are not recur-
sively enumerable.

8.37 Lemma 8.14.1 is stated for PRAMs in which the CPU does not access a common mem-
ory address larger than O(p(n)t(n)). In particular, this model does not permit indirect
addressing. Show that this theorem can be extended to RAM CPUs that do allow
indirect addressing by using the representation for memory accesses in Problem 8.6.

Chapter Notes
The classification of languages by the resources needed for their recognition is a very large
subject capable of book-length study. The reader interested in going beyond the introduc-
tion given here is advised to consult one of the readily available references. The Handbook of
Theoretical Computer Science contains three survey articles on this subject by van Embde Boas
[350], Johnson [151], and Karp and Ramachandran [161]

c©John E Savage Chapter Notes 389

The first examines simulation of one computational model by another for a large range of
models. The second provides a large catalog of complexity classes and relationships between
them. The third examines parallel algorithms and complexity. Other sources for more infor-
mation on this topic are the books by Hopcroft and Ullman [141], Lewis and Papadimitriou
[200], Balcázar, Dı́az, and Gabarrò on structural complexity [27], Garey and Johnson [109]
on the theory of NP-completeness, Greenlaw, Hoover, and Ruzzo [120] on P-completeness,
and Papadimitriou [235] on computational complexity.

The Turing machine was defined by Alan Turing in 1936 [338], as was the oracle Turing
machine. Random-access machines were introduced by Shepherdson and Sturgis [308] and
the performance of RAMs was analyzed by Cook and Reckhow [77].

Hartmanis, Lewis, and Stearns [127,128] gave the study of time and space complexity
classes its impetus. Their papers contain many of the basic theorems on complexity classes,
including the space and time hierarchy theorems stated in Section 8.5.1. The gap theorem
was obtained by Trakhtenbrot [334] and rediscovered by Borodin [51]. Blum [46] developed
machine-independent complexity measures and established a speedup theorem showing that
for some languages there is no single fastest recognition algorithm [47].

Many individuals identified and recognized the importance of the classes P and NP. Cook
[74] formalized NP, emphasized the importance of polynomial-time reducibility, and exhib-
ited the first NP-complete problem, SATISFIABILITY. Karp [159] then demonstrated that
a number of other combinatorial problems, including TRAVELING SALESPERSON, are NP-
complete. Cook used Turing reductions in his classification whereas Karp used polynomial-
time transformations. Independently and almost simultaneously Levin [199] (see also [335])
was led to concepts similar to the above.

The relationship between nondeterministic and deterministic space (Theorem 8.5.5 and
Corollary 8.5.1) was established by Savitch [297]. The proof that nondeterministic space
classes are closed under complementation (Theorem 8.6.2 and Corollary 8.6.2) is indepen-
dently due to Szelepscényi [322] and Immerman [145].

Theorem 8.6.4, showing that PRIMALITY is in NP ∩ coNP, is due to Pratt [257].
Cook [75] defined the concept of a P-complete problem and exhibited the first such prob-

lem. He was followed quickly by Jones and Laaser [153] and Galil [108]. Ladner [185] showed
that circuits simulating Turing machines (see [286]) could be constructed in logarithmic space,
thereby establishing that CIRCUIT VALUE is P-complete. Goldschlager [117] demonstrated
that MONOTONE CIRCUIT VALUE is P-complete. Valiant [345] and Cook established that
LINEAR INEQUALITIES is P-hard, and Khachian [165] showed that this problem is in P. The
proof that DTM ACCEPTANCE is P-complete is due to Johnson [151].

Cook [74] gave the first proof that SATISFIABILITY is NP-complete and also gave the
reduction to 3-SAT. Independently, Levin [199] (see also [335]) was led to similar concepts
for combinatorial problems. Schäfer [299] showed that NAESAT is NP-complete. Karp [159]
established that 0-1 INTEGER PROGRAMMING, 3-COLORING, EXACT COVER, SUBSET

SUM, TASK SEQUENCING, and INDEPENDENT SET are NP-complete.
The proof that 2-SAT is in NL (Theorem 8.11.1) is found in Papadimitriou [235].
Karp [159] exhibited a PSPACE-complete problem, Meyer and Stockmeyer [316] demon-

strated that QUANTIFIED SATISFIABILITY is PSPACE-complete and Schäfer established that
GENERALIZED GEOGRAPHY is PSPACE-complete [299].

The notion of a uniform circuit was introduced by Borodin [52] and has been examined by
many others. (See [120].) Borodin [52] established the connection between nondeterministic

390 Chapter 8 Complexity Classes Models of Computation

space and circuit depth stated in Theorem 8.13.3. Stockmeyer and Vishkin [317] show how
to simulate efficiently the PRAM with circuits and vice versa. (See also [161].) The class NC
was defined by Cook [76]. Theorem 8.15.2 is due to Pippenger [249]. The class P/poly and
Theorem 8.15.2 are due to Karp and Lipton [160].

A large variety of parallel computational models have been developed. (See van Embde
Boas [350] and Greenlaw, Hoover, and Ruzzo [120].) The PRAM was introduced by Fortune
and Wyllie [103] and Goldschlager [118,119].

Several problems on the efficient simulation of RAMs are from Papadimitriou [235].

C H A P T E R

Circuit Complexity

The circuit complexity of a binary function is measured by the size or depth of the smallest
or shallowest circuit for it. Circuit complexity derives its importance from the corollary to
Theorem 3.9.2; namely, if a function has a large circuit size over a complete basis of fixed
fan-in, then the time on a Turing machine required to compute it is large. The importance of

this observation is illustrated by the following fact. For n ≥ 1, let f
(n)
L be the characteristic

function of an NP-complete language L, where f
(n)
L has value 1 on strings of length n in L

and value 0 otherwise. If f
(n)
L has super-polynomial circuit size for all sufficiently large n, then

P �= NP.
In this chapter we introduce methods for deriving lower bounds on circuit size and depth.

Unfortunately, it is generally much more difficult to derive good lower bounds on circuit
complexity than good upper bounds; an upper bound measures the size or depth of a particular
circuit whereas a lower bound must rule out a smaller size or depth for all circuits. As a
consequence, the lower bounds derived for functions realized by circuits over complete bases
of bounded fan-in are often weak.

In attempting to understand lower bounds for complete bases, researchers have studied
monotone circuits over the monotone basis and bounded-depth circuits over the basis {AND,
OR, NOT} in which the first two gates are allowed to have unbounded fan-in. Formula size,
which is approximately the size of the smallest circuit with fan-out 1, has also been studied.
Lower bounds to formula size also produce lower bounds to circuit depth, a measure of the
parallel time needed for a function.

Research on these restricted circuit models has led to some impressive results. Exponential
lower bounds on circuit size have been derived for monotone functions over the monotone
basis and functions such as parity when realized by bounded-depth circuits. Unfortunately,
the methods used to obtain these results may not apply to complete bases of bounded fan-in.
Fortunately, it has been shown that the slice functions have about the same circuit size over

both the monotone and standard (non-monotone) bases. This may help resolve the P
?= NP

question, since there are NP-complete slice problems.
Despite the difficulty of deriving lower bounds, circuit complexity continues to offer one

of the methods of highest potential for distinguishing between P and NP.

391

392 Chapter 9 Circuit Complexity Models of Computation

9.1 Circuit Models and Measures
In this section we characterize types of logic circuits by their bases and the fan-in and fan-
out of basis elements. We consider bases that are complete and incomplete and that have
bounded and unbounded fan-in. We also consider circuits in which the fan-out is restricted
and unrestricted. Each of these factors can affect the size and depth of a circuit.

9.1.1 Circuit Models
The (general) logic circuit is the graph of a straight-line program in which the variables have
value 0 or 1 and the operations are Boolean functions g : Bp �→ B, p ≥ 1. (Boolean functions
have one binary value. Logic circuits are defined in Section 1.2 and discussed at length in
Chapter 2.) The vertices in a logic circuit are labeled with Boolean operations and are called
gates; the set of different gate types used in a circuit is called the basis (denoted Ω) for the
circuit. The fan-in of a basis is the maximal fan-in of any function in the basis. A circuit
computes the binary function f : Bn �→ Bm, which is the mapping from the n circuit inputs
to the m gate outputs designated as circuit outputs.

The standard basis, denoted Ω0, is the set {AND, OR, NOT} in which AND and OR have
fan-in 2. The full two-input basis, denoted B2, consists of all two-input Boolean functions.
The dyadic unate basis, denoted U2, consists of all Boolean functions of the form (xa ∧ yb)c

for constants a, b, c in B. Here x1 = x and x0 = x.
A basis Ω is complete if every binary function can be computed by a circuit over Ω. The

bases Ω0, B2, and U2 are complete, as is the basis consisting of the NAND gate computing the
function x NAND y = x ∧ y. (See Problem 2.5.)

The bounded fan-out circuit model specifies a bound on the fan-out of a circuit. As we
shall see, the fan-out-1 circuit plays a special role related to circuit depth. Each circuit of
fan-out 1 corresponds to a formula in which the operators are the functions associated with
vertices of the circuit. Figure 9.1 shows an example of a circuit of fan-out 1 over the standard
basis and its associated formula. (See also Problem 9.9.) Although each input variable appears
once in this example, Boolean functions generally require multiple instances of variables (have
fan-out greater than 1). Formula size is studied at length in Section 9.4.

To define the monotone circuits, we need an ordering of binary n-tuples. Two such tuples,
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), are in the relation x ≤ y if for all 1 ≤ i ≤ n,
xi ≤ yi, where 0 ≤ 0, 1 ≤ 1, and 0 ≤ 1, but 1 �≤ 0. (Thus, 001011 ≤ 101111, but
011011 �≤ 101111.)

A monotone circuit is a circuit over the monotone basis Ωmon = {AND, OR} in which
the fan-in is 2. There is a direct correspondence between monotone circuits and monotone
functions. A monotone function is a function f : Bn �→ Bm that is either monotone
increasing, that is, for all x, y ∈ Bn, if x ≤ y, then f(x) ≤ f(y), or is monotone
decreasing, that is, for all x, y ∈ Bn, if x ≤ y, then f(x) ≥ f(y). Unless stated explicitly, a
monotone function will be understood to be a monotone increasing function.

A monotone Boolean function has the following expansion on the first variable, as the
reader can show. (See Problem 9.10.) A similar expansion is possible on any variable.

f(x1, x2, . . . , xn) = f(0, x2, . . . , xn) ∨ (x1 ∧ f(1, x2, . . . , xn))

By applying this expansion to every variable in succession, we see that each monotone function
can be realized by a circuit over the monotone basis. Furthermore, the monotone basis Ωmon

c©John E Savage 9.1 Circuit Models and Measures 393

x1x2x3

x6 x4x5x7

y = ((((x7 ∨ x6) ∧ (x5 ∨ x4)) ∨ x3) ∧ (x2 ∧ x1))

Figure 9.1 A circuit of fan-out 1 over a basis with fan-in 2 and a corresponding formula. The
value y at the root is the AND of the value (((x7 ∨x6)∧ (x5 ∨x4))∨x3) of the left subtree with
the value (x2 ∧ x1) of the right subtree.

is complete for the monotone functions, that is, every monotone function can be computed
by a circuit over the basis Ωmon. (See Problem 2.)

In Section 9.6 we show that some monotone functions on n variables require monotone
circuits whose size is exponential in n. In particular, some monotone functions requiring
exponential-size monotone circuits can be realized by polynomial-size circuits over the standard
basis Ω0. Thus, the absence of negation can result in a large increase in circuit size.

The bounded-depth circuit is a circuit over the standard basis Ω0 where the fan-in of AND

and OR gates is allowed to be unbounded, but the circuit depth is bounded. The conjunctive
and disjunctive normal forms and the product-of-sums and sum-of-products normal forms
realize arbitrary Boolean functions by circuits of depth 2 over Ω0. (See Section 2.3.) In these
normal forms negations are used only on the input variables. Note that any circuit over the
standard basis can be converted to a circuit in which the NOT gates are applied only to the
input variables. (See Problem 9.11.)

9.1.2 Complexity Measures
We now define the measures of complexity studied in this chapter. The depth of a circuit is
the number of gates of fan-in 2 or more on the longest path in the circuit. (Note that NOT

gates do not affect the depth measure.)

DEFINITION 9.1.1 The circuit size of a binary function f : Bn �→ Bm with respect to the basis
Ω, denoted CΩ(f), is the smallest number of gates in any circuit for f over the basis Ω. The circuit
size with fan-out s, denoted Cs,Ω(f), is the circuit size of f when the circuit fan-out is limited
to at most s.

394 Chapter 9 Circuit Complexity Models of Computation

The circuit depth of a binary function f : Bn �→ Bm with respect to the basis Ω, DΩ(f), is
the depth of the smallest depth circuit for f over the basis Ω. The circuit depth with fan-out s,
denoted Ds,Ω(f), is the circuit depth of f when the circuit fan-out is limited to at most s.

The formula size of a Boolean function f : Bn �→ B with respect to a basis Ω, LΩ(f), is the
minimal number of input vertices in any circuit of fan-out 1 for f over the basis Ω.

It is important to note the distinction between formula and circuit size: in the former
the number of input vertices is counted, whereas in the latter it is the number of gates. A
relationship between the two is shown in Lemma 9.2.2.

9.2 Relationships Among Complexity Measures
In this section we explore the effect on circuit complexity measures of a change in either the
basis or the fan-out of a circuit. We also establish relationships between circuit depth and
formula size.

9.2.1 Effect of Fan-Out on Circuit Size
It is interesting to ask how the circuit size and depth of a function change as the maximal fan-
out of a circuit is reduced. This issue is important in understanding these complexity measures
and in the use of technologies that limit the fan-out of gates. The following simple facts about
trees are useful in comparing complexity measures. (See Problem 9.2.)

LEMMA 9.2.1 A rooted tree of maximal fan-in r containing k vertices has at most k(r − 1) + 1
leaves and a rooted tree with l leaves and fan-in r has at most l − 1 vertices with fan-in 2 or more
and at most 2(l − 1) edges.

From the above result we establish the following connection between circuit size with fan-
out 1 and formula size.

LEMMA 9.2.2 Let Ω be a basis of fan-in r. For each f : Bn �→ B the following inequalities hold
between formula size, LΩ(f), and fan-out-1 circuit size, C1,Ω(f):

(LΩ(f) − 1)/(r − 1) ≤ C1,Ω(f) ≤ 3LΩ(f)− 2

Proof The first inequality follows from the definition of formula size and the first result
stated in Lemma 9.2.1 in which k = C1,Ω(f). The second inequality also follows from
Lemma 9.2.1. A tree with LΩ(f) leaves has at most LΩ(f)− 1 vertices with fan-in of 2 or
more and at most 2(LΩ(f)−1) edges between vertices (including the leaves). Each of these
edges can carry a NOT gate, as can the output gate, for a total of at most 2LΩ(f) − 1 NOT

gates. Thus, a circuit of fan-out 1 has at most 3LΩ(f)− 2 gates.

As we now show, circuit size increases by at most a constant factor when the fan-out of the
circuit is reduced to s for s ≥ 2. Before developing this result we need a simple fact about a
complete basis Ω, namely, that at most two gates are needed to compute the identity function
i(x) = x, as shown in the next paragraph. If a basis contains AND or OR gates, the identity
function can be obtained by attaching both of their inputs to the same source.

We are done if Ω contains a function such that by fixing all but one variable, i(x) is
computed. If not, then we look for a non-monotone function in Ω. Since some binary

c©John E Savage 9.2 Relationships Among Complexity Measures 395

functions are non-monotone (x, for example), some function g in a complete basis Ω is non-
monotone. This means there exist tuples x and y for g, x ≤ y, such that g(x) = 1 > g(y) =
0. Let u and v be the largest and smallest tuples, respectively, satisfying x ≤ u ≤ v ≤ y
and g(u) = 1 and g(v) = 0. Then u and v differ in at most one position. Without loss
of generality, let that position be the first and let the values in the remaining positions in
both tuples be (c2, . . . , cn). It follows that g(1, c2, . . . , cn) = 0 and g(0, c2, . . . , cn) = 1 or
g(x, c2, . . . , cn) = x. If l(Ω) is the number of gates from Ω needed to realize the identity
function, then l(Ω) = 1 or 2.

THEOREM 9.2.1 Let Ω be a complete basis of fan-in r and let f : Bn �→ Bm. The following
inequalities hold on Cs,Ω(f):

CΩ(f) ≤ Cs+1,Ω(f) ≤ Cs,Ω(f) ≤ C1,Ω(f)

Furthermore, Cs,Ω(f) has the following relationship to CΩ(f) for s ≥ 2:

Cs,Ω(f) ≤ CΩ(f)
(

1 +
l(Ω)(r − 1)

s− 1

)
Proof The first set of inequalities holds because a smallest circuit with fan-out s is no smaller
than a smallest circuit with fan-out s + 1, a less restrictive type of circuit.

The last inequality follows by constructing a tree of identity functions at each gate whose
fan-out exceeds s. (See Fig. 9.2.) If a gate has fan-out φ > s, reduce the fan-out to s and
then attach an identity gate to one of these s outputs. This increases the fan-out from s to
s + s − 1. If φ is larger than this number, repeat the process of adding an identity gate k
times, where k is the smallest integer such that s + k(s − 1) ≥ φ or is the largest integer
such that s + (k − 1)(s− 1) < φ. Thus, k < (φ− 1)/(s− 1).

Let φi denote the fan-out of the ith gate in a circuit for f of potentially unbounded
fan-out and let ki be the largest integer satisfying the following bound:

ki <
φi − 1
s− 1

Then at most
∑

i(kil(Ω) + 1) gates are needed in the circuit of fan-out s to realize f ,
one for the ith gate in the original circuit and kil(Ω) gates for the ki copies of the identity

(b)(a)

Figure 9.2 Conversion of a vertex with fan-out more than s to a subtree with fan-out s,
illustrated for s = 2.

396 Chapter 9 Circuit Complexity Models of Computation

function at the ith gate. Note that
∑

i φi is the number of edges directed away from gates
in the original circuit. But since each edge directed away from a gate is an edge directed into
a gate, this number is at most rCΩ(f) since each gate has fan-in at most r.

It follows that the smallest number of gates in a circuit with fan-out s for f satisfies the
following bound:

Cs,Ω(f) ≤ CΩ(f) + l(Ω)
CΩ(f)∑
i=1

(
φi − 1
s − 1

)
≤ CΩ(f)

(
1 +

l(Ω)(r − 1)
s − 1

)
which demonstrates that circuit size with a fan-out s ≥ 2 differs from the unbounded fan-
out circuit size by at most a constant factor.

With the construction employed in Theorem 9.2.1, an upper bound can be stated on
Ds,Ω(f) that is proportional to the product of DΩ(f) and log CΩ(f). (See Problem 9.12.)
The upper bound stated above on Cs,Ω(f) can be achieved by a circuit that also achieves an
upper bound on Ds,Ω(f) that is proportional to DΩ(f) and logrs [138].

9.2.2 Effect of Basis Change on Circuit Size and Depth
We now consider the effect of a change in basis on circuit size and depth. In the next section
we examine the relationship between formula size and depth, from which we deduce the effect
of a basis change on formula size.

LEMMA 9.2.3 Given two complete bases, Ωa and Ωb, and a function f : Bn �→ Bm, the circuit
size and depth of f in these two bases differ by at most constant multiplicative factors.

Proof Because each basis is complete, every function in Ωa can be computed by a fixed
number of gates in Ωb, and vice versa. Given a circuit with basis Ωa, a circuit with basis
Ωb can be constructed by replacing each gate from Ωa by a fixed number of gates from
Ωb. This has the effect of increasing the circuit size by at most a constant factor. It follows
that CΩa

(f) = Θ(CΩb
(f)). Since this construction also increases the depth by at most a

constant factor, it follows that DΩa
(f) = Θ(DΩb

(f)).

9.2.3 Formula Size Versus Circuit Depth
A logarithmic relationship exists between the formula size and circuit depth of a function, as
we now show. If a formula is represented by a balanced tree, this result follows from the fact
that the circuit fan-in is bounded. However, since we cannot guarantee that each formula
corresponds to a balanced tree, we must find a way to balance an unbalanced tree.

To balance a formula and provide a bound on the circuit depth of a function in terms of

formula size, we make use of the multiplexer function f
(n)
mux : B2n+n �→ B on three inputs

f
(1)
mux(a, y1, y0). Here the value of a determines which of the two other values is returned.

f (1)
mux(a, y1, y0) =

{
y0 a = 0

y1 a = 1

This function can be realized by

f (1)
mux(a, y1, y0) = (a ∧ y0) ∨ (a ∧ y1)

c©John E Savage 9.2 Relationships Among Complexity Measures 397

The measure d(Ω) of a basis Ω defined below is used to obtain bounds on the circuit depth of
a function in terms of its formula size.

DEFINITION 9.2.1 Given a basis Ω of fan-in r, the constant d(Ω) is defined as follows:

d(Ω) =
(
DΩ

(
f (1)
mux

)
+ 1

)
/ logr

(
r + 1

r

)
Over the standard basis Ω0, d(Ω0) = 3.419.

We now derive a separator theorem for trees. This is a theorem stating that a tree can
be decomposed into two trees of about the same size by removing one edge. We begin by
establishing a property about trees that implies the separator theorem.

LEMMA 9.2.4 Let T be a tree with n internal (non-leaf) vertices. If the fan-in of every vertex of
T is at most r, then for any k, 1 ≤ k ≤ n, T has a vertex v such that the subtree Tv rooted at v
has at least k leaves but each of its children Tv1 , Tv2 , . . . , Tvp

, p ≤ r, has fewer than k leaves.

Proof If the property holds at the root, the result follows. If not, move to some subtree of
T that has at least k leaves and apply the test recursively. Because a leaf vertex has one leaf
vertex in its subtree, this process terminates on some vertex v at which the property holds.
If it terminates on a leaf vertex, each of its children is an empty tree.

COROLLARY 9.2.1 Let T be a tree of fan-in r with n leaves. Then T has a subtree Tv rooted at
a vertex v such that Tv has at least �n/(r + 1)� leaves but at most �rn/(r + 1)�.

Proof Let v be the vertex of Lemma 9.2.4 and let k = �n/(r + 1)�. Since Tv has at most
r subtrees each containing no more than �n/(r + 1)� − 1 ≤ n/(r + 1) leaves, the result
follows.

We now apply this decomposition of trees to develop bounds on formula size.

THEOREM 9.2.2 Let Ω be a complete basis of fan-in r. Any function f : Bn �→ B with formula
size LΩ(f) ≥ 2 has circuit depth DΩ(f) satisfying the following bounds:

logr LΩ(f) ≤ DΩ(f) ≤ d(Ω) logr LΩ(f)

Proof The lower bound follows because a rooted tree of fan-in r with depth d has at most
rd leaves. Since LΩ(f) leaves are needed to compute f with a tree circuit over Ω, the result
follows directly.

The derivation of the upper bound is by induction on formula size. We first establish
the basis for induction: that DΩ(f) ≤ d(Ω) logr LΩ(f) for LΩ(f) = 2. To show this,
observe that any function f with LΩ(f) = 2 depends on at most two variables. There are 16
functions on two variables (which includes the functions on one variable), of which 10 have
the property that both variables affect the output. Each of these 10 functions can be realized

from a circuit for f
(1)
mux by adding at most one NOT gate on one input and one NOT on

the output. (See Problem 9.13.) But, as seen from the discussion preceding Theorem 9.2.1,
every complete basis contains a non-monotone function all but one of whose inputs can be
fixed so that the functions computes the NOT of its one remaining input. Thus, a circuit

with depth DΩ

(
f

(1)
mux

)
+ 2 suffices to realize a function with LΩ(f) = 2.

398 Chapter 9 Circuit Complexity Models of Computation

The basis for induction is that DΩ

(
f

(1)
mux

)
+ 2 ≤ d(Ω) logr LΩ(f) for LΩ(f) = 2,

which we now show.

d(Ω) logr LΩ(f) =
(
DΩ

(
f (1)
mux

)
+ 1

)
(logr 2)/ logr

(
r + 1

r

)
=

(
DΩ

(
f (1)
mux

)
+ 1

)
/ log2

(
r + 1

r

)
≥ 1.7

(
DΩ

(
f (1)
mux

)
+ 1

)
≥ DΩ(f (1)

mux) + 2

since (r + 1)/r ≤ 1.5 and DΩ

(
f

(1)
mux

)
≥ 1.

The inductive hypothesis is that any function f with a formula size LΩ(f) ≤ L0 − 1
can be realized by a circuit with depth d(Ω) logr LΩ(f).

Let T be the tree associated with a formula for f of size L0. The value computed by

T can be computed from the function f
(1)
mux using the values produced by three trees, as

suggested in Fig. 9.3. The tree Tv of Corollary 9.2.1 and two copies of T from which Tv

has been removed and replaced by 0 in one case (the tree T0) and 1 in the other (the tree
T1) are formed and the value of Tv is used to determine which of T0 and T1 is the value T .
Since Tv has at least �L0/(r + 1)� and at most �rL0/(r + 1)� ≤ L0 − 1 leaves, each of T0

and T1 has at most L0 − �L0/(r + 1)� = �rL0/(r + 1)� leaves. (See Problem 9.1.) Thus,
all trees have at most �rL0/(r + 1)� ≤ L0 − 1 leaves and the inductive hypothesis applies.

Since the depth of the new circuit is the depth of f
(1)
mux plus the maximum of the depths of

the three trees, f has the following depth bound:

DΩ(f) ≤ DΩ

(
f (1)
mux

)
+ d(Ω) logr

rLΩ(f)
(r + 1)

The desired result follows from the definition of d(Ω).

10

(a)

T
Tv

T0

a

y0 y1

T1

(b)

Tv

f
(1)
mux

Figure 9.3 Decomposition of a tree circuit T for the purpose of reducing its depth. A large
subtree Tv is removed and its value used to select the value computed by two trees formed from
the original tree by replacing the value of Tv alternately by 0 and 1.

c©John E Savage 9.3 Lower-Bound Methods for General Circuits 399

Combining this result with Lemma 9.2.3, we obtain a relationship between the formula
sizes of a function over two different complete bases.

THEOREM 9.2.3 Let Ωa and Ωb be two complete bases with fan-in ra and rb, respectively. There
is a constant α such that the formula size of a function f : Bn �→ B with respect to these bases
satisfies the following relationship:

LΩa
(f) ≤ [LΩb

(f)]α

Proof Let DΩa
(f) and DΩb

(f) be the depth of f over the bases Ωa and Ωb, respectively.
From Theorem 9.2.2, logra

LΩa
(f) ≤ DΩa

(f) and DΩb
(f) ≤ d(Ωb) logrb

LΩb
(f).

From Lemma 9.2.3 we know there is a constant da,b such that if a function f : Bn �→ B
has depth DΩb

(f) over the basis Ωb, then it has depth DΩa
(f) over the basis Ωa, where

DΩa
(f) ≤ da,bDΩb

(f)

The constant da,b is the depth of the largest-depth basis element of Ωb when realized by a
circuit over Ωa.

Combining these facts, we have that

LΩa
(f) ≤ (ra)DΩa (f) ≤ (ra)da,bDΩb

(f)

≤ (ra)da,bd(Ωb) logrb
LΩb

(f)

≤ LΩb
(f)da,bd(Ωb)(logrb

ra)

Here we have used the identity xlogy z = zlogy x.

This result can be extended to the monotone basis. (See Problem 9.14.) We now derive a
relationship between circuit size and depth.

9.3 Lower-Bound Methods for General Circuits
In Chapter 2 upper bounds were derived for a variety of functions, including logical, arith-
metic, shifting, and symmetric functions as well as encoder, decoder, multiplexer, and demul-
tiplexer functions. We also established lower bounds on size and depth of the most complex
Boolean functions on n variables. In this section we present techniques for deriving lower
bounds on circuit size and depth for particular functions when realized by general logic circuits.

9.3.1 Simple Lower Bounds
A function f : Bn �→ B on n variables is dependent on its ith variable, xi, if there exist
values c1, c2, . . . , ci−1, ci+1, . . . , cn such that

f(c1, c2, . . . , ci−1, 0, ci+1, . . . , cn) �= f(c1, c2, . . . , ci−1, 1, ci+1, . . . , cn)

This simple property leads to lower bounds on circuit size and depth that result from the
connectivity that a circuit must have to compute a function depending on each of its variables.

400 Chapter 9 Circuit Complexity Models of Computation

THEOREM 9.3.1 Let f : Bn �→ B be dependent on each of its n variables. Then over each basis
Ω of fan-in r, the size and depth of f satisfies the following lower bounds:

CΩ(f) ≥
⌈

n − 1
r − 1

⌉
DΩ(f) ≥ �logr n�

Proof Consider a circuit of size CΩ(f) for f . Since it has fan-in r, it has at most rCΩ(f)
edges between gates. After we show that this circuit also has at least CΩ(f) + n − 1 edges,
we observe that rCΩ(f) ≥ CΩ(f) + n − 1, from which the conclusion follows.

Since f depends on each of its n variables, there must be at least one edge attached to
each of them. Similarly, because the circuit has minimal size there must be at least one edge
attached to each of the CΩ(f) gates except possibly for the output gate. Thus, the circuit
has at least CΩ(f) + n − 1 edges and the conclusion follows.

The depth lower bound uses the fact that a circuit with depth d and fan-in r with the
largest number of inputs is a tree. Such trees have at most rd leaves (input vertices). Because
f depends on each of its variables, a circuit for f of depth d has at least n and at most rd

leaves, from which the depth lower bound follows.

This lower bound is the best possible given the information used to derive it. To see this,
observe that the function f(x1, x2, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn, which depends on each of
its variables, has circuit size �(n − 1)/(r − 1)� and depth �logr n� over the basis containing
the r-input AND gate. (See Problem 9.15.)

9.3.2 The Gate-Elimination Method for Circuit Size
The search for methods to derive large lower bounds on circuit size for functions over complete
bases has to date been largely unsuccessful. The largest lower bounds on circuit size that have
been derived for explicitly defined functions are linear in n, the number of variables on which
the functions depend. Since most Boolean functions on n variables have exponential size (see
Theorem 2.12.1), functions do exist that have high complexity. Unfortunately, this fact doesn’t
help us to show that any particular problem has high circuit size. In particular, it does not help
us to show that P �= NP.

In this section we introduce the gate-elimination method for deriving linear lower bounds.
When applied with care, it provides the strongest known lower bounds for complete bases.
The gate-elimination method uses induction on the properties of a function f on n variables
to show two things: a) a few variables of f can be assigned values so that the resulting function
is of the same type as f , and b) a few gates in any circuit for f can be eliminated by this
assignment of values. After eliminating all variables by assigning values to them, the function
is constant. Since the number of gates in the original circuit cannot be smaller than the number
removed during this process, the original circuit has at least as many gates as were removed.

We now apply the gate-elimination method to functions in the class Q
(n)
2,3 defined below.

Functions in this class have at least three different subfunctions when any pair of variables
ranges through all four possible assignments.

DEFINITION 9.3.1 A Boolean function f : Bn �→ B belongs to the class Q
(n)
2,3 if for any two

variables xi and xj , f has at least three distinct subfunctions as xi and xj range over all possible

c©John E Savage 9.3 Lower-Bound Methods for General Circuits 401

values. Furthermore, for each variable xi there is a value ci such that the subfunction of f obtained
by assigning xi the value ci is in Q

(n−1)
2,3 .

The class Q
(n)
2,3 contains the function f

(n)
mod 3,c : Bn �→ B, as we show. Here z mod a is

the remainder of z after removing all multiples of a.

LEMMA 9.3.1 For n ≥ 3 and c ∈ {0, 1, 2}, the function f
(n)
mod 3,c : Bn �→ B defined below is

in Q
(n)
2,3 :

f
(n)
mod 3,c(x1, x2, . . . , xn) = ((y + c) mod 3) mod 2

where y =
∑n

i=1 xi and
∑

and + denote integer addition.

Proof We show that the functions f
(n)
mod 3,c, c ∈ {0, 1, 2}, are all distinct when n ≥ 1.

When n = 1, the functions are different because f
(1)
mod 3,0(x1) = x1, f

(1)
mod 3,1(x1) =

x1, and f
(1)
mod 3,2(x1) = 0. For n = 2, y can assume values in {0, 1, 2}. Because the

functions f
(2)
mod 3,0(x1, x2), f

(2)
mod 3,1(x1, x2), and f

(2)
mod 3,2(x1, x2) have value 1 only when

y = x1 + x2 = 1, 0, 2, respectively, the three functions are different.

The proof of membership of f
(n)
mod 3,c in Q

(n)
2,3 is by induction. The base case is n = 3,

which holds, as shown in the next paragraph. The inductive hypothesis is that for each

c ∈ {0, 1, 2}, f
(n−1)
mod 3,c ∈ Q

(n−1)
2,3 .

To show that for n ≥ 3, f (n)
mod 3,c has at least three distinct subfunctions as any two of its

variables range over all values, let y∗ be the sum of the n− 2 variables that are not fixed and
let c∗ be the sum of c and the values of the two variables that are fixed. Then the value of the
function is ((y∗ + c∗) mod 3) mod 2 = (((y∗ mod 3) + (c∗ mod 3)) mod 3) mod 2.
Since (y∗ mod 3) and (c∗ mod 3) range over the values 0, 1, and 2, the three functions are
different, as shown in the first paragraph of this proof.

To show that for any variable xi there is an assignment ci such that f
(n)
mod 3,c is in

Q
(n−1)
2,3 , let c = 0.

We now derive a lower bound on the circuit size of functions in the class Q
(n)
2,3 .

THEOREM 9.3.2 Over the basis of all Boolean functions on two inputs, Ω, if f ∈ Q
(n)
2,3 for

n ≥ 3, then
CΩ(f) ≥ 2n − 3

Proof We show that f depends on each of its variables. Suppose it does not depend on
xi. Then, pick xi and a second variable xj and let them range over all four possible values.
Since the value of xi has no effect on f , f has at most two subfunctions as xi and xj range
over all values, contradicting its definition.

We now show that some input vertex xi of a circuit for f has fan-out of 2 or more.
Consider a gate g in a circuit for f whose longest path to the output gate is longest. (See
Fig. 9.4.) Since the circuit does not have loops and no other vertex is farther away from the
output, both of g’s input edges must be attached to input vertices. Let xi and xj be the two
inputs to this gate. If the fan-out of both of these input vertices is 1, they influence the value
of f only through the one gate to which they are connected. Since this gate has at most two

402 Chapter 9 Circuit Complexity Models of Computation

x4

g7

g8

x1 x3x2

g4

g5

g6

Figure 9.4 A circuit in which gates g4 has maximal distance from the output gate g8. The input
x2 has fan-out 2.

values for the four assignments to inputs, f has at most two subfunctions, contradicting the
definition of f .

If n = 3, this fact demonstrates that the fan-out from the three inputs has to be at
least 4, that is, the circuit has at least four inputs. From Theorem 9.3.1 it follows that
CΩ(f) ≥ 2n − 3 for n = 3. This is the base case for a proof by induction.

The inductive hypothesis is that for any f∗ ∈ Q
(n−1)
2,3 , CΩ(f∗) ≥ 2(n− 1)− 3. From

the earlier argument it follows that there is an input vertex xi in a circuit for f ∈ Q
(n)
2,3 that

has fan-out 2. Let xi have that value that causes the subfunction f∗ of f to be in Q
(n−1)
2,3 .

Fixing xi eliminates at least two gates in the circuit for f because each gate connected to xi

either has a constant output, computes the identity, or computes the NOT of its input. The
negation, if any, can be absorbed by the gate that precedes or follows it. Thus,

CΩ(f) ≥ CΩ(f∗) + 2 ≥ 2(n− 1)− 3 + 2 = 2n− 3

which establishes the result.

As a consequence of this theorem, the function f
(n)
mod 3,c requires at least 2n− 3 gates over

the basis B2. It can also be shown to require at most 3n + O(1) gates [86].
We now derive a second lower-bound result using the gate-elimination method. In this

case we demonstrate that the upper bound on the complexity of the multiplexer function

f
(n)
mux : B2n+n �→ B introduced in Section 2.5.5, which is 2n+1 + O(n

√
2n), is optimal to

within an additive term of size O(n
√

2n). (The multiplexer function is also called the storage
access function.) We generalize the storage access function f

(n,k)
SA : Bn+k �→ B slightly and

write it in terms of a k-bit address a and an n-tuple x, as shown below, where |a| denotes the
integer represented by the binary number a and 2k ≥ n.:

f
(n,k)
SA (ak−1, . . . , a1, a0, xn−1, . . . , x0) = x|a|

Thus, f
(m)
mux = f

(2m ,m)
SA .

To derive a lower bound on the circuit size of f
(n,k)
SA we introduce the class F

(n,k)
s of

Boolean functions on n + k variables defined below.

c©John E Savage 9.3 Lower-Bound Methods for General Circuits 403

DEFINITION 9.3.2 A Boolean function f : Bn+k �→ B belongs to the class F
(n,k)
s , 2k ≥ n, if

for some set S ⊆ {0, 1, . . . , n− 1}, |S| = s,

f(ak−1, . . . , a1, a0, xn−1, . . . , x0) = x|a|

for |a| ∈ S.

Clearly, f
(n,k)
SA is a member of F

(n,k)
n . We now show that every function in F

(n,k)
s has circuit

size that is at least 2s− 2.
In the proof of Theorem 9.3.2 the gate-elimination method replaced variables with con-

stants. In the following proof this idea is extended to replacing variables by functions. Applying

this result, we have that CΩ(f (n)
mux) ≥ 2n+1 − 1.

THEOREM 9.3.3 Let f : Bn+k �→ B belong to F
(n,k)
s , 2k ≥ n. Then over the basis B2 the

circuit size of f satisfies the following bound:

CΩ(f) ≥ 2s − 2

Proof In the proof of Theorem 9.3.2 we used the fact that some input variable has fan-out

2 or more, as deduced from a property of functions in Q
(n)
2,3 . This fact does not hold for the

storage access function (multiplexer), as can be seen from the construction in Section 2.5.5.
Thus, our lower-bound argument must explicitly take into account the fact that the fan-out
from some input can be 1.

The following proof uses the fact that the basis B2 contains functions of two kinds, AND-
type and parity-type functions. The former compute expressions of the form (xa ∧ yb)c for
Boolean constants a, b, c, where the notation xc denotes x when c = 1 and x when c = 0.
Parity-type functions compute expressions of the form x⊕ y⊕ c for some Boolean constant
c. (See Problem 9.19.)

The proof is by induction on the value of s. In the base case s = 1 and the lower bound
is trivially 0. The inductive hypothesis assumes that for s = s′−1, CΩ(f) ≥ 2(s′−1)−2.
We let s = s′ and consider the following mutually exclusive cases:

a) For some i ∈ S, xi has fan-out 2. Replacing xi by a constant allows elimination of
at least two gates, replaces S by S − {i}, which has size s′ − 1, and reduces f to

f∗ ∈ F
(n,k)
s′−1 , from which we conclude that

CΩ(f) ≥ 2 + CΩ(f∗) ≥ 2s′ + 2 = 2s − 2

b) For some i ∈ S, xi has fan-out 1, its unique successor is a gate G of AND-type, and G
computes the expression (xa

i ∧ gb)c for some function g of the inputs. Setting xi = a
sets xa

i = aa = 0, thereby causing the expression to have value 0c, which is a constant.
Since G cannot be the output gate, this substitution allows the elimination of G and at

least one successor gate, reduces f to f∗ ∈ F
(n,k)
s′−1 , and replaces S by S − {i}, from

which the lower bound follows.

c) For some i ∈ S, xi has fan-out 1, its unique successor is a gate G of parity-type, and
G computes the expression xi ⊕ g ⊕ c for some function g of the inputs. Replace S by
S−{i}. Since we ask that the output of the circuit be x|a| for a ∈ S−{i}, this output

404 Chapter 9 Circuit Complexity Models of Computation

cannot depend on the value of G because a change in xi would cause the value of G to
change. Thus, G is not the output gate and when a ∈ S − {i} we can set its value to
any function without affecting the value computed by the circuit. In particular, setting
xi = g causes G to have value c, a constant. This substitution allows the elimination of
G and at least one successor gate, and reduces f to f∗ ∈ F

(n,k)
s′−1 , from which the lower

bound follows.

Thus, in all cases, CΩ(f) ≥ 2s′ − 2.

The lower bounds given above are derived for two functions over the basis B2. The best
circuit-size lower bound that has been derived for this basis is 3(n − 1). When the basis
is restricted, larger lower bounds may result, as mentioned in the notes and illustrated by
Problems 9.22 and 9.23.

9.4 Lower-Bound Methods for Formula Size
Since formulas correspond to circuits of fan-out 1, the formula size of a function may be much
larger than its circuit size. In this section we introduce two techniques for deriving lower
bounds on formula size that illustrate this point. Each leads to bounds that are quadratic or
nearly quadratic in the number of inputs. The first, due to Nečiporuk [230], applies to any
complete basis. The second, due to Krapchenko [174], applies to the standard basis Ω0.

To fix ideas about formula size, we construct a circuit of fan-out 1 for the indirect storage

access function f
(k,l)
ISA : Bk+lK+L �→ B, where K = 2k and L = 2l:

f
(k,l)
ISA (a, xK−1, . . . , x0, y) = y|x|a||

Here a is a k-tuple, xj = (xj,l−1, . . . , xj,0) is an l-tuple for 0 ≤ j ≤ K − 1, and

y = (yL−1, . . . , y0) is an L-tuple. The value of f
(k,l)
ISA is computed by indirection; that is,

the value of a is treated as a binary number with value |a| that is used to select the |a|th
l-tuple x|a|; this, in turn, is treated as a binary number and its value is used to select the
|x|a||th variable in y.

A circuit realizing f
(k,l)
ISA from multiple copies of the multiplexer (direct storage access

function) f
(n)
mux : B2n+n �→ B is shown schematically in Fig. 9.5. This circuit uses l copies

of f
(k)
mux : B2k+k �→ B and one copy of f

(l)
mux : B2l+l �→ B. The copies of f

(k)
mux produce

the |a|th l-tuple, which is supplied to the copy of f
(l)
mux to select a variable from y. Since, as

shown in Lemma 2.5.5, the function f
(k)
mux can be realized by a circuit of size linear in 2k, a

circuit for f
(k,l)
ISA can be constructed that is also linear in the size of its input.

A formula for f
(k,l)
ISA has fan-out of 1 from every gate. The circuit sketched in Fig. 9.5 has

fan-out 1 if and only if the fan-out within each multiplexer circuit is also 1. To construct a

formula from this circuit, we first construct one for f
(l)
mux. The total number of times that

address bits appear in a formula for f
(l)
mux determines the number of copies of the formula for

f
(k)
mux that are used in the formula for f

(k,l)
ISA . A proof by induction can be developed to show

that a formula for f
(p)
mux can be constructed of size 32p−2 in which address bits occur 2(2p−1)

times. (See Problem 9.24.) Since each occurrence of an address bit in f
(l)
mux corresponds to a

copy of the formula for f
(k)
mux, by choosing L = 2l = n and k the smallest integer such that

c©John E Savage 9.4 Lower-Bound Methods for Formula Size 405

x0,l−1

f
(k)
mux

y0

x|a|,l−1

...

a0

a1

ak−1

a0

a1

ak−1

a0

a1

ak−1

f
(k)
mux f

(k)
mux

...

xK−1,l−1

yL−1

...

x|a|,0

...

x|a|,l−2

xK−1,l−2 x0,l−1 xK−1,0 x0,0

... ...

...

f
(l)
mux

...

Figure 9.5 The schema used to construct a circuit of fan-out 1 for the indirect storage access
function f

(k,l)
ISA .

K = 2k ≥ n/l we see that f
(k,l)
ISA has 2l + l2k +k = O(n) variables and that its formula size is

2(2l−1)LΩ

(
f

(k)
mux

)
+LΩ

(
f

(l)
mux

)
, which is O(n2/ log2 n), as summarized in Lemma 9.4.1.

LEMMA 9.4.1 Let 2l = n and k = �log2 n/l�. Then the formula size of f
(k,l)
ISA : Bk+lK+L �→

B satisfies the following bound:

LΩ

(
f

(k,l)
ISA

)
= O(n2/ log2 n)

We now introduce Nečiporuk’s method, by which it can be shown that this bound for

f
(k,l)
ISA is optimal to within a constant multiplicative factor.

9.4.1 The Nečiporuk Lower Bound
The Nečiporuk lower-bound method uses a partition of the variables X = (x1, x2, . . . , xn) of
a Boolean function f (n) : Bn �→ B into disjoint sets X1, X2, . . . , Xp. That is, X =

⋃p
i=1 Xi

and Xi ∩ Xj = ∅ for i �= j. The lower bound on the formula size of f is stated in terms of
rXj

(f), 0 ≤ j ≤ p, the number of subfunctions of f when restricted to variables in Xj .
That is, rXj

(f) is the number of different subfunctions of f in the variables in Xj obtained
by ranging over all values for variables in X −Xj .

We now describe Nečiporuk’s lower bound on formula size. We emphasize that the strength
of the lower bound depends on which partition X1, X2, . . . , Xp of the variables X is chosen.
After the proof we apply it to the indirect storage access function. The method cannot provide a
lower bound that is larger than O(n2/ log n) for a function on n variables. (See Problem 9.25.)

406 Chapter 9 Circuit Complexity Models of Computation

THEOREM 9.4.1 For every complete basis Ω there is a constant cΩ such that for every function
f (n) : Bn �→ B and every partition of its variables X into disjoint sets X1, X2, . . . , Xp, the
formula size of f with respect to Ω satisfies the following lower bound:

LΩ(f) ≥ cΩ

p∑
j=1

log2 rXj
(f)

Proof Consider T , a minimal circuit of fan-out 1 for f . Let nj be the number of instances
of variables in Xj that are labels for leaves in T . Then by definition LΩ(f) =

∑p
i=1 nj .

Let d be the fan-in of the basis Ω.
For each j, 1 ≤ j ≤ p, we define the subtree Tj of T consisting of paths from vertices

with labels in Xj to the output vertex, as suggested by the heavy lines in Fig. 9.6. We
observe that some vertices in such a subtree have one input from a vertex in the subtree Tj

(called controllers — shaded vertices in Fig. 9.6) whereas others have more than one input
from a vertex in Tj (combiners — black vertices in Fig. 9.6). Each type of vertex typically
has inputs from vertices other than those in Tj , that is, from vertices on paths from input
vertices in X −Xj .

When the variables X − Xj are assigned values, the output of a controller or com-
biner vertex depends only on the inputs it receives from other vertices in Tj . The function
computed by a controller is a function of its one input y in Tj and can be represented as
(a ∧ y) ⊕ b for some values of the constants a and b. These constants are determined by
the values of inputs in X − Xj . We assume without loss of generality that each chain of
controllers with no intervening combiners is compressed to one controller. The combiner is
also some function of its inputs from other vertices in Tj . Since the number of such inputs
is as least 2, a combiner (with fan-in at most d) has at most d − 2 inputs determined by
variables in X − Xj .

x5 x4 x3 x1 x2 x7 x1 x2 x7 x4 x3 x2 x5

Combiner

Controller

Figure 9.6 The subtree Tj of the tree T is identified by heavy edges on paths from input vertices
in the set Xj = {x1, x3}. Vertices in Tj that have one heavy input edge are controller vertices.
Other vertices in Tj are combiner vertices.

c©John E Savage 9.4 Lower-Bound Methods for Formula Size 407

By Lemma 9.2.1, since Tj has nj leaves, the number of vertices with fan-in of 2 or more
(combiners) is at most nj −1. Also, by Lemma 9.2.1, Tj has at most 2(nj −1) edges. Since
Tj may have one controller at the output and at most one per edge, Tj has at most 2nj − 1
controllers.

The number of functions computed by a combiner is at most one of 2d−2 since at most
d − 2 of its inputs are determined by variables in X − Xj . At most four functions are
computed by a controller since there are at most four functions on one variable. It follows
that the tree Tj associated with the input variables in Xj containing nj leaves computes
rXj

different functions where rXj
satisfies the following upper bound. This bound is the

product of the number of ways that each of the controllers and combiners can compute
functions.

rXj
(f) ≤ 2(d−2)(nj−1)

(
4(2nj−1)

)
≤ 2(d+2)nj

Thus, (d + 2)nj ≥ log2 rXj
(f). Since LΩ(f) =

∑p
i=1 nj , the theorem holds for cΩ =

1/(d + 2).

Applying Nečiporuk’s lower bound to the indirect storage access function yields the fol-
lowing result, which demonstrates that the upper bound given in Lemma 9.4.1 for the indirect
storage access function is tight.

LEMMA 9.4.2 Let 2l = n and k = �log2(n/l)�. The formula size of f
(k,l)
ISA : Bk+lK+L �→ B

satisfies the following bound:

LΩ

(
f

(k,l)
ISA

)
= Ω

(
n2

log2 n

)
Proof Let p = K = 2k and let Xj contain xj . If Xj contains other variables, these are
assigned fixed values, which cannot increase rXj

(f). For 0 ≤ j ≤ K − 1, set |a| = j.
f has at least 2L restrictions since for each of the 2L assignments to (yL−1, . . . , y0) the
restriction of f is distinct; that is, if two different such L-tuples are supplied as input, they
can be distinguished by some assignment to xj . Thus rXj

(f) ≥ 2L. Hence, the formula

size of f
(k,l)
ISA , LΩ

(
f

(k,l)
ISA

)
≥ cΩKL, which is proportional to n2/ log n.

9.4.2 The Krapchenko Lower Bound
Krapchenko’s lower bound applies to the standard basis Ω0 or any complete subset, namely
{∧,¬} and {∨,¬}. It provides a lower bound on formula size that can be slightly larger than
that given by Nečiporuk’s method.

We apply Krapchenko’s method to the parity function f
(n)
⊕ : Bn �→ B, where f

(n)
⊕ (x1, x2,

. . . , xn) = x1⊕x2⊕· · ·⊕xn, to show that its formula size is quadratic in n. Since the parity
function on two variables can be expressed by the formula

f
(2)
⊕ (x1, x2) = (x1 ∧ x2) ∨ (x1 ∧ x2)

it is straightforward to show that the formula size of f
(n)
⊕ is at most quadratic in n. (See

Problem 9.26.)

408 Chapter 9 Circuit Complexity Models of Computation

DEFINITION 9.4.1 Given two disjoint subsets A, B ⊆ {0, 1}n of the set of the Boolean n-tuples,
the neighborhood of A and B, N (A, B), is the set of pairs of tuples (x, y), x ∈ A and
y ∈ B, such that x and y agree in all but one position.

The neighborhood of A = {0} and B = {1} is the pair N (A, B) = {(0, 1)}. Also,
the neighborhood of A = {000, 101} and B = {111, 010} is the set of pairs N (A, B) =
{(000, 010), (101, 111)}.

Given a function f : Bn �→ B, we use the notation f−1(0) and f−1(1) to denote the sets
of n-tuples that cause f to assume the values 0 and 1, respectively.

THEOREM 9.4.2 For any f : Bn �→ B and any A ⊆ f−1(0) and B ⊆ f−1(1), the following
inequality holds over the standard basis Ω0:

LΩ0(f) ≥ |N (A, B)|2
|A||B|

Proof Consider a circuit for f of fan-out 1 over the standard basis that has the mini-
mal number of leaves, namely LΩ0(f). Since the fan-in of each gate is either 1 or 2, by
Lemma 9.2.1 the number of leaves is one more than the number of gates of fan-in 2. Each
fan-in-2 gate is an AND or OR gate with suitable negation on its inputs and outputs.

Consider a minimal formula for f . Assume without loss of generality that the formula
is written over the basis {∧,¬}. We prove the lower bound by induction, the base case
being that of a function on one variable. If the function is constant, |N (A, B)| = 0 and
its formula size is also 0. If the function is non-constant, it is either x or x. (If f(x) = x,
f−1(1) = {1} and f−1(0) = {0}.) In both cases, |N (A, B)| = 1 since the neighborhood
has only one pair. (In the first case N (A, B) = {(0, 1)}.) Also, |A| = 1 and |B| = 1,
thereby establishing the base case.

The inductive hypothesis is that LΩ0(f
∗) ≥ |N (A, B)|/|A||B| for any function f∗

whose formula size LΩ0(f
∗) ≤ L0 − 1 for some L0 ≥ 2. Since the occurrences of NOT

do not affect the formula size of a function, apply DeMorgan’s theorem as necessary so that
the output gate of the optimal (minimal-depth) formula for f is an AND gate. Then we can
write f = g ∧ h, where g and h are defined on the variables appearing in their formulas.
Since the formula for f is optimal, so are the formulas for g and h.

Let A ⊆ f−1(0) and B ⊆ f−1(1). Thus, f(x) = 0 for x ∈ A and f(x) = 1 for
x ∈ B. Since f = g ∧ h, if f(x) = 1, then both g(x) = 1 and h(x) = 1. That is,
f−1(1) ⊆ g−1(1) and f−1(1) ⊆ h−1(1). (See Fig. 9.7.) It follows that B ⊆ g−1(1) and
B ⊆ h−1(1). Let B1 = B2 = B. Let A1 = A ∩ g−1(0) (which implies A1 ⊆ g−1(0))
and let A2 = A −A1. Since f(x) = 0 for x ∈ A, but g(x) = 1 for x ∈ A2, as suggested
in Fig. 9.7, it follows that A2 ⊆ h−1(0). (Since f = g ∧ h, f(x) = 0, and g(x) = 1, it
follows that h(x) = 0.) Finally, observe that N (A1, B1) and N (A2, B2) are disjoint (A1

and A2 have no tuples in common) and that |N (A, B)| = |N (A1, B1)|+ |N (A2, B2)|.
Given the inductive hypothesis, it follows from the above that

LΩ0(f) = LΩ0(g) + LΩ0(h) ≥ |N (A1, B1)|2
|A1||B1|

+
|N (A2, B2)|2
|A2||B2|

=
1
|B|

(
|N (A1, B1)|2

|A1|
+

|N (A2, B2)|2
|A2|

)

c©John E Savage 9.5 The Power of Negation 409

����
����
����

����
����
����

g−1(1)h−1(1)

B
A

f−1(1)

A2

Figure 9.7 The relationships among the sets f−1(1), g−1(1), h−1(1), A2, and h−1(0).

By the identity n2
1/a1 + n2

2/a2 ≥ (n1 + n2)2/(a1 + a2), which holds for positive integers
(see Problem 9.3), the desired result follows because |A| = |A1| + |A2|.

Krapchenko’s method is easily applied to the parity function f
(n)
⊕ . We need only let A

(B) contain n-tuples having an even (odd) number of 1’s. (|A| = |B| = 2n−1.) Then
|N (A, B)| = n2n−1 because for any vector in A there are exactly n vectors in B that are

neighbors of it. It follows that LΩ0

(
f

(n)
⊕

)
≥ n2.

9.5 The Power of Negation
As a prelude to the discussion of monotone circuits for monotone functions in the next sec-
tion, we consider the minimum number of negations necessary to realize an arbitrary Boolean
function f : Bn �→ Bm. From Problem 2.12 on dual-rail logic we know that every such
function can be realized by a monotone circuit in which both the variables x1, x2, . . . , xn and
their negations x1, x2, . . . , xn are provided as inputs. Furthermore, every such circuit need
have only at most twice as many AND and OR gates as a minimal circuit over Ω0, the standard
basis. Also, the depth of the dual-rail logic circuit of a function is at most one more than the
depth of a minimal-depth circuit, the extra depth being that to form x1, x2, . . . , xn.

Let f
(n)
NEG : Bn �→ Bn be defined by f

(n)
NEG(x1, x2, . . . , xn) = (x1, x2, . . . , xn). As

shown in Lemma 9.5.1, this function can be realized by a circuit of size O(n2 log n) and
depth O(log2 n) over Ω0 using �log2(n + 1)� negations. This implies that most Boolean
functions on n variables can be realized by a circuit whose size and depth are within a factor of
about 2 of their minimal values when the number of negations is �log2(n + 1)�.

THEOREM 9.5.1 Every Boolean function on n variables, f : Bn �→ Bm, can be realized by a
circuit containing at most �log2(n + 1)� negations. Furthermore, the minimal size and depth of
such circuits is at most 2CΩ0(f) + O(n2 log n) and DΩ0(f) + O(log2 n), respectively, where
CΩ0(f) and DΩ0(f) are the circuit size and depth of f over the standard basis Ω0.

410 Chapter 9 Circuit Complexity Models of Computation

Proof The proof follows directly from the dual-rail expansion of Problem 2.12 and the
following lemma.

We now show that the function f
(n)
NEG : Bn �→ Bn defined by f

(n)
NEG(x1, x2, . . . , xn) =

(x1, x2, . . . , xn) can be realized by circuit size of O(n2 log n) over Ω0 using �log2(n + 1)�
negations.

LEMMA 9.5.1 f
(n)
NEG : Bn �→ Bn can be realized with �log2(n+1)� negations by a circuit over

the standard basis that has size O(n2 log n) and depth O(log n).

Proof The punctured threshold function τ
(n)
t,¬i : Bn �→ B, 1 ≤ t, i ≤ n, is defined below.

τ
(n)
t,¬i(x) =

{
1

∑n
j=1,j �=i xj ≥ t

0 otherwise

This function has value 1 if t or more of the variables other than xi have value 1. The
standard threshold function τ

(n)
t : Bn �→ B has value 1 when t or more of the variables

have value 1. Since the function (τ (n)
0,¬i, τ

(n)
1,¬i, . . . , τ (n)

n−1,¬i) is the result of sorting all but
the ith input, we know from Theorem 6.8.3 that Batcher’s bitonic sorting algorithm will
produce this output with a circuit of size O(n log2 n) and depth O(log2 n) because max
and min of a comparator unit compute AND and OR on binary inputs. Ajtai, Komlós, and
Szemerédi [14] have improved this bound to O(n log n) but with a very large coefficient,

and simultaneously achieve depth O(log n). Thus, all the functions {τ (n)
t,¬i | 1 ≤ t, i ≤ n}

can be realized with O(n2 log n) gates and depth O(log n) over Ω0.

Observe that for input x there is some largest t, t = t0, such that τ
(n)
t0

(x) = 1. If

τ
(n)
t0,¬i(x) = 1, then xi = 0; otherwise, xi = 1. Let the implication function a ⇒ b

have value 1 when a = 0 or when a = 1 and b = 1 and value 0 otherwise. Then we
can express the implication function by the formula (a ⇒ b) = a ∨ b. It follows that

xi = (τ (n)
t0

(x) ⇒ τ
(n)
t0,¬i(x)) because the implication function has value 1 exactly when

xi = 0.
We use an indirect method to compute t0. Since τ

(n)
t (x) = 0 for t > t0, (τ (n)

t (x) ⇒
τ

(n)
t,¬i(x)) = 1 for t > t0. Also, both τ

(n)
t (x) and τ

(n)
t,¬i(x) have value 1 for t < t0. Using

(x ⇒ y) = x ∨ y, we can write xi as follows:

xi =
(

τ
(n)
0 (x) ∨ τ

(n)
0,¬i(x)

)
∧
(

τ
(n)
1 (x) ∨ τ

(n)
1,¬i(x)

)
∧ · · · ∧

(
τ

(n)
n−1(x) ∨ τ

(n)
n−1,¬i(x)

)
The circuit design is complete once a circuit for {τ (n)

t (x) | 1 ≤ t ≤ n} has been

designed. We begin by using a binary sorting circuit that computes {τ (n)
t (x) | 1 ≤ t ≤ n}

from x, which, as stated above, can be computed with O(n log2 n) gates over the standard

basis. Let st = τ
(n)
t (x) for 1 ≤ t ≤ n.

For n = K − 1, K = 2k and k an integer, we complete the design by constructing
a circuit for the function ν(k) : Bn �→ Bn, which, given as input the decreasing sequence
s1, s2, . . . , sn (si ≥ si+1), computes as its jth output zj = sj , 1 ≤ j ≤ n. (The case

n �= 2k − 1 is considered below.) That is, ν(k)(s) = z, where zt = τ
(n)
t (x). We give

a recursive construction of a circuit for ν(k) whose correctness is established by induction.

c©John E Savage 9.5 The Power of Negation 411

... ...

...

...

... ...
K = 2k

K∗ = 2k−1

z1 z(K/2)−1 z(K/2) z(K/2)+1 zK−1

z∗K∗−1z∗1

s∗1 s∗K∗−1

s1 s(K/2)−1 s(K/2) s(K/2)+1 sK−1

ν(k−1)

Figure 9.8 A circuit for ν(k) : Bn �→ Bn, n = K − 1, K = 2k. It is given the sorted n-tuple
s as input, where sj ≥ sj+1 for 1 ≤ j ≤ n, and produces as output z, where zj = sj .

The base case is a circuit for ν(1). This circuit has one input, s1, and one output, z1 = s1,
and can be realized by one negation and no other gates.

We construct a circuit for ν(k) from one for ν(k−1) using 2n additional gates and in-
creasing the depth by three, as shown in Fig. 9.8. Let the inputs and outputs to the circuit
for ν(k−1) be s∗i and z∗i , 1 ≤ i ≤ K∗ − 1, where K∗ = K/2. It follows that s∗i ≥ s∗i+1
for 1 ≤ i ≤ (K/2)− 1. By induction z∗i = s∗i for 1 ≤ i ≤ n.

To show that the jth output of the circuit for ν(k) is zj = sj , we consider cases. If
s2k−1 = 0, then sj = 0 for j > K/2. In this case the jth circuit output, (K/2) < j ≤
K − 1, satisfies zj = 1 (the corresponding output gate is OR), which is the correct value.
Also, for 1 ≤ j ≤ (K/2) − 1, zj = z∗j = sj since the inputs to the circuit for ν(k−1) are
s1, s2, . . . , s(K/2)−1 (sj = 0 for j > K/2) and its outputs are s1, s2, . . . , s(K/2)−1. On
the other hand, if sK/2 = 1, then sj = 1 and zj = 0 for j ≤ (K/2)−1 (the corresponding
output gate is AND). Also, for (K/2) + 1 ≤ j ≤ K − 1, zj = z∗j = sj since the inputs to
the circuit for ν(k−1) are s(K/2)+1, . . . , sK−1 and its outputs are s(K/2)+1, . . . , s(K/2)−1.

It follows that k = log2(n + 1) negations are used. The circuit for ν(k) uses a total of
C(k) = C(k − 1) + 2k+1 − 3 gates, where C(1) = 1. The solution to this recurrence
is C(k) = 4(2k) − 3k − 4 = 4n − 3 log2 n − 4. Also, the circuit for ν(k) has depth

412 Chapter 9 Circuit Complexity Models of Computation

D(k) = D(k−1)+4, where D(1) = 0. The solution to this recurrence is D(k) = 4(k−1).
If n is not of the form 2k − 1, we increase n to the next largest integer of this form, which
implies that k = �log2(n + 1)�. Using the upper bounds on the size of circuits to compute

τ
(n)
t,¬i(x) for 1 ≤ t, i ≤ n, we have the desired conclusion.

9.6 Lower-Bound Methods for Monotone Circuits
The best lower bounds that have been derived on the circuit size over complete bases of Boolean
functions on n variables are linear in n. Similarly, the best lower bounds on formula size that
have been derived over complete bases are at best quadratic in n. As a consequence, the search
for better lower bounds has led to the study of monotone circuits (their basis is Ωmon) for
monotone functions. In one sense, this effort has been surprisingly successful. Techniques
have been developed to show that some monotone functions have exponential circuit size.
Since most monotone Boolean functions on n variables have circuit size Θ(2n/n3/2), this is
a strong result. On the other hand, the hope that such techniques would lead to strong lower
bounds on circuit size for monotone functions over complete bases has not yet been realized.

Some monotone functions are very important. Among these are the clique function

f
(n)
clique,k : Bn(n−1)/2 �→ B. f

(n)
clique,k is associated with a family of undirected graphs

G = (V , E) on n = |V | vertices and |E| ≤ n(n− 1)/2 edges, where V = {1, 2, 3, . . . , n}.

The variables of f
(n)
clique,k are denoted {xi,j | 1 ≤ i < j ≤ n}, where xi,j = 1 if there is an

edge between vertices i and j and xi,j = 0 otherwise. The value of f
(n)
clique,k on these variables

is 1 if G contains a k-clique, a set of k vertices such that there is an edge between every pair of

vertices in the set. The value of f
(n)
clique,k is 0 otherwise. Clearly f

(n)
clique,k is monotone because

increasing the value of a variable from 0 to 1 cannot decrease the value of the function.
As stated in Problem 8.24, the CLIQUE problem is NP-complete. Since an instance of

CLIQUE on a graph with n vertices can be converted to the input format for f
(n)
clique,k in time

polynomial in n, if the circuit size for f
(n)
clique,k over a complete basis can be shown to be

superpolynomial, then from Corollary 3.9.1, P �= NP.
There are important similarities and differences between monotone and non-monotone

functions. Every non-monotone function can be realized by a circuit over the standard basis
Ω0 in which negations are used only on inputs. (See Problem 9.11.) On the other hand, since
circuits without negation compute only monotone functions (Problem 2), negations on inputs
are essential.

The first results showing the existence of monotone functions such that their monotone
and non-monotone circuit sizes are different were obtained for multiple-output functions. We

illustrate this approach below for the n-input binary sorting function, f
(n)
sort, whose monotone

circuit size is shown to be Θ(n log n). As stated in Problem 2.17, this function can be realized
by a circuit whose size over Ω0 is linear in n.

We introduce the path method to show that a gap exists between the monotone and non-
monotone circuit size of a family of functions. In Section 9.6.3 the approximation method

is introduced and used to show that the clique function f
(n)
clique,k has exponential monotone

circuit size.

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 413

9.6.1 The Path-Elimination Method
In this section we illustrate the path-elimination method for deriving lower bounds on circuit
size for monotone functions. This method demonstrates that a path of gates in a monotone
circuit can be eliminated by fixing one input variable. Thus, it is the monotone equivalent
of the gate-elimination method for general circuits. We apply the method to two problems,
binary sorting and binary merging.

Consider computing the binary sorting function f
(n)
sort : Bn �→ Bn introduced in Sec-

tion 2.11. This function rearranges the bits in a binary n-input string into descending order.
Thus, the first sorted output is 1 if one or more of the inputs is 1, the second is 1 if two or more

of them are 1, etc. Consequently, we can write f
(n)
sort(x1, x2, . . . , xn) = (τ (n)

1 , τ (n)
2 , . . . , τ (n)

n),
where τ

(n)
t is the threshold function on n inputs with threshold t whose value is 1 if t or more

of its inputs are 1 and 0 otherwise. Ajtai, Komlós, and Szemerédi [14] have shown the exis-
tence of a comparator-based sorting network on n inputs of size O(n log n). (The coefficient
on this bound is so large that the bound has only asymptotic value.) Such networks can be
converted to a monotone network by replacing the max and min operators in comparators
with OR and AND, respectively.

THEOREM 9.6.1 The monotone circuit size for f
(n)
sort satisfies the following bounds:

n�log2 n� − 2�log2 n� ≤ CΩmon

(
f

(n)
sort

)
= O(n log n)

Proof To derive the lower bound, we show that in any circuit for f
(n)
sort there is an input

variable that can be set to 1, thereby allowing at least �log2 n� gates along a path from it to

the output τ
(n)
1 to be removed from the circuit and converting the circuit to one for f

(n−1)
sort .

As a result, we show the following relationship:

CΩmon

(
f

(n)
sort

)
≥ CΩmon

(
f

(n−1)
sort

)
+ �log2 n�

A simple proof by induction and a little algebra show that the desired result follows from

this bound and the fact that CΩ(f (2)
sort) = 2, which is easy to establish.

Let xj = 0 for j �= i but let xi vary. The only functions computed at gates are 0, 1, or
xi. Also, the value of τ1(x) on such inputs is equal to xi. Consequently, there must be a
path P from the vertex labeled xi to τ1 such that at each gate on the path the function xi is
computed. (See Fig. 9.9.) Thus, if we set xi = 1 when xj = 0 for j �= i the output of each
of these gates is 1. Furthermore, since the circuit is monotone, each function computed at a
gate is monotone (see Problem 2). Thus, if any other input is subsequently increased from
0 to 1, the value of τ1 and of all the gates on the path P from xi remain at 1 and can be
removed. This setting of xi also has the effect of reducing the threshold of all other output
functions by 1 and implies that the circuit now computes the binary sorting function on one
fewer variable.

Consider a minimal monotone circuit for f
(n)
sort. The shortest paths from each input to

the output τ
(n)
1 form a tree of fan-in 2. From Theorem 9.3.1 there is a path in this tree from

some input, say xr, to τ
(n)
1 that has length at least �log2 n�. Consequently the shortest path

from xr to τ
(n)
1 has length at least �log2 n�, implying that at least �log2 n� gates can be

removed if xr is set to 1.

414 Chapter 9 Circuit Complexity Models of Computation

τn

x2x1

τ3

xn

τ2

xi = 1

τ1 τj

1

1

1

1

Figure 9.9 When xi = 1 there is a path P to τ1 such that each gate on P has value 1.

We now derive a stronger result: we show that every monotone circuit for binary merging

has a size that is Ω(n log n). Binary merging is realized by a function f
(n)
merge : Bn �→ Bn, n =

2k, defined as follows: given two sorted binary k-tuples x and y, the value of f
(n)
merge(x, y)

is the n-tuple that results from sorting the n-tuple formed by concatenating x and y. Thus,
a binary merging circuit can be obtained from one for sorting simply by restricting the values
assumed by inputs to the sorting circuit. (Binary merging is a subfunction of binary sorting.)

It follows that a lower bound on CΩmon

(
f

(n)
merge

)
is a lower bound on CΩmon

(
f

(n)
sort

)
.

THEOREM 9.6.2 Let n be even. Then the monotone circuit size for f
(n)
merge : Bn �→ Bn satisfies

the following bounds:

(n/2) log2 n−O(n) ≤ CΩmon

(
f (n)
merge

)
= O(n log n)

Proof The upper bound on CΩmon

(
f

(n)
merge

)
follows from the construction given in The-

orem 6.8.2 after max and min comparison operators are replaced by ANDs and ORs, respec-
tively.

Let k = n/2. The function f
(n)
merge operates on two k-tuples x and y to produce the

merged result f
(n)
merge(x, y), where x and y are in descending order; that is, x1 ≥ x2 ≥

· · · ≥ xk and y1 ≥ y2 ≥ · · · ≥ yk. As stated above for binary sorting, the output functions
are τ1, τ2, . . . , τn.

Let x1 = x2 = · · · = xr−1 = 1, xr+1 = · · · = xk = 0, y1 = y2 = · · · = ys = 1,
and ys+1 = · · · = yk = 0. Let xr be unspecified. Since the circuit is monotone, the value
computed by each gate circuit is 0, 1, or xr. Also,

τt(x, y) =

⎧⎪⎨⎪⎩
1 t < r + s

xr t = r + s

0 t > r + s

It follows that there must be a path P
(r+s)
r of gates from the input labeled xr to the

output labeled τr+s such that each gate output is xr. If xr = 0, since the components of x

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 415

6

5

4

3

2

1

1 2 3 i

1

2

3

3

2

1

e(j)
j =

Figure 9.10 Let f
(n)
merge(x, y) = (τ1, . . . , τn), where x and y are (n/2)-tuples. The dots in

the jth row show the inputs on which τj depends. e(j) is the number of dots in the jth row.

are sorted, xr+1 = · · · = xk = 0. On the other hand, if xr = 1, by monotonicity the value
of τr+s cannot change under variation of the values xr+1, . . . , xk. Thus, τj is essentially
dependent on xi for i and j satisfying 1 ≤ i ≤ k and i ≤ j ≤ i + k. (See Fig. 9.10.) Let
e(j) denote the number of variables in x on which τj depends; then e(j) = j for j ≤ k
and e(j) = 2k − j + 1 for j > k.

We show by induction that there exist vertex-disjoint paths between x1 and τs+1, x2

and τs+2, . . . , xk and τs+k for 0 ≤ s ≤ k. (See Fig. 9.11.) Thus, there are k + 1 sets of
vertex-disjoint paths connecting the k = n/2 inputs in x and k consecutive outputs.

τ2τ1 τ8τ7τ5τ3 τ6τ4

y4y3y2y1x4x3x2x1 x1 x2

τ2

x1 x2 x3 x4

τ5

(a) (b)

Figure 9.11 (a) In a monotone circuit for f
(n)
merge, n = 2k, k+1 sets of k disjoint paths exist be-

tween the k inputs x and k consecutive outputs. (b) The paths to an output τj form a binary tree.

416 Chapter 9 Circuit Complexity Models of Computation

To show the existence of the vertex-disjoint paths, let y1 = y2 = · · · = ys = 1,
ys+1 = · · · = yk = 0 and x1 = x2 = · · · = xr−1 = 1, but let xr, xr+1, . . . , xk be
unspecified. Then τr+s = xr and, as stated above, there is a path P

(r+s)
r of gates from an

input labeled xr to the output labeled τr+s such that each gate has value xr. Set xr = 1.

Reasoning as before, there must be a path P
(r+1+s)
r+1 of gates from an input labeled xr+1 to

the output labeled τr+1+s such that each gate has value xr+1. Thus, P
(r+1+s)
r+1 and P

(r+s)
r

are vertex-disjoint. Extending this idea, we have the desired conclusion about disjoint paths.
We now develop a second fact about these paths that is needed in the lower bound. Let

P
(r+s)
r be a path from xr to τr+s, as suggested in Fig. 9.11(a). Those paths connecting

inputs to any one output form a binary tree, as suggested in Fig. 9.11(b). The number of
inputs from which there is a path to τj is e(j), the number of inputs on which τj depends.

To derive the lower bound on CΩmon(f
(n)
merge), let d(i, j) denote the length (number

of edges or non-input vertices (gates)) on the shortest path from an input labeled xi to the
output labeled τj . (Clearly, d(i, j) = 0 unless i ≤ j ≤ i + k.) Since the path from
input xi to output τj described above has a length at least as large as d(i, j), it follows that

CΩmon

(
f

(n)
merge

)
satisfies the following bound:

CΩmon

(
f (n)
merge

)
≥ max

{
k∑

r=1

d(r, r + s) | 0 ≤ s ≤ k

}
Since the maximum of a set of integers is at least equal to the average of these integers, we
have the following for k = n/2 ≥ 1:

CΩmon

(
f (n)
merge

)
≥ 1

k + 1

k∑
s=0

k∑
r=1

d(r, r + s) =
1

k + 1

2k∑
j=1

k∑
i=1

d(i, j)

The last identity follows by using the fact that d(i, j) = 0 unless i ≤ j ≤ i + k. But∑k
i=1 d(i, j) is the sum of the distances of the shortest paths from the relevant inputs of x to

output τj , 1 ≤ j ≤ 2k. Since these paths form a binary tree and τj depends on e(j) inputs,
this is the external path length of a tree with e(j) leaves. The external path length is at least
e(j)�log2 e(j)�−2�log2 e(j)�+e(j) (see Problem 9.4). In turn, x�log2 x�−2�log2 x�+x ≥
x log2 x, because �log2 x� = (log2 x) + δ for 0 ≤ δ < 1 and x�log2 x� − 2�log2 x� + x =
x log2 x + x(1− 2δ + δ), where 1− 2δ + δ is easily shown to be a concave function whose
minimum value occurs at either δ = 0 or δ = 1, both of which are 0. Thus, 1−2δ + δ ≥ 0
and the result follows. Thus, the size of smallest monotone circuit satisfies the following
lower bound when n = 2k:

CΩmon

(
f (n)
merge

)
≥ 1

k + 1

2k∑
j=1

[e(j) log2 e(j)]

=
2

k + 1

k∑
j=1

[j log2 j]

The last equality uses the definition of e(j) given above. By applying the reasoning in
Problem 2.1 and captured in Fig. 2.23, it is easy to show that the above sum is at least as

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 417

large as (2/(k + 1))(log2 e)
∫ k

j=1 y loge y d y, whose value is (2/(k + 1))[(k2/2) log2 k −
(1/4)k2(log2 e) + 1/4]. From this the desired conclusion follows, since k = n/2.

We now present lower bounds on the monotone circuit size of Boolean convolution and
Boolean matrix multiplication, problems for which the gap between the monotone and non-
monotone circuit size is much larger than for sorting and merging.

9.6.2 The Function Replacement Method
The function replacement method simplifies monotone circuits by replacing a function com-
puted at an internal vertex by a new function without changing the function computed by the
overall circuit. Since a replacement step eliminates gates and reduces a problem to a subprob-
lem, the method provides a basis for establishing lower bounds on circuit complexity using
proof by induction.

We describe two replacement rules and then apply them to Boolean convolution and
Boolean matrix multiplication. These two problems are defined in the usual way except that
variables assume Boolean values in B and the multiplication and addition operators are inter-
preted as AND and OR, respectively.

REPLACEMENT RULES A replacement rule is a rule that allows a function computed at a vertex
of a circuit to be replaced by another without changing the function computed by the circuit.
Before stating such rules for monotone functions, we introduce some terminology.

DEFINITION 9.6.1 Let x denote the variables of a Boolean function f : Bn �→ B. An implicant
of f is a product (AND), π, of a subset of the literals of f (the variables and their complements)
such that if π(x) = 1 on input n-tuple x, then f(x) = 1. (This is denoted π ≤ f .) The set of
implicants of a function f is denoted I(f).

An implicant π of a Boolean function f is a prime implicant if there is no implicant π1

different from π such that π ≤ π1 ≤ f . The set of prime implicants of a function f is denoted
PI(f).

A monotone implicant (also called a monom) of a monotone Boolean function f : Bn �→ B
is the product (AND) π of uncomplemented variables of f such that if π(x) = 1 on input n-tuple
x, then f(x) = 1. The empty monom has value 1. The set of monotone implicants of a
function f is denoted Imon(f).

A monotone implicant π of a Boolean function f is a monotone prime implicant if there is
no monotone implicant π1 different from π such that π ≤ π1 ≤ f . The set of monotone prime
implicants of a function f is denoted PImon(f).

The products in the sum-of-products expansion (SOPE) are (non-monotone) implicants
of a Boolean function. If a function is monotone, it has monotone implicants (monoms). The
prime implicants of a Boolean function f define it completely; the OR of its prime implicants
is a formula representing it. In the case of a monotone Boolean function, the prime implicants
are monotone prime implicants. (See Problem 9.33.)

When it is understood from context that an implicant or prime implicant is monotone,
we may omit the word “monotone” and use the subscript “mon.” This will be the case in this
section.

418 Chapter 9 Circuit Complexity Models of Computation

The function cj+1 = (pj ∧ cj) ∨ gj used in the design of a full adder (see Section 2.7)
is a monotone function of the variables pj , cj , and gj . Its set of implicants is I(cj+1) =
{pj ∧ cj , gj , pj ∧ gj , cj ∧ gj , pj ∧ cj ∧ gj}. If any one of these products has value 1 then so
does cj+1. Its set of prime implicants is PI(cj+1) = {pj ∧ cj , gj} ⊆ I(cj+1) because these
are the smallest products for which cj+1 has value 1. Thus, cj+1 is defined by PI(cj+1) and
represented as cj+1 = (pj ∧ cj) ∨ gj .

We now present a replacement rule for monotone functions that captures the following
idea: if a function g computed by a gate of a monotone circuit has a monom π that is not a
monom of the function f computed by the complete circuit, then π can be removed from g
without affecting the value of f . This idea is valid in monotone circuits because the absence
of negation provides only one way to eliminate extra monoms, namely, by ORing them with
products containing a subset of their variables. Taking the AND of a monom with another
term creates a longer monom. Thus, since monoms that are not monoms of the function f
computed by a circuit must be eliminated, there is no loss of generality in assuming that they
are not produced in the first place.

DEFINITION 9.6.2 Let f : Bn �→ B and g : Bn �→ B be two monotone functions. Let g be
computed within a monotone circuit for f . The following is a replacement rule for g:

a) Let π1 ∈ PI(g) and let h be defined by PI(h) = PI(g)−{π}. Replace the gate computing
g by one computing h if for all monoms π′ (including the empty monom), π ∧ π′ �∈ PI(f).

We now show that any monom π satisfying Rule (a) can be removed from PI(g) because
it contributes nothing to the computation of f .

LEMMA 9.6.1 Let f : Bn �→ B and g : Bn �→ B be two monotone functions and let π ∈ PI(g)
be such that for all monoms π′ (including the empty monom), π ∧ π′ �∈ PI(f). Let h be defined
by PI(h) = PI(g)−{π}. If g is computed in some monotone circuit for f , the circuit obtained
by replacing g by h also computes f .

Proof Let C denote a circuit for f within which the function g is computed. Let C∗ be
the circuit obtained by replacing g by h under Rule (a). Since h ≤ g and the circuit is
monotone, the function f∗ computed by C∗ satisfies f∗ ≤ f . We suppose that f∗ �= f and
show that a contradiction results.

If f∗ �= f , there is some input n-tuple a ∈ Bn such that f∗(a) = 0 but f(a) = 1.
Since the only change in the circuit occurred at the gate computing g, by monotonicity, on
this tuple g(a) = 1 but h(a) = 0. It follows that π(a) = 1. Let π′ be a prime implicant of
f for which π′(a) = 1. We show that π′ = π ∧ π1 for some monom π1, in contradiction
to the condition of the lemma.

Let xi be any variable of π. Then ai = 1 since π(a) = 1. Define the n-tuple b by
bi = 0 and bj = aj for j �= i. Since b ≤ a and π(b) = 0, h and g both have the same
value on b. Thus, both circuits compute the same value, which must be 0 by monotonicity
and the fact that f∗ = 0 on a. Since π′(a) = 1 and π′(b) = 0 but only one variable was
changed, namely xi, π′ must contain xi. Since xi is an arbitrary variable of π, it follows
that π′ contains π as a sub-monom.

This last result implies that if a function f has no prime implicants containing more than
l variables, then any monoms containing more than l variables can be removed where they

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 419

are first created. This will be useful later when discussing Boolean convolution and Boolean
matrix multiplication, since each of their prime implicants depends on two variables.

BOOLEAN CONVOLUTION Convolution over commutative rings is defined in Section 6.7. In
this section we introduce the Boolean version, which is defined by a monotone multiple-output
function, and derive a lower bound of n3/2 on its monotone circuit size. We also show that
over a complete basis Boolean convolution can be realized by a circuit of nearly linear size.

DEFINITION 9.6.3 The Boolean convolution function f
(n)
conv : B2n �→ B2n−1 maps Boolean

n-tuples a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) onto a (2n − 1)-tuple c, denoted
c = a ⊗ b, where cj , 0 ≤ j ≤ 2n − 2, is defined as

cj =
∑

r+s=j

ar ∧ bs

Boolean convolution can be realized by a circuit over the standard basis Ω0 for multiplying
binary numbers (see Section 2.9) as follows. Represent a and b by the following integers where
q = �log2 n�+ 1:

a =
n−1∑
i=0

ai2
qi, b =

n−1∑
j=0

bj2qj

That is, each bit in a and b is separated by �log2 n� zeros. The formal product of a and b is

ab =
2n−2∑
k=0

⎛⎝ ∑
i+j=k

aibj

⎞⎠ 2qk

Because no inner sum in the above expression is more than 2n − 1, at most q bits suffice to
represent it in binary notation. Consequently, there is no carry between any two inner sums.
It follows that an inner sum is non-zero if and only if ck = 1. Thus, the value of ck can be
obtained by forming the OR of the bits in positions kq, kq +1, . . . , kq + q−1 of the product.
Since two binary m tuples can be multiplied in the standard binary notation by a circuit of
size O (m(log m)(log log m)) (see Section 2.9.3), the function f

(n)
conv can be computed by a

circuit of size O
(
n(log2 n)(log log n)

)
since m = nq = O(n log n).

THEOREM 9.6.3 The circuit size of f
(n)
conv : B2n �→ B2n−1 over the standard basis satisfies

CΩ0

(
f (n)
conv

)
= O

(
n(log2 n)(log log n)

)
Our goal is to use the function replacement method to show that every monotone circuit

for Boolean convolution has size Ω(n3/2). As explained above, the method is designed to
use induction to prove lower bounds on monotone circuit size. Each replacement step removes
prime implicants from the function g computed at some gate and changes the function f com-
puted by the circuit. If the new function f∗ is in the same family as f , the gate-replacement
process can continue and induction can be applied. Since the convolution function does not
necessarily change to another instance of itself on fewer variables, we place this function in the
class of semi-disjoint bilinear forms.

420 Chapter 9 Circuit Complexity Models of Computation

DEFINITION 9.6.4 Let f (n,m,p) = (f1, f2, . . . , fp), where each fr : Bn+m �→ B, 1 ≤ r ≤ p,
is a monotone function on n-tuple x and m-tuple y; that is, fr(x, y) ∈ B. f (n,m,p) is a bilinear
form if each prime implicant of each fr, 1 ≤ r ≤ p, contains one variable of x and one of y.
A function f (n,m,p) is a semi-disjoint bilinear form if in addition PI(fr) ∩ PI(fs) = ∅ for
r �= s and each variable is contained in at most one prime implicant of any one function.

Before deriving a lower bound on the number of gates needed for a semi-disjoint bilinear
form, we introduce a new replacement rule peculiar to these forms.

LEMMA 9.6.2 No gate of a monotone circuit of minimal size for a semi-disjoint bilinear form
f (n,m,p) computes a function g whose prime implicants include either two variables of x or of y.

Proof We suppose that a minimal monotone circuit does contain a gate g whose prime
implicants contain either two variables of x or two of y and show that a contradiction
results. Without loss of generality, assume that PI(g) contains xi and xj , i �= j. If there is
a gate g satisfying this hypothesis, there is one that is closest to an input variable. This must
be an OR gate because AND gates increase the length of prime implicants. Because the gate
in question is closest to inputs, at least one of xi and xj is either an input to this OR gate or
is the input to some OR gate that is on a path of OR gates to this gate. (See Fig. 9.12.)

A simple proof by induction on its circuit size demonstrates that if a circuit for f (n,m,p)

= (f1, . . . , fp) contains a gate computing g then fr, 1 ≤ r ≤ p, can be written as follows
(see Problem 9.36):

fr(x, y) = (pr(x, y) ∧ g(x, y)) ∨ qr(x, y) (9.1)

Here pr(x, y) and qr(x, y) are Boolean functions. Of course, if for no r is fr a function of
g, then we can set pr(x, y) = 0 and the circuit is not minimal.

If fr depends on g, pr(x, y) �= 0. However, pr(x, y) �= 1 because otherwise both
xi and xj are prime implicants of fr, contradicting its definition. Also, PI(pr(x, y))
cannot have any monoms containing one or more instances of a variable in x or two or
more instances of variables in y because when ANDed with g they produce monoms that
could be removed by Rule (a) of Definition 9.6.2 and the circuit would not be minimal. It
follows that PI(pr(x, y)) can contain only single variables of y. But this implies that for
some k, yk ∧ g ∈ I(fr), which together with the fact that xi, xj ∈ PI(g) implies that

x4x1 x3x2

g

Figure 9.12 If PI(g) for a gate g contains xi and xj , then either xi or xj is input to an OR

gate on a path of OR gates to g.

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 421

yk ∧ xi, yk ∧ xj ∈ I(fr). But yk ∧ xi and yk ∧ xj cannot both be prime implicants of fr

because they violate the requirement that no two prime implicants of fr contain the same
variable. It follows that fr does not depend on g.

The Boolean convolution function is a semi-disjoint bilinear form. Each implicant of
each component of c = a ⊗ b contains one variable of a and one of b. In addition, the prime
implicants of ci and cj are disjoint if i �= j. Finally, each variable appears in only one implicant
of a component function, although it may appear in more than one such function.

THEOREM 9.6.4 Let f (n,m,p) : Bn+m �→ Bp, f (n,m,p) = (f1, f2, . . . , fp), be a semi-disjoint
bilinear form, where fr(x, y) ∈ B. Let di be the number of functions in {f1, f2, . . . , fp} that
are essentially dependent on the input variable xi, 1 ≤ i ≤ n. Then the monotone circuit size of
f (n,m,p) must satisfy the following lower bound:

CΩmon

(
f (n,m,p)

)
≥

n∑
i=1

√
di

Proof The proof is by induction. The basis for induction is the semi-disjoint bilinear form
on two variables f (1,1,1)(x, y) = x ∧ y. In this case d1 = 1 and CΩmon

(
f (1,1,1)

)
= 1.

We assume that any semi-disjoint bilinear form in n + m− 1 or fewer variables satisfies the
lower bound. We show that setting xi = 0 produces another function that is a semi-disjoint
bilinear form and allows the removal of at least

√
di gates. The lower bound follows by

induction. We consider only minimal circuits.
Let ui denote the number of functions in {f1, f2, . . . , fp} that are essentially dependent

on xi and have a single prime implicant (such as c0 = a0 ∧ b0 and c2n−2 = an−1 ∧ bn−1

for convolution). Setting xi = 0 eliminates the ui AND gates at which these outputs
are computed. We show that at least

√
di − ui OR gates can also be eliminated. Since

ui +
√

di − ui ≥
√

di (see Problem 9.8), we have the desired conclusion.
Let Vi denote those outputs that depend on xi whose associated function has at least

two prime implicants. Then |Vi| = di − ui. There must be at least one OR gate on each
path P from xi to fr ∈ Vi because, if not, each path contains only ANDs and fr has only
one prime implicant that contains xi, in contradiction to the definition of Vi.

We claim that on each path P from an input labeled xi to some fr ∈ Vi there is an
OR gate computing a function gt such that xit

∧ yjt
∈ PI(gt) for some xit

�= xi. Let
Ei = {gt} be those OR gates closest to an input vertex xi. Call Ei the bottleneck for
variable xi. We shall show that |Ei| ≥

√
di − ui and that each of the gates in Ei can be

eliminated by setting xi = 0.
If the claim is false, then there is a path P from input xi to output fr ∈ Vi such that

for each OR gate (let it compute gt) on P there is no xit
�= xi such that xit

∧ yjt
∈

PI(gt). Therefore, either all monoms of PI(gt) a) contain xi or b) are monoms that are
not implicants of an output (they are not of the form xit

∧ yjt
). In case a), setting xi = 0

causes the OR gates on P to have value 0, which forces the AND gates on P and fr to
have value 0, contradicting the definition of fr (it has at least two prime implicants). In the
second case under Rule (a) the monoms not containing xi can be removed without changing
the functions computed. Thus, when xi = 0, the output of each OR gate on P has value 0,
which contradicts the definition of fr since it contains at least two prime implicants.

We now show that |Ei| ≥
√

di − ui. Since each of the OR gates in Ei has a prime
implicant xit

∧yjt
not containing xi, their outputs can be set to 1 by setting xit

= yjt
= 1

422 Chapter 9 Circuit Complexity Models of Computation

for 1 ≤ t ≤ |Ei|. This eliminates all dependence of fr ∈ Vi on xi. However, since inputs
have only been assigned value 1 (and not 0), this dependence on xi can be eliminated only
if all functions in Vi have value 1; that is, at least one prime implicant of each of them is
set to 1 by this assignment. Since each variable appears in at most one prime implicant of
a function, the number of different variables xit

(and yit
) that are set to 1 is at most |Ei|.

Thus, at most |Ei|2 prime implicants can be assigned value 1 by this assignment. Thus, if
|Ei|2 < (di − ui), we have a contradiction since |Vi| = (di − ui).

We now show that |Ei| OR gates can be eliminated by setting xi = 0. Since each gate is
a closest gate to an input labeled xi with the stated property, there is an OR gate on the path
to it with xi as an input. Thus, setting xi = 0 eliminates one of the two inputs to the OR

gate and the need for the gate itself.

Since for each of the n input variables in a there are n output functions in c = a ⊗ b that
depend on it (di = n for 1 ≤ i ≤ n), the following corollary is immediate.

COROLLARY 9.6.1 Let f
(n)
conv : B2n �→ B2n−1 be the Boolean convolution function. Then the

monotone circuit size of f
(n)
conv satisfies the following lower bound:

CΩmon

(
f (n)
conv

)
≥ n3/2

Unfortunately, no upper bound on the monotone circuit size of f
(n)
conv is known that

matches this lower bound. A stronger statement can be made for Boolean matrix multipli-
cation.

BOOLEAN MATRIX MULTIPLICATION Matrix multiplication over rings is discussed at length in
Section 6.3. In this section we introduce the Boolean version. An I × J matrix A = [ai,j],
1 ≤ i ≤ I and 1 ≤ j ≤ J , is a two-dimensional array of elements in which ai,j is the element
in the ith row and jth column. We take the entries in a matrix to be Boolean variables.

DEFINITION 9.6.5 Let A = [ai,k], 1 ≤ i ≤ n and 1 ≤ k ≤ m, B = [bk,j], 1 ≤ k ≤ m and
1 ≤ j ≤ p, and C = [ci,j], 1 ≤ i ≤ n and 1 ≤ j ≤ p, be n×m, m× p, and n× p matrices,

respectively. The product C = A × B of A and B is the function f
(n,m,p)
MM : Bnm+mp �→ Bnp

whose value on the matrices A and B is the matrix C whose entry in row i and column j, ci,j , is
defined as

ci,j =
m∨

k=1

ai,k ∧ bk,j

In a more general context the AND operator ∧ and the OR operator ∨ are replaced by the
multiplication and addition operators over rings.

The above definition can be used as an algorithm to compute ci,j , 1 ≤ i ≤ n and 1 ≤
j ≤ p, from the entries in matrices A and B. We call this the standard matrix-multiplication
algorithm. It uses nmp ANDs and n(m−1)p ORs. We now show that every monotone circuit
for matrix multiplication requires at least this many ANDs and ORs.

Clearly the matrix multiplication function is a bilinear form. We associate the entries in
A with the tuple x and those in B with y. We strengthen Theorem 9.6.4 to obtain a lower
bound on the number of ORs needed to realize it in a monotone circuit.

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 423

LEMMA 9.6.3 Every monotone circuit for Boolean matrix multiplication f
(n,m,p)
MM requires at least

n(m− 1)p OR gates.

Proof In the proof of Theorem 9.6.4 we identified a set Ei of gates called the bottleneck
associated with each input variable xi. We demonstrated that each of these gates can be
eliminated by setting xi = 0 and that Ei has at least

√
di − ui gates, where di − ui = |Vi|

is the number of circuit outputs that depend essentially on xi and have at least two prime
implicants. These results were shown by proving that all gates in Ei are OR gates and that
the tth of these gates’ associated function contains a prime implicant of the form xit

∧ yjt

for xit
�= xi. We then demonstrated that the dependence of the outputs in Vi on the input

xi can be eliminated by setting xit
= yjt

= 1 for 1 ≤ t ≤ Ei but that this contradicts
the definition of a semi-definite bilinear form if |Ei|2 < |Vi|. Finally, we proved that by
setting xi = 0 each of the gates in Ei could be eliminated. For this lemma, we need only
strengthen the lower bound on Ei for matrix multiplication.

Consider a minimal circuit. The proof is by induction on m, with the base case being
m = 1. In the base case ci,j = ai,1 ∧ b1,j for 1 ≤ i ≤ n and 1 ≤ j ≤ p and no ORs

are needed. As inductive hypothesis we assume that f
(n,m−1,p)
MM requires at least n(m− 2)p

OR gates. We show that setting any column of A in f
(n,m,p)
MM to 0 eliminates np OR gates

and reduces the problem to an instance of f
(n,m−1,p)
MM . It follows that f

(n,m,p)
MM requires

n(m− 1)p OR gates.
When m ≥ 2, each output function ci,j has at least two prime implicants. We apply

the bottleneck argument to this case. Consider the bottleneck Ei,k associated with input
variable ai,k. We show that |Ei,k| ≥ p, from which it follows that at least p OR gates can be
eliminated by setting xi,k = 0. This reduces the problem to another set of bilinear forms.
Repeating this for 1 ≤ i ≤ n, we eliminate np OR gates, one column of A, and one row of
B. Let Vi,j = {ci,j | 1 ≤ j ≤ p} be the outputs that depend on ai,k.

To show that |Ei,k| ≥ p, let the th gate of Ei,k compute xit
∧ yjt

for xit
�= ai,k.

Here xit
= ait,kt

and yjt
= blt ,jt

for some it, kt, lt, and jt. If we set all entries in
{ait,kt

| 1 ≤ t ≤ |Ei,k|} ∪ {blt,jt
| 1 ≤ t ≤ |Ei,k|} to 1, we eliminate all dependence of

outputs in Vi,k on ai,k. However, since |Vi,j | = p, the set {blt ,jt
} must contain at least one

variable used in ci,j for each 1 ≤ j ≤ p. Thus, |Ei,k| ≥ p.

We now derive a lower bound on the number of AND gates needed for Boolean matrix
multiplication.

LEMMA 9.6.4 Every monotone circuit for Boolean matrix multiplication f
(n,m,p)
MM requires at least

nmp AND gates.

Proof Consider a minimal circuit. The proof is by induction on m, the base case being
m = 1. In the base case ci,j = ai,1 ∧ b1,j for 1 ≤ i ≤ n and 1 ≤ j ≤ p and np ANDs are
needed, since np results must be computed, each requiring one AND, and all functions are

different. As inductive hypothesis we assume that f
(n,m−1,p)
MM requires at least n(m − 1)p

AND gates. We show that setting any column of A in f
(n,m,p)
MM to 1 and the corresponding

row of B to 0 eliminates np AND gates and reduces the problem to an instance of f
(n,m−1,p)
MM .

It follows that f
(n,m,p)
MM requires nmp AND gates.

For arbitrary 1 ≤ k ≤ m let Gi,j be a gate closest to inputs computing a function g
such that PI(g) contains ai,k ∧ bk,j . Since the gate associated with ci,j has ai,k ∧ bk,j as a

424 Chapter 9 Circuit Complexity Models of Computation

prime implicant, there is such a gate Gi,j . Furthermore, Gi,j must be an AND gate because
OR gates cannot generate new prime implicants. Let G1 and G2 be gates generating inputs
for Gi,j . Let them compute functions g1 and g2. It follows from the definition of Gi,j that
ai,k ∈ PI(g1) and bk,j ∈ PI(g2) or vice versa. Let the former hold. If ai,k = 1, g1 = 1
and Gi,j can be eliminated. We now show that Gi,j �= Gi′,j′ for (i, j) �= (i′, j′). Suppose
not. Since i �= i′ or j �= j′, there are at least three distinct variables among ai,k, ai′,k, bk,j ,
and bk,j′ . Therefore either g1 or g2 has at least two of these variables as prime implicants.
By Lemma 9.6.2 this circuit is not minimal, a contradiction.

We summarize the results of this section below.

THEOREM 9.6.5 The standard algorithm for f
(n,m,p)
MM : Bnm+mp �→ Bnp, the Boolean matrix

multiplication function, is optimal. It uses nmp ANDs and n(m− 1)p ORs.

We now show that the monotone circuit size of the clique function is exponential.

9.6.3 The Approximation Method
The approximation method is used to derive large lower bounds on the monotone circuit size
for certain monotone Boolean functions. In this section we use it to derive an exponential

lower bound on the size of the smallest monotone circuit for the clique function f
(n)
clique,k :

Bn(n−1)/2 �→ B. This method provides an interesting approach to deriving large lower bounds
on circuit size. However, as mentioned in the Chapter Notes, it is doubtful that it can be used
to obtain large lower bounds on circuit size over complete bases.

The approximation method converts a monotone circuit C computing a function f into
an approximation circuit Ĉ computing a function f̂ . This is done by repeatedly replacing a
previously unvisited gate farthest away from the output gate by an approximation gate that
computes an approximation to the AND or OR gate it replaces. Each replacement operation
changes the circuit and increases by a small amount the number of input tuples on which f
and the function computed by the new circuit differ. When the entire replacement process is
complete, the resulting circuit approximates f poorly; that is, f̂ and f differ on a large number
of inputs. For this to happen, the original monotone circuit must have had many gates, each
of which contributes a relatively small number of errors to the complete replacement process.
This is the essence of the approximation method.

There are a number of ways to approximate AND and OR gates in a monotone circuit.
Razborov [270], who introduced the approximation method, used an approximation for gates
based on clique indicators, monotone functions associated with a subset of a set of vertices
that has value 1 exactly when there is an edge between every pair of vertices in the subset. In
this section gates are approximated in terms of the SOPE and POSE forms, a method used by
Amano and Maruoka [20] to approximate the clique function.

It is not hard to show that the monotone circuit size of f
(n)
clique,k is O(nn). (See Prob-

lem 9.37.) We now show that all monotone circuits for f
(n)
clique,k have size CΩmon

(
f

(n)
clique,k

)
≥

1
2 (1.8)min(

√
k−1/2,n/(2k)), which is 2Ω(n1/3) for k proportional to n2/3.

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 425

TEST CASES The quality of an approximation to the clique function f
(n)
clique,k is determined

by providing positive and negative test inputs. A k-positive test input is a binary n(n−1)/2-
tuple that describes a graph containing a single k-clique.

The negative test inputs, defined below, describe graphs that have many edges but not
quite enough to contain a k-clique. A special set of negative test inputs is associated with
balanced partitions of the vertices of an n-vertex graph G = (V , E). A (k − 1)-balanced
partition of V = {v1, . . . , vn} is a collection of k − 1 disjoint sets, V1, V2, . . . , Vk−1, such
that each set contains either �n/(k− 10� or �n/(k− 1)� elements. (By Problem 9.5 there are
w = n mod (k − 1) sets of the first kind and k − 1 − w sets of the second kind.) The graph
associated with a particular (k−1)-balanced partition has an edge between each pair of vertices
in different sets and no other edges. For each (k − 1)-balanced partition, a k-negative test
input is a binary n(n− 1)/2-tuple x describing the graph G associated with that partition.

LEMMA 9.6.5 There are τ+ k-positive test inputs, where

τ+ =
(

n

k

)
=

n!
k!(n − k)!

and τ− k-negative test inputs, where for w = n mod (k − 1)

τ− =
n!

(� n
k−1�!)w(� n

k−1�!)k−1−ww!(k − 1 − w)!

Proof It is well known that τ+ =
(
n
k

)
. To derive the expression for τ− we index each

element of each set in a (k−1)-balanced partition. Such a partition has w = n mod (k−1)
sets containing �n/(k−1)� elements and k−1−w sets containing �n/(k−1)� elements.
The elements in the first w sets are indexed by the pairs {(i, 1), (i, 2), . . . , (i, �n/(k −
1)�)} for 1 ≤ i ≤ w. Those in the remaining k − 1 − w sets are indexed by the pairs
{(i, 1), (i, 2), . . . , (i, �n/(k − 1)�)} for w + 1 ≤ i ≤ k − 1. (See Fig. 9.13.) Let P
be the set of all such pairs. To define a k-negative graph, we assign each vertex in the set
V = {1, 2, . . . , n} to a unique pair. This partitions the vertices into k − 1 sets. If vertices
va and vb are in the same set, the edge variable xa,b = 0; otherwise xa,b = 1. These
assignments define the edges in a graph G = (V , E). There are n! assignments of vertices
to pairs. Of these, there are (�n/(k − 1)�!)w(�n/(k − 1)�!)k−1−ww!(k − 1 − w)! that

(3, 1)

v3 v7 v1 v2 v9 v5 v6 v4 v8

(3, 3)

v2 v1 v3 v7 v5 v10 v9 v4 v8 v6

(3, 2)(2, 3)(2, 1) (2, 2)(1, 1) (1, 4)(1, 3)

v10

(1, 2)

Figure 9.13 A set of pairs P indexing the elements of sets in a (k − 1)-balanced partition of
a set V of n vertices. In this example n = 10 and k = 4 and the partition has three sets, V1,
V2, and V3 containing four, three, and three elements, respectively. Shown are two assignments of
variables to pairs in P that correspond to the same partition of V .

426 Chapter 9 Circuit Complexity Models of Computation

correspond to each graph. To see this, observe that there are �n/(k − 1)�! ways to permute
the elements in each of the first w sets and �n/(k − 1)�! ways to permute the elements in
each of the remaining k− 1−w sets. Also, each of the first w (the last k− 1−w) sets have
the same size and can be ordered in any of w! ((k − 1 − w)!) ways without changing the
graph.

APPROXIMATOR CIRCUITS It simplifies the development of lower bounds to assume that each
AND gate in a circuit is followed by an OR gate and vice versa and that the output gate is an
AND gate. This requirement can be met by interposing between successive AND (OR) gates
an OR (AND) gate both of whose inputs are connected together. Since this transformation at
most triples the number of gates, an exponential lower bound on the size of the transformed
circuit yields an exponential lower bound on the size of the original circuit.

A monotone circuit for f
(n)
clique,k has (edge) variables drawn from the set {xi,j | 1 ≤ i <

j ≤ n}. The approximation to an input variable xi,j is xi,j itself. Gates in a circuit are succes-
sively replaced by approximator circuits starting with a gate that is at greatest distance from the
root (output vertex) and continuing with previously unvisited gates at greatest distance from
the root. Thus, when an AND or OR gate is replaced, its inputs have previously been replaced
by functions fl and fr that approximate the functions gl and gr computed in the original
circuit.

Approximations to AND (∧) and OR (∨) gates are denoted ∧̂ and ∨̂, respectively. As seen
below, the approximation given to a gate is context dependent. Approximations are defined
in terms of endpoint sets. Given a set of edge variables, for example {x1,2, x1,3, x2,3, x1,4}, its
associated endpoint set is the set of vertex indices used to define the edge variables, which is
{1, 2, 3, 4} in this example. Given a term t (a product (AND) or sum (OR) of edge variables),
the endpoint set associated with it, E(t), is the endpoint set of the edge variables appearing in
the term. For example, if t = x1,2 ∧ x1,3 ∧ x2,3 ∧ x1,4 or t = x1,2 ∨ x1,3 ∨ x2,3 ∨ x1,4, then
E(t) = {1, 2, 3, 4}. The endpoint size of a term t, denoted |E(t)|, is the number of indices
in E(t).

Consider a gate to be approximated. Let its two inputs be from gates that compute func-
tions fl and fr. Like any function, fr and fl can be represented in either the monotone SOPE
or POSE form. (All SOPEs and POSEs in this section are monotone.) The approximation
rules for AND and OR gates are described below and denoted ∧̂ and ∨̂, respectively. Here we
let p = �

√
(k − 1)/2� and q = �n/(4k)�.

∧̂: The approximation fl∧̂fr to fl ∧ fr is obtained by representing fl ∧ fr in the sum-of-
products expansion (SOPE) and eliminating all product terms whose endpoint set contains
more than p vertices. It follows that fl ∧ fr ≥ fl∧̂fr.

∨̂: The approximation fl∨̂fr to fl ∨fr is obtained by representing fl ∨fr in the product-of-
sums expansion (POSE) and eliminating all sum terms whose endpoint set contains more
than q vertices. It follows that fl ∨ fr ≤ fl∨̂fr.

Since fl ∧ fr ≥ fl∧̂fr and fl ∨ fr ≤ fl∨̂fr, if a positive test input x causes the output
of the approximated circuit to have value 0 when it should have value 1, then there is an
approximated AND gate (including the output gate) that has value 0 on x when it should have
value 1. Similarly, if there is a negative test input x that causes the approximated output to be
1 when it should be 0, there is an approximated OR gate that has value 1 on x when it should
have value 0. We now examine the performance of approximator circuits.

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 427

PERFORMANCE OF APPROXIMATOR CIRCUITS We now show that when the approximation pro-

cess is complete, the approximation circuit for f
(n)
clique,k makes a very large number of errors

but that each gate approximation introduces a small number of errors. Thus, many gates must
have been approximated to produce the large number of errors made by the fully approximated

circuit. In fact, we show that the approximating circuit for f
(n)
clique,k either has output identi-

cally 0, thereby making one error on each of the τ+ =
(
n
k

)
positive test inputs (it produces 0

when it should produce 1), or makes τ−/2 errors on the τ− negative test inputs (it produces
1 when it should produce 0). On the other hand, we also show that approximating one AND

or OR gate causes a small number of errors, at most eAND errors per AND gate on positive
test inputs and at most eOR errors per OR gate on negative test inputs, quantities for which

upper bounds are derived below. It follows that the original circuit for f
(n)
clique,k either has at

least τ+/eAND AND gates or at least τ−/(2eOR) OR gates. The lower bound on the monotone

circuit size of f
(n)
clique,k is the larger of these two lower bounds.

LEMMA 9.6.6 Let k ≤ n + 1. Then any approximation circuit for f
(n)
clique,k either computes a

function that is identically zero or makes errors on half of the k-negative test inputs.

Proof Let the approximation circuit for f
(n)
clique,k compute the function

̂
f

(n)
clique,k. If this

function is identically zero, we are done. Suppose not. Since the output gate in the original

circuit is an AND gate, the function
̂

f
(n)
clique,k is represented by a SOPE in which each term

is the product of variables whose endpoint set (the vertices involved) has size at most p.

Because f
(n)
clique,k is not identically zero, there is a non-zero term t such that

̂
f

(n)
clique,k ≥ t.

An error is made on a negative test input if t = 1. But this happens only if each of the
endpoints in E(t) is in a different set of the (k−1)-balanced partition defining the negative
test input.

Let φ be the fraction of the negative test inputs on which t = 1. We derive a lower
bound to φ by deriving an upper bound on the fraction χ of the (k−1)-balanced partitions
with the property that two or more vertices in E(t) fall into the same set. It follows that
φ ≥ 1 − χ.

To simplify bounding χ, we use the one-to-one correspondence developed in the proof
of Lemma 9.6.5 between the n vertices in V = {1, 2, 3, . . . , n} and the pairs P associated
with a (k− 1)-balanced partition. Since E(t) has at most p vertices, the number of ways to
assign two vertices from E(t) to pairs in P so that two of them fall into the same set, N2,
is at most the number of ways to choose two vertices from a set of p vertices, p(p − 1)/2,
times the number of ways of assigning these two vertices to pairs in P , m2, and the number
of ways of assigning the remaining n− 2 vertices, (n− 2)!. Here m2 is at most the product
of the number of ways of choosing a pair for the first vertex, (k − 1)�n/(k − 1)�, and the
number of ways of choosing a pair for the second from the same set, �n/(k−1)�−1. Thus,
N2 is at most (p(p−1)/2)(k−1)�n/(k−1)�(�n/(k−1)�−1)(n−2)!, which is at most
p2�n/(k − 1)�(n − 1)!/2. Since there are n! assignments of vertices in V to pairs in P ,
χ ≤ p2�n/(k−1)�/(2n). Because p = �

√
(k − 1)/2�, χ is at most 1/4 since k−1 ≤ n.

We now derive upper bounds on the number of errors introduced through the approxima-
tion of individual AND and OR gates. Since we have assumed that AND and OR gates alternate
on any path between inputs and outputs, it follows that the inputs fl and fr to an AND gate

428 Chapter 9 Circuit Complexity Models of Computation

are outputs of OR gates (and vice versa). Furthermore, by the approximation rules, if fl and fr

are inputs to an AND (OR) gate, every sum (product) in their POSE (SOPE) has an endpoint
set size of at most q (p). We now show that each replacement of a gate by its approximator
introduces a relatively small number of errors. We begin by establishing this fact for OR gates.

LEMMA 9.6.7 Let an OR gate ∨ and its approximation ∨̂ each be given as inputs the functions
fl and fr whose SOPE contains product terms of endpoint size p or less. Then the number of
k-negative test inputs for which ∨ and ∨̂ produce different outputs (∨ has value 0 but ∨̂ has value
1) is at most eOR where w = n mod (k − 1):

eOR =
(n/2)q+1(n− q − 1)!

(�n/(k − 1)�!)w(�n/(k − 1)�!)k−1−ww!(k − 1 − w)!
Proof Let fcorrect = fl ∨ fr and fapprox = fl∨̂fr. Let t1, . . . , tl be the product terms
in the SOPE for fcorrect. Since the endpoint size of all terms in the SOPE of fcorrect is at
most p, each term is the product of at most p(p− 1)/2 variables.

Using the association between (k − 1)-balanced partitions and pairs of indices given
in the proof of Lemma 9.6.5, we count N , the number of one-to-one mappings from V
to P for which fcorrect(x) = 0 but fapprox(x) = 1, after which we divide by D, the
number of mappings corresponding to a single partition of the variables, to compute eOR =
N/D. From the proof of Lemma 9.6.5 we have that D = (�n/(k − 1)�!)w(�n/(k −
1)�!)k−1−ww!(k − 1 − w)!.

To derive an upper bound to N , observe that fapprox(x) is obtained by converting the
SOPE of fcorrect to a POSE and deleting all sums in this POSE whose endpoint set size
exceeds q. Thus, N is at most the number of ways to assign vertices to pairs in P that
causes a deleted sum to be 0 because the new POSE may now become 1. But this can
happen only if the endpoint set size of the deleted product is at least q + 1. Thus, only if at
least q + 1 vertices in a sum are assigned values is it possible to have fcorrect(x) = 0 and
fapprox(x) = 1.

Below we show that each vertex can be assigned at most n/2 different pairs in P . It
follows there are at most (n/2)q+1(n − q − 1)! ways to assign pairs to q + 1 or more
vertices because the first q + 1 can be assigned in at most (n/2)q+1 ways and the remaining
(n− q− 1) vertices can be assigned in at most (n− q− 1)! ways. This is the desired upper
bound on N .

We now show that every mapping from V to P that corresponds to a negative test input
x assigns each vertex to at most n/2 pairs in P .

Let t1, . . . , tl be product terms in the SOPE of fcorrect. We examine these terms in
sequence. Consider a partial mapping from V to P that assigns values to variables so that
at least one variable in each of the products t1, . . . , ti−1 is 0, thereby insuring that each
product is 0. Consider now the ith product, ti. If the partial mapping assigns value 0 to at
least one of its variables, we move on to consider ti+1. (It cannot set all variables in ti to 1
because we are considering mappings causing all terms to be 0.)

Suppose that the partial mapping has not assigned value 0 to any of the variables of ti.
There are two cases to consider. For some variable xa,b of ti either a) one or b) both of the
vertices va, vb ∈ V has not been assigned a pair in P . In the first case, assign the second
vertex to the set containing the first, thereby setting xa,b = 0. This can be done in at most
�n/(k−1)�−1 ≤ n/(k−1) ways since the set contains at most �n/(k−1)� elements and at
least one of them has been chosen previously, namely the first vertex. In the second case the

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 429

two vertices can be assigned to at most (k−1)(�n/(k−1)�)(�n/(k−1)�−1) ≤ 2n2/(k−1)
pairs because the first can be assigned to (k − 1) sets each containing at most �n/(k − 1)�
elements and the second must be assigned to one of the remaining elements in that set.

The number of ways to choose variables in ti so that it has value 0 is the number of
ways to choose a variable of each kind multiplied by the number of ways to assign values to
it. Let α be the number of variables of ti for which one vertex has previously been assigned
a pair and let β be the number of variables for which neither vertex has been assigned a
pair. (β ≤ p(p − 1)/2 − α since ti has at most p(p − 1)/2 variables.) Thus, a variable
of the first kind can be assigned in at most αn/(k − 1) ways and the number of ways of
assigning the two vertices in variables of the second kind is at most β2n2/(k − 1). Since
each vertex associated in such pairs can be assigned in the same number of ways, γ, it follows
that γ2 ≤ β2n2/(k − 1). Thus, γ ≤

√
β2n2/(k − 1).

Summarizing, the variables in ti can be assigned in at most the following number of
ways so that ti has value 0:

αn/(k − 1) +
√

(p(p− 1)/2 − α)2n2/(k − 1)

This quantity is largest when α = 0 and is at most n/2 since p = �
√

(k − 1)/2�, which is
the desired conclusion.

We now derive an upper bound on the number of errors that can be made by AND gates
on k-positive inputs.

LEMMA 9.6.8 Let an AND gate ∧ and its approximation ∧̂ each be given as inputs the functions
fl and fr whose POSE contains sum terms of endpoint size q or less. Then the number of k-positive
test inputs for which ∧ and ∧̂ produce different outputs (∧ has value 1 but ∧̂ has value 0) is at
most eAND :

eAND =
(n/2)p+1(n− p− 1)!

k!(n − k)!

Proof The proof is similar to that of Lemma 9.6.7. Let fcorrect = fl ∧ fr and fapprox =
fl ∧̂ fr. Let c1, . . . , cl be the sum terms in the POSE for fcorrect. Since by induction the
endpoint size of all terms in the POSE of fl and fr is at most q, each term in fcorrect is the
sum of at most q(q − 1)/2 variables.

In this case we count the number of k-positive test graphs (they contain one k-clique)
that cause fcorrect(x) = 1 but fapprox(x) = 0. Since a k-positive test graph contains just
those edges between a specified set of k vertices, we define each such graph by a one-to-one
mapping from the vertices (endpoints) in V to the integers�(n) = {1, 2, . . . , n}, where
we adopt the rule that vertices mapped to the first k integers are those in the clique associated
with a particular test graph. It follows that each k-positive test graph corresponds to exactly
k!(n − k)! of these 1-1 mappings. Then, eAND is the number of such 1-1 mappings for
which fcorrect(x) = 1 but fapprox(x) = 0 divided by k!(n − k)!.

We show that any mapping that results in fcorrect(x) = 1 assigns each endpoint to at
most n/2 values from�(n). But fapprox(x) = 0 for positive test inputs only if more than
p endpoints are assigned values, because fapprox is obtained from fcorrect by discarding
product terms in its SOPE that contain more than p endpoints. It follows that at most
(n/2)p+1(n− p− 1)! of the positive test inputs result in an error by the approximate AND

gate. Dividing by k!(n − k)!, we have the desired upper bound on eAND.

430 Chapter 9 Circuit Complexity Models of Computation

To complete the proof we must show that each endpoint is assigned at most n/2 values
from �(n). Consider the sum terms c1, . . . , cl in the POSE of fcorrect in sequence and
consider a partial mapping from V to�(n) that causes at least one variable in each of the
sums c1, . . . , ci−1 to be 1, thereby insuring that the value of each sum is 1. Now consider
the ith sum, ci. If the partial mapping assigns value 1 to at least one variable, we move on
to ci+1. (It cannot set all variables in ci to 0 because we are considering mappings causing
all terms to be 1.)

We now extend the mapping by considering the set Ci of variables of ci that have not
been assigned a value. A given variable xa,b in Ci has either one or no endpoints (vertices)
previously mapped to an integer in �(n). If one endpoint, say a, has been assigned an
integer, the other endpoint, b, can be assigned to at most one of k − 2 integers that cause
xa,b = 1 because endpoint a was previously assigned a value in the range {1, 2, . . . , k}
together with at least one other vertex and b must be different from them. Because there are
most q = �n/(4k)� variables of the first type, there are at most q(k − 2) ways to assign the
one endpoint of a variable xa,b of the first type so that xa,b = 1.

Consider now variables of the second type. There are at most q(q − 1)/2 such variables
and at most (q(q − 1)/2)k(k − 1) ways to make assignments to both endpoints so that
a variable has value 1. This follows because each endpoint is assigned to a distinct integer
among the first k integers in�(n). Since each endpoint can be assigned in the same number
of ways, this number is at most

√
(q(q − 1)/2)k(k − 1).

It follows that the number of ways to assign an endpoint so that the correct and approx-
imate functions differ is at most q(k − 2) +

√
(q(q − 1)/2)k(k − 1) ≤ 2qk, which is no

more than n/2 since q = �n/(4k)�. This is the desired conclusion.

The desired result follows from the above lemmas.

THEOREM 9.6.6 For n ≥ 13 and 8 ≤ k ≤ n/2, every monotone circuit for the clique function

f
(n)
clique,k : Bn(n−1)/2 �→ B has a circuit size satisfying the following lower bound:

CΩmon

(
f

(n)
clique,k

)
≥ 1

2
(1.8)min(

√
k−1/2,n/(2k))

The largest value for this lower bound is CΩmon(f
(n)
clique,k) = 2Ω(n1/3).

Proof From the discussion at the beginning of this section, we see that the monotone circuit

size of f
(n)
clique,k is at least min (τ+/eAND, τ−/(2eOR)). Thus,

CΩmon(f
(n)
clique,k) ≥ min

(
n!

2(n/2)p+1(n− p− 1)!
,

n!
(n/2)q+1(n− q − 1)!

)
≥ min

(
(n− p)p+1

2(n/2)p+1
,
(n− q)q+1

(n/2)q+1

)
Let 8 ≤ k ≤ n/2. It follows that p = �

√
(k − 1)/2� ≤

√
n/(2

√
2) and q = �n/(2k)� ≤

n/16. Thus, p, q ≤ n/10 if n ≥ 13. Hence both (n−p) and (n−q) are at least 9n/10, and

CΩmon

(
f

(n)
clique,k

)
≥ min

(
1
2
(1.8)p+1, (1.8)q+1

)

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 431

The desired conclusion follows from this and the observation that p + 1 ≥
√

k − 1/2 and
q + 1 ≥ n/(2k). That the maximum value of min(

√
k − 1/2, n/(2k)) is Ω(n1/3) under

variation of k is left as a problem. (See Problem 9.38.)

9.6.4 Slice Functions
Although, as shown above, some monotone functions have exponential circuit size over the
monotone basis, it is doubtful that the methods of analysis used to obtain this result can be
extended to derive such bounds over the standard basis. (See the Chapter Notes.)

This section introduces a note of optimism by showing that the monotone circuit size of
monotone slice functions can provide a strong lower bound on the circuit size of such functions
over the standard basis. In addition, there are NP-complete languages whose characteristic
functions are slice functions. Thus, if such functions can be shown to have super-polynomial
monotone circuit size, P �= NP.

Let |x| denote the number of 1’s in x. We now define the slice functions.

DEFINITION 9.6.6 A function s : Bn �→ B is a slice function if there is an integer 0 ≤ k ≤ n
such that s(x) = 0 if |x| < k and s(x) = 1 if |x| > k. The kth slice of a function
f : Bn �→ B, 0 ≤ k ≤ n, is the function f [k] : Bn �→ B defined below.

f [k](x) =

⎧⎪⎨⎪⎩
0 |x| < k

f(x) |x| = k

1 |x| > k

It should be clear from this definition that slice functions are monotone. Below we show
that if a Boolean function f on n variables has a large circuit size, then one of its slices has a
circuit size that differs from the size of f by at most a multiplicative factor that is linear in n.
Thus, a function f has a large circuit size if and only if one of its slice functions has a large
circuit size.

We set the stage with a lemma that shows that the circuit size of a Boolean function is
bounded above by the circuit size of its slices plus an additive term linear in its number of
variables.

LEMMA 9.6.9 Let Ω0 be the standard basis and f : Bn �→ B. Then the following holds, where
CΩ0(f

[0], f [1], . . . , f [n]) is the circuit size of all the slices simultaneously:

CΩ0(f) = CΩ0(f
[0], f [1], . . . , f [n]) + O(n)

Proof The goal is to construct a circuit for f given the input tuple x and a circuit for
all the functions f [0], f [1], . . . , f [n]. This is easily done. We construct a circuit to count
the number of 1’s among the n inputs and represent the result in binary. We then supply
this number as an address to a direct storage address function (multiplexer) where the other
inputs are the values of the slice functions. If the address is |a|, the output of the multiplexer
is f [|a|]. Since, as shown in Lemma 2.11.1, the counting circuit can be realized with a circuit
of size linear in n, and, as shown in Lemma 2.5.5, the multiplexer in question can be realized
with a linear-size circuit, the result follows.

We now establish the connection between the circuit size of a function and that of one of
its slices.

432 Chapter 9 Circuit Complexity Models of Computation

THEOREM 9.6.7 Let Ω0 be the standard basis and f : Bn �→ B. Then there exists 0 ≤ k ≤ n
such that

CΩ0(f)
n

−O(1) ≤ CΩ0

(
f [k]

)
≤ CΩ0(f) + O(n)

Proof The first inequality follows from Lemma 9.6.9, the following inequality and the
observation that at least one term in an average is greater than or equal to the average.

CΩ0

(
f [0], f [1], . . . , f [n]

)
≤
∑

i

CΩ0(f
[i])

The second inequality uses the fact that the kth slice of a function can be expressed as

f [k](x) = τ
(n)
k (x)f(x) + τ

(n)
k+1(x)

Since τ
(n)
j (x) can be realized by a circuit of size linear in n (see Theorem 2.11.1), the second

inequality follows.

In Theorem 9.6.9 we show that the monotone circuit size of slice functions provides a
lower bound on their non-monotone circuit size up to a polynomial additive term. Before
establishing this result we introduce the concept of pseudo-negation. A pseudo-negation for
variable xi in a monotone Boolean function f : Bn �→ B is a function hi such that replacing
each instance of xi in a circuit for f by hi does not change the value computed by the circuit.
Thus, the pseudo-negation hi acts like the real negation xi.

In Theorem 9.6.9 we also show that for 1 ≤ i ≤ n the punctured threshold function
τ

(n)
k,¬i : Bn �→ B, which depends on all the variables except xi, is a pseudo-negation for a kth

slice of every monotone function. Since for a given k each of these threshold functions can be
realized by a monotone circuit of size O(n log n) (see Theorem 6.8.2), they can all be realized
by a monotone circuit of size O(n2 log n). Although this result can be used in Theorem 9.6.9,
the following stronger result is used instead.

We now describe a circuit that computes all of the above pseudo-negations efficiently. This
circuit uses the complementary number system, a system that associates with each integer i
in the set�(n) = {0, 1, 2, . . . , n − 1} the complementary set�(n) − {i}. It makes use of
results on sorting networks found in Chapter 6.

THEOREM 9.6.8 The set {τ (n)
k,¬i | 1 ≤ i ≤ n} of pseudo-negations can be realized by a monotone

circuit of size O(n log2 n).

Proof We assume that n = 2s. If not, add variables with value 0 to increase the number to
the next power of 2. This does not change the value of the function on the first n variables.

For this proof let the pseudo-negations τ
(n)
k,¬i be defined for 0 ≤ i ≤ n − 1 and on the

variables whose indices are in�(n). (We subtract 1 from each index.) Let Di = �(n) −
{i} denote the indices of the variables on which τ

(n)
k,¬i depends. An efficient monotone

circuit to compute all the pseudo-negations {τ (n)
k,¬i | i ∈ �(n)} is based on an efficient

decomposition of the sets {Di | i ∈�(n)}.
For a, b ≥ 0, let Ua,b be defined by

Ua,b = {a2b + c | 0 ≤ c ≤ 2b − 1}

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 433

For example, U3,3 = {24, 25, 26, 27, 29, 30, 31}, U1,2 = {4, 5, 6, 7}, and U2,1 = {4, 5}.
The set Ua,b has size 2b.

For n = 2s, every set Di =�(n)−{i} can be represented as the disjoint union of the
sets Ua,b below, where 0 ≤ ai,j ≤ 2s−j − 1. (This is the complementary number system;
see Fig. 9.14.)

Di = Uai,s−1,s−1 ∪ Uai,s−2,s−2 ∪ · · · ∪ Uai,0,0

To see this, note that if i is in the first (second) half of�(n), Uai,s−1,s−1 denotes the second
(first) half; that is, ai,s−1 = 1 (ai,s−1 = 0). The next set, Uai,s−2,s−2, is the half of the
remaining set Di − Uai,s−1,s−1 that does not contain i, etc. Thus, Di is decomposed as
the disjoint union of sets of size 2s−1, 2s−2, . . . , 20 For example, when n = 16, D3 =
U1,3 ∪ U1,2 ∪ U0,1 ∪ U2,0. Figure 9.14 shows the values of ai,s−1, ai,s−2, . . . , ai,0 for each
i ∈�(n) for n = 8.

As suggested in Fig. 9.14, the sets {Di | i ∈ �(n)} have either U0,s−1 or U1,s−1 in
common. Similarly, they also have either U1,s−1∪U1,s−2, U0,s−1∪U1,s−2, U3,s−1∪U0,s−2,
or U2,s−1 ∪U0,s−2 in common. Continuing in this fashion, we construct the sets {Di | i ∈
�(n)} by successively forming the disjoint union of 2j sets, 1 ≤ j ≤ s. Assembling the
sets in this fashion is much more economical than assembling them individually.

The value of τ
(n)
k,¬i, i ∈�(n), is the kth largest variable whose index is in Di. From now

on we equate the variables with their indices. Sorting the sets into which Di is decomposed
simplifies the computation. But these sets are exactly the sets that are sorted by Batcher’s
sorting network based on Batcher’s merging algorithm. (See Theorem 6.8.3.) Since on
Boolean data a comparator consists of one AND for the max operation and one OR for the
min operation, a monotone circuit of size O(n log2 n) exists to sort the sets {Ui,j | 0 ≤ i ≤
2s−j − 1, 0 ≤ j ≤ s − 1}.

The functions τ
(n)
k,¬i, 0 ≤ i ≤ n−1, can be obtained by sorting the sets {Ui,j | 0 ≤ i ≤

2s−j − 1, 0 ≤ j ≤ s− 1}, merging them in groups to form Di for i ∈�(n), as suggested
above, and then taking the kth largest element. A faster way merges the sorted versions of
the sets Uai,s−1,s−1, Uai,s−2,s−2, . . . , Uai,0,0 in the order in which Di is assembled above.
For each of these sets the sorting network presents its elements in sorted order.

i ai,0 ai,1 ai,2

0 1 1 1
1 0 1 1
2 3 0 1
3 2 0 1
4 5 3 0
5 4 3 0
6 7 2 0
7 6 2 0

Figure 9.14 The coefficients ai,j of Di = �(n) − {i} in the expansion Uai,s−1,s−1 ∪
Uai,s−2,s−2 ∪ · · · ∪ Uai,0 ,0 for n = 2s = 8 and s = 3.

434 Chapter 9 Circuit Complexity Models of Computation

Since only the kth element of Di is needed, it is not necessary to merge all the elements
in each set when two sets are merged. To see which elements need to be merged, let Δi(j) =
Uai,s−1,s−1 ∪ Uai,s−2,s−2 ∪ · · · ∪ Uai,j ,j . Then Di −Δi(j) is a set of size 2j − 1. Observe
that the kth element of Di can be obtained by merging elements of rank k and k − 1 of
Δi(1) with the element of Ua(i,0),0. (They all have value 0 or 1.) The middle element is the
kth element in Di. To obtain elements of rank k and k − 1 of Δi(1), the elements of rank
k, k − 1, k − 2 and k − 3 of Δi(2) are merged with the two elements of Uai,1,1 and the
middle two taken. In general, to obtain the elements of rank k, . . . , k − 2j + 1 of Δi(j),
the elements of rank k, . . . , k − 2j+1 + 1 of Δi(j + 1) are merged with the 2j elements of
Uai,j ,j and the middle 2j taken.

We now count the number of extra AND and OR gates needed to perform the merges.
There are 2s−j sets Δi(j). The 2j elements needed from these sets are obtained by merging
2j+1 elements of Δi(j + 1) with the 2j elements of Uai,j ,j . Since these sets can be merged
in a comparator network with O(j2j) comparators (see Theorem 6.8.2), it follows that all
the sets Δi(j), 0 ≤ i ≤ n − 1, can be formed with O(jn) gates for 0 ≤ j ≤ s − 1.
Summing over j, 0 ≤ j ≤ (log2 n)−1 shows that a total of O(n log2 n) extra gates suffice.
Since O(n log2 n) gates are used to sort the sets {Ui,j | 0 ≤ i ≤ 2s−j −1, 0 ≤ j ≤ s−1},
the desired conclusion follows.

We can now show that a large lower bound on the monotone circuit size of a slice function
implies a large lower bound on its non-monotone circuit size. The importance of this statement
is emphasized by the existence of NP-complete slice functions. If such a problem can be shown
to have a super-polynomial slice function, then P �= NP.

THEOREM 9.6.9 Let f : Bn �→ B be a slice function. Then

CΩ0(f) ≤ CΩmon(f) ≤ 2 · CΩ0(f) + O(n log2 n)
Proof The first inequality holds because the standard basis Ω0 contains the monotone basis.
To establish the second inequality, we convert a circuit over Ω0 by moving all negations to
the input variables. This can be done by at most doubling the number of gates. (See
Problems 9.11 and 2.12.)

We now show that for slice functions the negation of an input variable xi can be replaced

by the pseudo-negation function τ
(n)
k,¬i. To see this, observe that when |x| > k, at least

|x| − 1 = k of the variables of τ
(n)
k,¬i are 1 and τ

(n)
k,¬i has value 1. On the other hand,

when |x| < k, then not enough variables can be 1 for τ
(n)
k,¬i to have value 1. Finally, when

|x| = k, τ
(n)
k,¬i = 0 if xi = 1 because not enough of the remaining variables are 1, and

τ
(n)
k,¬i = 1 when xi = 0 by a similar reasoning. Now replace xi with τ

(n)
k,¬i. Since f is a

k-slice, f = 0 when |x| < k, as is τ
(n)
k,¬i. If xi = 1 when |x| < k, replacing xi by its

pseudo-negation means replacing xi by 0, which can only decrease the circuit output since
it is monotone. Thus, f is computed correctly in this case. The same is true if |x| > k,
again by monotonicity. Since τ

(n)
k,¬i = xi when |x| = k, the circuit correctly computes f

for all inputs when xi is replaced by the ith pseudo-negation.

AN NP-COMPLETE SLICE FUNCTION We now exhibit the language HALF-CLIQUE CENTRAL

SLICE and show it is NP-complete. The characteristic functions of this language are slice func-
tions. It follows from Theorem 9.6.9 that if these slice functions have exponential circuit size,

c©John E Savage 9.6 Lower-Bound Methods for Monotone Circuits 435

then P �= NP. We show that HALF-CLIQUE CENTRAL SLICE is NP-complete by reducing
HALF-CLIQUE (see Problem 8.25) to it.

DEFINITION 9.6.7 A central slice of a function f : Bn �→ B on n variables, f [�n/2�], is the
�n/2�th slice.

A central slice of a function f on n variables is the function that has value 0 if the weight
of the input tuple is less than �n/2�, value 1 if the weight exceeds this value, and is equal to
the value of f otherwise.

Given the function f : B∗ �→ B, f (n) denotes the function restricted to strings of length
n. The family of central slice functions {(f (n))[�n/2�] | n ≥ 2} identifies the language
Lcentral(f) = {x ∈ Bn | (f (n))[�n/2�](x) = 1, n ≥ 2}.

The central clique function f
(n)
clique,�n/2� has value 1 if the input graph contains a clique

on �n/2� vertices. The central slice of the central clique function f
(n)
clique,�n/2� is called the

half-clique central slice function and denoted f
(n)
clique slice. It has value 1 if the input graph

either contains a clique on �n/2� vertices or contains more edges than are in a clique of this
size.

The language HALF-CLIQUE is defined in Problem 8.25 as strings describing a graph and
an integer k such that a graph on n vertices contains an n/2-clique or has more than k edges.
The language HALF-CLIQUE CENTRAL SLICE associated with the central slice of a central
clique function is defined below. It simplifies the following discussion to define e(k) as the
number of edges between a set of k vertices. Clearly, e(k) =

(
k
2

)
.

HALF-CLIQUE CENTRAL SLICE

Instance: The description of an undirected graph G = (V , E) in which |V | is even.
Answer: “Yes” if G contains a clique on |V |/2 vertices or at least e(|V |/2)/2 edges.

THEOREM 9.6.10 The language HALF-CLIQUE CENTRAL SLICE is NP-complete. Further-
more, for all 2 ≤ k ≤ n

CΩmon

((
f

(n)
clique,�n/2�

)[k]
)
≤ CΩmon

(
f

(n)
clique slice

)
For k < e(n/2),

(
f

(n)
clique,�n/2�

)[k]

= τ
e(n)
k+1 .

Proof We show that HALF-CLIQUE CENTRAL SLICE is NP-complete by reducing HALF-
CLIQUE to it. Given a graph G = (V , E) in HALF-CLIQUE that has n vertices, n even, we
construct a graph G′ = (V ′, E′) on 5n vertices such that G either contains an n/2-clique
or has more than k edges if and only if G′ contains a (central) clique on 5n/2 vertices or
has at least �e(5n/2)/2� edges. The construction, which can be done in polynomial time,
transforms a graph on n vertices to one on 5n vertices such that the former is an instance of
HALF-CLIQUE if and only if the latter is an instance of HALF-CLIQUE CENTRAL SLICE.

Let V = {v1, v2, . . . , vn}. Construct G′ from G by adding the 4n vertices R =
{r1, r2, . . . , r2n} and S = {s1, s2, . . . , s2n}. Represent edges in E′ of G′ with the edge
variables {yi,j | 1 ≤ i < j ≤ 5n}. Each edge between vertices of G is an edge between
vertices V of G′. Let every edge between vertices in R be in G′ as well as all edges between
vertices in V and R. Set the edge variables so that the edges between ri and si, 1 ≤ i ≤ 2n,

436 Chapter 9 Circuit Complexity Models of Computation

are absent. The unassigned variables are between vertices in S, between vertices in R and S,
and between vertices in V and S, of which there are 8n2 − 3n. Fix these unassigned edges
so that the number of edges between vertices in V ∪R∪S is �e(5n/2)/2�−k, 1 ≤ k ≤ n.
There are sufficiently many unassigned edges to do this.

We now show that G contains an n/2-clique or has more than k edges if and only if
G′ contains an 5n/2-clique or has more than �e(5n/2)/2� edges. If G has a n/2-clique,
the edges between V and R combined with the edges between vertices in R and those in
G constitute a 5n/2 clique since 5n/2 vertices in V ∪ R are completely connected. If V
has more than k edges, since there are exactly �e(5n/2)/2� − k edges between vertices in
V ∪R∪S, G′ has at least �e(5n/2)/2� edges. On the other hand, if G′ has a (5n/2)-clique,
because there is at least one absent edge between each pair of vertices (ri, si), 1 ≤ i ≤ 2n,
the largest clique on vertices in R ∪ S has size 2n. Thus, there must be a (n/2)-clique
on vertices in V ; that is, G contains a (n/2)-clique. Similarly, since the number of edges
between vertices in V and those in R∪S is exactly �e(5n/2)/2�−k, if G′ contains at least
�e(5n/2)/2� edges, G must contain at least k edges.

The membership of graph G in HALF-CLIQUE is determined by specializing the graph
G′ by mapping its edge variables to the constants 0 and 1 or to variables of G. Thus,
the function testing G’s membership is obtained through a subfunction reduction of the
function testing G′’s membership. (See Definition 2.4.2.) Thus, at no increase in circuit

size, for any k a circuit for
(
f

(n)
clique,�n/2�

)[k]

can be obtained from a circuit for f
(n)
clique slice.

Thus, the circuit size for the latter is at least as large for the former, which gives the second
result of the theorem.

The statement that for k < e(n/2),
(
f

(n)
clique,�n/2�

)[k]

= τ
e(n)
k+1 follows from the ob-

servation that for these values of k the value of the clique function on inputs of weight
e(n/2)− 1 or less is 0.

As this theorem indicates, the search for a proof that P �= NP can be limited to the study
of the monotone circuit size of the central slice of certain monotone functions. Other central
slices of NP-complete problems have been shown to be NP-complete also. (See the Chapter
Notes.)

9.7 Circuit Depth
Circuit depth and formula size are exponentially related, as shown in Section 9.2.3. In this
section we examine the depth of circuits whose operations have either bounded or unbounded
fan-in. As seen in Chapter 3, circuits of bounded fan-in are useful in classifying problems by
their complexity and in developing relationships between time and space and circuit size and
depth.

Circuits of unbounded fan-in are constructed of AND and OR gates with potentially un-
bounded fan-in whose inputs are the outputs of other such gates or literals, namely, variables
and their negations. Every Boolean function can be realized by a circuit of unbounded fan-in
and bounded depth, as is seen by considering the DNF of a Boolean function: it corresponds to
a depth-2, unbounded fan-in circuit. Knowledge of the complexity of bounded-depth circuits
may shed light on the complexity of bounded-fan-in circuits.

c©John E Savage 9.7 Circuit Depth 437

In this section we first show that the depth of a function f is equal to the communication
complexity of a related problem in a two-player game. Communication complexity is a measure
of the amount of information that must be exchanged between two players to perform a com-
putation. We establish such a connection for all Boolean functions over the standard basis Ω0

and monotone functions over the monotone basis Ωmon. These connections are used to derive
lower bounds on circuit depth for monotone and non-monotone functions. After establishing
these results we examine bounded-depth circuits and demonstrate that some problems require
exponential size when realized by such circuits.

9.7.1 Communication Complexity
We define a communication game between two players who have unlimited computing power
and communicate via an error-free channel. This game has sufficient generality to derive
interesting lower bounds on circuit depth.

DEFINITION 9.7.1 A communication game (U , V) is defined by sets U , V ⊆ Bn, where U ∩
V = ∅. An instance of the game is defined by u ∈ U and v ∈ V. u is assigned to Player I and
v is assigned to Player II. Players alternate sending binary messages to each other. We assume that
the binary messages form a prefix code (no message is a prefix for another) so that one player can
determine when the other has finished transmitting a message.

Although each player has unlimited computing power, each message it sends is a function of just
its own n-tuple and the messages it has received previously from the other player. The two functions
used by the players to determine the contents of their messages constitute the protocol Π under
which the communication game is played. The protocol also determines the first player to send a
message and termination of the game. The goal of the game is to find an index i, 1 ≤ i ≤ n, such
that ui �= vi.

Let Π(u, v) denote the number of bits exchanged under Π on the instance (u, v) of the game
(U , V). The communication complexity C(U , V) of the communication game (U , V) is the
minimum over all protocols Π of the maximum number of bits exchanged under Π on any instance
of (U , V); that is,

C(U , V) = min
Π

max
u∈U ,v∈V

Π(u, v)

Note that there is always a position i, 1 ≤ i ≤ n, such that ui �= vi since U ∩ V = ∅.
The communication game models a search problem; given disjoint sets of n-tuples, U and

V , the two players search for an input variable on which the two n-tuples differ. A related
communication game measures the exchange of information to obtain the value of a function
f : X × Y �→ Z on two variables in which one player has a value in X and the other has
a value in Y . The players must acquire enough information about each other’s variable to
compute the function.

Every communication problem (U , V), where U , V ⊆ Bn, can be solved with communi-
cation complexity C(U , V) ≤ n + �log2 n� by the following protocol:

• Player I sends u to Player II.

• Player II determines a position in which u �= v and sends it to Player I using �log2 n�
bits.

438 Chapter 9 Circuit Complexity Models of Computation

This bound can be improved to C(U , V) ≤ n + log∗2 n, where log∗2 n is the number of
times that �log2� must be taken to reduce n to zero. (See Problem 9.39.) The log-star

function log∗2 n grows very slowly. For example, log∗2 101010
is 8; by contrast,

⌈
log2 101010

⌉
=

33,219,280,949.
These concepts are illustrated by the parity communication problem (U , V), defined

below, where n = 2k:

U = {u |u has an even number of 1s}
V = {v |v has an odd number of 1s}

The following protocol achieves a communication complexity bound of C(U , V) ≤ 2 log2 n
for this problem. Later we show it is best possible.

1. If n = 1, the players know where their tuples differ and no communication is necessary.

2. If n > 1, go to the next step.

3. Player I sends the parity of the first n/2 bits of u to Player II.

4. Since u �= v, with one bit Player II tells Player I of half of the variables on which u and v
are known to differ. Play is resumed at the first step with the half of the variables on which
they are known to differ.

Let κ(n) denote the number of bits exchanged with this protocol. Then κ(1) = 0 and
κ(n) ≤ κ(n/2)+ 2, whose solution is κ(n) = 2 log2 n. Thus, C(U , V) = κ(n) ≤ 2 log2 n.

9.7.2 General Depth and Communication Complexity
We now establish a relationship between the depth DΩ0(f) of a Boolean function f : Bn �→ B
over the standard basis Ω0 and the communication complexity of a communication game in
which U = f−1(0) and V = f−1(1), where f−1(a) is the set of n-tuples for which f has
value a. Theorem 9.7.1 asserts that DΩ0(f) and C(f−1(0), f−1(1)) have exactly the same
value. Later we establish a similar result for monotone functions realized over the monotone
basis. We divide this result into two lemmas that are proved separately.

THEOREM 9.7.1 For every Boolean function f : Bn �→ B,

DΩ0(f) = C(f−1(0), f−1(1))

The communication game allows the two players to have unlimited computing power at
their disposal. Thus, the protocol they employ can be an arbitrarily complex function. This
power reflects the non-uniformity in the circuit model.

LEMMA 9.7.1 For all Boolean functions f : Bn �→ B and all U , V ⊆ Bn such that U ⊆
f−1(0) and V ⊆ f−1(1), the following bound holds:

C(U , V) ≤ DΩ0(f)

Proof In this lemma we demonstrate that a protocol for the communication game (f−1(0),
f−1(1)) can be constructed from a circuit of minimal depth for the Boolean function f . We

c©John E Savage 9.7 Circuit Depth 439

assume that such a circuit has negations only on input variables. By Problem 9.11 there is
such a circuit.

Given an instance defined by u ∈ f−1(0) and v ∈ f−1(1), the players follow a path
from the circuit output to an input at which u and v differ. The invariant that applies at
each step is that Player I (which holds u) simulates an AND gate whose value on u is 0
whereas Player II (which holds v) simulates an OR gate whose value on v is 1. The bits
transmitted by one player to the other specify which input to the current gate to follow on
the way from the output vertex to an input vertex of the circuit for f .

The proof is by induction. The base case applies to those Boolean functions f for which
DΩ0(f) = 0. In this case f is either xi or xi for some i where xi is an input variable of
f . Thus, for each instance of the problem, both players know in advance a variable (namely,
xi) on which u and v differ. Hence, C(U , V) = 0 and the base case is established.

For the induction step, either f = f1 ∧ f2 or f = f1 ∨ f2. Consider the first case; the
second is treated in a similar fashion. Obviously DΩ0(f) = max(DΩ0(f1), DΩ0(f2)) + 1.
(We are considering circuits of minimal depth.) Let Uj = U ∩ f−1

j (0) for j = 1, 2. Since
(Uj , V) is a communication game associated with fj (fj must have value 1 on V) and
DΩ0(fj) < DΩ0(f), by induction C(Uj , V) ≤ DΩ0(fj).

Since the output gate is AND (the other case is treated similarly), both f1 and f2 have
value 1 on V , but at least one of them has value 0 on U . We use the following protocol for
(U , V): Player I sends 0 if u ∈ U1 (associated with the input f1 to this AND gate) and 1
if u ∈ U2 (associated with the input f2). (If the output gate is OR, we observe that at least
one of f1 and f2 has value 1 on V and define V1 = V ∩ f−1

1 (1) and V2 = V ∩ f−1
2 (1).

Player II sends a bit to specify the set containing v.) After the first move the players follow
the protocol for the fj defined by the bit sent by Player I. Thus, when the output gate is
AND the following bound holds:

C(U , V) ≤ 1 + max
j=1,2

(C(Uj , B)) ≤ 1 + max(DΩ0(f1), DΩ0(f2)) = DΩ0(f)

The same bound holds when the output gate is OR.

We now prove the second half of Theorem 9.7.1.

LEMMA 9.7.2 Let U , V ⊆ Bn be such that U ∩ V = ∅. Then there exists a Boolean function
f : Bn �→ B with U ⊆ f−1(0) and V ⊆ f−1(1) such that the following bound holds:

DΩ0(f) ≤ C(U , V)

Proof In this proof we show how to define a Boolean function and a circuit for it from a
protocol for (U , V). From the protocol a tree is constructed. The root is associated with the
player who sends the first bit. As in the proof of Lemma 9.7.1, Player I is associated with
AND gates and Player II with OR gates. Thus, if the protocol specifies that Player I makes
the first move, the root is labeled AND. The two possible descendants are labeled with the
player who makes the next transmission or by a variable or its negation (the answer) if this
is the last transmission under the protocol. The function associated with the protocol is the
function computed by the circuit so constructed.

We establish the result by induction. The base case applies to sets U and V for which
C(U , V) = 0. In this case, there is an index i known in advance to both players on which
u ∈ U and v ∈ V differ. Since either ui = 1 or ui = 0 for all u ∈ U (vi has the

440 Chapter 9 Circuit Complexity Models of Computation

complementary value for all v ∈ V), let f = xi in the first case and f = xi in the second.
Thus, in the first case (the second case is treated similarly) U ⊆ f−1(0), V ⊆ f−1(1) and
DΩ0(f) = 0. This establishes the base case.

For the induction step, without loss of generality, let Player I send the first bit. (The
other case is treated similarly.) For some partition of U = U0 ∪ U1, U0 ∩ U1 = ∅, Player I
sends a 0 if u ∈ U0 and a 1 if u ∈ U1, after which the players play with the best protocol
for each subcase. It follows that

C(U , V) = 1 + max
j=1,2

(C(Uj , V))

Since C(Uj , V) < C(U , V) for j = 1, 2, by induction there exist Boolean functions f1

and f2 such that Uj ⊆ f−1
j (0) and V ⊆ f−1

j (1) and DΩ0(fj) ≤ C(Uj , V) for j = 1, 2.
Since the output vertex is assumed to be AND, f = f1 ∧ f2, f has value 1 only when both
f1 and f2 have value 1 and has value 0 when either f1 or f2 have value 0. Thus, we have

V ⊆ f−1
1 (1) ∩ f−1

2 (1) = f−1(1)
U = U1 ∪ U2 ⊆ f−1

1 (0) ∪ f−1
2 (0) = f−1(0)

from which we conclude that

DΩ0(f) ≤ 1 + max(DΩ0(f1), DΩ0(f2)) ≤ 1 + max
j=1,2

(C(Uj , V)) = C(U , V)

which is the desired result.

This establishes the connection between the depth of a Boolean function f over the stan-
dard basis Ω0 and the communication complexity associated with the sets f−1(0) and f−1(1).

We now draw some conclusions from Theorem 9.7.1. From the observation made above
that C(U , V) ≤ n + log∗2 n for an arbitrary communication problem (U , V) when U , V ∈
Bn, we have that DΩ0(f) ≤ n + log∗2 n for all f : Bn �→ B. A better upper bound of
DΩ0(f) ≤ n+1 is given in Theorem 2.13.1. The best upper bound of n−log2 log2 n+O(1)
has been derived by Gaskov [110], matching the lower bound of n − Θ(log log n) derived in
Theorem 2.12.2.

The parity communication problem described above is defined in terms of the two sets

that are the inverse images of the parity function f
(n)
⊕ : Bn �→ B. As stated in Problem 9.28,

this function has a formula size of at least n2. Since DΩ(f) ≥ log2 LΩ0(f) (Theorem 9.2.2),
it follows that DΩ(f (n)

⊕) ≥ 2 log2 n, which matches the upper bound on the communication
complexity of the parity communication problem. Thus the protocol given earlier for this
problem is optimal.

We now introduce the monotone communication game and develop a relationship be-
tween its complexity and the depth of monotone functions over a monotone basis.

9.7.3 Monotone Depth and Communication Complexity
We specialize Theorem 9.7.1 to monotone functions by using the fact that if f : Bn �→ B is
monotone and there are two n-tuples u and v such that f(u) = 0 and f(v) = 1, then there
exists an index i, 1 ≤ i ≤ n, such that ui < vi, that is, ui = 0 and vi = 1.

The binary n-tuple x can be defined by the set {i |xi = 1} of indices on which variables
have value 1. This is a subset of [n] = {1, 2, . . . , n}. Let 2[n] be the power set of [n], that

c©John E Savage 9.7 Circuit Depth 441

is, the set of all subsets of [n]. A monotone minterm (monotone maxterm) is a minimal
set of indices of variables that if set to 1 (0) cause f to assume value 1 (0). (The variables
of a monotone minterm are variables in a monotone prime implicant of f .) Let min(f)
and max (f) be the set of monotone minterms and monotone maxterms of f , respectively.
Observe that min(f) ∩ max (f) �= ∅ because if they have no elements in common, f can
be made to assume values 0 and 1 simultaneously for some assignment to the variables of f , a
contradiction.

DEFINITION 9.7.2 A monotone communication game (A, B) is defined by sets A, B ⊆ 2[n].
An instance of the game is a pair (a, b) where a ∈ A and b ∈ B. a is assigned to Player I
and b is assigned to Player II. Players alternate sending messages as in the communication game,
using a predetermined protocol. The goal of the problem is to find an integer i ∈ a ∩ b. The
communication complexity, Cmon(A, B), is defined as the minimum over all protocols Π of
the maximum number of bits exchanged under Π on any instance of (A, B):

Cmon(A, B) = min
Π

max
a∈A,b∈B

Π(a, b)

We now establish a relationship between this complexity measure and the circuit depth of
a Boolean function.

THEOREM 9.7.2 For every monotone Boolean function f : Bn �→ B,

DΩmon(f) = C(f−1(0), f−1(1)) = Cmon(min(f), max(f))

Proof We show that DΩmon(f) = C(f−1(0), f−1(1)) by specializing Lemmas 9.7.1 and
9.7.2 to monotone functions. In the base case of Lemma 9.7.1 since the circuit is monotone
we always discover a coordinate such that ui = 0 and vi = 1 and negations are not needed.
Thus, C(f−1(0), f−1(1)) ≤ DΩmon(f). In Lemma 9.7.2, since the protocol provides
a coordinate i such that ui = 0 and vi = 1, the circuit defined by it is monotone and
DΩmon(f) ≤ C(f−1(0), f−1(1)).

We show that C(f−1(0), f−1(1)) = Cmon(min(f), max(f)) in two stages. First we
show that Cmon(min(f), max(f)) ≤ C(f−1(0), f−1(1)). This follows because, given
any a ∈ min(f) and b ∈ max (f), we extend a and b to binary n-tuples u and v for
which ur = 0 for r ∈ a and vs = 1 for s ∈ b and use the protocol for the monotone
communication game to find an index i such that ui = 0 and vi = 1, that is, for which
i ∈ a ∩ b. Thus, the monotone communication game exchanges no more bits than the
standard game.

To show that C(f−1(0), f−1(1)) ≤ Cmon(min(f), max(f)), consider an instance
(u, v) of (U , V) where U = f−1(0) and V = f−1(1). To solve the communication
problem (U , V), let a(u) ∈ [n] be defined by r ∈ a(u) if and only if ar = 0 and let
b(v) ∈ [n] be defined by s ∈ b(v) if and only if vs = 1. The goal of the standard
communication game is to find an index i such that ui �= vi. It follows from the definition
of minterms and maxterms that there exist p ∈ min(f) and q ∈ max (f) such that p ⊆ a
and q ⊆ b. Since each player has unlimited computing resources available, computation of
p and q can be done with no communication cost. Now invoke the protocol on the instance
(p, q) of the monotone communication game (min(f), max(f)). This protocol returns an
index i ∈ p ∩ q that is also an index on which u and v differ. But this is a solution to
the instance of (u, v) of (f−1(0), f−1(1)). Thus, no more bits are communicated to solve

442 Chapter 9 Circuit Complexity Models of Computation

the standard communication game than are exchanged with the monotone communication
game when the sets U and V are the inverse images of a monotone Boolean function.

In the next section we use the above result to derive a large lower bound on the monotone
depth of the clique function.

9.7.4 The Monotone Depth of the Clique Function
In this section we illustrate the use of the monotone communication game by showing that
in this game at least Ω(

√
k) bits must be exchanged between two players to compute the

clique function f
(n)
clique,k : Bn(n−1)/2 �→ B defined in Section 9.6 when k ≤ (n/2)2/3. The

inputs to f
(n)
clique,k are variables associated with the edges of a graph on n vertices. If an edge

variable ei,j = 1, the edge between vertices i and j is present. Otherwise, it is absent. By
Theorem 9.7.2, a lower bound of Ω(

√
k) on the number of bits that must be exchanged

between the two players to compute f
(n)
clique,k implies that f

(n)
clique,k has depth Ω(

√
k).

THE RULES OF THE GAME Fix n and k. The players in this communication game are each
given sets of edges of graphs on n vertices. Player I is given a set of edges that contains a k-

clique (an input on which f
(n)
clique,k has value 1, a positive instance) whereas Player II is given

a set of edges that does not contain a k-clique (an input on which it has value 0, a negative
instance). The goal of the game is to exchange the minimum number of bits for the worst-case
instances to permit the players to identify an edge variable that is 1 on a positive instance and
0 on a negative one. This number of bits is the communication complexity of the game.

To derive the lower bound on communication complexity, we restrict the graphs under
consideration by choosing them so that every protocol must exchange a lot of data (this cannot
make the worst cases any worse). In particular, we give Player I only k-cliques, the set of
graphs, CLQ, whose only edges are those between an arbitrary set of k vertices. We call Player
I the clique player. Also, we give Player II a (k − 1)-coloring drawn from the set COL of all
possible assignments of k − 1 colors to the n vertices of a graph G. The interpretation of a
(k − 1)-coloring is that two vertices can have the same color only if there is no edge between
them. Thus, any graph that has a (k − 1)-coloring cannot contain a k-clique because the k
vertices in such a subgraph must have different colors. We call Player II the color player. The
goal now becomes for the two players to find a monochromatic edge (both endpoints have the
same color) owned by the clique player.

In the standard communication game players alternate exchanging binary messages. We
simplify our discussion by assuming that each player transmits one bit simultaneously on each
round. We then find a lower bound on the number of rounds and use this as a lower bound
on the number of bits exchanged between the two players.

AN ADVERSARIAL STRATEGY We describe an adversarial strategy for the selection of cliques and
colorings that insures that many rounds are needed for the two players to arrive at a decision.
To present the strategy, we need some notation.

Let CLQ0 denote the set of graphs G = (V , E) on n vertices that contain only those edges
in a k-clique. It follows that CLQ0 contains

(
n
k

)
graphs. Let COL0 denote the set of (k − 1)-

colorings of graphs on n vertices, that is, COL0 = {c | c : V �→ [k − 1]}, where [k − 1]
denotes the set {1, 2, . . . , k − 1}. It follows that COL0 contains (k − 1)n (k − 1)-colorings.

c©John E Savage 9.7 Circuit Depth 443

We execute a series of rounds. During each round each player provides one bit of infor-
mation to the other. This information has the effect of reducing the uncertainty of the color
player about the possible k-cliques held by the clique player and of reducing the uncertainty of
the clique player about the possible (k − 1)-colorings held by the color player. The adversary
makes the uncertainty large after each round so that the number of rounds needed will be large
and a structure of the sets of cliques and colorings that can be analyzed will be maintained.
The game ends when both players have found a monochromatic edge that is in a clique.

Let Pt ⊆ V and Mt ⊆ V denote the vertices that after the tth round are present in every
k-clique and missing from every k-clique, respectively. (Let pt = |Pt| and mt = |Mt|.) Since
vertices in Mt are not in any cliques after the tth round, as we shall see, each such vertex can
be assigned the same color as a “friend” after all vertices not in Mt have been colored. Also,
after the tth round the vertices in a k-clique consist of vertices in V − Mt of which those in
Pt are the same for all such cliques.

Let CLQ(V , Pt, Mt) denote the set of k-cliques containing Pt but no vertex in Mt. Let
COL(V , Mt) denote the (k − 1)-colorings of vertices not in Mt after the tth round. Then
|CLQ(V , Pt, Mt)| =

(
n−pt−mt

k−pt−mt

)
and |COL(V , Mt)| = (n − mt)k−1 are the maximum

numbers of k-cliques and (k − 1)-colorings that are possible after the tth round. Let CLQt

and COLt denote the actual number of cliques and colorings that are consistent with the
information exchanged between players after the tth round.

Given two sets A and B, A ⊆ B, we introduce a measure μB(A) = |A|/|B| used in
deriving our lower bound. For an element x ∈ A, μB(A) is a rough measure of the amount
of information that can be deduced about x. The smaller the value of μB(A), the more
information we have about x. This measure is specialized to cliques and colorings after the tth
round:

μCLQ(V ,Pt,Mt)(CLQt) = |CLQt|/|CLQ(V , Pt, Mt)|
μCOL(V ,Mt)(COLt) = |COLt|/|COL(V , Mt)|

Since the color player does not know the identity of vertices in Pt until after the tth
round, its information about the clique held by the other player is measured by pt and
μCLQ(V ,Pt,Mt)(CLQt). Since the clique player only knows the color of vertices Mt that
are missing in all cliques after the tth round, its information about a (k − 1)-coloring by the
color player is measured by mt and μCOL(V ,Mt)(COLt).

The number of rounds, T , is large if for t = T no edge present in all remaining cliques
CLQt that is monochromatic in all remaining colorings COLt. We show that an adversary
can choose the sets CLQt and COLt at each round so that many rounds are needed.

SELECTION OF THE SETS CLQT AND COLT BY THE ADVERSARY: Let the value of the bits sent by
the clique and color players be bCLQ and bCOL, respectively. At the tth round the following
algorithm is used to choose CLQt and COLt:

1) Let P = Pt−1, p = pt, M = Mt−1 and m = mt−1. Let CLQ1 be the larger of the
two subsets of CLQt−1 consistent with the values bCLQ = 0 and bCLQ = 1. Thus,
μCLQ(V ,P ,M)(CLQ1) ≥ μCLQ(V ,P ,M)(CLQt−1)/2.

2) Let CLQ be a collection of k-cliques. Then the set of cliques q in CLQ containing the
vertex v is denoted CLQ(v) = {q ∈ CLQ | v ∈ q}.

444 Chapter 9 Circuit Complexity Models of Computation

Let CLQ = CLQ1. As long as there exists v ∈ V − P − M such that the following is
true:

μCLQ(V ,P ,M)(CLQ(v)) ≥ 2(k − p−m)
(n− p −m)

μCLQ(V ,P ,M)(CLQ) (9.2)

replace P by P ∗ = P ∪ {v}, p by p∗ = p + 1, and CLQ by CLQ∗ = CLQ(v). Here
(k−p−m)μCLQ(V ,P ,M)(CLQ)/(n−p−m) is the average of μCLQ(V ,P ,M)(CLQ(v))
over all v ∈ V − P − M . Thus, CLQ(v) has measure at least twice the average.

Since |CLQ(V , P ∗, M)| = (k−p−m)|CLQ(V , P , M)|/(n−p−m) after each iteration
of this loop, the following bound holds:

μCLQ(V ,P ∗,M)(CLQ∗) ≥ 2μCLQ(V ,P ,M)(CLQ)

That is, the renormalized measure of the set of cliques after one iteration of the loop is at
least double that of the measure before the iteration.

After exiting from this loop let CLQ∗
t = CLQ∗ and let Pt = P . Since Pt contains

pt − pt−1 more items than Pt−1, the following inequality holds:

μCLQ(V ,Pt,Mt)(CLQ∗
t) ≥ 2pt−pt−1μCLQ(V ,Pt−1,Mt−1)(CLQ1)

≥ 2pt−pt−1μCLQ(V ,Pt−1,Mt−1)(CLQt−1)/2 (9.3)

Furthermore, for any vertex v remaining in V − P the condition expressed in (9.2) is
violated, so that the following holds for v ∈ V − P , where α = 2(k − pt −mt−1)/(n−
pt −mt−1):

μCLQ(V ,Pt,Mt−1)({q ∈ CLQ∗
t | v ∈ q}) < α

(
μCLQ(V ,Pt,Mt−1)(CLQ∗

t)
)

(9.4)

3) Let COL∗
t = {c ∈ COLt−1 | c is 1-1 on Pt}. That is, COL∗

t is the set of (k − 1)-
colorings in COLt that assigns unique colors to vertices in Pt. By restricting the (k − 1)-
colorings we do not increase the number of rounds. In Lemma 9.7.3 we develop a lower
bound on μCOL(V ,Mt−1)(COL∗

t) in terms of μCOL(V ,Mt−1)(COLt−1).

4) Let M = Mt−1 and m = mt−1. Let COL0 and COL1 denote the subsets of COL∗
t

consistent with the values bCOL = 0 and bCOL = 1, respectively. Let COL be the larger
of these two sets. Then μCOL(V ,M)(COL) ≥ μCOL(V ,M)(COL∗

t)/2.

5) The set COLt(u, v) = {c ∈ COL | c(u) = c(v)} contains those (k − 1)-colorings in
COL for which vertices u and v have the same color.

As long as there exist u, v ∈ V −M such that the following is true:

μCOL(V ,M)(COLt(u, v)) ≥ 2μCOL(V ,M)(COL)/(k − 1)

let w be one of u and v that is not in P (they cannot both be in P and have the same color
because each coloring is 1-1 on P); replace M by M∗ = M ∪ {w}, m by m∗ = m + 1,
and COL by COL∗ = COLt(u, v).

The term μCOL(V ,M)(COL)/(k− 1) is the average of μCOL(V ,M)(COLt(u, v)) over all
u and v in V − M . Thus, COL∗ contains (k − 1)-colorings whose measure is at least
twice the average.

c©John E Savage 9.7 Circuit Depth 445

Since |COL(V , M∗)| = |COL(V , M)|/(k − 1) after each iteration of this loop, the
following holds:

μCOL(V ,M∗)(COL∗) ≥ 2μCOL(V ,M)(COL)

That is, the renormalized measure of the set of (k − 1)-colorings after each loop iteration
is at least double that of the measure before the iteration.

After exiting from this loop, let Mt = M . Since Mt contains mt−mt−1 more items than
Mt−1, the following inequality holds:

μCOL(V ,Mt−1)(COL∗) ≥ 2mt−mt−1μCOL(V ,Mt−1)(COL)

≥ 2mt−mt−1μCOL(V ,Mt−1)(COL∗
t)/2 (9.5)

6) Let COLt = COL∗, Mt = M , and CLQt = {q ∈ CLQ∗
t | Mt ∩ q = ∅}. Thus, CLQt

does not contain any cliques with vertices in Mt. In Lemma 9.7.4 we develop a lower
bound on μCLQ(V ,Pt,Mt−1)(CLQt) in terms of μCLQ(V ,Pt,Mt−1)(CLQ∗

t).

PERFORMANCE OF THE ADVERSARIAL STRATEGY We establish three lemmas and then derive
the lower bound on the number of rounds of the communication game.

LEMMA 9.7.3 After step 3 of the adversarial selection the following inequality holds:

μCOL(V ,Mt−1)(COL∗
t) ≥

(
1 − (pt + 1)2

k − 1

)
μCOL(V ,Mt−1)(COLt−1)

Proof Recall the definition of COLt(u, v) = {c ∈ COL | c(u) = c(v)}. Consider the
results of step 3 of the tth round in the adversary selection process. Because of the choices
made in step 5 in the (t − 1)st round and the choice of COL0, the following inequality
holds for all t > 0 and u, v ∈ V −Mt−1 when u �= v:

μCOL(V ,Mt−1)(COLt(u, v)) < 2μCOL(V ,Mt−1)(COLt−1)/(k − 1)

Because Mt = Mt−1 at step 3 of the tth round and Pt ⊆ V −Mt, the same bound applies
for u and v in Pt.

The set COLt−1 is reduced to COL∗
t = {c ∈ COLt−1 | c is 1 to 1 on Pt} by discard-

ing (k − 1)-colorings for which u and v are in Pt and have the same color. From the above
facts the following inequalities hold (here instances of the measure μ carry the subscript
COL(V , Mt−1)):

μ(COL∗
t) = μ({c ∈ COLt−1 | c is 1 to 1 on Pt})

= μ(COLt−1) − μ

⎛⎝ ⋃
u,v∈Pt, u �=v

COLt(u, v)

⎞⎠
≥ μ(COLt−1) −

∑
u,v∈Pt, u �=v

COLt(u, v)

>

(
1 −

(
pt

2

)
2

k − 1

)
μ(COLt−1)

>

(
1 − (pt + 1)2

k − 1

)
μ(COLt−1)

446 Chapter 9 Circuit Complexity Models of Computation

From this the conclusion follows.

LEMMA 9.7.4 After step 6 of the adversarial selection the following inequality holds:

μCLQ(V ,Pt,Mt−1)(CLQt) ≥
(

1 − 2kmt

n

)
μCLQ(V ,Pt,Mt−1)(CLQ∗

t)

Proof As stated in (9.4), after step 2 of the tth round of the adversary selection process we
have for all v ∈ V − Pt −Mt−1 the following inequality:

μCLQ(V ,Pt,Mt−1)({q ∈ CLQ∗
t | v ∈ q}) <

2(k − pt −mt−1)
(n− pt −mt−1)

μCLQ(V ,Pt,Mt−1)(CLQ∗
t)

Since Mt ⊆ V − Pt, this bound applies to v ∈ Mt. In the rest of this proof all instances of
μ carry the subscript CLQ(V , Pt, Mt−1).

Since CLQt = {q ∈ CLQ∗
t | Mt ∩ q = ∅}, after step 6 the following inequalities hold:

μ(CLQt) = μ({c ∈ CLQt | Mt ∩ q = ∅})

= μ(CLQ∗
t)− μ

(⋃
v∈Mt

{c ∈ CLQ∗
t | v ∈ q}

)

≥
(

1 − 2(k − pt −mt−1)mt

(n− pt −mt−1)

)
μ(CLQ∗

t)

≥
(

1 − 2kmt

n

)
μ(CLQ∗

t)

From this the conclusion follows.

The third lemma sets the stage for the principal result of this section.

LEMMA 9.7.5 Let k ≥ 2 and t ≤
√

k/4 and t ≤ n/(8k). Then the following inequalities hold:

μCLQ(V ,Pt,Mt−1)(CLQt) ≥ 2pt−2t

μCOL(V ,Mt)(COLt) ≥ 2mt−2t

Proof The inequalities hold for t = 0 because μCLQ(V ,P0)(CLQ0) = μCOL(V ,M0)(COL0) =
1. We assume as inductive hypothesis that the inequalities hold for the first t − 1 rounds
and show they hold for the tth round as well.

Using the inductive hypothesis and (9.3), we have

μCLQ(V ,Pt,Mt−1)(CLQ∗
t) ≥ 2pt−pt−1μCLQ(V ,Pt−1,Mt−1)(CLQt−1)/2 ≥ 2pt−2t+1(9.6)

Since μCLQ(V ,Pt)(CLQ∗
t) ≤ 1, we conclude that pt ≤ 2t − 1. Using this result, the

assumption that t ≤
√

k/4, Lemma 9.7.3, and the inductive hypothesis, we have

μCOL(V ,Mt−1)(COL∗
t) ≥

(
1 − 4t2

k − 1

)
μCOL(V ,Mt−1)(COLt−1)

≥
(

1 − k

4(k − 1)

)
μCOL(V ,Mt−1)(COLt−1)

≥ 1
2
μCOL(V ,Mt−1)(COLt−1)

≥ 2mt−1−2t+1

c©John E Savage 9.7 Circuit Depth 447

Combining this and (9.5) (note that in step 6 we let COLt = COL∗), we have the first
of the two desired conclusions, namely μCOL(V ,Mt)(COLt) ≥ 2mt−2t. This implies that
mt ≤ 2t. Applying this to the inequality in Lemma 9.7.4 and using the condition t ≤
n/(8k), we get the following inequality:

μCLQ(V ,Pt,Mt−1)(CLQt) ≥ μCLQ(V ,Pt,Mt−1)(CLQ∗
t)/2

Combining this with the lower bound given in (9.6), we have the second of the two desired
conclusions, namely, μCLQ(V ,Pt,Mt−1)(CLQt) ≥ 2p2−2t.

We now state the principal conclusion of this section.

THEOREM 9.7.3 Let 2 ≤ k ≤ (n/2)2/3. Then the monotone communication complexity of the
k-clique function f

(n)
clique,k is Ω(

√
k).

Proof Run the adversarial selection process for T =
√

k/4 steps to produce sets CLQT ,
COLT , PT , and MT . Below we show that CLQT and COLT are not empty. Give the
clique player a k-clique q ∈ CLQT and the color player a (k − 1)-coloring c ∈ COLT . To
show that the two players cannot agree in T or fewer rounds on an edge in a clique in CLQT

that is monochromatic in all c ∈ COLT , assume they can, and let (u, v) ∈ q be that edge.
If follows that both u and v are in MT . But this cannot happen because, by construction,
q ∩ MT = ∅.

To show that CLQT and COLT are not empty, observe that k ≤ (n/2)2/3 and t ≤√
k/4 imply that t ≤ n/(8k). Thus, Lemma 9.7.5 can be invoked, which implies that

pt, mt ≤ 2t ≤
√

k/2 ≤ k/2 < n. Invoking the definitions, the following inequalities also
hold.

CLQt ≥ 2pt−2tCLQ(V , Pt, Mt−1) > 0

COLt ≥ 2mt−2tCOL(V , Mt) > 0

Since the right-hand sides are non-zero, we have the desired conclusion.

9.7.5 Bounded-Depth Circuits
As explained earlier, bounded-depth circuits are studied to help us understand the depth of
bounded fan-in circuits. Bounded-depth circuits for arbitrary Boolean functions require that
the fan-in of some gates be unbounded because otherwise only a bounded number of inputs
can influence the output(s).

In Section 2.3 we encountered the DNF, CNF, SOPE, POSE, and RSE normal forms.
Each of these corresponds to a circuit of bounded depth. The DNF and SOPE normal forms
represent Boolean functions as the OR of the AND of literals. The OR and each of the ANDs
is a function of a potentially unbounded number of literals. The same statement applies to
the CNF and POSE normal forms when AND and OR are exchanged. The RSE normal form
represents Boolean functions as the EXCLUSIVE OR of the AND of variables, that is, without
the use of negation. Again, the fan-in of the two types of operation is potentially unbounded.

As stated in Problems 2.8 and 2.9, the SOPE and POSE of the parity function f
(n)
⊕ have

exponential size, as does the RSE of the OR function f
(n)
∨ . In Problem 2.10 it is stated that

the function f
(n)
mod 3 has exponential size in the DNF, CNF, and RSE normal forms.

448 Chapter 9 Circuit Complexity Models of Computation

In this section we show that every bounded-depth circuit for the parity function f
(n)
⊕ over

the basis containing the NOT gate on one input and the AND and OR gates on an arbitrary
number of inputs has exponential size. Thus, the depth-2 result extends to arbitrary depth.

BOUNDED-DEPTH PARITY CIRCUITS HAVE EXPONENTIAL SIZE We use an approximation method

to derive a lower bound on the size of a bounded-depth circuit for f
(n)
⊕ . This method parallels

almost exactly the method of Section 9.6.3. Starting with gates most distant from the output
and progressing toward it, replace each gate of a given circuit by an approximating circuit.
We show that as each replacement is made, the number of new errors it introduces is small.
However, we also show that after all gates are approximated, the number of errors between the

approximating circuit and f
(n)
⊕ is large. This implies that the number of gates replaced is large.

The approximation method used here replaces each gate in a circuit by a polynomial over
GF (3), the three-element field containing {−1, 0, 1}, with the property that if the variables
of such a polynomial assume values in B = {0, 1}, the value of the polynomial is in B. For
example, the polynomial x1(1 − x2)x3 has value 1 over B only when x1 = x3 = 1 and
x2 = 0 and has value 0 otherwise. Thus, it corresponds exactly to the minterm x1x2x3. Since
every minterm can be represented as a polynomial of this kind, every Boolean function f can
realized by a polynomial over GF (3) by forming the sum of one such polynomial for each
of its minterms. A b-approximator is polynomial of degree b that approximates a Boolean
function.

Although we establish the lower bound for the basis containing NOT and the unbounded
fan-in AND and OR gates, the result continues to hold if the unbounded fan-in MOD3 function
is added to the basis. (See Problem 9.41.) We begin by showing that the function computed
by a circuit C containing size(C) gates cannot differ from its b-approximator on too many
input tuples.

LEMMA 9.7.6 Let f : Bn �→ B be computed by a circuit C of depth d. There is a (2k)d-
approximator circuit Ĉ computing f̂ : Bn �→ B such that f and f̂ differ on at most size(C)2n−k

input n-tuples, where n is the number of inputs on which C depends and size(C) is the number
of gates that it contains.

Proof We construct a b-approximator for C, b = (2k)d, by approximating inputs (xi and
xi are approximated exactly on B by xi and (1− xi)), after which we approximate gates all
of whose inputs have been approximated until the output gate has been approximated. We
establish the result of the lemma by induction.

We treat the statement of the lemma as our inductive hypothesis and show that if it holds
for d = D − 1, it holds for d = D. The hypothesis holds on inputs, namely, when d = 0.
Suppose the hypothesis holds for d = D− 1. Since C has depth d, each of the inputs to the
output gate has depth at most D − 1 and satisfies the hypothesis. The output gate is AND,
OR, or NOT. Suppose it is NOT. Let g be the function associated with its input. We replace
the NOT gate with the function (1− g), which introduces no new errors. Since g and 1− g
have the same degree, the inductive hypothesis holds in this case.

If the output gate is the AND of g1, g2, . . . , gm, it can be represented exactly by the
function g1g2 · · · gm. However, this polynomial has degree m(2k)d−1 if each of its inputs
has degree at most (2k)d−1; this violates the inductive hypothesis if m > 2k, which may
happen because the fan-in of the gate is potentially unbounded. Thus we must introduce
some error in order to reduce the degree of the approximating polynomial. Since the OR of

c©John E Savage 9.7 Circuit Depth 449

g1, g2, . . . , gm can be represented by 1 − (1 − g1)(1 − g2) · · · (1 − gm) using DeMorgan’s
Rules, both AND and OR of g1, g2, . . . , gm have the same degree. We find an approximating
polynomial for both AND and OR by approximating the OR gate.

We approximate the OR of g1, g2, . . . , gm by creating subsets S1, S2, . . . , Sk of {g1, g2,
. . . , gm}, computing fi = (

∑
j∈Si

gj)2, and combining these results in

OR(f1, f2, . . . , fk) = 1 − (1 − f1)(1 − f2) · · · (1 − fk)

The degree of this approximation is 2k times the maximal degree of any polynomial in the
set {g1, g2, . . . , gm} or at most (2k)d, the desired result.

There is no error in this approximation if the original OR has value 0. We now show
that there exist subsets S1, S2, . . . , Sk such that the error is at most 2n−k when the original
OR has value 1. Let’s fix on a particular input n-tuple x to the circuit. Suppose each subset
is formed by deciding for each function in {g1, g2, . . . , gm} with probability 1/2 whether
or not to include it in the set. If one or more of {g1, g2, . . . , gm} is 1 on x, the probability
of choosing a function for set whose value is 1 is at least 1/2. Thus, the probability that
OR(f1, f2, . . . , fk) has value 0 when the original OR has value 1 is the probability that each
of f1, f2, . . . , fk has value 0, which is at most 2−k. Since the sets {S1, S2, . . . , Sk} result
in an error on input x with probability at most 2−k, the average number of errors on input
x, averaged over all choices for the k sets, is at most 2−k and the average number of errors
on the set of 2n inputs is at most 2n−k. It follows that some set {S1, S2, . . . , Sk} (and
a corresponding approximating function) has an incorrect value on at most 2n−k inputs.
Since by the inductive hypothesis at most (size(C) − 1)2n−k errors occur on all but the
output gate, at most size(C)2n−k errors occur on the entire circuit.

The next result demonstrates that a
√

n-approximator (obtained by letting k = n1/2d/2)
and the parity function must differ on many inputs. This is used to show that the circuit being
approximated must have many gates.

LEMMA 9.7.7 Let f̂ : Bn �→ B be a
√

n-approximator for f
(n)
⊕ . Then, f̂ and f

(n)
⊕ differ on at

least 2n/50 input n-tuples.

Proof Let U ⊆ Bn be the n-tuples on which the functions agree. We derive an upper
bound on |U | of β = (49)2n/50 that implies the lower bound of the lemma. We derive
this bound indirectly. Since there are 3|U| functions g : U �→ {−1, 0, 1}, assign each one
a different polynomial and show that the number of such polynomials is at most 3β , which
implies that |U | ≤ β.

Transform the polynomial in the variables x1, x2, . . . , xn representing f
(n)
⊕ by mapping

xi to yi = 2xi − 1. This mapping sends 1 to 1 and 0 to −1. (Observe that y2
i = 1.) It

does not change the degree of a polynomial. In these new variables f
(n)
⊕ can be represented

exactly by the polynomial y1y2 · · · yn.
Given a function g : U �→ {−1, 0, 1}, extend it arbitrarily to a function g̃ : Bn �→

{−1, 0, 1}. Let p be a polynomial in Y = {y1, y2, . . . , yn} that represents g̃ on U exactly.
Let cyi1yi2 · · · yit

be a term in p for some constant c ∈ {−1, 1}. We show that if t is larger
than n/2 we can replace this term with a smaller-degree term.

Let T = {yi1 , yi2 , . . . , yit
} and T = Y − T . The term cyi1yi2 · · · yit

can be written
as cΠ T , where by Π T we mean the product of all terms in T . With y2

i = 1, this may

be rewritten as cΠ Y Π T . Since f
(n)
⊕ = Π Y , on the set U this is equivalent to cf̂Π T ,

450 Chapter 9 Circuit Complexity Models of Computation

which has degree
√

n + n − |T |. Thus, a term cyi1yi2 · · · yit
of degree t ≥ n/2 can

be replaced by a term of degree
√

n + n − t. It follows that the number of polynomials

(and functions) representing functions whose values coincide with f
(n)
⊕ on U is the number

of polynomials of degree at most
√

n + n/2. Since there are
(
n
j

)
ways to choose a term

containing j variables of Y , there are at most N ways to choose polynomials representing
functions g : U �→ {−1, 0, 1}, where N satisfies the following bound:

N ≤

√
n+(n/2)∑

j=0

(
n

j

)

For sufficiently large n, the bound to N is approximately 0.9772 · 2n < (49/50)2n. (See
Problem 9.7.) Since each of the N terms can be included in a polynomial with coefficient
−1, 0, or 1, there are at most 3N distinct polynomials and corresponding functions g :
U �→ {−1, 0, 1}, which is the desired conclusion.

We summarize these two results in Theorem 9.7.4.

THEOREM 9.7.4 Every circuit of depth d for the parity function f
(n)
⊕ has a size exceeding 2n1/2d/2/50

for sufficiently large n.

Proof Let U be the set of n-tuples on which f
(n)
⊕ and its approximation f̂ differ. From

Lemma 9.7.6, |U | is at most size(C)2n−k. Now let k = n1/2d/2. From Lemma 9.7.7 these
two functions must differ on at least 1

50 2n input n-tuples. Thus, size(C)2n−k ≥ 1
50 2n from

which the conclusion follows.

. .
Problems
MATHEMATICAL PRELIMINARIES

9.1 Show that the following identity holds for integers r and L:⌈
L

r + 1

⌉
+
⌊

rL

r + 1

⌋
= L

9.2 Show that a rooted tree of maximal fan-in r containing k internal vertices has at most
k(r − 1) + 1 leaves and that a rooted tree with l leaves and fan-in r has at most l − 1
vertices with fan-in 2 or more and at most 2(l − 1) edges.

9.3 For positive integers n1, n2, a1, and a2, show that the following identity holds:

n2
1

a1
+

n2
2

a2
≥ (n1 + n2)2

(a1 + a2)

9.4 The external path length e(T , L) of a binary tree T with L leaves is the sum of the
lengths of the paths from the root to the leaves. Show that e(T , L) ≥ L�log2 L� −
2�log2 L� + L.

c©John E Savage Problems 451

Hint: Argue that the external path length is minimal for a nearly balanced binary tree.
Use this fact and a proof by induction to obtain the external path length of a binary
tree with L = 2k for some integer k. Use this result to establish the above statement.

9.5 For positive integers r and s, show that �s/r�(s mod r) + �s/r�(r − s mod r) = s.

Hint: Use the fact that for any real number a, �a�− �a� = 1 if a is not an integer and
0 otherwise. Also use the fact that s mod r = s− �s/r� · r.

9.6 (Binomial Theorem) Show that the coefficient of the term xiyn−i in the expansion of
the polynomial (x + y)n is the binomial coefficient

(
n
i

)
. That is,

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i

9.7 Show that the following sum is closely approximated by 0.4772 · 2n for large n:

(n/2)+
√

n∑
i=(n/2)

(
n

i

)

Hint: Use the fact that n! can be very closely approximated by
√

2πnnne−n to ap-
proximate

(
n
i

)
. Then approximate a sum by an integral (see Problem 2.23) and consult

tables of values for the error function erf(x) =
∫ x

0 e−t2
d t.

9.8 Let 0 ≤ x ≤ y. Show that x +
√

y − x ≥ √
y.

CIRCUIT MODELS AND MEASURES

9.9 Provide an algorithm that produces a formula for each circuit of fan-out 1 over a basis
that has fan-in of at most 2.

9.10 Show that any monotone Boolean function f (n) : Bn �→ B can be expanded on its
first variable as

f(x1, x2, . . . , xn) = f(0, x2, . . . , xn) ∨ (x1 ∧ f(1, x2, . . . , xn))

9.11 Show that a circuit for a Boolean function (one output vertex) over the standard basis
can be transformed into one that uses negation only on inputs by at most doubling the
number of AND, OR, and NOT gates and without changing its depth by more than a
constant factor.
Hint: Find the two-input gate closest to the output gate that is connected to a NOT

gate. Change the circuit to move the NOT gate closer to the inputs.

RELATIONSHIPS AMONG COMPLEXITY MEASURES

9.12 Using the construction employed in Theorem 9.2.1, show that the depth of a function
f : Bn �→ Bm in a circuit of fan-out s over a complete basis Ω of fan-in r satisfies the
inequality

Ds,Ω(f) ≤ DΩ(f) (1 + l(Ω) + l(Ω) logs (rCs,Ω(f)/D))

452 Chapter 9 Circuit Complexity Models of Computation

9.13 Show that there are ten functions f with LΩ(f) = 2 that are dependent on two

variables and that each can be realized from a circuit for f
(1)
mux plus at most one instance

of NOT on an input to f
(1)
mux and on its output.

9.14 Extend the upper bound on depth versus formula size of Theorem 9.2.2 to monotone
functions.

LOWER-BOUND METHODS FOR GENERAL CIRCUITS

9.15 Show that the function f(x1, x2, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn has circuit size �(n−
1)/(r − 1)� and depth �logr n� over the basis containing the r-input AND gate.

9.16 The parity function f
(n)
⊕ : Bn �→ B has value 1 when an odd number of its variables

have value 1 and 0 otherwise. Derive matching upper and lower bounds on the size

and depth of the smallest and shallowest circuit(s) for f
(n)
⊕ over the basis B2.

9.17 Show that the function f
(n)
mod 4 defined to have value 1 if the sum of the n inputs

modulo 4 is 1 can be realized by a circuit over the basis B2 whose size is 2.5n + O(1).
Hint: Show that the function is symmetric and devise a circuit to compute the sum of
three bits as the sum of two bits.

9.18 Over the basis B2 derive good upper and lower bounds on the circuit size of the func-

tions f
(n)
4 : Bn �→ B and f

(n)
5 : Bn �→ B defined as

f
(n)
4 = ((y + 2) mod 4) mod 2

f
(n)
5 = ((y + 2) mod 5) mod 2

Here y =
∑n

i=1 xi and
∑

and + denote integer addition.

9.19 Show that the set of Boolean functions on two variables that depend on both variables
contains only AND-type and parity-type functions. Here an AND-type function com-
putes (xa∧yb)c for Boolean constants a, b, c whereas a parity-type function computes
x ⊕ y ⊕ c for some Boolean constant c.

9.20 The threshold function τ
(n)
t : Bn �→ B on n inputs has value is 1 if t or more inputs

are 1 and 0 otherwise. Show that over the basis B2 that CB2(τ
(n)
2) ≥ 2n− 4.

9.21 A formula for the parity function f
(n)
⊕,c : Bn �→ B on n inputs is given below. Show

that it has circuit size exactly 3(n− 1) over the standard basis when NOT gates are not
counted:

f
(n)
⊕,c = x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ c

9.22 Show that f
(n)
⊕,c has circuit size exactly 4(n−1) over the standard basis when NOT gates

are counted.

9.23 Show that f
(n)
⊕,c has circuit size exactly 7(n− 1) over the basis {∧,¬}.

c©John E Savage Problems 453

LOWER BOUNDS TO FORMULA SIZE

9.24 Show that the multiplexer function f
(p)
mux can be realized by a formula of size 32p − 2

in which the total number of address variables is 2(2p − 1).

Hint: Expand the function f
(p)
mux as suggested below, where a(k) denotes the k com-

ponents of a with smallest index and P = 2p:

f (p)
mux(a

(p), yP−1, . . . , y0) = f (1)
mux(ap−1, f (p−1)

mux (a(p−1), yP−1, . . . , yP/2),

f (p−1)
mux (a(p−1), yP/2−1, . . . , y0))

Also, represent f
(1)
mux as shown below.

f (1)
mux(a, y1, y0) = (a ∧ y0) ∨ (a ∧ y1)

9.25 Show that Nečiporuk’s method cannot provide a lower bound larger than O(n2/ log n)
for a function on n variables.

9.26 Derive a quadratic upper bound on the formula size of the parity function f
(n)
⊕ over

the standard basis.

9.27 Nečiporuk’s function is defined in terms of an �n/m�×m matrix of Boolean variables,
X = {xi,j}, m = �log2 n� + 2, and a matrix Σ = {σi,j} of the same dimen-
sions in which each entry σi,j is a distinct m-tuple over B containing at least two 1s.
Nečiporuk’s function, N(X), is defined as

N(X) =
⊕
i,j

xi,j

∧ ⊕
k=1

(k �=i)

∏
l such that
σi,j(l)=1

xk,l

Here
⊕

denotes the exclusive or operation. Show that this function has formula size
Ω(n2/ log n) over the basis B2.

9.28 Use Krapchenko’s method to derive a lower bound of n2 on the formula size of the

parity function f
(n)
⊕ : Bn �→ B.

9.29 Use Krapchenko’s method to derive a lower bound of Ω(t(n− t + 1)) on the formula
size over the standard basis of the threshold function τ

(n)
t , 1 ≤ t ≤ n− 1.

9.30 Generalize Krapchenko’s lower-bound method as follows. Let f : Bn �→ B and let
A ⊆ f−1(0) and B ⊆ f−1(1). Let Q = [qi,j] be defined by qi,j = 1 if xi ∈ A and
xj ∈ B are neighbors and qi,j = 0 otherwise. Let P = QQT and P = QT Q. Then
pr,s is the number of common neighbors to xr and xs in B. The matrices P and
P are symmetric and their largest eigenvalues, λ(P) and λ(P), are both non-negative
and λ(P) = λ(P). Show that

LΩ(f) ≥ λ(P)

9.31 Under the conditions of Problem 9.30, let

D(f) =
1
|B|

∑
r,s

pr,s, D(f) =
1
|B|

∑
r,s

pr,s, K(f) =
|N (A, B)|2
|A||B|

454 Chapter 9 Circuit Complexity Models of Computation

where K(f) is the lower bound given in Theorem 9.4.2. Show that

K(f) ≤ D(f) ≤ λ(P)
K(f) ≤ D(f) ≤ λ(P)

Hint: Use the fact that the largest eigenvalue of a matrix P satisfies

λ(P) = max
x�=0

xT Px

xT x

Also, let si be the sum of the elements in the ith column of the matrix Q. Show that∑
i s2

i =
∑

r,s pr,s.

LOWER-BOUND METHODS FOR MONOTONE CIRCUITS

9.32 Consider a monotone circuit on n inputs that computes a monotone Boolean function
f : Bn �→ B. Let the circuit have k two-input AND gates, one of them the output gate,
and let these gates compute the Boolean functions g1, g2, . . . , gk = f , where the AND

gates are inverse-ordered by their distance from the output gate computing f . Since the
function gj is computed using the values of x1, x2, . . . , xn, g1, . . . , gj−1, show that gj

can be computed using at most n+ j−2 two-input OR gates and one AND gate. Show
that this implies the following upper bound on the monotone circuit size of f :

CΩmon(f) ≤ kn +
(

k − 1
2

)
− 1

Let C∧(f) denote the minimum number of AND gates used to realize f over the mono-
tone basis. This result implies the following relationship:

CΩmon(f) = O
(
(C∧(f))2

)
How does this result change if the gate associated with f is an OR gate?

9.33 Show that the prime implicants of a monotone function are monotone prime impli-
cants.

9.34 Find the monotone implicants of the Boolean threshold function τ
(n)
t : Bn �→ B,

1 ≤ t ≤ n.

9.35 Using the gate-elimination method, show that CΩmon(τ
(n)
2) ≥ 2n− 3.

9.36 Show that an expansion of the form of equation (9.1) on page 420 holds for every
monotone function.

9.37 Show that the f
(n)
clique,k : Bn(n−1)/2 �→ B can be realized by a monotone circuit of size

O(nn).

9.38 Show that the largest value assumed by min(
√

k − 1/2, n/(2k)) under variation of k
is Ω(n1/3).

c©John E Savage Chapter Notes 455

CIRCUIT DEPTH

9.39 Show that the communication complexity of a problem (U , V), U , V ⊆ Bn, satisfies
C(U , V) ≤ n+log∗2 n, where log∗2 n is the number of times that �log2� must be taken
to reduce n to zero.

Hint: Complete the definition of a protocol in which Player I sends Player II n −
�log2 n� bits on the first round and Player II responds with a message specifying
whether or not its n-tuple agrees with that of Player I and if not, where they differ.

9.40 Consider the communication problem defined by the following sets:

U = {u | 3 divides the number of 1s in u}
V = {v | 3 does not divide the number of 1s in u}

Show that a protocol exists that solves this problem with communication complexity
3�log2 n�.

9.41 Show that Theorem 9.7.4 continues to hold when the MOD3 function is added to the
basis where MOD3 is the Boolean function that has value 1 when the number of 1s
among its inputs is not divisible by 3.

Chapter Notes
The dependence of circuit size on fan-out stated in Theorem 9.2.1 is due to Johnson et al.
[150]. The depth bound implied by this result is proportional to the product of the depth and
the logarithm of the size of the original circuit. Hoover et al. [138] have improved the depth
bound so that it is proportional to (logr s)DΩ(f) without sacrificing the size bound of [150].

The relationship between formula size and depth in Theorem 9.2.2 is due to Spira [314],
whose depth bound has a coefficient of proportionality of 2.465 over the basis of all Boolean
functions on two variables. Over the basis of all Boolean functions except for parity and its
complement, Preparata and Muller [259] obtain a coefficient of 1.81. Brent, in a paper on the
parallelization of arithmetic formulas [58], has effectively extended the relationship between
depth and formula size to monotone functions. (See also [359].)

An interesting relationship between complexity measures that is omitted from Section 9.2,
due to Paterson and Valiant [240], shows that circuit size and depth satisfy the inequality

DΩ(f) ≥ 1
4
CΩ(f) log CΩ(f)−O(CΩ(f))

The lower bounds of Theorem 9.3.2 on functions in Q
(n)
2,3 are due to Schnorr [300],

whereas that of Theorem 9.3.3 on the multiplexer function is due to Paul [244]. Blum [48],
building on the work of Schnorr [302], has obtained a lower bound of 3(n−1) for a particular
function of n variables over the basis B2. This is the best circuit-size lower bound for this
basis. Zwick [374] has obtained a lower bound of 4n for certain symmetric functions over the
basis U2. Red’kin [274] has obtained lower bounds with coefficients as high as 7 for certain
functions over the bases {∧,¬} and {∨,¬}. (See Problem 9.23.) Red’kin [276] has used the
gate-elimination method to show that the size of the ripple-adder circuit of Section 2.7 cannot
be improved.

456 Chapter 9 Circuit Complexity Models of Computation

The coefficient of Nečiporuk’s lower-bound method [230] in Theorem 9.4.1 has been im-
proved upon by Paterson (unpublished) and Zwick [373]. Paul [244] has applied Nečiporuk’s
method to show that the indirect storage access function has formula size Ω(n2/ log n) over
the basis B2. Nečiporuk’s method has also been applied to many other problems, including the
determinant [169], the marriage problem [126], recognition of context-free languages [241],
and the clique function [304].

The proof of Krapchenko’s lower bound [174] given in Theorem 9.4.2 is due to Pater-
son, as described by Bopanna and Sipser [50]. Koutsoupias [172] has obtained the results of
Problems 9.30 and 9.31, improving upon the Krapchenko lower bounds for the kth thresh-
old function by a factor of at least 2. Andreev [24], building on the work of Subbotovskaya
[320], has improved upon Krapchenko’s method and exhibits a lower bound of Ω(n2.5−ε) on
a function of n variables for every fixed ε > 0 when n is sufficiently large. Krichevskii [176]

has shown that over the standard basis, τ
(n)
t requires formula size Ω(n log n), which beats

Krapchenko’s lower bound for small and large values of t.
Symmetric functions are examined in Section 2.11 and upper bounds are given on the

circuit size of such functions over the basis {∧,∨,⊕}. Polynomial-size formulas for symmet-
ric functions are implicit in the work of Ofman [234] and Wallace [356], who also indepen-
dently demonstrated how to add two binary numbers in logarithmic depth. Krapchenko [175]
demonstrated that all symmetric Boolean functions have formula size O(n4.93) over the stan-
dard basis. Peterson [247], improving upon the results of Pippenger [248] and Paterson [241],
showed that all symmetric functions have formula size O(n3.27) over the basis B2. Paterson,
Pippenger, and Zwick [242,243] have recently improved these results, showing that over B2

and U2 formulas exist of size O(n3.13) and O(n4.57), respectively, for many symmetric Boolean
functions including the majority function, and of size O(n3.30) and O(n4.85), respectively, for
all symmetric Boolean functions.

Markov demonstrated that the minimal number of negations needed to realize an arbitrary
binary function on n variables with an arbitrary number of output variables, maximized over
all such functions, is at most �log2(n + 1)�. For Boolean functions (they have one output
variable) it is at most �log2(n+ 1)�. Fischer [100] has described a circuit whose size is at most
twice that of an optimal circuit plus the size of a circuit that computes fNEG(x1, . . . , xn) =
(x1, . . . , xn) and whose depth is at most that of the optimal circuit plus the depth of a circuit
for fNEG. He exhibits a circuit for fNEG of size O(n2 log n) and depth O(log n). This is
the result given in Theorem 9.5.1. Tanaka and Nishino [323] have improved the size bound
on fNEG to O(n log2 n) at the expense of increasing the depth bound to O(log2 n). Beals,
Nishino, and Tanaka [32] have further improved these results, deriving simultaneous size and
depth bounds of O(n log n) and O(log n), respectively.

Using non-constructive methods, a series of upper bounds have been developed on the

monotone formula size of the threshold functions τ
(n)
t by Valiant [346] and Bopanna [49],

culminating in bounds by Khasin [166] and Friedman [106] of O(t4.3n log n) over the mono-
tone basis. With constructive methods, Ajtai, Komlós, and Szemerédi [14] obtained polyno-

mial bounds on the formula size τ
(n)
t over the monotone basis. Using their construction, Fried-

man [106] has obtained a bound on formula size over the monotone basis of O(tcn log n) for
c a large constant.

Over the basis B2, Fischer, Meyer, and Paterson [101] have shown that the majority func-

tion τ
(n)
t , t = �n/2�, and other symmetric functions require formula size Ω(n log n). Pudlák

[264], building on the work of Hodes and Specker [136], has shown that all but 16 symmetric

c©John E Savage Chapter Notes 457

Boolean functions on n variables require formula size Ω(n log log n) over the same basis. The
16 exceptional functions have linear formula size.

Using counting arguments such as those given in Section 2.12, Gilbert [114] has shown
that most monotone Boolean functions on n variables have a circuit size that is Ω(2n/n3/2).
Red’kin [275] has shown that the lower bound can be achieved to within a constant multi-
plicative factor by every monotone Boolean function.

Tiekenherinrich [330] gave a 4n lower bound to the monotone circuit size of a simple
function. Dunne [87] derived a 3.5n lower bound on the monotone circuit size for the major-
ity function.

The lower bound on the monotone circuit size of binary sorting (Theorem 9.6.1) is due
to Lamagna and Savage [188] using an argument patterned after that of Van Voorhis [351] for
comparator-based sorting networks. Muller and Preparata [225,226] demonstrate that binary
sorting over the standard basis has circuit size O(n). (See Theorem 2.11.1.) Pippenger and
Valiant [253] and Lamagna [187] demonstrate an Ω(n log n) lower bound on the monotone
circuit size of merging. These results are established in Section 9.6.1. The sorting network
designed by Ajtai, Komlós, and Szemerédi [14] when specialized to Boolean data yields a
monotone circuit of size O(n log n) for binary sorting.

The first proof that the monotone circuit size of n × n Boolean matrix multiplication
(see Section 9.6.2) is Ω(n3) was obtained by Pratt [256]. Later Paterson [238] and Mehlhorn
and Galil [218] demonstrated that it is exactly n2(2n − 1). Weiss [361] discovered a simple
application of the function-replacement method to both Boolean convolution and Boolean
matrix multiplication, as summarized in Corollary 9.6.1 and Theorem 9.6.5. (Wegener [360,
p. 170] extended Weiss’s result to include the number of ORs.) Wegener [357] has exhibited an
n-input, n-output Boolean function (Boolean direct product) whose monotone circuit size is
Ω(n2). Earlier several authors examined the class of multi-output functions known as Boolean
sums in which each output is the OR of a subset of inputs. Nečiporuk [231] gave an explicit
set of Boolean sums and demonstrated that its monotone circuit size is Ω(n3/2). This lower
bound for such functions was independently improved to Ω(n5/3) by Mehlhorn [216] and
Pippenger [250]. More recently, Andreev [23] has constructed a family of Boolean sums with
monotone circuit size that is Ω(n2−ε) for every fixed ε > 0.

The first super-polynomial lower bound on the monotone circuit size of the clique function
was established by Razborov [270]. Shortly afterward, Andreev [22], using similar methods,
gave an exponential lower bound on the monotone circuit size of a problem in NP. Because the
clique function is complete with respect to monotone projections [310,344], this established
an exponential lower bound for the clique function. Alon and Bopanna [17], by strengthen-
ing Razborov’s method, gave a direct proof of this fact, giving a lower bound exponential in
Ω
(
(n/ log n)1/3

)
. The stronger lower bound given in Theorem 9.6.6, which is exponential

in Ω(n1/3), is due to Amano and Maruoka [20]. They apply bottleneck counting, an idea of
Haken [125], to establish this result. Amano and Maruoka [20] have also extended the approx-
imation method to circuits that have negations only on their inputs and for which the number
of inputs carrying negations is small. They show that, even with a small number of negations,
an exponential lower bound on the circuit size of the clique function can be obtained.

Having shown that monotone circuit complexity can lead to exponential lower bounds,
Razborov [271] then cast doubt on the likelihood that this approach would lead to exponential
non-monotone circuit size bounds by proving that the matching problem on bipartite graphs,
a problem in P, has a super-polynomial monotone circuit size. Tardos [324] strengthened

458 Chapter 9 Circuit Complexity Models of Computation

Razborov’s lower bound, deriving an exponential one. Later Razborov [273] demonstrated
that the obvious generalization of the approximation method cannot yield better lower bounds
than Ω(n2) for Boolean functions on n inputs realized by circuits over complete bases.

Berkowitz [37] introduced the concept of pseudo-inverse and established Theorem 9.6.9.
Valiant [347], Wegener [358], and Paterson (unpublished — see [92,360]) independently im-
proved upon the size of the monotone circuit realizing all pseudo-negations from O(n2 log n)
to O(n log2 n) to produce Theorem 9.6.8. Lemma 9.6.9 is due to Dunne [90].

In his Ph.D. thesis Dunne [88] has given the most general definition of pseudo-negation.
He shows that a Boolean function h is a pseudo-negation on variable xi of a Boolean function
f on the n variables x1, . . . , xn if and only if h satisfies

f(x)|xi=0 ≤ h(x1, . . . , xi−1, xi+1, . . . , xn) ≤ f(x)|xi=1

Here f(x)|xi=a denotes the function obtained from f by fixing xi at a.
Dunne [89] demonstrated that HALF-CLIQUE CENTRAL SLICE is NP-complete (The-

orem 9.6.10) and showed that the central slices of the HAMILTONIAN CIRCUIT (there is a
closed path containing each vertex once) and SATISFIABILITY are NP-complete. As men-
tioned by Dunne [91], not all NP-complete problems have NP-complete central slices.

The concept of communication complexity arose in the context of the VLSI model of
computation discussed in Chapter 12. In this case it measures the amount of information that
must be transmitted from the inputs to the outputs of a function. The communication game
described in Section 9.7.1 is different: it characterizes a search problem because its goal is to
find an input variable on which two n-tuples in disjoint sets disagree.

Yao [366] developed a method to derive lower bounds on the communication complexity
of functions f : X × Y �→ Z. He considered the matrix of values of f where the rows
and columns are indexed by the values of X and Y . He defined monochromatic rectangles
as submatrices in which all entries are the same. He then established that the logarithm of
the minimal number of disjoint rectangles in this matrix is a lower bound on the number of
bits that must be exchanged to compute f . (This result shows, for example, that the identity
function f : B2n �→ B defined for f(x, y) = 1 if and only if xi = yi for all 1 ≤ i ≤ n
requires the exchange of at least n + 1 bits.) Savage [288] adapted the crossing sequence
argument from one-tape Turing machines (an application of the pigeonhole principle) to derive
lower bounds on predicates. Mehlhorn and Schmidt [220] show that functions f : X ×Y �→
Z for which Z is a subset of a field have a communication complexity that is at most the rank
of the two-dimensional matrix of values of f .

The development of the relationship between the circuit depth of a function and its com-
munication complexity follows that given by Karchmer and Wigderson [157]. Karchmer [156]
cites Yannakakis for independently discovering the connection DΩ0(f) = C(f−1(0), f−1(1))
of Theorem 9.7.1 for non-monotone functions. Karchmer and Wigderson [157] have exam-
ined st-connectivity in this framework. This is the problem of determining from the adja-
cency matrix of an undirected graph G with n vertices and two distinguished vertices, s and
t, whether there is a path from s to t. When characterized as a Boolean function on the edge
variables, this is a monotone function. Karchmer and Wigderson [157] have shown that the
circuit depth of this function is Ω((log n)2/ log log n), a result later improved to Ω((log n)2)
independently by Håstad and Boppana in unpublished work. Raz and Wigderson [269] have
shown via a complex proof that the clique problem on n-vertex graphs studied in Section 9.7.4
has monotone communication complexity and depth Ω(n). The simpler but weaker lower
bound for this problem developed in Section 9.7.4 is due to Goldmann and Håstad [116].

c©John E Savage Chapter Notes 459

Furst, Saxe, and Sipser [107] and, independently, Ajtai [13] obtained the first strong lower
bounds on the size of bounded-depth circuits. They demonstrated that every bounded-depth

circuit for the parity function f
(n)
⊕ has superpolynomial size. Using a deeper analysis, Yao

[368] demonstrated that bounded-depth circuits for f
(n)
⊕ have exponential size. Håstad [124]

strengthened the results and simplified the argument, giving a lower bound on circuit size of

2Ω(n1/d/10) for circuits of depth d.
Razborov [272] examined a more powerful class of bounded-depth circuits, namely, cir-

cuits that use unbounded fan-in AND, OR, and parity functions. He demonstrated that the

majority function τ
(n)
n/2 has exponential size over this larger basis. Smolensky [313] simplified

and strengthened Razborov’s result, obtaining an exponential lower bound on the size of a
bounded-depth circuit for the MODp function over the basis AND, OR, and MODq when p
and q are distinct powers of primes. We use a simplified version of his result in Section 9.7.5.

C H A P T E R

Space–Time Tradeoffs

An important question in the study of computation is how best to use the registers of a CPU
and/or the random-access memory of a general-purpose computer. In most computations, the
number of registers (space) available is insufficient to hold all the data on which a program
operates and registers must be reused. If the space is increased, the number of computation
steps (time) can generally be reduced. This is an example of a space–versus–time tradeoff. In
this chapter we examine tradeoffs between the number of storage locations and computation
time using the pebble game and the branching program model.

The pebble game assumes that computations are done with straight-line programs in a
data-independent fashion. Each such program is modeled by a directed acyclic graph. A
pebble on a vertex indicates that its value is in a register. The goal of the game is to pebble the
output vertices of the graph with numbers of pebbles (space) and steps (time) that are minimal,
that is, neither can be reduced without increasing the other.

A branching program models data-dependent computation under the assumption that in-
put variables assume a bounded number of values. Such a program is defined by a directed
acyclic multigraph (there may be more than one edge between vertices) that specifies the order
in which inputs are read. Time is the length of the longest path in a multigraph and space is
the logarithm of its number of vertices.

For both models we present techniques to derive lower bounds on the exchange of space S
for time T . For most problems examined here these exchanges are of the form ST = Ω(n2),
where n is the size of the problem input. Upper bounds on ST are obtained by evaluating S
and T for particular algorithms.

Because the branching program is more general than the pebble game, it is more difficult
to obtain good lower bounds with it, and for this reason we begin with the pebble game. In
addition, the pebble game is appropriate for problems such as integer multiplication, convo-
lution, and matrix multiplication on which only straight-line programs are used. For other
problems, such as merging and sorting, the algorithms used typically involve branching and
for them the branching program is the better model.

We also exhibit extreme results for the pebble game by showing that the time to pebble
some graphs goes from minimal to exponential in the size of the graphs when the number
of pebbles changes by 1, a warning against trying too hard to minimize the number of CPU
registers used in a computation.

461

462 Chapter 10 Space–Time Tradeoffs Models of Computation

10.1 The Pebble Game
The pebble game is a game played on directed acyclic graphs (DAGs), which capture the
dependencies of straight-line programs studied in Chapters 2 and 6. Algorithms for many
important problems, such as the FFT and matrix multiplication, are naturally computed by
straight-line programs. In the pebble game pebbles are placed on vertices of a DAG to indicate
that the value associated with a vertex resides in a register. Pebbles are placed on vertices in a
data-independent order.

In this game a pebble can be placed on an input vertex at any time and on any non-input
vertex whose immediate predecessor vertices carry pebbles. The goal of the game is to place
pebbles on each output vertex. A pebble can be removed from a vertex, including an output
vertex, at any time after it has been pebbled. These rules are summarized below.

The rules of the pebble game are the following:

• (Initialization) A pebble can be placed on an input vertex at any time.

• (Computation Step) A pebble can be placed on (or moved to) any non-input vertex only
if all its immediate predecessors carry pebbles.

• (Pebble Deletion) A pebble can be removed at any time.

• (Goal) Each output vertex must be pebbled at least once.

Placement of a pebble on an input vertex models the reading of input data. Placement of
a pebble on a non-input vertex corresponds to computing the value associated with the vertex.
The removal of a pebble models the erasure or overwriting of the value associated with the
vertex on which the pebble resides.

Allowing pebbles to be placed on input vertices at any time reflects the assumption that
inputs are readily available. (The multi-level pebble game introduced in the next chapter
models the case in which each access to secondary storage is expensive.) The condition that
all predecessor vertices carry pebbles when a pebble is placed on a vertex models the natural
requirement that an operation can be performed only after all arguments of the operation
are located in main memory. Moving (or sliding) a pebble to a vertex from an immediate
predecessor reflects the design of CPUs that allow the result of a computation to be placed in
a memory location holding an operand.

A pebbling strategy is the execution of the rules of the pebble game on the vertices of a
graph. We assign a step to each placement of a pebble, ignoring steps on which pebbles are
removed, and number the steps consecutively from 1 to T , the time or number of steps in
the strategy. The space, S, used by a pebbling strategy is the maximum number of pebbles
it uses. The goal of the pebble game is to pebble a graph with values of space and time that
are minimal; that is, the space cannot be reduced for the given value of time and vice versa.
In general, it is not possible to minimize space and time simultaneously. We derive upper and
lower bounds on the possible exchanges of space for time.

10.1.1 The Pebble Game Versus the Branching Program
As stated above, the branching program model introduced in Section 10.9 handles data-
dependent computation, and is thus a more general model than the pebble game. However,
there are three reasons to study the pebble game. First, the branching program assumes that

c©John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

464 Chapter 10 Space–Time Tradeoffs Models of Computation

31

15 30

7 14 29 25

3 6 13 18 28 21 24

1 2 4 5 8

10

17 26 27 19 20 22 23169 11 12

Figure 10.2 A complete balanced binary tree T (4) of depth 4 on 16 inputs. At least five
pebbles are needed to pebble it.

The binary tree of Fig. 10.2 can be pebbled with five pebbles by pebbling the vertices in
the order shown. Five pebbles are needed at the time when vertex 27 is pebbled. After one
pebble is moved to vertex 30, the two outputs of the FFT of Fig. 10.1 to which vertices 15 and
30 are attached can be pebbled. This tree-pebbling strategy can be repeated on all remaining
outputs. It is a general strategy for pebbling complete balanced binary trees.

This pebbling strategy, explained in detail in the next section, demonstrates that an FFT
graph on n = 2k inputs can be pebbled with no more pebbles than are needed to pebble the
trees with n leaves contained within it, namely, k + 1. In the next section we show that this
is the minimum number of pebbles needed to pebble a complete balanced binary tree on 2k

leaves. This FFT pebbling strategy for the graph in Fig. 10.1 pebbles each vertex on the third
and fourth levels once, each vertex on the second level twice, and each vertex on the first level
four times. It is clear that inputs must be repebbled if the minimum number of pebbles is used.
This is an example of space–time tradeoff. We shall derive a lower bound on the exchange of
space for time for this problem.

In the next section we also examine the minimum space required to pebble graphs. In the
subsequent section we describe a graph that exhibits an extreme tradeoff. This graph requires
a pebbling time exponential in the size of the graph when the minimum number of pebbles is
used but can be pebbled with one move per vertex if one more pebble is available.

After studying extreme tradeoffs we define a flow property of functions that, if satisfied,
implies a lower bound on the product (S +1)T (or a related expression) involving the space S
and time T needed to compute such functions. This test is used to show that many standard
algorithms are optimal with respect to their use of space and time.

10.2 Space Lower Bounds
In this section we derive lower bounds on the minimum space Smin(G) needed to pebble a
graph G for balanced binary trees, pyramids, and FFT graphs, a representative set of graphs.

c©John E Savage 10.2 Space Lower Bounds 465

Any pebbling strategy will need to use at least as many pebbles as this minimum value of space.
It can be shown that no bounded-degree graph on n vertices requires more than O(n/ log n)
space (see Theorem 10.7.1) and that some graph requires space proportional to n/ log n (see
Theorem 10.8.1).

Complete balanced binary trees were introduced in the previous section. We now derive a
lower bound on the space (number of pebbles) needed to pebble them.

LEMMA 10.2.1 Any pebbling strategy for the complete balanced binary tree of depth k, T (k),
requires at least Smin(T (k)) = k + 1 pebbles and 2k+1 − 1 steps. There is a pebbling strategy of
T (k) that uses exactly this many pebbles and steps.

Proof Proof of the lemma requires a proof that k + 1 pebbles are necessary as well as a
strategy that pebbles the tree with k + 1 pebbles and makes one pebble placement per
vertex. Let’s first develop a pebbling strategy.

T (0) obviously can be pebbled with one pebble in one step. Assume that T (k − 1) can
be pebbled with k pebbles in 2k − 1 steps. To pebble T (k), advance a pebble to the root of
its left subtree (a copy of T (k − 1)) using k pebbles and 2k − 1 steps. Leave a pebble on its
root. Then pebble the right subtree of T (k) using k pebbles and 2k − 1 steps. (A snapshot
of T (k) when the number of pebbles is maximal under this pebbling strategy is shown in
Fig. 10.2.) Thus, T (k) is pebbled in 2× (2k −1)+1 = 2k+1 −1 steps with k +1 pebbles.

The lower bound is derived by showing that no pebbling strategy can use fewer than
k + 1 pebbles. The argument used is the following: initially no path to the root of the tree
(or output) from input vertices carries a pebble because there are no pebbles on the graph.
At the end of the computation a pebble resides on the root and all paths to the root carry
pebbles. Therefore, there must be a first point in time at which there is a pebble on each
path to the root. This must be a time at which a pebble is placed on an input vertex, thereby
closing the last path from that input to the root. Such a path is highlighted in Fig. 10.2.
Before a pebble is placed on the input vertex of this path, all other paths from input vertices
to the root carry pebbles. Each of these paths enters the highlighted path via one edge. Thus,
it follows that prior to the placement of this last pebble there is at least one pebble on the
tree for each of the k edges on this path except for the input vertex. Consequently, at least
k + 1 pebbles are on the tree when the last pebble is placed on it.

The FFT graph on 2k inputs, F (k), is defined recursively in terms of two sub-FFT graphs
F (k−1) as shown in Section 6.7.2. It follows that this graph contains many copies of the tree
T (k) as a subgraph (see Problem 10.11) and that any pebbling strategy for F (k) requires at
least k + 1 pebbles. Many other straight-line computations involve tree computations.

A pyramid graph on m inputs, P (m) (P (6) is shown in Fig. 10.3), is obtained by slicing
an m×m mesh into two parts along its diagonal, splitting all diagonal nodes (which are now
inputs), and then directing edges from the diagonal vertices in one part to the one remaining
unsplit corner vertex in this part of the graph. Edges are directed up, a convention we use
throughout this chapter. P (m) has n = m(m + 1)/2 vertices. (See Problem 10.1.)

We apply to the pyramid graph P (m) the lower bounding argument used in the preceding
proof based on closing the last open path to the output vertex.

LEMMA 10.2.2 Any pebbling strategy for the m-input, n-vertex (n = m(m + 1)/2) pyramid
graph P (m) requires at least m pebbles; that is, a minimum space Smin(P (m)) = m ≥

√
2n−

466 Chapter 10 Space–Time Tradeoffs Models of Computation

Figure 10.3 The pyramid graph on six inputs.

1. There exists a pebbling strategy that pebbles P (m) with m pebbles using one pebble placement
per vertex.

Proof The lower-bound proof again uses the fact that there is a first time at which all paths
from an input to the output carry pebbles. Highlighted in Fig. 10.3 is a last path to carry
a pebble. Prior to the placement of this last pebble, all paths to the output carry pebbles.
Thus, with the placement of the last pebble there must be at least as many pebbles on the
pyramid graph as there are vertices on a path from an input to the output, namely, m, and
m ≥

√
2n− 1. (See Problem 10.1.)

With m pebbles, the vertices can be pebbled in levels by first placing pebbles on each of
the m inputs. Pebbles are then advanced to vertices on the second level from left to right,
and this process is repeated at all levels to complete the pebbling. Each vertex is pebbled
once with this strategy.

In general, it is very hard to determine the minimum number of pebbles needed to pebble
a graph. In terms of the complexity classes introduced in Chapter 8, we model this problem as
a language consisting of strings each of which contains the description of a graph G = (V , E),
a vertex v ∈ V , and an integer S with the property that the vertex can be pebbled with S or
fewer pebbles. The language of these strings is PSPACE-complete (see Section 8.12).

10.3 Extreme Tradeoffs
We now show that extreme space–time tradeoff behavior is possible. We do this by exhibiting a
family of graphs, H1, H2, . . . , Hk, . . . (Fig. 10.4), that requires a number of steps exponential
in the size of the graph when the minimum number of pebbles is used but only one step per
vertex when one more pebble is available. This illustrates that excessive minimization of the
number of registers used by programs can be harmful!

H1 has one input and one output vertex and an edge connecting them, as shown in
Fig. 10.4. For k ≥ 2 the kth graph, Hk, has k + 1 output vertices and is constructed from
one copy of Hk−1, a tree (on the left) with k inputs, a two-level bipartite graph (on the top
right) with k inputs and k + 1 outputs, and a chain of k vertices that connects the tree to the
outputs of Hk−1 and the open vertex. (A bipartite graph is a graph in which the vertices are
partitioned into two sets and edges join vertices in different sets.)

We summarize our pebbling results for this family of graphs below. Here n! is the factorial
function with value n! = n · (n− 1) · (n− 2) · . . . · 2 · 1.

c©John E Savage 10.3 Extreme Tradeoffs 467

H1 H2

H1

3

k

Hk

Hk−1

k

k + 1

k

Figure 10.4 A family of graphs exhibiting an extreme tradeoff.

THEOREM 10.3.1 The graph Hk has N(k) = 2k2 + 5k − 6 vertices for k ≥ 2. Any pebbling
strategy for the graph Hk requires at least k pebbles, k = Θ(

√
N(k)). Any strategy to pebble Hk

with k pebbles requires at least (k + 1)!/2 = 2
Ω
(√

N(k) log N(k)
)

steps, whereas there exists a
pebbling algorithm using k + 1 pebbles that pebbles each vertex of Hk once.

Proof Consider a pebbling strategy that uses k + 1 pebbles to pebble Hk. For the case of
k = 1, Hk can be completely pebbled with one move per vertex. This is also true for H2

because we can move a pebble to the open vertex connected to the bipartite graph using two
pebbles, from which we can advance two of our three pebbles to the bottom layer of the
bipartite graph and have one additional pebble with which to pebble the output vertices.
Note that this pebbling strategy allows us to pebble output vertices of H2 from left to right
with three pebbles.

Assume that we can pebble the outputs of Hk−1 from left to right with k pebbles without
pebbling any vertex more than once. Then to pebble Hk, advance a pebble to the root of
the tree on the left and then pebble the outputs of Hk−1 from left to right using k pebbles
while keeping one additional pebble on the chain. Advance this pebble along the chain until
it reaches the open vertex. At this point k pebbles can be advanced to the bottom row of
vertices in the bipartite graph and the remaining pebble used to pebble outputs from left to
right. This shows that our assumption holds.

The minimum number of pebbles needed to pebble Hk is at least k because at least this
many are needed to pebble the tree on the left. To show that this value can be achieved, we
give a recursive pebbling strategy. Observe that H1 can be pebbled with k = 1 pebbles. To
pebble Hk, assume that we can pebble any one output of Hk−1 with k−1 pebbles. Advance
a pebble to the root of the left tree and then advance it along the chain by pebbling output
vertices of Hk−1 from left to right with k − 1 pebbles. Move a pebble to the open vertex
and then to all vertices on one side of the bipartite graph. Any one output vertex can now
be pebbled. However, doing so requires that one vertex on the bottom side of the bipartite
graph lose its pebble. Thus, no other output vertex can be pebbled without repebbling the
tree and all vertices of Hk−1.

468 Chapter 10 Space–Time Tradeoffs Models of Computation

As this pebbling strategy demonstrates, to pebble an output vertex, all k pebbles must
move to the bottom of the bipartite graph, thereby removing all pebbles from other vertices
of Hk. Let M(k) be the number of pebble placements to pebble Hk with k pebbles. It
follows that to pebble each of the (k + 1) outputs of Hk with k pebbles, we must pebble
each output of Hk−1 with k − 1 pebbles. Thus,

M(k) ≥ (k + 1)×M(k − 1)
≥ (k + 1)k(k − 1) · · · 3 · 1 = (k + 1)!/2

which provides the desired lower bound.
Let the graph Hk have N(k) vertices. Then N(1) = 2, N(2) = 12 and N(k) =

N(k − 1) + 4k + 3 for k ≥ 3. A straightforward proof by induction shows that N(k) =
2k2 + 5k − 6 (see Problem 10.13).

To show that M(k) ≥ (k + 1)!/2 is exponential in N(k) = 2k2 + 5k − 6, note that
p! = p ·(p−1) · . . . ·3 ·2 ·1, which is at least (p/2)(p/2) since each of the first p/2 terms is at
least p/2. Thus, M(k) ≥ .5[(k+1)/2](k+1)/2 Also, it is easy to see that N(k) ≤ 3(k+1)2

for k ≥ 1. Since this implies
√

N(k)/3 ≤ (k + 1), we have that

M(k) ≥ .5
[
(
√

N(k)/3)/2
](
√

N(k)/3)/2

which is exponential in N(k).

Many vertices in the graph Hk have a fan-in k. A new family {Gk} of graphs with fan-in
2 can be obtained by replacing the tree on the left in Hk with the pyramid graph of Fig. 10.3
and replacing the bipartite graph on the top with a new graph (see Problem 10.14). This new
graph exhibits an exponential jump in the time to pebble the graph but at a value of space that
is the fourth root of the number of vertices in Gk.

10.4 Grigoriev’s Lower-Bound Method
In this section we present a method for developing lower bounds on the exchange of space for
time in the pebble game. These lower bounds are typically of the form (S + 1)T = Ω(n2),
where S, T , and n are the space, time, and the size of the input to the problem, and are similar
in spirit to those of Theorem 3.6.1. Because they assume a less general model of computation
(the pebble game instead of the RAM), lower bounds are easier to derive.

The lower bounds use as a measure the maximum amount of information that can flow
from a subset of the inputs to a subset of the outputs, and are much easier to derive than are
lower bounds on circuit size for the circuit model. Although the results are stated for straight-
line computations, they apply to all “input-output-oblivious” computations by finite-state ma-
chines: computations in which inputs are read and outputs produced at times independent of
the values of the input variables. (See Problem 10.20.)

10.4.1 Flow Properties of Functions
We start by defining a flow property of functions. (See Fig. 10.5.) A function f : An �→ Am

has a large information flow from input variables in X1 to output variables in Y1 if there are
values for input variables in X0 = X −X1 such that many different values can be assumed by

c©John E Savage 10.4 Grigoriev’s Lower-Bound Method 469

X

YY0

X0

X1

Y1

Figure 10.5 A function f that has a large information flow from input variables in X1 to
output variables in Y1 for some values of input variables in X0 = X − X1.

outputs in Y1 as inputs in X1 range over all their |A||X1| values. This flow property is also used
in Section 12.7 to derive lower bounds on the exchange of area for time in the VLSI model of
computation.

DEFINITION 10.4.1 A function f : An �→ Am has a w(u, v)-flow if for all subsets X1 and
Y1 of its n input and m output variables, with |X1| ≥ u and |Y1| ≥ v, there is a subfunction
h of f obtained by making some assignment to variables of f not in X1 (variables in X0) and
discarding output variables not in Y1 such that h has at least |A|w(u,v) points in the image of its
domain.

The exponent function w(u, v) is a nondecreasing function of both of its arguments: in-
creasing u, the number of variables that are allowed to vary, can only increase the number of
values assumed by f ; the same is true if v is increased.

An important class of functions are the (α, n, m, p)-independent functions defined below.

DEFINITION 10.4.2 A function f : An �→ Am is an (α, n, m, p)-independent function for
α ≥ 1 and p ≤ m if it has a w(u, v)-flow satisfying w(u, v) > (v/α)− 1 for n− u + v ≤ p.

We illustrate the independence property of a function with matrix multiplication: we show
that the function defined by the product of two n×n matrices is (1, 2n2, n2, n)-independent.
In Section 10.5.4, we show that a stronger property holds for matrix multiplication.

The proof of the independence property of n × n matrices uses the permutation matrices
described in Section 6.2. An n × n permutation matrix is obtained by permuting either the
rows or columns of the n×n identity matrix. When a permutation matrix B multiplies another
matrix A on the right (left) to produce AB (BA), it permutes the columns (rows) of A.

LEMMA 10.4.1 The matrix multiplication function f
(n)
A×B : R2n2 �→ Rn2

over the ring R is
(1, 2n2, n2, n)-independent.

470 Chapter 10 Space–Time Tradeoffs Models of Computation

Proof Let C = AB be the product of n × n matrices A and B. Consider any set X0 of
input variables (entries of A and B) and any set Y1 of output variables (entries of C) such
that |X0|+ |Y1| = n. The outputs in Y1 fall into at most |Y1| columns of C and the inputs
in X0 fall into at most |X0| columns of A. It follows that at least n − |X0| columns of A
contain only variables in X1. Fix the entries in B so that it forms a permutation matrix that
permutes the columns of A containing only elements in X1 onto columns of C containing
elements of Y1. (We are free to make the best assignment of variables in B, whether in X0

or X1.) It follows that each output variable in Y1 is assigned to an input variable of A in X1

by this permutation. Thus these output variables are free to assume |R||Y1| different values.

Since this is more than |R||Y1|−1, it follows that f
(n)
A×B is (1, 2n2, n2, n)-independent.

As this result illustrates, for any set of y1 outputs of the matrix multiplication function and
any set of x0 of its inputs satisfying x0 +y1 ≤ p, there is some assignment to these inputs such
that there is a large flow of information from the complementary set of inputs, X1, to any set
y1 of its outputs.

10.4.2 The Lower-Bound Method in the Basic Pebble Game
The following theorem provides a lower bound on the exchange of space for time. Its proof
uses a variant of the pigeonhole principle. Since the pebbling of vertices is assumed to occur
sequentially, time is divided into intervals in which the number of output vertices pebbled, b, is
chosen to be a small multiple of the number of pebbles, S, used in pebbling. The pigeonhole
principle is used to show that a large number of inputs must be pebbled in each interval.
In particular, we show that if the number of inputs pebbled inside an interval is small, the
number of inputs outside the interval is large enough that there is a large flow from the inputs
outside the interval to the outputs inside it. However, the flow cannot be any larger than can
be supported by the number, S, of vertices carrying pebbles just before the interval. Thus, the
number of input variables outside the interval is small, which implies that the number inside is
large. That is, many inputs must be pebbled within each interval. Multiplying by the number
of intervals in which b outputs are pebbled provides the lower bound.

THEOREM 10.4.1 Let f : An �→ Am have an w(u, v)-flow and let it be realized by a straight-
line program over a basis {h : Ar �→ As | r, s ≥ 1}. For arbitrary b ≤ m, every pebbling of
every DAG for f requires space S and time T satisfying the inequality

T ≥ �m/b�(n− d)

where d is the largest integer such that w(d, b) ≤ S.

Proof Assume that G = (V , E) is pebbled with S ≥ 1 pebbles in T ≥ 1 steps. Let
TI ≤ T be the number of times that input vertices are pebbled. (This is generally more
than the number of input variables.)

Given a pebbling of G with S pebbles, group the consecutive pebbling steps into in-
tervals, the first �m/b� of which contain b pebbled outputs and one of which contains
m − b(�m/b�) pebbled outputs.

Consider an arbitrary interval I in which b outputs are pebbled. Let Y1 be these outputs
and let x0 and x1 be the number of inputs pebbled inside and outside the interval, respec-
tively. By definition, there is an assignment to the x0 inputs such that that the b = |Y1|

c©John E Savage 10.4 Grigoriev’s Lower-Bound Method 471

outputs have at least |A|w(x1,b) different values. If w(x1, b) > S, the outputs Y1 assume
more values than can be taken by the S pebbles in use just prior to the start of I. Because
the values of variables in Y1 are determined by the inputs pebbled in I, which are fixed, and
the values under the S pebbles, this contradicts the definition of f . It follows that x1 can be
no larger than d, where d is the largest value such that w(d, b) ≤ S. Thus the number of
inputs pebbled in I, x0, satisfies x0 ≥ (n− d).

Since there are �m/b� intervals in which b outputs are pebbled, the number of times
that inputs are pebbled, TI , is at least �m/b�(n− d).

Grigoriev [121] established the above theorem for (1, n, m, p)-independent functions. We
restate as a corollary a slightly revised version of his theorem for (α, n, m, p)-independent
functions.

COROLLARY 10.4.1 Let f : An �→ Am be (α, n, m, p)-independent and let it be realized by a
straight-line program over a basis {h : Ar �→ As | r, s ≥ 1}. Every pebbling of every DAG for f
requires space S and time T satisfying the inequality

�α(S + 1)�T ≥ mp/4

Proof An (α, n, m, p)-independent function on n inputs has a w(u, v)-flow satisfying
w(u, v) > (v/α) − 1 for n − u + v ≤ p, where x0 = n − u ≥ 0. Since b can be
freely chosen, let b = �α(S + 1)�. Thus, (b/α) − 1 ≥ S for (n − d) + b ≤ p, which
contradicts the requirement that w(d, b) ≤ S. It follows that (n − d) + b > p or that
(n − d) ≥ p − �α(S + 1)�. With the inequality �m/x� ≥ (m − x + 1)/x (see Prob-
lem 10.2), the following lower bound follows from Theorem 10.4.1:

T ≥ (m− �α(S + 1)�+ 1)(p− �α(S + 1)�)
�α(S + 1)�

Since p ≤ m, if �α(S + 1)� ≤ p/2, the desired lower bound follows. On the other hand,
if �α(S + 1)� ≥ p/2, �α(S + 1)�T ≥ mp/2 since T ≥ m.

It is possible that a function f : An �→ Am is not (α, n, m, p)-independent but a sub-
function g : Ar �→ As is (α, r, s, p)-independent for r ≤ n and s ≤ m. (Subfunctions are
defined in Section 2.4.) As shown in Problem 10.18, the lower bound for the subfunction g
applies to f .

Lower bounds on space–time exchanges can also be derived using properties of the graphs
to be pebbled. For example, if a graph contains a superconcentrator (defined in Section 10.8),
lower bounds on the product can be derived on (S + 1)T in terms of the number of inputs of
the graph. (See Problem 10.28.)

As mentioned at the beginning of this section, Theorem 10.4.1 is much more general
that it appears. In Problem 10.20 the reader is asked to show that the lower bound holds for
“input-output-oblivious” finite-state machines, FSMs that compute functions but read their
inputs and produce their outputs at data-independent times. Problem 10.21 asks the reader to
establish that pebblings of straight-line computations can be translated directly into computa-
tions by finite-state machines.

472 Chapter 10 Space–Time Tradeoffs Models of Computation

Figure 10.6 Pebbling an inner product graph with three pebbles.

10.4.3 First Matrix Multiplication Bound
The Grigoriev lower-bound method is well illustrated by matrix multiplication. We established
its independence property in Section 10.4.1. In this section we apply it to Corollary 10.4.1.
The upper bound stated in the following theorem follows from the development of an algo-
rithm for matrix multiplication that uses three pebbles and executes at most 4n3 steps. This
algorithm, based on the standard matrix multiplication algorithm of Section 6.2.2, forms each
of the n2 inner products defined by the product of two n× n matrices using three pebbles, as
suggested in Fig. 10.6, and 4n− 1 steps.

THEOREM 10.4.2 Every pebbling strategy for straight-line programs computing the matrix multi-
plication function f

(n)
A×B : B2n2 �→ Bn2

for n×n matrices requires space S and time T satisfying
the following inequality:

(S + 1)T ≥ n3/4

The standard algorithm for multiplying n × n matrices uses space and time satisfying

(S + 1)T = 16 n3

Those familiar with fast non-standard matrix multiplication algorithms such as Strassen’s
fast matrix algorithm (Section 6.3) may find this result surprising. Whereas one learns that
the standard matrix multiplication algorithm is not optimal with respect to computation time,
the above result states that the standard matrix multiplication algorithm is nearly optimal with
respect to the space–time product.

In Section 10.5.4 we specialize Theorem 10.4.1 to the flow properties of matrix multipli-
cation, giving a stronger result: that the space and time for matrix multiplication must satisfy
the inequality ST 2 = Ω(n6).

10.5 Applications of Grigoriev’s Method
Given the above results, to derive a lower bound on �α(S + 1)�T using Corollary 10.4.1
it suffices to establish the independence property of a function. We apply this idea in this
section to convolution, cyclic shifting, integer multiplication, matrix-vector multiplication,
matrix inversion, and solving linear equations. We apply related arguments to derive lower
bounds for the discrete Fourier transform and merging. Finally, we apply Theorem 10.4.1 to
derive a lower bound on space–time exchanges for matrix-matrix multiplication that improves
upon the bound of Section 10.4.3. Where possible we also derive upper bounds on space–time
tradeoffs.

c©John E Savage 10.5 Applications of Grigoriev’s Method 473

10.5.1 Convolution
The wrapped convolution on strings of length n over the ring R, f

(n)
wrapped : R2n �→ Rn, is

defined in Problem 6.19. It can be characterized by the following product of a circulant matrix
with a vector (see Section 6.2):⎡⎢⎢⎢⎢⎢⎢⎢⎣

w0

w1

w2

...

wn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0 un−1 un−2 . . . u1

u1 u0 un−1 . . . u2

. . .

un−2 un−3 un−4 . . . un−1

un−1 un−2 un−3 . . . u0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v0

v1

v2

...

vn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10.1)

Lemma 10.5.1 demonstrates (2, 2n, n, n/2)-independence for the wrapped convolution

f
(n)
wrapped : R2n �→ Rn function by showing that for any set X0 of inputs there is a way to put
|Y1|/2 of the inputs in X − X0 into a one-to-one correspondence with |Y1|/2 entries in any
set Y1 of outputs. This is established by setting one component of v to 1 and the rest to 0.

LEMMA 10.5.1 For n even, the wrapped convolution f
(n)
wrapped : R2n �→ Rn over the ring R is

(2, 2n, n, n/2)-independent.

Proof Consider subsets X0 and Y1 of the inputs X and outputs Y of f
(n)
wrapped satisfying

|X0| + |Y1| = p = n/2. For f
(n)
wrapped to be (2, 2n, n, n/2)-independent, there must be

an assignment to input variables in X0 such that the output variables in Y1 have more than

|R|(|Y1|/2)−1 distinct values as the input variables of f
(n)
wrapped in X1 = X −X0 range over

all possible values.
As shown above, f

(n)
wrapped is defined by a matrix-vector product w = Mv, M a cir-

culant matrix, in which each row (column) is a cyclic shift of the first row (column). Let
e = |X0 ∩ {u0, u1, . . . , un−1}|. Thus, every row of M contains the same number e of
entries from X0. Also, n−e inputs are in X1 = X−X0. The entries in X1 are free to vary.

Each output in Y1 corresponds to a row of M . The number of instances of input
variables from X1 in these rows is |Y1|(n − e). Since these rows have n columns, there
is some column, say the tth, containing at least the average number of instances from X1.
This average is |Y1|(1 − e/n) ≥ |Y1|/2. (The instances of variables from X1 in a column
are distinct.) It follows that by choosing the tth component of v, vt, to be 1 and the
others to be 0, at least |Y1|/2 of the inputs in X1 are mapped onto outputs in Y1. Since

these inputs (and outputs) can assume |R||Y1|/2 different values, it follows that f
(n)
wrapped is

(2, 2n, n, n/2)-independent.

This implies the lower bound stated below. The upper bound follows from the standard
matrix-vector algorithm for the wrapped convolution using the observation that an inner prod-
uct can be done with three pebbles, as suggested in Fig. 10.6.

THEOREM 10.5.1 The time T and space S required to pebble any straight-line program for the
standard or wrapped convolution must satisfy the following inequality:

(S + 1)T ≥ n2/16

This lower bound can be achieved to within a constant multiplicative factor for S = O(1).

474 Chapter 10 Space–Time Tradeoffs Models of Computation

10.5.2 Cyclic Shifting

The cyclic shifting function f
(n)
cyclic : Bn+�log n� �→ Bn defined in Section 2.5.2 is a sub-

function of many functions, including integer multiplication and squaring (see Section 2.9.5),
integer reciprocal (see Section 2.10.1), and powers of integers (see Problems 2.34 and 2.35).

Cyclic shifting is another good example of a problem for which a lower bound on the
exchange of space and time exists. The method used to establish the independence properties
of this function can be generalized to the class of transitive functions. (See Problem 10.22.)

We redefine f
(n)
cyclic here. Let k = �log n�. The input variables of f

(n)
cyclic are segmented

into two groups, an n-tuple x = (xn−1, . . . , x1, x0) of value variables and a k-tuple s =
(sk−1, . . . , s1, s0) of control variables. The control variables specify the integer |s|:

|s| = sk−12k−1 + · · ·+ s121 + s0

|s| is the number of places by which the value inputs must be shifted left cyclically to produce

the output n-tuple y = (yn−1, . . . , y1, y0). That is, f
(n)
cyclic(x, s) = (y), where

yj = x(j−|s|) mod n for 0 ≤ j ≤ �log n� − 1 (10.2)

A circuit to implement f
(n)
cyclic is given in Section 2.5.2 that cyclically shifts x left by 2j places

for each of those values of j, 0 ≤ j ≤ �log n� − 1, such that sj = 1.
The independence properties of the cyclic function are shown by demonstrating that some

permutation of the input vector x aligns unselected inputs with selected outputs.

LEMMA 10.5.2 f
(n)
cyclic : Bn+�log n� �→ Bn is (2, n + �log n�, n, n/2)-independent.

Proof Consider subsets X0 and Y1 of the inputs X and outputs Y of f
(n)
cyclic satisfying

|X0|+ |Y1| = p = n/2. For f
(n)
cyclic to be (2, n+ �log n�, n, n/2)-independent, there must

be an assignment to input variables in X0 such that the output variables in Y1 have more

than |B|(|Y1|/2)−1 distinct values as the input variables of f
(n)
cyclic in X1 = X − X0 range

over all possible values.
Let X0 contain e elements from x. Let yi ∈ Y1. As s runs through all possible shift

values, yi is made equal to every one of the inputs in x. For n − e of these shifts yi is
set equal to an input in X1 = X − X0. (For example, if n = 6 and e = 2, say with
X1 = {x0, x3, x4, x5} and Y1 = {y2, y3, y5}, then as s ranges over all of its values, each
of the three yi in Y1 is assigned four different variables in X1.) Thus, the number of input
variables assigned to outputs, summed over all cyclic shifts, is |Y1|(n − e). Since there are
n cyclic shifts, for some shift the number of variables in X1 that are matched with outputs
in Y1 is at least the average of this quantity; that is, at least |Y1|(1 − e/n) ≥ |Y1|/2. Thus,
some shift sets at least |Y1|/2 inputs in X1 to outputs in Y1. Since these outputs can assume
|B||Y1|/2 different values, it follows that f

(n)
cyclic is (2, n + �log n�, n, n/2)-independent.

THEOREM 10.5.2 Every pebbling strategy for straight-line programs computing the cyclic shifting
function f

(n)
cyclic : Bn+�log n� �→ Bn requires space S and time T satisfying the inequality

(S + 1)T ≥ n2/16

c©John E Savage 10.5 Applications of Grigoriev’s Method 475

An algorithm exists to compute f
(n)
cyclic that uses space O(n) and time O(n log n), namely, that

satisfies the inequality

(S + 1)T = O(n2 log n)
Proof We leave the upper-bound proof to the reader. (See Problem 10.30.)

We now apply this result to integer multiplication.

10.5.3 Integer Multiplication

To apply Grigoriev’s method to the binary integer multiplication function f
(n)
mult : B2n �→ B2n

of Section 2.9, we assemble a collection of results to show that with the proper encoding of one

of its two arguments, f
(n)
mult computes the logical shifting function f

(n)
shift (see Lemma 2.9.1)

and when n is even the logical shifting function f
(n)
shift contains the cyclic shift function f

(n/2)
cyclic

as a subfunction (see Lemma 2.5.2). Thus, f
(n)
mult contains f

(n/2)
cyclic as a subfunction. We use

this fact to obtain a lower bound on the space–time product for integer multiplication.

THEOREM 10.5.3 Let n be even. Every pebbling strategy for straight-line programs computing the
binary integer multiplication function f

(n)
mult : B2n �→ B2n requires space S and time T satisfying

the following inequality:
(S + 1)T ≥ n2/64

An algorithm exists for multiplying n-bit integers using space O(log2 n) and time O(n2), namely,
that satisfies

(S + 1)T = O(n2 log2 n)

Proof The lower-bound argument is given above. The upper bound follows from a pebbling
of an integer multiplication circuit to multiply n-bit binary integers u and v. The circuit is
based on the following standard expansion of their product:

v3u0 v2u0 v1u0 v0u0

v3u1 v2u1 v1u1 v0u1 0

v3u2 v2u2 v1u2 v0u2 0 0

v3u3 v2u3 v1u3 v0u3 0 0 0

To construct a circuit we use the observation that the number of 1s in the jth column is the
jth component, wj , of the convolution w = u ⊗ v. (See Section 6.7.4.)

To compute wj we use the counting circuit f
(n)
count : Bn �→ B�log n� of Section 2.11 on

n inputs to count the number of 1s among the products urvs of the Boolean variables ur

and vs in the sum

wj =
∑

r+s=j

ur ∗ vs for 0 ≤ j ≤ 2n − 2

To compute the 2n-bit product we add the binary representations for w0, w1, . . . , w2n−2

in a set of (2n − 1) ripple adders, adding wj to the sum σ(j) =
∑

0≤i≤j−1 wi2i, as
suggested in Fig. 10.7, where we omit the counting circuits used to compute the values of
w0, . . . , w2n−2.

476 Chapter 10 Space–Time Tradeoffs Models of Computation

Add AddAddAddAddAddAdd
w0

w6
w7

w5

w4
w3

w2
w1

Figure 10.7 A multiplication circuit that can be pebbled in O(n2) time and O(log2 n) space.
The counting circuits that generate w0, w1, . . . , w2n−2 are not shown.

Each counting function can be pebbled with O(n) steps using O(log2 n) pebbles with-
out repebbling vertices. (See Problem 10.10.) After the counting circuit is pebbled, pebbles
remain on their outputs until their values have been used elsewhere in the multiplication
circuit.

The value of wj is represented by a k-tuple, k ≤ �log2 n�. The value of σ(j) is repre-
sented by at most �log2(n(2j − 1))� ≤ j + �log2 n� bits since it is the sum of at most n
j-bit binary numbers. Because wj is added after the first j bits, the pebbles on these bits can
be discarded. Only �log2 n� bits of the running sum and a like number for wj are needed to
hold values on the inputs to the ripple adder. A fixed additional number of pebbles suffices
to pebble the internal vertices of the adder. On completion of the sum only �log2 n� pebbles
are needed. They are used to hold the portion of the running sum that is used in the next
stage of addition.

For each value of j, 0 ≤ j ≤ 2(n − 1), O(log n) steps are executed in the ripple adder
and O(n) steps are executed in a counting circuit. Consequently, O(log2 n) pebbles and
O(n2) time suffice to compute the product of n-bit binary numbers.

In Section 10.13.2 we show that a lower bound of Ω(n2/ log2 n) applies under the branch-
ing program model. The stronger lower bound of Ω(n2) derived here reflects the extra con-
straints imposed on the pebble game, namely that inputs are read and computations performed
at data-independent times.

Similar results apply to the squaring function f
(n)
square since, as shown in Lemma 2.9.2,

f
(3n+1)
square contains f

(n)
mult as a subfunction. (See Problem 10.32.)

Similar results also apply to the reciprocal function f
(n)
recip : Bn �→ Bn since, as shown

in Lemma 2.10.1, f
(n)
recip contains as a subfunction the squaring function f

(m)
square for m =

�n/12� − 1. (See Problem 10.33.)

10.5.4 Matrix Multiplication
In this section we show that the matrix multiplication function is richer than the other func-
tions examined above in that it exhibits a stronger space–time lower bound than given in
Theorem 10.4.2. After we derive a lower bound on the function w(u, v) we specialize Theo-
rem 10.4.1 to this case, thereby deriving the stronger lower bound.

c©John E Savage 10.5 Applications of Grigoriev’s Method 477

LEMMA 10.5.3 The matrix multiplication function f
(n)
A×B : R2n2 �→ Rn2

over the ring R has
a w(u, v)-flow, where w(u, v) satisfies the following lower bound:

w(u, v) ≥ (v − (2n2 − u)2/4n2)/2

Proof Let C = AB be the product of n× n matrices A and B. We establish this result by
using characteristic functions to identify the outputs in C in Y1 and the inputs in A and B
in X1, as indicated below. Here the indices i and j range over 0 ≤ i, j ≤ n − 1:

σi,j =

{
1 ci,j ∈ Y1

0 otherwise
αi,j =

{
1 ai,j ∈ X1

0 otherwise

βi,j =

{
1 bi,j ∈ X1

0 otherwise

Let A, B, and C denote the matrices [αi,j], [βi,j], and [σi,j], respectively. Denote by |A|,
|B|, and |C| the number of 1s in the three corresponding matrices. Note that |A|+ |B| =
|X1| and |C| = |Y1|.

The kth n × n cyclic permutation matrix P (k) is the n × n identity matrix in which
the rows are rotated cyclically k− 1 times. For example, the following 3× 3 matrix is P (3).⎡⎢⎣ 0 1 0

0 0 1

1 0 0

⎤⎥⎦
Let D be an n × n matrix. The matrix P (k)D consists of the rows of D shifted cyclically
down k − 1 places. Similarly, the matrix DP (k) consists of the columns of D shifted
cyclically left k − 1 places.

Let B(k) be the matrix B obtained by multiplication on the left by A = P (k). Sim-
ilarly, let A(k) be the matrix A obtained by multiplication on the right by B = P (k).
Then, a 1 value for the (i, j) entry in A(k) and B(k) identifies a variable in X1 that is
mapped to an output variable of C through its multiplication by P (k).

Let D and E be n×n matrices whose entries are drawn from the set {0, 1}. We denote
by D ∩E the n× n matrix whose (i, j) entry is 1 if di,j = ei,j = 1. Similarly, let D ∪E
be the n × n matrix whose (i, j) entry is 1 if either di,j = 1 or ei,j = 1. The following
identity applies:

|D ∪E| + |D ∩E| = |D| + |E| (10.3)

Since |D ∪E| ≤ n2 for n× n matrices, the following inequality holds:

|D ∩ E| ≥ |D| + |E| − n2 (10.4)

Also, since |D ∩ E| ≥ 0 we have

|D| + |E| ≥ |D ∪ E| (10.5)

The w(u, v)-flow of matrix multiplication is large if for some choice of r or s |C∩A(r)|
or |C ∩ B(s)| is large. This follows because choosing A to be the rth cyclic permutation

478 Chapter 10 Space–Time Tradeoffs Models of Computation

makes many variables of B in X1 match entries in C in Y1, or choosing B to be the sth
cyclic permutation makes many variables of A in X1 match entries in C in Y1. When an
input and output variable match, the latter assumes the value of the former. Thus, all the
variation in the former is reflected in the latter.

Let Q = |C ∩ A(r)| + |C ∩ B(s)|. Then the w(u, v)-flow is at least Q/2. Applying
(10.5) and then (10.4) to Q, we have the following inequalities:

Q ≥ |C ∩ (A(r) ∪ B(s)) | ≥ |C| + |A(r) ∪ B(s)| − n2

Applying (10.3) to |A(r) ∪B(s)| yields the following lower bound on Q:

Q ≥ |C| + |A(r)|+ |B(s)| − |A(r) ∩B(s)| − n2 (10.6)

But |C| = |Y1|, |A(r)| = |A|, |B(s)| = |B|, and |A| + |B| = |X1|. We now show that
there are values for r and s such that |A(r) ∩B(s)| is at most |A||B|/n2.

Consider the following sum:

S =
n∑

r=1

n∑
s=1

|A(r) ∩B(s)|

Since A(r) and B(s) are formed by the rth and sth cyclic shift of columns of A and rows
of B respectively, each 1 in A is aligned once with each 1 in B. It follows that

S = |A||B|

As a consequence, there are some r and s such that |A(r)∩B(s)| is at most S/n2. Applying
this result in (10.6), we have the following lower bound on Q:

Q ≥ |Y1| + |A| + |B| − |A||B|/n2 − n2

Since |X1| = |A|+ |B| is fixed, the above lower bound on Q is minimized by maximizing
|A||B| under variation of |A|. This maximum occurs when |A| = |X1|/2. Consequently
we have the following lower bound on Q:

Q ≥ |Y1| − n2

(
1 − |X1|

2n2

)2

Since w(u, v) ≥ Q/2 for u = |X1| and v = |Y1|, we have desired the conclusion.

We now apply this result and Theorem 10.4.1 to derive a stronger result for matrix multi-
plication than was obtained earlier using its (1, 2n2, n2, n)-independence property.

THEOREM 10.5.4 Every pebbling strategy for straight-line programs computing the matrix multi-
plication function f

(n)
A×B : B2n2 �→ Bn2

for n×n matrices requires space S and time T satisfying
the following inequality:

ST 2 ≥ n6/3

The standard algorithm for multiplying n × n matrices uses space and time satisfying

ST 2 = 48 n6

c©John E Savage 10.5 Applications of Grigoriev’s Method 479

Proof From Lemma 10.5.3 we have that the matrix multiplication function has a w(u, v)-
flow, where

w(u, v) ≥ (v − (2n2 − u)2/4n2)/2

Applying Theorem 10.4.1 to this problem with b = 3S, we seek the largest integer d such
that w(d, b) ≤ S, which must satisfy the bound(

3S − (2n2 − d)2/4n2
)
/2 ≤ S

This implies that (2n2 − d) ≥ 2n
√

S. From Theorem 10.4.1, the time to pebble the graph
satisfies

T ≥ 2
√

Sn�n2/3S�
≥ 2

√
Sn(n2 − 3S + 1)/3S

If S ≤ n2/27, T ≥ (16
√

2n3)/(27
√

S) or ST 2 ≥ (.35)n6. On the other hand, since
T ≥ 3n2 just to pebble inputs and outputs, if S > n2/27, then ST 2 ≥ n6/3.

10.5.5 Discrete Fourier Transform
The discrete Fourier transform (DFT) is defined in Section 6.7.3. We derive upper and lower
bounds on the space–time product needed to compute this function.

LEMMA 10.5.4 The n-point DFT function Fn : Rn �→ Rn over a commutative ring R is
(2, n, n, n/2)-independent for n even.

Proof As shown in equation (6.23), the DFT is defined by the matrix-vector product
[wij]a, where [wij] is a Vandermonde matrix. To show that the DFT function is (2, n, n,
n/2)-independent, consider any set Y1 of outputs (corresponding to rows of [wij]) and any
set X0 of inputs (corresponding to columns) whose values are to be fixed judiciously, where
p = |X0|+ |Y1| = n/2. We show that the outputs in Y1 have at least |R||Y1|/2 values as we
vary over the remaining inputs.

It is straightforward to show that the submatrix of [wij] defined by any |Y1| rows and any
|Y1| consecutive columns is non-singular. (Its determinant is that of another Vandermonde
matrix. Show this by letting the row and column indices be r1, r2, . . . , r|Y1| and s, s +
1, . . . , s+ |Y1|− 1, respectively, and demonstrating that wris can be factored out of the ith
row when computing its determinant.) Our goal is to show that some consecutive group of
columns corresponds to at least |Y1|/2 inputs of a in X1.

Divide the n columns of [wij] into �n/|Y1|� groups of consecutive columns with |Y1|
inputs in each group except possibly the last, which may have fewer. There are n − |X0|
inputs that may vary. Since there are �n/|Y1|� groups, by an averaging argument some group
contains at least (n−|X0|)/�n/|Y1|� of these inputs. Since �n/|Y1|� ≤ (n+|Y1|−1)/|Y1|,
we show that (n− |X0|)/�n/|Y1|� > |Y1|/2 for p = n/2. Observe that (n− |X0|)/(n +
|Y1| − 1) ≥ 1/2 if 2n− 2|X0| ≥ n + |Y1| − 1 or n ≥ |X0|+ p− 1, which holds because
|X0| ≤ p ≤ n/2.

Since the submatrix defined by k consecutive columns and any k rows where �|Y1|/2� ≤
k ≤ |Y1| is non-singular, it follows that any subset of �|Y1|/2� columns has full rank. Thus,
the submatrix contains a non-singular �|Y1|/2�×�|Y1|/2� matrix. When all inputs outside

480 Chapter 10 Space–Time Tradeoffs Models of Computation

of these columns are set to zero, the �|Y1|/2� outputs have |R|�|Y1|/2� values, or Fn is
(2, n, n, n/2)-independent.

The space–time lower bound stated below follows from Corollary 10.4.1.

THEOREM 10.5.5 To pebble any straight-line program for the n-point DFT over a commutative
ring R requires space S and time T satisfying the following:

(S + 1)T ≥ n2/16

when n is even. The FFT graph on n = 2d inputs can be pebbled with space S and time T
satisfying the upper bound

T ≤ 4n2/(S − log2 n) + n log2 S

Thus, (S + 1)T = O(n2) when 2 log2 n ≤ S ≤ (n/ log2 n) + log2 n.

Proof This lower bound can be achieved up to a constant factor by a pebbling strategy
for the FFT algorithm, as we now show. Denote with F (d) the n-point FFT graph (it has
n inputs), n = 2d. (Figures. 6.1, 6.7, and 10.8 show 4-point, 16-point, and 32-point
FFT graphs.) Inputs are at level 0 and outputs are at level d. We invoke Lemma 6.7.4
to decompose F (d) at level d − e into a set of top 2d−e 2e-point FFT graphs above the

split, {F (e)
t,j | 1 ≤ j ≤ 2e}, and a set of 2e 2d−e-point FFT graphs below the split,

{F (d−e)
b,j | 1 ≤ j ≤ 2e}, as suggested in Fig. 10.8. In this figure the vertices and edges have

been grouped together as recognizable FFT graphs and surrounded by shaded boxes. The
edges between boxes identify vertices that are common to pairs of FFT subgraphs.

F
(2)
t,1 F

(2)
t,2 F

(2)
t,3 F

(2)
t,4 F

(2)
t,5 F

(2)
t,6 F

(2)
t,7 F

(2)
t,8

F
(3)
b,1 F

(3)
b,2 F

(3)
b,3 F

(3)
b,4

Figure 10.8 Decomposition of the FFT graph F (5) into four copies of F (3) and eight copies
of F (2). Edges between bottom and top sub-FFT graphs are fictitious; they identify overlapping
vertices between sub-FFT graphs.

c©John E Savage 10.5 Applications of Grigoriev’s Method 481

A good strategy for pebbling the vertices of an FFT graph is to pebble the top FFT
graphs {F (e)

t,j | 1 ≤ j ≤ 2d−e} individually. The vertices of a top FFT graph in Fig. 10.8
are highlighted. To pebble its inputs, which are output vertices of FFT graphs below the
split, it suffices to pebble the subtrees rooted at these vertices. (They are also highlighted.)
Such subtrees are completely balanced binary trees with 2d−e inputs. Thus, d−e+1 pebbles
and 2d−e+1 − 1 pebble placements suffice to place a pebble on the root of one such subtree.
If these subtrees are pebbled in sequence, pebbles can be left on the inputs to a 2e-point FFT
graph F (e) above the split using at most 2e + d − e pebbles and 2e(2d−e+1 − 1) pebble
placements. Since 2e + 1 pebbles and e2e pebble placements suffice to pebble F (e) level by
level without repebbling vertices, it follows that all instances of F (e) above the split can be
pebbled using a total of T = 2d(2d−e+1 + e − 1) pebble placements and S = 2e + d − e
pebbles.

We now derive an upper bound on T by deriving upper and lower bounds on the value
of e satisfying S = 2e + d− e. Because S ≥ 2e, we have e ≤ log2 S. Let e0 be the smallest
integer such that 2e0+1 + d ≥ S. Then, 2e0 + d − e0 ≤ S and e ≥ e0. Consequently,
2e ≥ (S − d)/2, from which we have

T = 2d(2d−e+1 + e− 1) ≤ 4
22d

(S − d)
+ 2d log2 S

Finally, log2 S ≤ 2d/(S − d) ≤ 2 2d/S when 2d ≤ S ≤ (2d/d) + d, from which the
desired conclusion follows.

10.5.6 Merging Networks
In this section we consider networks of comparators to merge two sorted lists. Such networks
were described in Section 6.8 and an example was given, Batcher’s (m, p) bitonic merging
network.

A comparator element computes the function ⊗ : A2 �→ A2 that returns the maximum
and minimum of its two arguments, that is, ⊗(a, b) = (max(a, b), min(a, b)).

LEMMA 10.5.5 Consider a comparator-based merging network that merges two sorted lists of n
distinct elements x = (x1, x2, . . . , xn) (xi ≤ xi+1) and y = (y1, y2, . . . , yn) (yi ≤ yi+1)
to produce the sorted list z = (z1, z2, . . . , z2n) of 2n outputs (zi ≤ zi+1). There must be r
vertex-disjoint paths from any r inputs in x to the outputs in z to which they are mapped by the
network.

Proof Working backwards from the r selected outputs, we see that each output exits from
the comparator elements to which it is attached via a disjoint path, as suggested for three
outputs in Fig. 10.9. Extending this argument to the remainder of the network establishes
the result.

We next show that inputs can be given values to cause a merging network to shift its values
in a fashion that permits the derivation of a space–time lower bound.

THEOREM 10.5.6 Any straight-line comparator-based program that merges two sorted lists of n
elements requires space S and time T satisfying

ST = Ω(n2)

482 Chapter 10 Space–Time Tradeoffs Models of Computation

x1

x2

x3

y2

y1

y4

y3

u1

v1

u2

v3

v2

u3

u4

v4

z2

z3

z4

z5

z6

z7

z8

z1

Even MergeOdd Merge

x4

Figure 10.9 Movement of an ordered subset of the items through Batcher’s bitonic merge
algorithm.

This lower bound can be achieved to within a constant multiplicative factor when 2 log2 n ≤ S
≤ (n/ log2 n) + log2 n.

Proof Let n be divisible by 2. Any consecutive n/2 inputs in x can be shifted to the middle
n/2 positions in z through a judicious choice of values for y. To see this, observe that the
first k = n − n/4 − l components of y, l ≤ n/2, can be chosen to be less than the first l
components of x with the remaining n − k components of y chosen to be larger than the
first l+n/2 components of x. This will cause elements in positions l+1, l+2, . . . , l+n/2
to shift into positions n− n/4 + 1, . . . , n + n/4.

Since coalescing vertices in a graph reduces neither the time nor space needed to peb-
ble it, coalesce input vertices assigned to x whose indices are equivalent modulo n/2. By
Lemma 10.5.5, the new graph has n/2-vertex disjoint paths between the new inputs and the
n/2 outputs in positions l + 1, l + 2, . . . , l + n/2 for each of the n/2 cyclic permutations.
It follows that the argument applied to the cyclic shifting function (Lemma 10.5.2) applies
to this function. Thus, the merging network computes a function containing a subfunction
that is (2, n/2, n/2, n/4)-independent. The lower bound follows from Corollary 10.4.1.

As shown in Section 6.8, the graph of Batcher’s bitonic merging network is an FFT
graph. Thus, the upper bounds given in Theorem 10.5.5 apply.

10.6 Worst-Case Tradeoffs for Pebble Games*
In this section we show that degree-d graphs on n vertices can be pebbled with O(n/ log n)
pebbles (Theorem 10.7.1) and that some graphs require this many (Theorem 10.8.1). These
results do not answer the question of how bad the space–time tradeoff can be for an arbitrary
graph. To address this question we must make it precise. Lengauer and Tarjan [197] state it
as follows: is there a value for the space S, say, SJ(n), such that for positive constants c1(d)
and c2(d) if S ≤ c1(d)SJ (n), some graph on n vertices requires time superpolynomial in

c©John E Savage 10.7 Upper Bounds on Space* 483

n to pebble it, whereas for S ≥ c2(d)SJ(n) all graphs on n vertices can be pebbled with a
polynomial number of steps? They show that there is such a jump value for space and that
SJ (n) = Θ(n/ log log n). Since all graphs on n vertices can be pebbled with O(n/ log n)
space, their result shows there exist graphs on n vertices that require time exponential in n
when pebbled with this number of pebbles.

10.7 Upper Bounds on Space*
We establish upper bounds on space for the class G(n, d) of directed acyclic graphs on n
vertices that have maximum in-degree d and out-degree 2. We limit the out-degree to 2
because many straight-line programs with fan-out k > 2 (and their associated DAGs) can
be reorganized so that each computation with fan-out k can be replaced by a binary tree of
replicating subcomputations in which edges are directed from the root to the leaves. This at
most doubles the number of vertices in the graph. (See Problem 10.12.)

THEOREM 10.7.1 Let G(n, d) be graphs with n vertices, in-degree d, and out-degree 2 for d
fixed. Then Smin(n, d), the minimum space needed to pebble any DAG in G(n, d), satisfies
Smin(n, d) = O(n/ log n).

Proof Let Emin(p, d) be the minimum number of edges in any graph in G(n, d) that re-
quires p pebbles in the pebble game. We show that Emin(p, d) ≥ cp log2 p for some
constant c > 0. From this it follows that

p ≤ 2(Emin(p, d)/c)/ log2(Emin(p, d)/c)

when p ≥ 2 and Emin(p, d) ≥ 2c. (See Problem 10.3.)
Consider a graph G = (V , E) in G(n, d) with |E| edges. The number of edges incident

on vertices is 2|E|. Since each vertex has at most d + 2 incident edges, 2|E| ≤ (d + 2)|V |
= (d + 2)n. The upper bound on the number of pebbles, p, follows from this fact and the
previous discussion.

Let G = (V , E) in G(n, d) require p pebbles. An edge in E is a pair of vertices (u, v).
Let V1 ⊆ V be vertices that can be pebbled with p/2 or fewer pebbles. Let V2 = V − V1.
Thus, every vertex in V2 requires more than p/2 pebbles. Let Ei, i = 1, 2, be the set of
edges both of whose endpoints are in Vi. Let Gi = (Vi, Ei). Let A = E − (E1 ∪E2); that
is, A is the set of edges joining vertices in V1 and V2.

We now show that there exists a vertex in G2 that requires more than p/2 − d pebbles
if the pebble game is played on G2 only. Suppose not. Then we show that every vertex in G
can be pebbled with fewer than p pebbles. Certainly every vertex in V1 can be pebbled with
fewer than p pebbles. Consider vertices in V2. We show they can be pebbled with fewer than
p pebbles, thereby establishing a contradiction.

Let ν ∈ V2 be pebbled with p/2 − d or fewer pebbles when G2 alone is pebbled. In
pebbling ν as part of the complete graph G, we may need to pebble a vertex ω ∈ V2 some of
whose immediate predecessors are in V1. As we encounter such vertices ω, advance a pebble
to each of ω’s predecessors in V1 one at at time until all predecessors of ω are pebbled. After
pebbling a predecessor in V1, remove pebbles in V1 not on such predecessors. When all
of ω’s predecessors in V1 have been pebbled, pebble ω itself using one of the p/2 − d or
fewer pebbles reserved for pebbling on V2. This strategy uses at most p/2 + d − 1 pebbles
on vertices in V1, at most d − 1 for all but the last predecessor in V1 and at most p/2

484 Chapter 10 Space–Time Tradeoffs Models of Computation

for the last such predecessor, and at most p/2 − d pebbles on vertices in V2, for a total of
at most p − 1. This is a contradiction. It follows that G2 requires at least p/2 − d + 1
pebbles when pebbled alone and must have at least Emin(p/2 − d + 1, d) edges. Note that
Emin(p/2 − d + 1, d) ≥ Emin(p/2 − d, d).

There is also some vertex in G1 that requires at least p/2 − d vertices, as we show. By
assumption every vertex in V1 must be pebbled. Suppose that each can be pebbled with
p/2 − d − 1 pebbles. There must be a vertex η in V2 all of whose predecessors are in
V1. (If not, we can always move backward from a vertex in V2 to one of its immediate
predecessors in V2, a process that must terminate since the finite acyclic graph does not have
a cycle.) Thus, the vertex η can be pebbled with p/2−1 pebbles using the pebbling strategy
described in the preceding paragraph for ω, contradicting the definition of V2. It follows
that G1 must have at least Emin(p/2 − d, d) edges.

Consider now the set of edges A connecting vertices in V1 and V2. If |A| ≥ p/4,
Emin(p, d) ≥ 2Emin(p/2 − d, d) + |A| because both G1 and G2 have Emin(p/2 − d, d)
edges. If |A| < p/4, pebbles can be placed on the endpoints of edges of A in V1 using at
most p/2 + p/4 − 1 ≤ 3p/4 pebbles, with the strategy for ω given above. If we leave at
most p/4 pebbles on these vertices, 3p/4 pebbles are available to pebble the vertices in V2.
If V2 does not require at least 3p/4 pebbles, we have a contradiction to the assumption that
p pebbles are needed. Thus, there must be an output vertex μ that requires at least 3p/4
pebbles, for if not, none of its predecessors can require more.

We show that a graph requiring at least 3p/4 pebbles has a subgraph with at least p/(4d)
fewer edges that requires at least p/2 pebbles. To see this, observe that some predecessor of
the output vertex μ requires at least 3p/4 − d pebbles. Delete μ and all its incoming edges
to produce a subgraph with at least one fewer edge requiring at least 3p/4 − d pebbles.
Repeat this process p/(4d) times to produce the desired result. It follows that G2 has at least
Emin(p/2, d) + p/(4d) edges.

Thus, when either |A| ≥ p/4 or |A| < p/4, at least 2Emin(p/2−d, d)+p/(4d) edges
are required, and

Emin(p, d) ≥ 2Emin(p/2 − d, d) +
p

4d

The solution to this recurrence is Emin(p, d) ≥ cp log p for some constant c ≥ 1/8d and a
sufficiently large value of p.

10.8 Lower Bound on Space for General Graphs*
Now that we have established that every graph in G(n, d) can be pebbled with O(n/ log n)
pebbles, we show that for all n there exists a graph G(n) in G(n, d) whose minimum space
requirement is at least c5n/ log n for some constant c5 > 0.

The graph G(n) is obtained from a recursively constructed graph H(k) on 2k inputs and
2k outputs, n/2 < 2k ≤ n, by adding n − 2k vertices and no edges. The graph H(k) is
composed of two copies of H(k − 1) and two copies of an n-superconcentrator, which is
defined below.

DEFINITION 10.8.1 An n-superconcentrator is a directed acyclic graph G = (V , E) with n
input vertices and n output vertices and the property that for any r inputs and any r outputs,

c©John E Savage 10.8 Lower Bound on Space for General Graphs* 485

1 ≤ r ≤ n, there are r vertex-disjoint paths in G connecting these inputs and outputs. (Paths are
vertex-disjoint if they have no vertices in common.)

For n = 2k Valiant [343] has shown the existence of n-superconcentrators SC(k) that
have 2k inputs, 2k outputs, and c2k edges. Since his graphs have in-degree greater than 2,
replace vertices with in-degree d > 2 with binary trees of d leaves, thereby at most doubling
the size of the graph. (See Problem 10.12.) This provides the following result.

LEMMA 10.8.1 For some constant c > 0 and each integer k and n = 2k there exists an n-
superconcentrator SC(k) with c2k vertices.

We let H(8) = SC(8). For k ≥ 8 we construct H(k + 1) recursively from two copies
of H(k), two copies of SC(k), and extra edges, as suggested in Fig. 10.10. Here edges are
directed from left to right. The 2k output vertices of the first (leftmost) copy of SC(k) (called
SC1(k)) are identified with the 2k input vertices of the first copy of H(k) (called H1(k)),
the 2k output vertices of H1(k) are identified with the 2k input vertices of the second copy
of H(k) (called H2(k)), and the 2k output vertices of H2(k) are identified with the 2k input
vertices of the second copy of SC(k) (called SC2(k)). In addition, we introduce 2k+1 new
input vertices and 2k+1 new output vertices. The first (topmost) half of the new inputs (called
It) are connected via individual edges to the inputs of SC1(k). The second (bottommost) half
of the new inputs (called Ib) are also connected via individual edges to the inputs of SC1(k).
The new inputs are connected individually to the new outputs. Finally, each output of SC2(k)
is connected via individual edges to two new output vertices, one each in the top (called Ot)
and bottom half (called Ob) of the new outputs.

SC1(k) H1(k)

OutputsInputs

SC2(k)H2(k) Ot

Ob

It

Ib

Figure 10.10 A graph H(k + 1) requiring large minimum space.

486 Chapter 10 Space–Time Tradeoffs Models of Computation

The graph H(k) has n(k) = |H(k)| vertices, where n(k) satisfies the following:

n(8) = c28

n(k + 1) = 2n(k) + (2c + 4)2k

The solution to the recurrence is n(k) = (k−7)c2k +(k−8)2k+1, as can be shown directly.
The graph H(k) is in G(n(k), 2).

Important subgraphs of H(k + 1) have the superconcentrator property, as we now show.
This result is applied in the subsequent lemma to derive bounds on the amount of space used
to pebble outputs of H(k + 1).

LEMMA 10.8.2 The subgraphs of H(k +1) on 2k inputs and 2k outputs defined by vertices and
edges on paths from either inputs in It or inputs in Ib to the outputs of SC1 and H1(k) have the
2k-superconcentrator property.

Proof The superconcentrator property applies to the outputs of SC1(k) by definition. Note
that the jth input of H1(k) is connected to its jth output by an individual edge for 1 ≤ j ≤
2k. Thus, any r outputs of H1(k) have vertex-disjoint paths to the corresponding inputs of
H1(k). By the superconcentrator property of SC1(k), there are vertex-disjoint paths from
these outputs of SC1(k) to any r of its inputs. These statements obviously apply to inputs
in It and Ib.

Our goal is to show that pebbling the graph H(k) requires a number of pebbles propor-
tional to n(k)/ log n(k). To do this we establish the following stronger condition, which
implies the desired result.

LEMMA 10.8.3 Let c1 = 14/256, c2 = 3/256, c3 = 34/256, and c4 = 1/256. To pebble at
least c12k outputs of H(k) in any order from an initial placement of at most c22k pebbles requires
there be a time interval [t1, t2] during which at least c32k inputs are pebbled and at least c42k

pebbles remain on the graph.

Proof The proof is by induction on k with k = 8 as the base case. For the base case,
consider pebbling c12k = 14 outputs during a time interval [0, t] from an initial placement
of no more than c22k = 3 pebbles.

By Problem 10.27 any four outputs of SC(8) are connected via pebble-free paths to
256− 3 = 253 inputs. At least one of these four outputs, say v, has pebble-free paths to 64
= �253/4� inputs. Let t1−1 be the last time at which all 64 of these inputs have pebble-free
paths to v. Let t2 be the last time at which a pebble is placed on these 64 inputs. During the
time interval [t1, t2] at least 64 ≥ c32k inputs are pebbled and at least one pebble remains
on the graph; that is, at least c42k pebbles remain. This establishes the base case.

Now assume the conditions of the lemma (our inductive hypothesis) hold for k. We
show they hold for k + 1. Assume that at least c12k+1 outputs of H(k + 1) are pebbled in
any order from an initial placement of at most c22k+1 pebbles during a time interval [ta, tb].

We consider four cases including the following two cases. There is an interval [t1, t2] ⊆
[ta, tb] during which at least c22k pebbles are always on the graph and at least c32k outputs
of either (1) SC1(k), or (2) H1(k) are pebbled. By Lemma 10.8.2 the subgraph of H(k+1)
consisting of paths from It (and Ib) to the outputs of each of these graphs constitutes a 2k-
superconcentrator. This is the only fact about these two cases that we use. Without loss of
generality, we show the hypothesis holds for the first of them.

c©John E Savage 10.8 Lower Bound on Space for General Graphs* 487

The graph consisting of paths from inputs in It to the outputs of SC1(k) constitutes a
2k-superconcentrator. Prior to time ta there are at most c22k+1 pebbles on the graph and
during the interval [t1, t2] there are at least c22k (but at most c22k+1) pebbles on the graph.
Thus, there is a latest time t0 before t1 when there are at most c22k+1 pebbles on the graph.
Since c32k ≥ c22k+1 + 1 outputs of SC1(k) are pebbled in the interval [t1, t2] (and in
the interval [t0, t2]), by Problem 10.27 at time t0 there are at least 2k − c22k+1 ≥ c32k

inputs in It (and in Ib) that are connected by pebble-free paths to the pebbled outputs of
SC1(k). Thus, at least c32k+1 inputs in It and Ib are connected via pebble-free paths to the
pebbled outputs of SC1(k). In [t0, t1 − 1] there are at least c22k+1 pebbles continuously
on the graph, whereas there are at least c22k pebbles during [t1, t2]. Since c22k ≥ c42k+1,
the number continuously on the graph in [t1, t2] is at least c42k+1 and we have the desired
conclusion for H(k + 1).

In the third case, there is an interval [t1, t2] ⊆ [ta, tb] during which at least c12k outputs
of the full graph H(k+1) are pebbled and at least c22k pebbles are always on the graph. This
implies that during [t1, t2] either c12k/2 outputs in Ot or in Ob are pebbled, which in turn
implies that at least c12k/2 outputs of SC2(k) are pebbled. Since c12k/2 ≥ c22k+1 + 1
(at most c22k+1 pebbles are on H(k + 1)), it follows from Problem 10.27 that at least
2k − c22k+1 ≥ c32k inputs in It (or Ib) are connected via pebble-free paths to the pebbled
outputs of SC2(k). The total number of such inputs is c32k+1. Since c22k ≥ c42k+1, there
are at least c42k+1 pebbles on the graph continuously during [t1, t2] and we have the desired
conclusion.

In the fourth case none of the previous cases hold. Since c12k+1 outputs of H(k + 1)
are pebbled during [ta, tb], there is an earliest time t1 ∈ [ta, tb] such that c12k outputs of
H(k + 1) are pebbled in the interval [ta, t1 − 1]. Since the third case does not hold, there
is a time t2 ≤ t1 such that fewer than c22k pebbles are on the graph at t2 − 1 and at least
c12k outputs of H(k + 1) are pebbled in the interval [t2, tb]. It follows that at least c12k/2
outputs of SC2(k) are pebbled during this interval. Since c12k/2 ≥ c22k + 1, it follows
from Problem 10.27 that at least 2k − c22k ≥ c32k inputs to SC2(k) (which are outputs to
H2(k)) are connected via pebble-free paths to the pebbled outputs of SC2(k) and must be
pebbled during [t2, tb]. Since c32k ≥ c12k, by the inductive hypothesis there is an interval
[td, te] ⊆ [t2, tb] during which at least c32k inputs of H2(k) (which are outputs of H1(k))
are pebbled and c42k pebbles reside continuously on H2(k).

Since the second case does not hold, by an argument paralleling that given in the pre-
ceding paragraph there must be a time t3 ∈ [td, te] such that at most c32k/2 outputs of
H1(k) are pebbled during [td, t3 − 1] and fewer than c22k pebbles reside on H(k + 1) at
tc − 1. Thus, during [t3, te] at least c32k/2 ≥ c12k outputs of H1(k) are pebbled from
an initial configuration of fewer than c22k pebbles. By the inductive hypothesis there is an
interval [tf , tg] ⊆ [t3, te] during which at least c32k inputs of H1(k) (which are outputs of
SC1(k)) are pebbled and c42k pebbles reside on H1(k) continuously.

Since the first case does not hold, again paralleling an earlier argument there must be a
time t4 ∈ [tf , tg] such that at most c32k/2 outputs of SC1(k) are pebbled during [tf , t4−1]
and fewer than c22k pebbles reside on H(k + 1) at t4 − 1. Thus, during [t4, tg] at least
c32k/2 ≥ c22k + 1 outputs of SC1(k) are pebbled from an initial configuration of fewer
than c22k pebbles. By Problem 10.27 at least 2k − c22k ≥ c32k inputs of SC1(k) are
connected via pebble-free paths to the pebbled outputs. Thus at least c32k corresponding
inputs in both It and Ib must be pebbled for a total of at least c32k+1 inputs.

488 Chapter 10 Space–Time Tradeoffs Models of Computation

Since at least c42k pebbles reside continuously on both H1(k) during [td, te] and on
H2(k) during [tf , tg] and [tf , tg] ⊆ [td, te], it follows that c42k + c42k = c42k+1 reside
continuously on H(k + 1) during [tf , tg].

We are now ready to show the existence of a graph on n vertices that requires ω(n/ log n)
minimal space.

THEOREM 10.8.1 For integers n ≥ 1 there exists a graph G(n) in G(n, d) that requires mini-
mum space Smin(G(n)) ≥ c5n/ log n for some constant c5 > 0.

Proof For n ≥ 28, let k be the largest integer such that n(k) ≤ n; that is, n(k) ≤ n <
n(k+1). Construct the graph G(n) by adding n−n(k) vertices and no edges to the graph
H(k). An optimal pebbling strategy for G(n) pebbles the added vertices one at a time using
one pebble, after which H(k) is pebbled. From Lemma 10.8.3 it follows that pebbling
H(k) requires at least c42k pebbles, since at least this many must reside on the graph at one
time. Since n(k + 1) ≤ 4n(k) for k ≥ 8 and c ≥ 2, it follows that n/4 ≤ n(k) ≤ n. This
implies that 2k ≤ n and k ≤ log2 n and that n/4 ≤ k(c + 2)2k ≤ (log2 n)(c + 2)2k.
From this we have 2k ≥ c5n/ log2 n, where c5 = 1/(4c + 8). The conclusion follows by
observing that at least (c4c5)n/ log2 n pebbles are needed to pebble G(n).

10.9 Branching Programs
The general branching program is a serial computational model that permits data-dependent
computation, unlike the pebble game. A branching program is a directed graph consisting of
a single starting vertex and in which vertices are labeled with predicates. Each vertex has one
outgoing edge for each value of its predicate. (See, for example, Figs. 10.11 and 10.12.) Time
in this model is the number of queries performed, and computations other than queries are
not counted. The space used by a branching program is the base-2 logarithm of the number
of vertices in its graph. Lower bounds on space and input time obtained with the branching
program apply to within constant multiplicative factors to the pebble game and the RAM
model. (See Section 10.9.1.)

As noted in Section 10.1.1, since the branching program reads inputs in a less constrained
manner than the straight-line program, it may be possible to solve some problems with branch-
ing programs using less space or time than in the pebble game. As a consequence, space–time
lower bounds for branching programs may be smaller than for the pebble game. Thus, if a
problem is going to be solved with straight-line programs, such as an algebraic circuit, it is bet-
ter to use lower bounds derived with the pebble game unless the branching program gives the
same lower bounds. In particular, branching programs give smaller space–time lower bounds
for integer multiplication and shifting (see Section 10.13.2) than does the pebble game.

We examine two kinds of branching programs in this section, general branching programs
and decision branching programs.

DEFINITION 10.9.1 A multigraph is a graph that may have more than one edge between two
vertices. A directed multigraph is a multigraph in which each edge has a direction. A directed
acyclic multigraph (DAM) is a multigraph with no directed cycles. A rooted directed acyclic
multigraph is a multigraph with a root vertex, a vertex with no edges directed into it, and is such
that every vertex can be reached via some path from the root. A sink vertex has no edges directed
away from it.

c©John E Savage 10.9 Branching Programs 489

A branching program P with input variables x over the set A and output variables y over
the set F is a rooted directed acyclic multigraph that has a query q(x) associated with each vertex
except for sink vertices and has a query outcome associated with every edge directed away from a
vertex. Each edge may also carry as a label the values of some output variables, with the proviso that
each output variable is assigned exactly one value along any one path from the root to a sink vertex.

The decision branching program is a special kind of branching program in which the
queries q(x) compare two variables and produce either the two outcomes {≤, >} or the three
outcomes {<, =, >}. Figure 10.11 shows an example of a decision branching program that
merges two 2-element sorted lists (u1, u2) and (v1, v2) (u1 ≤ u2 and v1 ≤ v2) by using
queries that compare the values of two input variables. Each vertex in the example has two
out-directed edges corresponding to the results of the query. The outputs appear in sorted
order along a path from the root to a leaf.

A decision tree is a decision branching program whose DAM (directed acyclic multigraph)
is a tree. A decision tree may be constructed for a sequential comparison-based sorting algo-
rithm, such as Batcher’s odd-even merging algorithm of Section 6.8, by associating the first
comparison with the root, the second comparisons with the roots of the left and right subtrees,
etc.

DEFINITION 10.9.2 A computation on a branching program P is a traversal of the unique
path in the DAM from the root to a leaf determined by the values of the input variables in x =
(x1, x2, . . . , xn) over the set A. The output of the computation is the sequence of output values
in y = (y1, y2, . . . , ym) over the set F encountered on the edges of the path traversed.

A function f (n) : An �→ F m with input variables in x and output variables in y, namely

f (n)(x1, x2, . . . , xn) = (y1, y2, . . . , ym)

u1 : v2

v2u1u2

u1 : v1

v2u2u2v1v2 u2v2

u2 : v2

u2 : v1

u1

≤ > ≤ >

≤ >

≤ >
v1

v1 u1

Figure 10.11 A decision branching program that merges the lists (u1, u2) and (v1, v2) when
u1 ≤ u2 and v1 ≤ v2.

490 Chapter 10 Space–Time Tradeoffs Models of Computation

is computed by P if for each value of x the correct value of each output variable appears exactly
once on each path from the root to a leaf.

The time associated with a computation is the length of the path traversed by the computa-
tion. The computation time T of a branching program is the length of its longest path.

In Fig. 10.11 the computation associated with the input values (u1, u2, v1, v2) = (2, 4, 1,
3) takes the right branch out of the root and produces the output value v1 = 1, takes the left
branch at the next vertex and produces u1 = 2, and takes the right branch at the last vertex
and produces v2 = 3 and u2 = 4. The output of this computation is the sorted sequence
1, 2, 3, 4, as expected. This branching program merges the two sorted lists. Each sink vertex
corresponds to one of the four ways of merging the two lists. The computation time of this
branching program is 3.

Branching programs that compare elements at vertices are well suited to merging and sort-
ing but are not of the most general type.

DEFINITION 10.9.3 A general branching program P with input variables x over a finite set
A has a query of the form xi = ? associated with a variable xi at each vertex. It also has one edge
directed away from the vertex for each value of xi. A general branching program is non-redundant
if along each path from the root to a leaf a query xi = ? appears at most once.

The general branching program is also known as a binary decision diagram (BDD). BDD’s
are widely used in the computer-aided design (CAD) of circuits for Boolean functions.

A general branching program that convolves two short binary sequences over the integers
is shown in Fig. 10.12. (Convolution is defined in Section 6.7.4.) A computation leaves the
left branch of a vertex when the associated variable has value 0 and the right branch when it

0 1 0 1 0 1
c1 = 0
c2 = 0

c2 = 0
c1 = 0

a0 =?

a1 =? b0 =?

b0 =? b1 =? a1 =?

b1 =? b1 =? a1 =? b1 =? b1 =?

c2 = 0 c1 = 0 c1 = 1 c1 = 2
c2 = 1

c2 = 1

c1 = 1

0 1

0 1 0 1 0 1 0 10
1

0 10 1

c1 = 0

c0 = 0

c1 = 1

c0 = 0 c0 = 1

c2 = 0

Figure 10.12 A general branching program to compute the convolution of two sequences
(a0, a1) and (b0, b1).

c©John E Savage 10.9 Branching Programs 491

has value 1. This branching program computes the convolution c = a ⊗ b of the sequences
a = (a0, a1) and b = (b0, b1); that is,

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a1b1

The performance of a branching program is also measured by its space complexity.

DEFINITION 10.9.4 The space used by branching program P is the base-2 logarithm of the num-
ber of vertices in its directed acyclic multigraph.

As shown in the next section, this definition permits a lower bound on the space complexity
used by any reasonable general-purpose computer model equipped with a random-access read-
only memory for its input data.

The following lemma demonstrates that every decision branching program can be simu-
lated by a general branching program, thereby showing the latter to be more general than the
former. (See Problem 10.35.)

LEMMA 10.9.1 Every decision branching program with variables over a finite set A with com-
putation time T and space S can be simulated by a general branching program with computation
time 2T and space S + log(|A|+ 1).

This result is proved by constructing a general branching program to simulate a comparison
operator and substituting it for the comparison operator in a decision branching program. (See
Problem 10.35.) The graph that results from this construction is explicitly a multigraph.

While Lemma 10.9.1 establishes that decision branching programs are no more powerful
than general branching programs, this does not imply that general branching programs require
less space. In fact, the space complexity of a given decision branching program is independent
of the size of the setA over which the variables are defined; this is not true for general branching
programs.

If space complexity is not an issue, a tree program can be constructed. This is a branch-
ing program whose DAM is a tree. The following recursive procedure converts a branching
program to a tree program: a) If any immediate descendant of the root has more than one edge
directed into it, make as many copies of the submultigraph rooted at that descendant as there
are entering edges and direct exactly one edge into each. b) Apply this procedure recursively to
each of the submultigraphs until leaf vertices are reached. This procedure does not change the
length of any path in the original DAM or the computation time.

The notions of space and time can be generalized to average time and space when a prob-
ability distribution is defined on input values. (See Problem 10.37.)

Below we present a key lemma used to derive lower bounds on the space–time product.
This lemma is stated for normal-form branching programs, general branching programs
whose DAMs are level multigraphs, that is, multigraphs in which each vertex has a level and
adjacent vertices are in adjacent levels. An example of such a graph is shown in Fig. 10.13.

LEMMA 10.9.2 If there is a general branching program of space S and computation time T for a
function f , then there is a normal-form branching program for f that has space 2S and computation
time T .

Proof To convert a general branching program to a normal-form branching program, create
T + 1 copies of the general branching program, one for each time step including the zeroth.

492 Chapter 10 Space–Time Tradeoffs Models of Computation

c =?

a =?

b =?

101

c =?

1010 1 0 1

0 1

1010

c =?c =?

111011 100

0

000010110

b =?

001

Figure 10.13 A normal-form tree program for table lookup. It has one path for each value of
the input.

Delete the original edges and add an edge from vertex u in the ith copy to vertex v in the
(i + 1)st copy if there was an edge between u and v in the original graph. Now delete all
edges and vertices that are not reached from the root of the zeroth branching program. (See
Fig. 10.14.)

This procedure increases the number of vertices by at most a factor of T , thereby in-
creasing the space by adding at most log T . However, a branching program with space S
has 2S vertices. Thus, the length of the longest path through the program T cannot exceed
2S , or S + log T ≤ 2S.

Generally the space S used for a branching program computation will be large by com-
parison with log T , in which case the space bounds for normal-form branching programs and
general branching programs will differ by at most a constant factor.

In the rest of this chapter when we speak of a branching program we mean a general
branching program.

Figure 10.14 Construction of a normal-form general branching program as a level multigraph.

c©John E Savage 10.9 Branching Programs 493

We close this section by describing a normal-form tree program for table lookup, an
important programming tool that can be used to compute an arbitrary function f (n) : An �→
Am on n variables whose value is an m-tuple. Each of the n variables is read and the value of
the function is found in a table. This is simulated by a tree program with branching factor |A|
in which the variables are read in succession until they are all read, at which point the value of
the function is provided. An example of such a tree program for a function f (3) : B3 �→ B3

is shown in Fig. 10.13. There is one path through the tree for each of the possible |A|n
assignments to the n inputs. The sink vertices are labeled by the appropriate m-tuple. Such
table-lookup tree programs have computation time n and space proportional to n log |A| since
they have (|A|n+1−1)/(|A|−1) vertices with A edges per vertex except for those at the lowest
level.

10.9.1 Branching Programs and Other Models
We begin this section with a comparison of branching programs and pebble games and con-
clude with a brief comparison of branching programs and the RAM model of computation.

The pebble model assumes that computation is serial and straight-line. If all algorithms
used for a particular problem are of this type, the pebble game is the appropriate model, es-
pecially if the lower bounds on space–time exchanges are larger than those provided by the
branching program model. (All algorithms used today for integer multiplication are straight-
line and the lower bounds on the space–time product for this problem are larger with the
pebble game than with the branching program model.) If the two models give the same lower
bounds, then we can invoke Lemma 10.9.3 to derive lower bounds on the space–time ex-
changes for pebbling from those for branching programs when log2 TP is small by comparison
with SP , where TP and SP are the time and space used by the pebbling model.

Data-dependent reading of inputs may allow the branching program to perform a com-
putation more quickly than the pebbling model. For example, merging requires a space–time
product that is quadratic in the length of the input strings with the pebble game but only
linear in the branching program. (See Section 10.10.2.) This demonstrates that the branching
program is a much more natural model for this problem.

If the lower bounds derived with the branching program are comparable in strength to
those offered by the pebbling model, as is true for most of the problems considered in this
chapter, straight-line programs are the better model for these problems. But the extra flexibility
offered by branching programs means that when their results are comparable to those provided
by the pebble game, one must work harder to obtain them. (See Sections 10.11 and 10.12.)

The branching program measures the time to read inputs but ignores the time for com-
putations and the production of outputs. By contrast, the pebble game measures the time to
read inputs, perform computations, and produce outputs. Although the time for computations
generally cannot be ignored, the methods available today to derive lower bounds for both mod-
els are based on the time spent reading inputs. But while for many problems the time to read
inputs dominates computation time for many values of space, when space is large the pebbling
model has the potential to give larger lower bounds than the branching program model. For
example, no way is known to compute the n-point DFT with fewer than Θ(n log n) steps,
the number used by the FFT algorithm, although in the limit of large space the branching
program gives a lower bound on space proportional to n.

To simulate the pebbling of a DAG by a branching program we must give an interpreta-
tion to each vertex of the DAG: assign an operation to each non-input vertex and a variable as

494 Chapter 10 Space–Time Tradeoffs Models of Computation

well as values to each input vertex. Two different interpretations of a DAG may yield different
branching programs. Of course, a DAG is pebbled without regard to the interpretation of ver-
tices: the pebble-game lower bounds use only the fact that vertices can hold one of |A| values
and do not depend explicitly on the interpretation given to their operator.

LEMMA 10.9.3 Given a pebbling P of an interpreted directed acyclic graph G that uses SP
pebbles and TP input steps to compute a function with operations over a finite set A, there is a
branching program with space SP log |A| + log (2TP) and time TP that computes the function
computed by G. Thus, if 2TP ≤ |A|SP , simultaneous lower bounds on the space and time for
a branching program for the function imply simultaneous lower bounds on space and time in the
pebble game that differ by at most constant multiplicative factors.

Proof We construct a branching program Q to simulate the pebbling P of a directed acyclic
graph that uses SP pebbles and TP steps. (Figure 10.15 illustrates the construction of such
a branching program.) Initially the branching program has a single vertex, the root, which
is labeled with the first variable to be pebbled according to P . Advance the first pebble as
far as possible. Create a vertex in the branching program for each value of the operation
or input covered by the first pebble. Label these new vertices with the name of the second
input to be pebbled and attach an edge from the root vertex to these new vertices labeled
with the corresponding value for the first input. Advance pebbles as far as possible according
to P and create one new vertex in the branching program for each different tuple of values

1

0, 1

1

1

0

0,1

0

0

1

01 2 4 5
u v w x

(a) (b)

0

0 1

7 +

3 6 ∗+

u =?

v =? v =?

w =? w =?

x =? x =? x =? x =?

0, 10, 1

1

Figure 10.15 A general branching program (b) that simulates the pebbling of a DAG (a) in the
vertex order 1, 2, 4, 3, 5, 6, 7. The DAG input variables are denoted u, v, w, and x and assume
values in {0, 1}. + denotes OR and ∗ denotes AND.

c©John E Savage 10.10 Straight-Line Versus Branching Programs 495

residing under the pebble(s) currently on the DAG. (In the example of Fig. 10.15, after
placing a pebble on the second vertex we advance a pebble to the third vertex and remove
all other pebbles. Thus, only two vertices are added to the branching program at this step.)
Label the new vertices with the third input to be pebbled. Now repeat the above process
by advancing pebbles as far as possible (in the example, pebbles now reside on the third and
fourth vertices), add one new vertex for each tuple of pebbles on the DAG (four vertices are
added), and connect edges from the previous to the current set of new vertices that conform
to the values assumed at the vertices of the DAG. This process is repeated until all inputs
have been pebbled.

Since the values of operations are always determined by the values under at most SP
pebbles, the number of new vertices added in Q with the pebbling of each new input vertex
in G is most |A|SP . Since TP input vertices of G are pebbled, it follows that Q has at most
TP |A|SP + 1 ≤ 2TP |A|SP vertices, from which the conclusion follows.

A branching program can also simulate a computation by a general model of computation,
such as the RAM discussed in Section 3.4, as we now show. Let the RAM have M b-bit words
of memory and a finite number of b-bit words in its CPU. Consider any program for such a
machine. Its state is determined by the values in its registers and memory locations. Thus the
RAM has at most O(2Mb) states. Let the space used by a RAM be the base-2 logarithm of
the number of its states. Let the RAM execute TRAM steps to read its inputs. We simulate
this computation in the same fashion as with the pebble game. After reading an input variable,
the branching program enters one of at most O(2Mb) vertices corresponding to states of the
RAM. Since the RAM reads inputs on TRAM steps, the branching program also takes TRAM

steps and has at most O(TRAM2Mb) vertices or uses space of at most O(Mb + log TRAM).
As long as Mb is larger than some multiple of log TRAM, simultaneous lower bounds on the
time to read inputs and space of a branching program for a function computed by the RAM
serve as lower bounds on the same quantities on the RAM. The following lemma summarizes
this discussion.

LEMMA 10.9.4 Given a RAM program that uses space SRAM and TRAM input steps to compute
f : An �→ Am there is a branching program with space O(SRAM + log (2TRAM)) and time
TRAM that computes f . Thus, if 2TRAM ≤ 2SRAM , simultaneous lower bounds on the space and
time for a branching program for the function imply simultaneous lower bounds on the space and
time on the RAM that differ by at most constant multiplicative factors.

10.10 Straight-Line Versus Branching Programs
In this section we show that some problems can use space and time more efficiently with
branching programs than they can with the pebble game. We demonstrate this for the cyclic

shifting function f
(n)
cyclic : Bn+�log n� �→ Bn introduced in Section 2.5.2 and the merging

problem introduced in Section 6.8. However, for all of the other problems studied in this
chapter the lower bounds obtained with these two models are the same up to constant mul-
tiplicative factors, except for integer multiplication, where the branching program bound is
smaller by a factor of log2 n.

It is important to note, however, that the superiority of branching programs arises from
the assumption that inputs can be read in a data-dependent fashion, an assumption that is

496 Chapter 10 Space–Time Tradeoffs Models of Computation

not available to straight-line programs. As we know from Problem 10.20, if branching is
allowed but inputs must be read in a data-independent fashion by an input-output-oblivious
finite-state machine, Theorem 10.4.1 applies. Thus, branching programs that read inputs in
a data-independent fashion have no advantage over straight-line programs, at least in terms of
lower bounds on space–time exchanges.

10.10.1 Efficient Branching Programs for Cyclic Shift

We present a branching program for f
(n)
cyclic that uses space S = O(logn) and time T =

n + �log n�; that is, ST = O(n log n), a product that is much less than the Θ(n2) product
required in the pebble game. (See Section 10.5.2.)

The function f
(n)
cyclic has n + �log n� Boolean variables, �log n� control inputs, and n

“value” inputs whose values are shifted by the amount specified by the control inputs. Our
efficient branching program is a tree program (see Fig. 10.13) that reads the control inputs
and selects one of n paths through the tree. (Note that n ≤ 2�log2 n� ≤ 2n.) Each path
corresponds to one of the n possible cyclic shifts of the n value inputs. Attached to a leaf of
this tree is a chain of vertices, one per value input. These inputs appear in the order specified
by the cyclic shift associated with the path. An input value is read and then produced as output
at each of these n vertices. Since this branching program has at most 2n + 2n2 vertices, it has
space O(log n). It uses time n + �log n�.

If cyclic shifting is to be done by a straight-line program, say in hardware, then it is better to
use the pebble game for lower bounds since this model applies to logic circuits and the results
it provides are stronger. However, if the problem is to be executed in software, the branching
program should be used unless the program is straight-line.

10.10.2 Efficient Branching Programs for Merging
Consider now the merging problem. In Section 10.5.6 we show that it requires an Ω(n2)
space–time product where n is the size of the input. However, when executed by a branching
program it uses space O(log n) and time O(n), as we show.

Figure 10.11 shows a “pyramid” decision branching program to merge two sequences of
length two. It is straightforward to extend this decision branching program to sequences of
length n, as suggested in Fig. 10.16. In this figure vertices are labeled by the number of
elements that are removed from the two lists being merged before arriving at the vertex carrying
the label. For example, prior to arriving at the vertex labeled (2, 1), two elements have been
removed from the left list and one from the right list. We assume that the lists to be merged
each contain n elements. Thus, all the pyramid vertices below a vertex labeled with (n, k) or
(k, n), 1 ≤ k ≤ n − 1, are deleted because below such vertices no further comparisons are
needed; the outputs produced are those on the list from which k values have been removed.
Thus, we attach a chain of n − k vertices, one for each of the input values at the end of the
smaller list. If the root is at level 1, vertices labeled (n, k) and (k, n) are at level n + k + 1 ≤
2n + 1.

The number of vertices on level l of this decision branching program is at most l. Since
1 ≤ l ≤ 2n, it has at most

∑2n+1
l=1 l = (n + 1)(2n + 1) vertices. The space associated with

this program is O(log(n + 1)(2n + 1)). Since the length of the longest path in this program
is 2n, it has time 2n associated with it. From Lemma 10.9.2 it follows that merging can be

c©John E Savage 10.11 The Borodin-Cook Lower-Bound Method 497

(0, 3)

(0, 2)

(0, 1)

(1, 2)(2, 1)(3, 0)

(1, 1)(2, 0)

(1, 0)

(0, 0)

Figure 10.16 The top portion of a decision branching program to merge two sorted lists. The
pair of integers at a vertex denotes the number of elements removed from the left and right lists
by the program before arriving at the vertex carrying the pair.

realized by a general branching program with space O(log n) + log |A| and time O(n) or a
space–time product that is O(n log n), much smaller than the O(n2) space–time product that
applies to the pebble game.

10.11 The Borodin-Cook Lower-Bound Method
In this section we generalize the method of Borodin and Cook [53] for deriving space-time
lower bounds for branching programs. The conditions under which lower bounds can be
derived are captured by a property of functions called (φ, λ, μ, ν, τ)-distinguishability, which
is stronger than the flow property used to derive lower bounds on space-time tradeoffs for
the pebble game. In fact, we show that a function that is (1, λ, μ, ν, τ)-distinguishable is
(α, n, m, p)-independent for the appropriate values of α, n, m, and p.

DEFINITION 10.11.1 Let τ :� �→� be a nondecreasing function. A function f : An �→ Fm

is (φ, λ, μ, ν, τ)-distinguishable for 0 ≤ φ, λ, μ, ν ≤ 1 if there is a set D ⊂ An satisfying
|D| ≥ φ|A|n such that for each assignment to a selection of a ≤ λn input variables and each
assignment to a selection of b ≤ μm output variables of f , a ≤ τ (b), the number of input
n-tuples consistent with the values of the a input variables that cause f to assume the given values
for the b output variables is at most |A|n−a−νb.

The meaning of this property for the function f is suggested by Fig. 10.17. For a fraction
of φ of the input tuples (φ = 1 is the normal case), when any a input variables and any b
output variables of f are assigned values, the maximum number of input n-tuples that cause
f to produce these output values is no more than |A|n−a−νb. This property is used below to
derive a lower bound on the space-time product for branching programs. We use φ = 1 for all
problems considered below except for the unique elements problem.

This theorem also uses a version of the pigeonhole principle. Time is subdivided into
intervals containing equal numbers of input queries. This has the effect of chopping the

498 Chapter 10 Space–Time Tradeoffs Models of Computation

Output tuples containing b fixed outputs≤ |A|n−aνb input tuples

Input tuples consistent with a fixed inputs and b fixed outputs

Figure 10.17 For a fraction of at least φ of the input n-tuples, an (φ, λ, μ, ν, τ)-distinguishable
function f has an upper limit of |A|n−a−νb on the number of input n-tuples consistent with
an assignment of values to any a inputs and any b outputs of f when a ≤ λn, b ≤ μm and
a ≤ τ(b).

branching program up into layers (called stages in the proof). We reason that each input n-
tuple follows a rich path through a layer that contains a large number of outputs. Because of
the distinguishability property, an upper limit on the number of inputs can be associated with
each rich path. It follows that there must be many rich paths or that the branching program
must have a large number of vertices (and space).

THEOREM 10.11.1 Let f : An �→ Fm be (φ, λ, μ, ν, τ)-distinguishable for λ ≤ μ. Then
the space S and time T ≥ n required by any general branching program P that computes f must
satisfy

S ≥ mνa

4T
log2 |A|+

1
2

log2 φ

where a ≤ λn is the largest integer satisfying a ≤ τ (ma/2T) and n > (�1/λ� − 2)/(1 −
λ(�1/λ� − 1)). (Note that log2 φ is a negative constant.)

Proof We show that S ≥ mνa/2T log2 |A|+log2 φ for normal-form branching programs
and then invoke Lemma 10.9.2 to apply it to a general branching program with space 2S
and time T .

The approach is to break P into σ = �(T +1)/(a+1)� disjoint stages starting with the
root at the zeroth level, each stage of which contains a + 1 levels, a ≤ λn, except possibly
for the last, which may have fewer levels. (σ ≤ 2T/a since T ≥ n ≥ 1.) Each stage has
depth a. Thus, the last row in one stage is the first row in the next stage. Each stage except
for the first typically has multiple roots. (Figure 10.18(a) shows a branching program with
T = 5 levels. Since a = 2, it is divided into σ = �(T + 1)/(a + 1)� = 2 layers by the
horizontal line. Internal vertices belong to two layers.)

Using a modified version of the technique described on page 491 to create a tree program
from a branching program, replace the branching program in each stage by a set of tree
programs of depth a, shown in Fig. 10.18(b). Eliminate redundant queries on each path in
each tree. Also, pad paths that do not have a queries on them with superfluous but non-
redundant queries so that each path through each tree has the same length. A superfluous

c©John E Savage 10.11 The Borodin-Cook Lower-Bound Method 499

(a) (b)

Figure 10.18 The transformation of a T -step branching program into a branching program
with σ = �(T + 1)/(a + 1)� layers in which each layer consists of a forest of trees.

query has all of its output edges directed to a single successor vertex. Also, move all tree
outputs down to the leaves of these trees (which are also roots of trees in the next stage). Let
P∗ be the new branching program. Since the roots of trees in each stage are vertices in the
original branching program, there are no more than 2S trees.

Let x be one of the input n-tuples among the fraction φ for which (φ, λ, μ, ν, τ)-dis-
tinguishability is defined. The path through P∗ defined by x passes through σ stages.
Therefore, there must be at least one stage containing a tree path that produces at least
b = �m/σ� outputs (a rich path). (As shown in the last paragraph of this proof, b ≤ �μm�
when λ ≤ μ for sufficiently large n.) Thus, x defines at least one rich path. Let a ≤ τ (b).
Because the function f : An �→ Fm is (φ, λ, μ, ν, τ)-distinguishable, each rich path can be
associated with at most |A|n−a−νb inputs. (This number is smaller if more than b outputs
are produced.) Since there are at most 2S trees and at most |A|a paths through each tree,
there are at most 2S |A|a rich paths. Furthermore, two distinct rich paths (either the inputs
queried or outputs produced are different) are associated with disjoint sets of input n-tuples.
Thus, 2S |A|a|A|n−a−νb cannot be less than the number of input n-tuples in question,
from which the following inequality holds:

φ|A|n ≤ 2S |A|a|A|n−a−νb

We conclude that

S ≥ νb log2 |A|+
1
2

log2 φ

We replace b = �m/σ� by its lower bound ma/2T . Since τ (b) is a nondecreasing function,
the value of a satisfying a ≤ τ (b) is not increased by replacing b by ma/2T . Thus, S ≥
ν(ma/2T) log2 |A|+ log2 φ, subject to a ≤ τ (ma/2T) and a ≤ λn.

We show there exists an integer nα such that for n > nα the condition b ≤ �μm�
is met by the condition λ ≤ μ. Note that b = �m/σ� is a nondecreasing function of
a and a nonincreasing function of T since σ = �(T + 1)/(a + 1)� is a nonincreasing

500 Chapter 10 Space–Time Tradeoffs Models of Computation

function of a and a nondecreasing function of T . Thus, b is largest when T = n and
a = λn. It follows that b is largest when σ = �(n + 1)/(λn + 1)� ≤ �1/λ�. If n >
(�1/λ�−2)/(1−λ(�1/λ�−1)), then (n+1)/(λn+1) > �1/λ�−1, which implies that
�(n+1)/(λn+1)� = �1/λ�. In other words, when n > (�1/λ�−2)/(1−λ(�1/λ�−1)),
b assumes a value of at most �m/�1/λ�� ≤ �λm�.

COROLLARY 10.11.1 Let f : An �→ Fm be (φ, λ, μ, ν, τ)-distinguishable for λ ≤ μ and
τ (b) = n. Then the space S and time T required by any normal-form branching program P that
computes f must satisfy

ST ≥ mnλν

2
log2 |A| + log2 φ

when T ≥ n and n > (�1/λ� − 2)/(1 − λ(�1/λ� − 1)).

Proof The result follows from the observation that the maximum value of a in Theo-
rem 10.11.1 is λn.

The connection between (α, n, m, p)-independence and (1, λ, μ, ν, τ)-distinguishability
is given below.

LEMMA 10.11.1 If f : An �→ Fm is (1, λ, μ, ν, τ)-distinguishable, it is (1/ν, n, m, p)-
independent for p = min(λn, τ (μm)) + μm.

Proof Consider sets of a input and b output variables to f such that a ≤ τ (b), a ≤ λn, and
b ≤ μm, or equivalently a ≤ τ∗, where τ∗ = min(λn, τ (μm)) since τ (x) is nondecreasing
in x. For any particular assignment to the a inputs, the input n-tuples that agree with this
assignment but lead to different values for the b outputs must be disjoint, as suggested in
Fig. 10.19. We show that for some assignment of values to the a inputs, the number of
values assumed by the b outputs is more than |A|b/α−1 for α = 1/ν. Suppose not. Then
there are at most |A|n−a−νb|A|νb−1 input tuples for each assignment to the a inputs, or a
total of at most |A|n−1 input tuples. Since f has |A|n input tuples, we have a contradiction.
Therefore, f is (1/ν, n, m, p)-independent for p = τ∗ + μm.

The following lemma makes it easier to derive space-time lower bounds for branching
programs. It uses the notions of subfunction (see Definition 2.4.2) and reduction (see Defini-
tion 2.4.1).

����
����
����
����

�
���

���

��

�
���

���

��

��
��
��

��
��
��

021

124

414

223

312

Figure 10.19 On the left are the points in the domain of f that map to individual output
b-tuples when the values of a input variables are fixed.

c©John E Savage 10.12 Properties of “nice” and “ok” Matrices* 501

LEMMA 10.11.2 Let g : Ar �→ As be a reduction of f : An �→ Am that is either a subfunction
or a reduction obtained by restricting f to a subset of its domain. A lower bound to the space-time
product ST on branching programs for g is also a lower bound for f .

Proof Given any branching program for f , we can construct one for g that has no more
vertices or longer paths as follows. If g is obtained by deleting outputs, delete these outputs
from vertices in the branching program. This may allow the coalescing of vertices. If g is
obtained by restricting the set of values that variables of f can assume, this may make some
paths and subgraphs inaccessible and therefore removable. If g is obtained by giving two
variables of f the same identity, this constrains the branching program and again may make
some subgraphs inaccessible. In all cases neither the number of vertices nor the length of
any path to a sink vertex is increased by the reduction of f to g. Thus, any lower bound to
ST for g must be a lower bound for f .

10.12 Properties of “nice” and “ok” Matrices*
In this section we develop properties of matrices that are γ-nice or γ-ok, concepts we now
introduce. (A matrix that is γ-nice is also γ-ok.) These properties are used in Section 10.13
to develop lower bounds on the exchange of space for time using the Borodin-Cook method.
This section requires a knowledge of probability theory.

DEFINITION 10.12.1 An n × m matrix A, n ≤ m, is γ-nice for 0 < γ < 1/2 if and only if
for all p ≤ �γn� and q ≥ n − �γn� every p × q submatrix of A has rank p. Such a matrix is
γ-ok if all such p× q submatrices have rank at least γp.

As shown below, most matrices are γ-nice, a fact that is used in several places.

LEMMA 10.12.1 At least a fraction (1 − |A|−1(2/3)γn) of the |A|n2
n × n matrices over a

subset A of a field, |A| ≥ 2, are γ-nice for some constant γ, 0 < γ < 1
2 , independent of n and A.

This result also holds for n×n Toeplitz matrices, matrices [ti,j] with the property that ti,j = ai−j ;
that is, all elements on each diagonal are the same.

Proof Let r = �γn� and s = n− r. The proof is established by deriving upper bounds on
the number N(r, s) of r×s matrices in an n×n matrix M and the probability q(r, s) that
any particular r × s matrix fails to contain a non-singular r × r submatrix (it fails to have
rank r) when each entry in M is equally likely to be an element of A. Since the probability
of a union of events is at most the sum of the probabilities of the events, the probability that
some r × s matrix fails to have rank r is at most q(r, s)N(r, s).

It is straightforward to show that

N(r, s) =
(

n

r

)2

since an r × s submatrix of an n × n matrix is chosen by selecting a set of r rows and
a set of s columns and each can be chosen in

(
n
r

)
ways. (Note that

(
n
s

)
=

(
n
r

)
.) We

now show that the binomial coefficient
(
n
r

)
is at most (n/r)rer. We use the fact that

n!/(n − r)! = n(n − 1) · · · (n − r + 1) ≤ nr and the observation that rr/r! is a term in

502 Chapter 10 Space–Time Tradeoffs Models of Computation

the Taylor-series expansion of er, as stated below:(
n

r

)
=

n!
r!(n− r)!

≤ nr

r!
=

(n

r

)r rr

r!
≤
(n

r

)r

er

Later we show that q(r, s) ≤ ρ−s|A|r−1, where ρ = |A|2/(2|A|− 1) ≤ 2|A|/3, from
which it follows that

q(r, s)N(r, s) ≤ |A|−1
(en

r

)2r

ρ−nρr|A|r

≤ |A|−1

(
2
3

)r
[
ρ−n

(
en|A|

r

)2r
]

since s = n − r. Elementary calculus shows that (e|A|/r)2r is an increasing function of
r and that it has value 1 at r = 0. Since r = �γn� and ρ ≥ 4/3, it follows that the
quantity in square brackets is less than 1 for some value of 0 < γ < 1/2, which is the
desired conclusion.

We now give a proof by induction that q(r, s) satisfies q(r, s) ≤ ρ−s|A|r−1. Clearly
q(1, 1) ≤ 1/|A|, since at most one entry in A is zero. This satisfies the bound. We now
assume the inductive hypothesis holds for q(r − 1, s− 1) and q(r, s− 1) and show that it
holds for q(r, s).

Consider an r × s matrix B. It has rank r if the submatrix consisting of the first s − 1
columns has rank r. (This occurs with probability 1 − q(r, s − 1).) If this is not the case,
there are many other ways in which it can have rank r. In particular, this is true if the
submatrix C consisting of the last r − 1 rows and the first s − 1 columns of B has rank
r − 1 (with probability 1 − q(r − 1, s − 1)) and the element b1,s has an appropriate value
(with probability at least 1 − 1/|A|), as we now show.

Consider a submatrix D consisting of some r − 1 linearly independent columns of C.
Consider the r × r submatrix of B consisting of these same r − 1 columns and its last
column. When the determinant of this matrix is expanded on the first row, the multiplier of
b1,s is ±1 times the determinant of D, which is non-zero. Thus, there is at most one value
for b1,s that causes the determinant to be zero (the field element causing it to be zero may
not be in the set A) or at least |A|− 1 values that cause it to be non-zero. Summarizing this
result, we have the following lower bound:

1 − q(r, s) ≥ 1 − q(r, s− 1) + (1 − q(r − 1, s− 1))
(

1 − 1
|A|

)
≥ (1 − q(r, s− 1))

1
|A| + (1 − q(r − 1, s− 1))

(
1 − 1

|A|

)

This implies that

q(r, s) ≤ q(r, s− 1)
1
|A| + q(r − 1, s− 1)

(
1 − 1

|A|

)
≤ ρ−s+1|A|r−1 1

|A|

(
2 − 1

|A|

)
≤ ρ−s|A|r−1

c©John E Savage 10.12 Properties of “nice” and “ok” Matrices* 503

which is the desired conclusion.
The proof also holds for Toeplitz matrices (each element on a diagonal of the matrix

is the same) because we reasoned only about the value of elements in the upper right-hand
corner of submatrices that are on different diagonals.

The Kronecker product of matrices is used in Section 10.13.5 to derive a lower bound on
the space-time product for matrix inversion.

DEFINITION 10.12.2 The Kronecker product of two n× n matrices A and B is the n2 × n2

matrix C, denoted C = A⊗B, obtained by replacing the entry ai,j of A with the matrix ai,jB.

A Kronecker product C = A ⊗B of matrices A and B is shown below:

A =

[
1 2

3 4

]
, B =

[
5 6

7 8

]
, C =

⎡⎢⎢⎢⎣
5 6 10 12

7 8 14 16

15 18 20 24

21 24 28 32

⎤⎥⎥⎥⎦
The following property of the Kronecker product of two γ-nice matrices is used to derive

the space-time lower bounds stated in Theorem 10.13.5.

LEMMA 10.12.2 If A and B are both n × n γ-nice matrices for some 0 ≤ γ ≤ 1/2, then
C = A⊗B is an n2 × n2 γ2-ok matrix.

Proof Number the rows and columns of A, B, and C consecutively from 0. For a matrix
E, extend the notation ei,j for the entry in the ith row and jth column of E to eI ,J , by
which we denote the submatrix of E consisting of the intersection of the rows in the set I
and columns in the set J . Thus, if I = {i} and J = {j}, then eI ,J = ei,j .

To show that C is γ2-ok, we must show that every p × q submatrix S of C satisfying
p ≤ �γ2 n2� and q ≥ n−�γ2 n2� has rank at least γ2 p. Such a matrix S can be represented
as S = cI ,J for index sets I and J , where p = |I| ≤ �γ2 n2� and q = |J | ≥ n − �γ2 n2�.
We assume that γn ≥ 1, since otherwise the result holds trivially.

The rth block row of C is the submatrix [ar,0B, ar,1B, . . . , ar,n−1B] containing rows
numbered Ir = {rn, rn + 1, . . . , rn + n − 1} and all n2 columns.

Let Δr = I∩{rn, rn+1, . . . , rn+n−1} be the indices of the rows of S that fall into
the rth block row. Choose a set Γ ⊂ {0, 1, 2, . . . , n−1} of size |Γ| = �γn� that maximizes
the sum T =

∑
r∈Γ |Δr|. Then, T ≥ γp because the lower bound is achieved if the rows

of S are uniformly distributed over the rows of C and T is larger if they are not.
Let Λr = Δr if |Δr| ≤ �γn� and let Λr consist of the smallest �γn� indices in Δr

otherwise. Clearly, |Λr| ≥ |Δr|γ because Δr is chosen from a set of size n. Call rows of C
with indices in

⋃
r∈Γ Λr blue rows. There must be at least γ2p blue rows because, if not,

γ2p >
∑
r∈Γ

|Λr| ≥
∑
r∈Γ

|Δr|γ = γT ≥ γ2p

which is a contradiction.
We now show that the blue rows of S are linearly independent. Suppose not. Then

there exist constants {αr,s | r ∈ Γ, s ∈ Δr} not all of which are zero such that the linear

504 Chapter 10 Space–Time Tradeoffs Models of Computation

combination of the blue rows of S is zero:∑
r∈Γ

∑
s∈Λr

αr,scnr+s,J = 0 (10.7)

Here 0 is a column vector of zeros, one per blue row. Again, J is the set of columns of C in
the submatrix S.

Column j of the n×n matrix B is good if it is associated with at least (1−γ)n columns
of S and is bad otherwise. Let G be the indices of the good columns in B and let g = |G|.
Then there are g ≥ (1 − γ)n good columns and b ≤ γn bad columns in B (g + b = n)
because, if not, g ≤ (1 − γ)n − 1 and the number of columns altogether in S is at most
gn + b(1− γ)n, which is an increasing function of g whose value is less than n2 − �γ2 n2�
when g ≤ (1 − γ)n− 1, which is less than the number of columns of S.

Since B has at least g = |G| ≥ (1−γ)n good columns and B is γ-nice, any set of up to
�γn� rows are linearly independent. In particular, the rows of B indexed by Λr are linearly
independent. This implies that ∑

s∈Λr

αr,sbs,G �= 0

where 0 is a zero column with |Λr| rows. Thus, there must be a column index t ∈ G such
that ∑

s∈Λr

αr,sbs,t �= 0 (10.8)

Let K = {j | nj + t ∈ J} be the columns of S corresponding to the good column of B
with index t. It follows that |K| ≥ �(1 − γ)n�.

Let ui = ci,J∩K , the intersection of the ith row of S with columns whose indices are in
K. Similarly, let vi be the intersection of the ith row of A with columns in K. It follows
from the definition of C that uni+j = bj,tvi. From (10.7) we have that∑

r∈Γ

∑
s∈Λr

αr,scnr+s,J∩K = 0

∑
r∈Γ

(∑
s∈Λr

αr,sbs,t

)
vr = 0

However, the rows |Γ| rows vr constitute a �γn� × |K| submatrix of the γ-nice matrix A
where |K| ≥ �(1 − γ)n�. Since its rows are linearly independent, each of the coefficients∑

s∈Λr
αr,sbs,t must be zero, contradicting the statement of (10.8). It follows that C =

A⊗B is γ2-ok.

10.13 Applications of the Borodin-Cook Method
In this section we illustrate the Borodin-Cook method of Section 10.11 by applying it to a
variety of representative problems.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 505

10.13.1 Convolution
The wrapped convolution function f

(n)
wrapped : R2n �→ Rn over the ring R (see Problem 6.19)

of two sequences u and v is described by the matrix-vector product Cv of a circulant matrix
C in which ci,j = u(i−j) mod n, as shown in Section 10.5.1.

LEMMA 10.13.1 For n even, the wrapped convolution f
(n)
wrapped : R2n �→ Rn over the ring R

contains a subfunction g(n) : R2n �→ Rn/2 that is (1, γ/2, γ/2, 1, 2n)-distinguishable for some
0 < γ < 1/2.

Proof Writing C as a 2 × 2 matrix of n/2 × n/2 matrices, we find that its (1,1) entry is
an unrestricted Toeplitz matrix T . That is, each diagonal can contain a different element.

Consider the subfunction of f
(n)
wrapped defined by this submatrix. By Lemma 10.12.1, a

fraction of at least 1− (2/3)(γ/2)n/|R| of such matrices are γ-nice. By Definition 10.12.1,
this implies that �(γ/2)n� output variables assume |R|�(γ/2)n� different values. If we fix
the entries of T to be those of a γ-nice matrix, by Lemma 10.11.2 the lower bound on ST
for matrix-vector multiplication with a Toeplitz matrix with n replaced by n/2 serves as a
lower bound for the original problem. Since for large n most Toeplitz matrices are γ-nice,
we have the desired conclusion.

Invoking Theorem 10.11.1, we have the space–time lower bound stated below. The up-
per bound follows from the design of a branching program to implement the inner product
operation, as suggested by Fig. 10.6.

THEOREM 10.13.1 There is an integer n0 > 0 such that for n even and n ≥ n0, the time T and
space S used by any general branching program for the wrapped convolution f

(n)
wrapped : R2n �→

Rn over the ring R must satisfy

ST = Ω(n2 log |R|) (10.9)

Branching programs exist that achieve the following bound for log |R| ≤ S ≤ n log |R|:

ST = O(n2 log n log |R|)

Proof Since the wrapped convolution function depends on 2n variables, it can be computed
via table lookup with space O(n log |R|) and time O(n).

At the limit of small space, namely for S = Θ(log |R|), a branching program can
be designed that computes the n inner products defined by the matrix-vector product of
(10.1). An example of a branching program to compute the inner product of two 3-vectors
is shown in Fig. 10.20. A branching program for the inner product of two n-tuples can be
constructed that has O(n|R|2) vertices and depth O(n). Hence, a branching program to
multiply a general n × n matrix by a vector can be constructed that has time O(n2) and
space O(log n + log |R|).

To fill in the range between these extremes, let k divide n and note that the product of
an n×n matrix by a column n-vector can be viewed as the product of an n/k×n/k matrix
of k × k matrices with a column n/k-vector of column k-vectors. Since each product of
a k × k submatrix by a k-vector is a function of O(k) parameters, compute it with table
lookup in time O(k) and space O(k log |R|). Add two of these matrix-vector products by

506 Chapter 10 Space–Time Tradeoffs Models of Computation

b3 =?

a3 =?a3 =?

b3 =?

b2 =? b2 =?

a2 =?

b2 =?

b3 =?

b2 =?

a2 =?

b1 =?b1 =?

a1 =?

b3 =?

0 1 0 1

0 1 0 1

0,1 0 1

0 1

c = 0 c = 1

00,1
0 1 10,1

0
1 0,1

1
00,1

c = a1b1 + a2b2 + a3b3(mod2)

Figure 10.20 A branching program to compute the inner product of two 3-vectors over the set
R of integers modulo 2.

rooting a table-lookup program at each of the O(|R|k) final states of a first table-lookup
program. Coalesce final states corresponding to the |R|k sums of the two column k-vectors.
This program has O(|R|2k) vertices or space O(k log |R|) and time O(k). n/k such stages
increase the number of vertices and time each by a factor of n/k. Since this process is
then repeated for each of the n/k rows of the block matrix, the space and time used are
O(k log |R|+ log(n/k)) and O(n2/k), respectively.

10.13.2 Integer Multiplication
To derive space–time lower bounds for integer multiplication, we could invoke the reductions
from this problem to cyclic shifting, as was done in Section 10.5.3. However, as shown in
Section 10.10, the space–time product for cyclic shifting is only O(n log n). Thus, we are
forced to use another reduction to obtain a strong space–time product lower bound, namely a
reduction from integer multiplication to convolution.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 507

Let �2 be the ring of integers modulo 2. As shown in Problem 6.20, the integer multi-

plication function f
(n)
mult : B2n �→ B2n contains the convolution function over f

(n/ log n)
conv :

�
2n/ log n
2 �→ �2n/ log n

2 . Thus, by Lemmas 10.11.2 and 10.13.1 the following holds:

THEOREM 10.13.2 There is an integer n0 > 0 such that for n > n0 the time T and space S

used by any general branching program for binary integer multiplication f
(n)
mult : B2n �→ B2n must

satisfy

ST = Ω(n2/ log2 n) (10.10)

This lower bound can be achieved to within a factor of O(log3 n) for space Ω(log n) ≤ S ≤
O(n).

Proof Since the integer multiplication function depends on 2n variables, it can be com-
puted via table lookup with space O(n) and time O(n), thereby meeting the lower bound
to within a factor of O(log2 n).

At the limit of small space, S = Θ(log n), the integer multiplication algorithm of
Section 10.5.3 provides a branching program. Since at most �log2 n� bits suffice for the
carry from one power of 2 to the next, a branching program based on this algorithm has
at most O(2�log2 n�) vertices at each of n2 levels. Thus, this program uses time O(n2) and
space O(log n), achieving the lower bound to within a factor of O(log n).

We sketch a procedure to fill in the range of space between these extremes and ask the
reader to complete the details. (See Problem 10.39.) Assume that k divides n and represent
each n-bit binary number as an (n/k)-component base-2k number. As in the standard bi-
nary integer multiplication algorithm (where k = 1), form n/k (n/k)-component numbers
through multiplication and shifting of consecutive base-2k components, as suggested below:

v3u0 v2u0 v1u0 v0u0

v3u1 v2u1 v1u1 v0u1 0

v3u2 v2u2 v1u2 v0u2 0 0

v3u3 v2u3 v1u3 v0u3 0 0 0

Here ur and vs are base-2k numbers. Multiply two such numbers through table lookup in
time and space O(k). Extend the algorithm for the base-2 case by replacing each subpro-
gram that multiplies two binary numbers by the table lookup program to multiply base-2k

numbers. This new program adds products to a running sum of length O(log n) bits. Thus,
it uses space O(k + log n) and time O(n2/k), giving a space–time product of O(n2 log n)
for k ≥ log n.

10.13.3 Matrix-Vector Product
The matrix-vector product function f

(n)
A×x : Rn �→ Rn computes the n-tuple y from the

n-tuple x for a fixed n × n matrix A over R according to the rule

y = Ax

where yj =
∑n−1

k=0 aj,kxk for 0 ≤ j ≤ n − 1.

508 Chapter 10 Space–Time Tradeoffs Models of Computation

LEMMA 10.13.2 Let A be a γ-ok n×n matrix over R for some 0 < γ < 1/2. Then the matrix-
vector product function f

(n)
A×x : Rn �→ Rn is (1, γ, γ, γ, τ)-distinguishable where τ (b) = n.

Proof To show that f
(n)
A×x is (1, γ, γ, γ, τ)-distinguishable, select any a ≤ �γn� inputs and

any b ≤ �γn� outputs. If the ith input is chosen and it has value ui, introduce the equation
xi = ui. Let B be the a × n coefficient matrix defining these equations; that is, Bx = u,
where B contains the jth row of the n × n identity matrix if the jth variable is among the
selected inputs.

Consider the (n + a) × n matrix C =

[
A

B

]
. We show that it has rank a + γb. The

submatrix D of A consisting of the intersection of those columns not selected by inputs (of
which there are n − a ≥ n − �γn�) and rows selected by outputs (of which there are b)
has rank γb because A is γ-ok. Thus, γb of the n − a columns of A not selected by inputs
and the a non-zero columns of B are linearly independent. Thus, the submatrix E of C
consisting of the selected rows of B and the rows of D has rank a + γb.

The number of n-tuple input vectors x consistent with the linear system Ex = d is
|A|n−a−γb, as we show. Without loss of generality assume that the first a+γb columns of E
(call it F) are linearly independent. (Permute the columns, if necessary, so that this is true.)
Fix the values of the b realizable outputs. Then for each assignment to inputs corresponding
to the last n − (a + γb) columns there are unique values for the first a + γb inputs, due to
the non-singularity of F . Thus the number of assignments to the last n− (a+γb) columns
that are consistent with values for the a inputs and b outputs is |A|n−a−γb.

Invoking Corollary 10.11.1 yields the following result.

THEOREM 10.13.3 Let A be a γ-ok n × n matrix over R for some 0 < γ < 1/2. Then there
is a constant 0 < γ < 1/2 and an integer n0 such that for n ≥ n0 the space S and time T used
by any general branching program for the function f

(n)
A×x : Rn �→ Rn must satisfy the following

lower bound when T ≥ n:

ST = Ω(n2 log |R|)

This lower bound can be met to within a factor of O(log n) for log n ≤ S ≤ n.

Proof The lower bound follows from the application of Theorem 10.11.1.
The matrix-vector product Ax for an n × n matrix A can be done with a branching

program for the standard algorithm as follows: Compute the inner product of the ith row
with the column x for 1 ≤ i ≤ n. The inner product of two n-tuples can be computed
with a branching program having O(n|R|2) vertices, as suggested in Fig. 10.20. (This is
true even if A is not fixed.) n branching programs for inner products can be concatenated to
form one branching program to multiply an n×n matrix with an n-vector. This branching
program uses space O(log n + log |R|) and time O(n2), thereby meeting the lower bound
to within a factor of O(log n).

A matrix-vector product for a fixed matrix (this case) can also be computed by table
lookup in space O(n log |R|) and time O(n) since this function has n variables.

To bridge the gap between these two results, compute the matrix-vector product using a
hybrid algorithm similar to that used for convolution in the proof of Theorem 10.13.1.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 509

10.13.4 Matrix Multiplication*
The space–time lower-bound argument for matrix multiplication in the branching program
model uses ideas similar to those used for matrix-vector multiplication.

LEMMA 10.13.3 The matrix multiplication function f
(n)
A×B : R2n2 �→ Rn2

over the ring R is
(1, 1, 1, γ/4, τ)-distinguishable for some 0 < γ < 1/2, where τ (b) = γn

√
b/2.

Proof Consider the subfunction of f
(n)
A×B obtained by choosing A and B from the set of

n × n γ-nice matrices. By Lemma 10.11.2, a lower bound on the space–time product for
this subfunction provides a lower bound to the matrix multiplication function.

Consider some a ≤ 2n2 selected inputs and some b ≤ n2 selected outputs such that
a ≤ τ (b); that is, (a/γn)2 ≤ b/2. The outputs correspond to entries of the product matrix
C = A × B. Let row i of C be a heavy row if at least γn of the a selected inputs are in
row i of A. Similarly, let column j of C be a heavy column if at least γn of the a selected
inputs are in column j of B. A row or column of C is light otherwise. (See Fig. 10.21.)

There are at most a/γn heavy rows and a/γn heavy columns of C. We now show that
either a) at least b/4 of the selected outputs fall into light rows of C or b) at least b/4 of
the selected outputs fall into light columns of C. Suppose not. Then both statements are
false and less than b/4 of the selected outputs fall into light rows and less than b/4 of the
selected outputs fall into light columns of C. It follows that at least 3b/4 of the selected
outputs fall into heavy rows. Of these at most (a/γn)2 fall into heavy columns, since this is
the maximum number of entries of C that could be in both heavy rows and columns. The
remaining selected outputs in these rows (of which there are less than b/4) fall into light
columns. However, because the entries in each row fall into either heavy or light columns,
the number of selected outputs that are in heavy rows is less than (a/γn)2 + b/4. But this
is less than 3b/4 since a ≤ τ (b) = γn

√
b/2, contradicting the stated hypothesis.

Without loss of generality, assume that b holds. (If not, a holds and at least b/4 selected
outputs fall into light rows of C or into light columns of the transpose CT .) Represent the

C = A B

=

Figure 10.21 Identification of heavy rows and columns of matrices.

510 Chapter 10 Space–Time Tradeoffs Models of Computation

product C = A ×B as follows:⎡⎢⎢⎣
A

.. .

A

⎤⎥⎥⎦
⎡⎢⎢⎣

B1

...

Bn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
C1

...

Cn

⎤⎥⎥⎦
Here Bi and Ci are the ith columns of the matrices B and C, respectively. Let B and
C denote the columns of these columns, respectively, and let D denote the block diagonal
matrix on the left.

We show that at most |R|2n2−a−γb/4 of the matrix pairs (A, B) are consistent with any
assignment to any set of a selected inputs and values of any b selected outputs.

Of the a selected inputs, let a1 be drawn from A and a2 be drawn from B, where
a = a1 + a2. The number of γ-nice matrices A consistent with the a1 selected inputs from
A is at most |R|n2−a1 . We now bound the number of matrices B that are consistent with
the values of selected inputs and outputs.

Let A be fixed and γ-nice. Consider just the (at least b/4) selected outputs that fall into
light columns of C. Every value for B consistent with the selected inputs and these outputs
must satisfy the following linear equation:[

E

F

]
B = HB =

[
r

c

]
Here E consists of the b rows of D corresponding to selected outputs and F is a submatrix
of the n2 × n2 identity matrix consisting of the a2 rows corresponding to selected inputs
in B. c is the column of values for the selected inputs in B and r is a column of selected
outputs of C that fall into light columns. The number of values for B consistent with a
fixed A and the values of the selected inputs and outputs is no more than the number of
solutions B to these equations, since we are ignoring outputs in heavy rows.

We now show that H has rank at least a2 +γb/4. A column of H is queried if a column
of E contains a selected input or the corresponding row of B contains a selected input. a2

of these columns correspond to selected inputs in B and are linearly independent because
the corresponding columns of F are linearly independent. Consider the unqueried columns
of H . These columns in F are zero columns. Thus, consider these unqueried columns in
E. Consider k rows in E that come from a common copy of A on the diagonal of D. The
column Bi of B corresponding to this copy of A is light (it has fewer than γn selected
entries) because the corresponding column of C is chosen to be light. Thus, this copy of A
has at least n(1 − γ) unqueried entries, or at least n(1 − γ) of its columns are unqueried.

Since A is γ-nice, the unqueried columns of this copy of it have rank at least min (k, γn).
Because there are no dependencies between columns in distinct copies of A in D, the num-
ber of linearly independent unqueried columns of E is minimal if they all fall in as few
common copies of A as possible, because then min (k, γn) = γn. It follows that the un-
queried columns of E have rank at least γb/4. Since the queried columns have rank at least
a2, the columns of H have rank at least a2 + γb/4. It follows from an argument given
in the proof of Lemma 10.13.2 that the number of solutions B to this system is at most
|R|n2−a2−γb/4. Since there are at most |R|n2−a1 matrices A that are γ-nice and consistent
with the a1 selected inputs in A, it follows that the number of pairs consistent with values
of the selected inputs and outputs is at most |R|2n2−a−γb/4, the desired conclusion.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 511

This result provides a lower bound on the space and time for matrix multiplication. The
upper bound cited below is obtained by another hybrid algorithm that mixes a branching
program for the standard algorithm with one for table lookup.

THEOREM 10.13.4 There is an integer n0 > 0 such that for n > n0 the space S and time T

needed to compute the matrix multiplication function f
(n)
A×B : R2n2 �→ Rn2

over the ring R using
a general branching program satisfies the inequality:

ST 2 ≥ γ3

16
n6 log2 |R|

for some 0 < γ < 1/2 when T ≥ n2. This lower bound can be achieved up to a multiplicative
factor of O(log n) for space in the range Ω(log n + log |A|) ≤ S ≤ O(n log |A|).

Proof The lower bound follows from Theorem 10.11.1 and Lemma 10.13.3 by letting
a = �γ2n4/4T �, since this value of a satisfies the two conditions a ≤ τ (ma/2T) =
γn

√
ma/4T and a ≤ 2n2 when T ≥ n2.

At the extreme of large space, namely S = O(n2), the upper bound follows from
a branching program for table lookup that has one level for each of the 2n2 variables in
the matrices A and B and the fact that there are |R|2n2

pairs of such matrices over the
ring R. Consequently, the branching program has at most O(|R|2n2

) vertices and space
O(n2 log |R|). It uses O(n2) steps.

At the extreme of small space, namely S = Ω(log n + log |A|), we use a branching
program for the standard matrix multiplication algorithm that forms n2 inner products of
rows and columns of the two matrices. As discussed in the proof of Theorem 10.13.3, a
branching program can be constructed to form the inner product of two n-tuples that has
Θ(n|R|2) vertices; that is, space Ω(log n + log |A|) and time O(n). Concatenating n2 of
these programs, one for each of the n2 entries in the product matrix, we have a branching
program with space Ω(log n + log |A|) and time O(n3).

To fill in the gap between these extremes, the method applied in Theorem 10.13.3 can
be used, as the reader can demonstrate. (See Problem 10.40.)

10.13.5 Matrix Inversion
As an intermediate step to deriving a space–time product lower bound on matrix inversion, we
derive a lower bound for the product of three n × n matrices. This is done by first deriving
an alternate representation for this product in terms of the Kronecker product of two matrices.
Kronecker products are defined in Section 10.12.

LEMMA 10.13.4 Let A, B, C, and D be n×n matrices over a commutative ring. The following
two equations define the same set of mappings from entries of A, B, and C to entries in D:

D = ABC

E = (A⊗ CT)B

where B and E are n2 × 1 column vectors obtained by concatenating the transposes of the rows of
the matrices B and D, respectively.

512 Chapter 10 Space–Time Tradeoffs Models of Computation

Proof Let E = (A ⊗ CT)B. The goal is to show that the results in the n2 × 1 column
vector E are the same as those in the n× n matrix D but in a different order. In particular,
we show that the ni + j entry in the former, namely eni+j,1, is equal to the (i, j) entry in
D, namely di,j .

Given a matrix F , let fi,j denote its entry in the ith row and jth column. Let fi,−
and f−,j denote the ith row and jth column of F , respectively. Let rows and columns of
matrices be numbered consecutively from zero.

The matrix A ⊗ CT consists of blocks of n consecutive rows with the ith block con-
taining [ai,1C

T , ai,2C
T , . . . , ai,nCT]. Thus, the ni + jth entry of E, namely eni+j,1,

is the jth entry in the product [ai,1C
T , ai,2C

T , . . . , ai,nCT]B, as shown below, where
(c−,j)T (bk,−)T is the inner product of the row vector (c−,j)T with the column vector
(bk,−)T .

eni+j,1 =
n−1∑
k=0

ai,k(c−,j)T (bk,−)T

=
n−1∑
k=0

n−1∑
l=0

ai,kcl,jbk,l

=
n−1∑
k=0

n−1∑
l=0

ai,kbk,lcl,j

= di,j

This is the desired conclusion.

With this as background, we state the space–time results to compute the product of three
matrices.

THEOREM 10.13.5 There is an integer n0 > 0 such that for n > n0 the time T and space
S used by any general branching program to compute the product of three n × n matrices over a
commutative ring R must satisfy the following inequality:

ST = Ω(n4 log |R|)
Proof Given a general branching program to compute ABC, no more space or time are
used when the matrices A and C are given specific values. Let them each be γ-nice for
some 0 ≤ γ ≤ 1/2. The existence of such matrices is established in Lemma 10.12.1.
From Lemma 10.12.2 we know that the matrix A ⊗ CT is γ2-ok. The result follows from
Theorem 10.13.3 since A⊗ CT is n2 × n2.

We are now prepared to state space–time bounds for matrix inversion.

THEOREM 10.13.6 There is an integer n0 > 0 such that for n > n0 the time T and space S
used by any general branching program to compute the inverse of a non-singular n× n matrix over
a commutative ring R must satisfy the following inequality:

ST = Ω(n4 log |R|)

This lower bound can be achieved to within a multiplicative factor over the range Ω(n2) ≤ T ≤
O(n3).

c©John E Savage 10.13 Applications of the Borodin-Cook Method 513

Proof Let n be a multiple of 4. The lower bound follows by reducing matrix inversion to
the computation of the product of three arbitrary n/4 × n/4 matrices, as shown below:⎡⎢⎢⎢⎣

I −A 0 0

0 I −B 0

0 0 I −C

0 0 0 I

⎤⎥⎥⎥⎦
−1

=

⎡⎢⎢⎢⎣
I A AB ABC

0 I B BC

0 0 I C

0 0 0 I

⎤⎥⎥⎥⎦
The upper bound for T = Θ(n2) is obtained by table lookup using an algorithm of

the kind described in the proof of Theorem 10.13.3. For T = Θ(n3), the matrix inversion
algorithm based on the LDLT decomposition of a symmetric positive definite matrix of
Section 6.5.4 can be used. For intermediate values of time, a hybridized algorithm based on
the inversion of block matrices provides the stated upper bound.

10.13.6 Discrete Fourier Transform
The discrete Fourier transform (DFT) and the fast Fourier transform algorithm are described
in Sections 6.7.2 and 6.7.3. In this section we derive upper and lower bounds on space–
time tradeoffs for this problem. The lower bound follows from the result for matrix-vector
multiplication and the fact that the coefficient matrix for the DFT is (1/4)-ok.

LEMMA 10.13.5 Consider the n-point DFT over a commutative ring that has a principal nth
root of unity. It is defined as a matrix-vector product with [wij] as its n × n coefficient matrix.
This matrix is (1/4)-ok.

Proof We use the fact, shown in Theorem 10.5.5, that the submatrix of W = [wij] con-
sisting of any k rows and any k consecutive columns is non-singular. We show that any p×q
submatrix B of W , with p ≤ �n/4� and q ≥ n − �n/4�, has rank at least p/4.

Let I denote the row indices of the submatrix B and let J denote its column indices.
Let C be the submatrix of W with row indices in I . Divide the columns of C into �n/p�
groups each containing p columns except possibly the last which has at most p columns. We
claim that some group has at least p/2 columns in common with B. Suppose not. Then
every one of the �n/p� groups has at most (p − 1)/2 columns in common with B. Thus
B has at most χ(p) = �n/p�(p− 1)/2 columns. We show that χ(p) < n− (n + 3)/4 ≤
n − �n/4�. But this is a contradiction because B has at least n − �n/4� columns. Since
�n/p� ≤ (n + p− 1)/p, if (n + p− 1)(p− 1)/2p < n− (n + 3)/4, the following holds
after multiplying both sides by 2p:

(n + p − 1)(p− 1) <
3p(n− 1)

2
or

−n + 1 < p

(
(n + 1)

2
− p

)
It suffices to show that the right-hand side of the last equation is positive. But ((n+1)/2)−p
is positive since p ≤ �n/4� ≤ (n + 3)/4 ≤ (n + 1)/2 for n ≥ 1.

THEOREM 10.13.7 There is an integer n0 > 0 such that for n > n0 the n-point DFT over a
commutative ring R requires space S and time T with a branching program satisfying the following

514 Chapter 10 Space–Time Tradeoffs Models of Computation

lower bound:

ST = Ω(n2 log |R|)

This lower bound can be achieved to within a constant multiplicative factor.

Proof The upper bound follows by applying Lemma 10.9.3 and Theorem 10.5.5.

10.13.7 Unique Elements
We now derive a lower bound on the space–time product for the sorting problem by reducing
sorting to the unique-elements problem. The unique elements problem takes a list of values
and returns in any order a list of the non-repeated elements among them.

DEFINITION 10.13.1 Let R be a set with at least n distinct elements. The function f
(n)
unique :

Rn �→ 2R
n

defines the unique elements problem where 2R
n

is the power set of Rn and
f

(n)
unique(x) is the set of non-repeated elements in the input string x.

We emphasize that no order is imposed on the outputs of f
(n)
unique. Thus, if a set of values

appears in the output, their position in the output does not matter.
From Lemma 10.11.2 it follows that a lower bound to ST can be derived by restricting

the domain and discarding outputs. We restrict the domain by restricting each input variable
to values in a subset S ⊆ R containing n elements. We also restrict input tuples to the
set D containing at least n/(2e) unique values (e is the base of the natural logarithm). In
the following lemma we show that |D| ≥ |S|n/(2e − 1) = φnn, where φ = 1/(2e − 1).
On inputs in D the function f

(n)
unique has at least n/(2e) unique outputs. We define the

subfunction f
(n)
restricted : Sn �→ Sm, m = n/(2e), of f

(n)
unique to be the subfunction obtained

by restricting its inputs to D ⊂ Sn and deleting all but the first n/(2e) outputs, which are all
unique.

LEMMA 10.13.6 Let S be a set of n elements. The fraction φ of the input n-tuples over Sn

containing n/(2e) or more unique elements exceeds 1/(2e− 1).

Proof We use simple probabilistic arguments. Assign each n-tuple over Sn probability
1/nn. Let u(x) be the number of unique elements in x. Let Xi(x) have value 1 if the ith
element of S occurs uniquely in x and value 0 otherwise. Then

u(x) =
n∑

i=1

Xi(x)

Let E[u] denote the average value of u(x) (the sum of u(x) over x weighted by its prob-
ability). Because the order of summation can be changed without affecting the sum, we
have

E[u(x)] =
n∑

i=1

E[Xi(x)]

E[Xi(x)] is also the probability that Xi = 1. If Xi = 1, then each of the other components
of x can assume only one of n−1 values. Since the ith value can be in any one of n positions

c©John E Savage 10.13 Applications of the Borodin-Cook Method 515

among input variables and since for each position that it occupies there are (n − 1)n−1

ways to fill the remaining n − 1 positions so that the ith value is unique, we have that
E[Xi] = f(n) where f(n) = n(n − 1)n−1/nn = (1 − 1/n)n/(1 − 1/n). But f(n) is
a decreasing function of n, as is shown by calculating its derivative and using the inequality
(1−x) ≤ e−x (see Problem 10.5). The limit of f(n) for large n is e−1 because in the limit
of small x the function e−x has value 1 − x. It follows that E[u(x)] > n/e.

Let π = Pr[u(x) ≥ n/(2e)] be the fraction (or probability) of the input n-tuples
for which u(x) ≥ n/(2e)). Because u(x) ≤ n, it follows that πn + (1 − π)n/(2e) ≥
E[u(x)] ≥ n/e, from which we conclude that π > 1/(2e−1). (This is known as Markov’s
inequality.)

LEMMA 10.13.7 Let |S| = n. Then f
(n)
restricted : Sn �→ Sm, m = n/(2e), is (φ, λ, μ, ν, τ)-

distinguishable for φ = 1/(2e− 1), λ = μ = 1, ν = (1 − 1/(2e))/ log2 n, and τ (b) = n.

Proof If f
(n)
restricted is (φ, λ, μ, ν, τ)-distinguishable for φ = 1/(2e − 1), λ = μ = 1/2,

ν = (1−1/(2e))/ log2 n, and τ (b) = n, then for at least φnn input tuples and any a ≤ λn

input and b ≤ μm output variables and specified values for them, f
(n)
restricted has at most

nn−a−νb = nn−ae−(1−1/(2e))b input n-tuples that are consistent with these assignments.

The order of output values to f
(n)
restricted is irrelevant.

Let B be the values of the b selected and specified unique outputs, b ≤ m, and let A
be the values of the a selected and specified input values. The k values in B − A appear in
input positions that are not specified. r = n − k − a inputs are in neither A nor B. We
overestimate the number of patterns of inputs consistent with the a inputs and b outputs
that are specified if we allow these a inputs to assume any value not in B, since all values in
B are unique. Thus, there are at most (n− b)r ways to assign values to these r inputs. The
k values in B − A are fixed, but their positions among the r + k non-selected inputs are
not fixed. Since there are (r + k)!/r! ways for these ordered k values to appear among any
specific ordering of the remaining r non-selected inputs (see Problem 10.6), the number Q
of input patterns consistent with the selected and specified a inputs and b outputs satisfies
the following inequality:

Q ≤ (r + k)!
r!

(n− b)r

Here r + k = n− a ≤ n and k ≤ b. Below we bound (r + k)!/r! by (r + k)k and use the
inequality (1 − x) ≤ e−x:

Q ≤ (r + k)k(n− b)r ≤ nr+k
(

1 − a

n

)k
(

1 − b

n

)r

≤ nn−ae−(ka/n+rb/n) ≤ nn−ae−(ka/n+(n−a−k)b/n)

The exponent e(a, b, k) = ka/n + (n − a − k)b/n is a decreasing function of a whose
smallest value is (1 − k/n)b. In turn, this function is a decreasing function of k whose
smallest value is (1 − b/n)b ≥ (1 − 1/(2e))b. As a consequence, we have

Q ≤ nn−ae−(1−1/(2e))b

It follows that f
(n)
restricted is (φ, λ, μ, ν, τ)-distinguishable for φ = 1/(2e− 1), λ = μ = 1,

ν = (1 − 1/(2e))/ log2 n, and τ (b) = n.

516 Chapter 10 Space–Time Tradeoffs Models of Computation

b := 0;
for j := 1 to �n/S�
{b = (j − 1)S on the jth iteration.}

begin
for i := 1 to S

C[i] := 0;
for i := 1 to n

if b ≤ xi ≤ b + S then
begin

k:= xi − b;
if C[k] < 2 then C[k] := C[k] + 1;

end;
for i := 1 to S

if C[i] = 1 then print b + i;
b := b + S;

end

Figure 10.22 A RAM program for the unique-elements problem over the set {1, 2, . . . , n}
when n ≥ S ≥ O(log n). The input to the program is the n-tuple x in which xi is the ith
entry. The program uses space O(S).

Invoking Theorem 10.11.1, we have a quadratic space–time product lower bound. The
RAM program for the unique elements problem given in Fig. 10.22 can be converted to a
branching program to obtain an upper bound on the space–time product needed for this
problem, as shown in Theorem 10.13.8.

THEOREM 10.13.8 Let |R| ≥ n. There is an integer n0 > 0 such that for n ≥ n0 and
S = Ω(log n) the time T and space S used by any general branching program for the unique

elements function f
(n)
unique : Rn �→ 2R

n

must satisfy

ST = Ω(n2)

This lower bound can be met to within a constant multiplicative factor for inputs drawn from the
set {1, 2, 3, . . . , n}.

Proof The lower bound follows directly from Theorem 10.11.1. The upper bound follows
from an analysis of the branching program that results from conversion of the RAM program
in Fig. 10.22. The RAM program makes �n/S� passes over the input data. On the jth pass
the program examines input values in the range [(j− 1)S, . . . , jS] and determines for each
value whether there are zero, one, or more than one instances of it in the input.

The program uses an S-element one-dimensional array C[1..S] that it initializes to zero
at the beginning of each pass. If on the jth pass the ith input variable, xi, is in the interval
[(j − 1)S, . . . , jS], the array element associated with it, namely C[xi − (j − 1)S], is
incremented unless it already has value 2. At the end of the jth pass, if the array element
C[i] has value 1, the program prints out the value jS + i, namely, the value of an input that
appears only once in the input.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 517

The reader is asked to show that the program of Fig. 10.22 can be converted to a branch-
ing program of space O(S) and time O(T). (See Problem 10.41.)

The program of Fig. 10.22 relies on the fact that input variables are drawn from the set
{1, 2, 3, . . . , n}. If the set from which they are drawn is much larger, say {1, 2, 3, . . . , nc},
c > 1, the outer loop is executed O(nc/S) times and its total running time is O(nc). Thus,
the program is not optimal in this case.

10.13.8 Sorting
The sorting problem is described in Section 6.8. The general sorting problem is defined by

a function f
(n)
sort : Rn �→ Rn that rearranges the values of input variables so they are in

descending order. Given a branching program for sorting, we show below that a branching
program for the unique-elements problem can be obtained with a small additional amount of
space. As a consequence, the space–time product lower bound for unique elements applies to
the sorting problem. We also give a nearly matching upper bound.

THEOREM 10.13.9 Let |R| ≥ n. There is an integer n0 > 0 such that for n ≥ n0 and
S = Ω(log n) the time T and space S used by any general branching program for the sorting
function f

(n)
sort : Rn �→ Rn that reports its outputs in descending order must satisfy

ST = Ω(n2)

This lower bound can be met to within a constant multiplicative factor for inputs drawn from the
set {1, 2, 3, . . . , n}.

Proof Given a branching program for f
(n)
sort that uses space S, we use it to construct a

branching program for f
(n)
unique that uses space S + O(log n) = O(S). Since f

(n)
unique

requires space that is Ω(n2/T), the same lower bound applies to sorting.

The branching program for f
(n)
sort generates its sorted outputs in descending order. By

analyzing the outputs the unique elements can be found. Store the last output l along with
a bit b that is 1 if l is so far the only occurrence of this value and 0 otherwise. If the next
output value is the same as l, set b to 0. If it is different from l and b = 1, produce l as
an output, replace l with the last output, and set b to 1. Otherwise, do not produce an
output.

Given a branching program Π for sorting, we describe a branching program for unique
elements that uses modified copies of Π. If more than one output appears on some edge
in Π, modify it (yielding Π∗) by replacing edges producing more than one output by a
sequence of edges each producing one output separated by vertices testing an arbitrary in-
put. This increases the number of vertices in Π by a factor of at most n and adds at most
log2 n to its space. Now make 2|R| additional copies of Π∗, two for each value in R, a
“one” copy if the value is the first encountered in the sorted output and a “zero” copy if it
is not.

Consider an edge in Π∗ or one of its copies that produces an output (call it v). There
are several cases to examine: the current copy of Π∗ is a) the original copy, b) a “one” copy,
or c) a “zero” copy. In case a), redirect the edge to the same vertex in the “one” copy of Π∗

associated with v. In case b), if v is different from the value c associated with the current

518 Chapter 10 Space–Time Tradeoffs Models of Computation

copy of Π∗, output c and redirect the edge to the same vertex in the “one” copy of Π∗ as-
sociated with v. In case c), if v is the same as the value associated with the current copy of
Π∗, produce no output; otherwise also produce no output but redirect the edge to the same
vertex in the “one” copy of Π∗ associated with v. The new branching program has at most
2n + 1 copies of Π∗, thereby increasing its space by an additive term of size O(log n). The
lower bound on ST for the sorting problem follows.

The upper bound on ST for the sorting problem is obtained by constructing a family of
branching programs, one for each value of S. We begin by constructing a “full” branching
program for the case S = Θ(n). Let the variables in the input string be x1, x2, . . . , xn and
let them be tested in sequence. Thus, the root is labeled x1 and has n successors, each of
which tests x2. There is one successor for each vertex labeled with x2 for each way two num-
bers can be chosen with replacement from the set {1, 2, . . . , n}. As shown in Problem 10.7,
there are N(n, k) ways in which k numbers can be drawn from a set of n elements with
replacement where the order among the numbers is unimportant and

N(n, k) =
(

n + k − 1
k

)
Thus, N(n, 1) = n and N(n, 2) = (n + 1)n/2. The successors to vertices labeled x2 are
labeled x3. They have N(n, 3) successors, and so on. At the kth level there are N(n, k) suc-
cessors. Since N(n, k) < 2n+k−1, it follows that for k ≤ n the above branching program
has O(22n) vertices or space S = Θ(n). It also has time T = n and space–time product
O(n2).

To construct a branching program for space S = O(n), we use O(n/S) pruned copies
of the full branching program described above. The idea behind the pruning is the fol-
lowing: we scan the input list looking for variables with values in the set {1, 2, . . . , S}. If
there are O(S) of them, we record the number of values of each type and produce them in
sorted order. However, if there are more than O(S) elements in this range, as we examine
additional inputs we reduce the size of the range so that only O(S) space is used to carry
the number of values of variables encountered. (This space is represented by 2O(S) vertices
in the branching program.) On each pass through the input either we reduce the size of
the range by O(S) or reduce the number of outputs that must be produced by the same
amount. Thus, after 2n/S passes the input is sorted. Since each pass tests the value of each
variable, the time is O(n2/S).

It is not difficult to convert the above schema into a branching program. The goal is to
have no more than about 2S vertices on each level of the branching program. The branching
program will consist of O(n/S) copies of the full branching program, each having n levels.
Thus, the branching program will have O(n22S/S) vertices or space O(S).

We order vertices at each level in the branching program, placing those with smaller
input values to the left. We remove vertices at the jth level that correspond to input values
larger than S as well as those to the right of the first 2S vertices on the jth level. Each edge
in the first full branching program that is directed into a removed vertex is redirected to the
root of the next copy of the branching program. The second copy of the full branching
program is pruned to remove the vertices appearing in the first copy as well as those reached
on inputs outside the range [S + 1, S + 2, . . . , 2S]. The edges directed to removed vertices
are redirected to the root of the third copy of the full branching program. A similar process
is applied to each copy of the full branching program.

c©John E Savage Problems 519

. .
Problems
MATHEMATICAL PRELIMINARIES

10.1 Show that the the pyramid graph on m inputs, P (m), has m(m + 1)/2 vertices. Let
n = m(m + 1)/2. Show that m ≥

√
2n− 1.

10.2 Show that the following inequalities hold for integers m and x:

m/x ≤ �m/x� ≤ (m + x − 1)/x

(m− x + 1)/x ≤ �m/x� ≤ m/x

10.3 Suppose that p log2 p ≤ q for positive integers p, q ≥ 2. Show that p ≤ 2q/ log2 q.

10.4 For n positive integers x1, x2, . . ., xn, show that the following inequality holds between
the geometric mean on the left and the arithmetic mean on the right:

(x1x2 · · ·xn)1/n ≤ (x1 + x2 + · · ·+ xn)/n

10.5 Show that the inequality (1 − x) ≤ e−x holds for x ≤ 1.

10.6 Show that there are (r + k)!/r! ways for k ordered values to appear among r distinct
ordered items.

10.7 Show that there are N(n, k) =
(
n+k−1

k

)
< 2n+k−1 ways to choose with repetition k

numbers from a set A of size n where the order among the numbers is unimportant.
Choosing with repetition means that a number can be chosen more than once.

Hint: Without loss of generality, let A = {1, 2, . . . , n}. Since order is unimportant,
assume the chosen numbers are sorted. Let each chosen number be represented by a
blue marker. Imagine placing the blue markers on a horizontal line. For 1 ≤ i ≤ n−1,
place a red marker between the last blue marker associated with the number i and the
first blue marker associated with the number i+1, if any. This representation uniquely
determines the number of elements of each type chosen. How many ways can the red
markers be placed?

10.8 Show that a complete balanced binary tree on 2k−1 leaves has 2k −1 vertices including
leaves and that each path from a leaf to the root has k − 1 edges and k vertices.

THE PEBBLE GAME

10.9 Consider the circuit shown in Fig. 2.15. Treat each gate and each input vertex as a
vertex. Give a good pebbling strategy for this graph.

10.10 Give a pebbling strategy for the m-input counting circuit in Fig. 2.21(b) that uses
O(log2 m) pebbles and O(m) steps. Determine the minimum number of pebbles
with which the circuit can be pebbled. Determine the number of steps needed with
this minimal pebbling.

520 Chapter 10 Space–Time Tradeoffs Models of Computation

SPACE LOWER BOUNDS WITH PEBBLING

10.11 Consider the FFT graph F (k) on m = 2k inputs. Show that the subgraph connecting
inputs to any one output is a complete binary tree on m leaves.

10.12 Consider a directed acyclic graph with n vertices, some of which have out-degree greater
than 2. (a) Show that if each vertex of out-degree k > 2 is replaced by a binary tree
with k leaves and edges directed from the root to the leaves, the number of vertices in
the graph is at most doubled. (b) Show that replacing vertices with in-degree greater
than 2 with binary trees also at most doubles the number of vertices in the graph.

EXTREME TRADEOFFS WITH PEBBLING

10.13 Let N(k) be the number of vertices in the graph Hk discussed in Section 10.3. Show
that the following recurrence holds for N(k):

N(k) = N(k − 1) + 4k + 3

Show that N(k) = 2k2 + 5k − 6 for k ≥ 2 since N(2) = 12.

10.14 Construct a new family {Gk} of graphs with fan-in 2 at each vertex from the graphs
{Hk} by replacing the tree in Fig. 10.4 by a pyramid graph in k inputs and the bipartite
graph with the graph Ek shown in Fig. 10.23. Show that each output of Ek can be
pebbled with k pebbles but that after pebbling any one output there is at least one path
without pebbles between the input and every other output. Show also that with k + 1
pebbles Ek can be pebbled without repebbling any vertex.

Let Tk(S) be the number of steps to pebble Gk with S pebbles. Using the above facts,
show the following:

a) N(k) = |Gk| = O(n4)
b) Smin(Gk) = k

c) Tk(k + 1) = N(k)

d) Tk(k) = 2Ω(N(k)1/4 log N(k))

...

u1 u2 uk uk+1

Inputs

k

Outputs

Figure 10.23 The graph Ek used in the construction of the family {Gk}.

c©John E Savage Problems 521

SPACE–TIME LOWER BOUNDS WITH PEBBLING

10.15 Let A be a γ-nice n × n matrix over a ring R for some 0 < γ < 1/2. Show that the

matrix-vector multiplication function f
(n)
A×x : Rn �→ Rn that maps the input n-tuple

x to the output n-tuple Ax is (1, n2 + n, n, γn)-independent.

10.16 Use Lemma 10.12.1 and the result of the previous problem to show that for almost
all n × n matrices A every straight-line program for the matrix-vector multiplication

function f
(n)
A×x : Rn �→ Rn over the ring R requires space S and time T satisfying

the inequality

(S + 1)T = Ω(n2)

Furthermore, show that a straight-line program for matrix-vector multiplication can be
realized with space S = 3 and time T = n(2n− 1), that is, with

(S + 1)T = O(n2)

10.17 Linear systems are described in Section 6.2.2. A linear system of n equations in n
unknowns x is defined by an (n × n)-coefficient matrix A and an n-vector b, as
suggested below:

Ax = b (10.11)

The goal is to solve this equation for x. If A is non-singular, such a solution exists for

each vector b. Let f
(n)

A−1×b : Rn2+n �→ Rn denote the linear system solver function
that maps the matrix A and the vector b onto the solution x when the matrix-vector
multiplication is over the ring R and A is non-singular.

Show that every pebbling strategy for every straight-line program to compute the linear

system solver function f
(n)

A−1×b : Rn2 �→ Rn2
over the ring R for n even requires space

S and time T satisfying the following inequality:

(S + 1)T ≥ n3/24

Hint: Would it be possible to violate the lower bound on (S+1)T for matrix inversion
given in Problem 10.25 if a DAG for the linear system solver function can be pebbled
with S pebbles in too few steps?

10.18 Let f : An �→ Am have g : Ar �→ As as a subfunction. Show that if g is (α, r, s, p)-
independent for r ≤ n and s ≤ m, then so is f . Show that, as a consequence, the
space S and time T needed to pebble the graph of a straight-line program for f satisfy
the following inequality:

�α(S + 1)�T ≥ sp/4

10.19 Show that if a function is (α, n, m, p)-independent, it is also (α, n, m, q)-independent
for q ≤ p.

Hint: Consider the same set V of outputs in the two definitions.

522 Chapter 10 Space–Time Tradeoffs Models of Computation

10.20 A finite-state machine M computes the function f
(n)
M : Q × Σn �→ Ψn that maps

the initial state in Q and an input string x of length n over the input alphabet Σ onto
an output string y of the same length over the output alphabet Ψ. Such a machine
can compute a function f : An �→ An by associating inputs and outputs of f with

inputs and outputs of f
(n)
M . A computation of an FSM M of a function f is input-

output oblivious if the times at which inputs of f are read and its outputs produced
are independent of the value of its input variables.

Show that Theorem 10.4.1 can be generalized from straight-line computations to com-
putations by input-output-oblivious FSMs.

Hint: Try to parallel the proof of Theorem 10.4.1 using the FSM M instead of the
pebble game. What correspondence can you make between the values under pebbles
before the interval I and the state of M ? Let log2 |Q|, where Q is the set of states of
M , be the measure of space associated with it.

10.21 Give a design of an FSM that computes a function f from straight-line programs for it
using a number of steps and storage locations proportional to the time and space used
by a pebbling strategy for this straight-line program.

Hint: Design the FSM so that it receives the inputs provided to the pebbling strategy
as well as instructions to specify which operations are performed on the inputs and
temporary storage locations of the FSM.

TRANSITIVE FUNCTIONS

10.22 Many functions for which space–time lower bounds have been derived are transitive.
Such functions have the property that for subsets X and Y of their inputs and outputs,
respectively, |X| = |Y | = n, the (control) inputs not in X can be chosen so as to cause
the outputs in Y to be equal to an arbitrary permutation drawn from the set G(n)
of the inputs in X . For example, the cyclic shifting function studied in Section 2.5.2
has a set of control inputs that specify the amount by which value inputs are permuted
cyclically and assigned to the output variables.

DEFINITION 10.13.2 Let G(n) be a group of permutations of the integers�(n) = {0,
1, 2, . . . , n− 1}. That is, if π is in G(n), then π :�(n) �→�(n). We denote by π(i)
the integer to which integer i is mapped by π. A function fG(n) : An+s �→ An, where
(yn−1, . . . , y1, y0) = fG(n)(xn−1, . . . , x1, x0, cs−1, . . . , c0), is said to have value in-
puts xn−1, . . . , x1, x0, control inputs cs−1, . . . , c0, and outputs yn−1, . . . , y1, y0.
Such a function is transitive of order n with respect to the group G(n) if

a) For each 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1, there exists a permutation π ∈ G(n)
such that π(i) = j, and

b) For each π ∈ G(n), there is an assignment to cs−1, . . . , c0 such that yπ(i) = xi for
0 ≤ i ≤ n − 1.

Show that every transitive function of order n with respect to the permutation group
G(n), fG(n) : An+s �→ An, is (2, n + s, n, n/2)-independent.

10.23 Show that the cyclic shifting function f
(n)
cyclic : Bn+�log n� �→ Bn defined in Sec-

tion 2.5.2 is transitive of order n.

c©John E Savage Problems 523

10.24 Consider the function f
(n)
PAQ : R3n2 �→ Rn2

whose value is the product PAQ of three
n×n matrices P , A, and Q. Let P and Q be permutation matrices whose entries serve
as control inputs. Show that f

(n)
PAQ is transitive of order n2.

10.25 The matrix inversion function f
(n)
M−1 : Rn2 �→ Rn2

maps a non-singular n× n matrix

over the ring R to its inverse. (See Section 6.3.) Show that f
(n)
M−1 is (2, n2, n, n/2)-

independent.

Hint: Show that f
(2n)
M−1 contains as a subfunction the function f

(n)
PAQ : R3n2 �→ Rn2

defined in Problem 10.24. In this connection consider the following identity, which
holds when the n × n matrices R and S are non-singular:

M =

[
R A

0 S

]−1

=

[
R−1 −R−1AS−1

0 S−1

]

PEBBLING SUPERCONCENTRATORS

10.26 Show that the graph consisting of two n = 2d-input FFT graphs connected back
to back (as shown in Fig. 10.24 with the second FFT graph reversed) is a supercon-
centrator. (Valiant [343] has shown the existence of n-superconcentrators with O(n)
vertices.)

Hint: Reason that there are unique vertex-disjoint paths from any r input vertices of
this graph to any r consecutive vertices that are simultaneously outputs of the first
FFT graph and the inputs to the reversed FFT graph. The first and last vertices are
consecutive.

10.27 Prove that to pebble any S +1 outputs of an n-superconcentrator, S +1 ≤ n, from an
initial placement of S pebbles requires that at least n− S different inputs be pebbled.

Hint: Suppose that at most n − (S + 1) inputs are pebbled from an initial placement
of S pebbles to pebble S + 1 outputs. Can you reason from the superconcentration

Figure 10.24 Two back-to-back FFT graphs form a superconcentrator.

524 Chapter 10 Space–Time Tradeoffs Models of Computation

property that S + 1 or more inputs cannot remain unpebbled since S + 1 outputs are
pebbled?

10.28 Use the result of the previous problem to show that to pebble an n-superconcentrator
with S pebbles in time T requires S and T to satisfy the following inequality:

(S + 1)T ≥ n2

2

Hint: As in the proof of Theorem 10.4.1, divide time up into consecutive intervals.
Choose the intervals so that each has the same number of outputs pebbled during it.
Apply the results of the previous problem to obtain a lower bound on the sum of the
number of input and output vertices that are pebbled during the interval.

10.29 Show that the pebbling of two n-input back-to-back FFT graphs requires space and
time that satisfy S2T = Ω(n3) and that this lower bound can be achieved up to a
multiplicative factor.

Hint: From the proof of Lemma 10.5.4 it follows that to pebble any 2S outputs with
S pebbles at least n − S + 1 inputs must be pebbled because if fewer inputs need be
pebbled the outputs can have more values than is possible for the FFT.

APPLICATIONS OF THE GRIGORIEV LOWER BOUND

10.30 Show that there is a pebbling for a straight-line program for the cyclic shift func-

tion f
(n)
cyclic : Bn+�log n� �→ Bn examined in Section 10.5.2 for which (S + 1)T =

O(n2 log n).
Hint: Pebble the graph of the circuit described in Section 2.5.1. Construct a circuit for

f
(n)
cyclic that produces each output with O(n log n) gates.

10.31 Show that the binary addition function f
(n)
add (see Section 2.7) can be realized by a

straight-line program using space and time satisfying ST = O(n).

10.32 Derive upper and lower bounds on the product (S + 1)T for pebblings of circuits for

the squaring function f
(n)
square that are within a factor of O(log2 n) of one another.

10.33 Derive good upper and lower bounds on the product (S+1)T for pebblings of circuits

for the reciprocal function f
(n)
recip.

10.34 In Section 6.5.3 a straight-line algorithm is given to invert an n × n triangular matrix.
Construct another straight-line algorithm based on it that can be pebbled with O(n)
pebbles to produce outputs by columns in O(n3) steps under the assumption that the
standard matrix multiplication algorithm is used for the matrix multiplication steps.
Hint: To produce outputs of a triangular matrix T by columns using the algorithm of
Fig. 6.5, it is necessary to read the elements of T2,1 by rows and produce the outputs of
T−1

2,2 by rows. Consider modifying this algorithm to generate the elements of the latter
matrix first by rows and then by columns.

c©John E Savage Problems 525

BRANCHING PROGRAMS

10.35 Give a proof of Lemma 10.9.1 by a) designing a general branching program to simulate
a comparison operator and b) using this design in a complete branching program that
simulates a decision branching program.

10.36 In Section 10.9 a procedure is given to convert a general branching program to a tree
program without increasing the length of any path. Use this fact to show that every
decision branching program with queries {≤, =} that sorts a list of n items requires
worst-case time of at least (n/2) log(n/2) when n is even. Show that this lower bound
can be achieved up to a constant multiplicative factor.

Hint: Show that every binary tree with m leaves must have a longest path of length
at least log2 m and determine the number of distinct leaves necessary in every decision
branching program for sorting.

THE BORODIN-COOK LOWER-BOUND METHOD

10.37 The computation time of a branching program is the length of the longest path in its
directed acyclic multigraph. Assume that a probability is assigned to each input x of
length n. The average computation time, T , of a branching program is the sum of
the lengths of the paths associated with different inputs weighted by the probabilities of
these inputs. To compute the average space of a branching program with k vertices, the
integers in the set {1, 2, . . . , k} are assigned to the vertices of the branching program.
The space associated with input x is the base-2 logarithm of the largest such integer
encountered during the computation associated with x. The average space associated
with a numbering of vertices is the average of this logarithm. The average space, S,
associated with a branching program is the smallest average space over all numberings
of vertices.

Given a probability distribution on inputs of length n, let Cf (a, b) denote the maxi-
mum over all those tree branching programs of depth a of the probability that b of the
m outputs of the function f are computed correctly. Show that Theorem 10.11.1 can
be generalized to the above probabilistic setting.

Hint: If T is the average time of the branching program P , truncate the branching
program at depth 2T , call the new program P ∗, and show that P ∗ solves the problem
solved by P with probability at least 1/2. Also, show that with probability at least 1/2
there exists a rich path in some stage that produces b = �m/σ� outputs. Let pi be
the probability that the subtree with root i in some stage correctly produces b outputs.
Now develop an upper bound in terms of the pi on the probability that some tree in
some stage correctly produces b outputs.

APPLICATIONS OF THE BORODIN-COOK LOWER BOUND

10.38 Show that the branching program in Fig. 10.20 computes the inner product of two 3-
element sequences over the set of integers modulo-2; that is, the integers {0, 1} with
the EXCLUSIVE-OR function for addition and the AND function for multiplication.

10.39 Complete the proof of Theorem 10.13.2 by filling in the details of the construction of
a branching program for integer multiplication for the middle range of space.

526 Chapter 10 Space–Time Tradeoffs Models of Computation

10.40 Complete the proof of Theorem 10.13.4 by showing that two n × n matrices can
be multiplied with a hybrid algorithm that combines table lookup with the standard
matrix multiplication algorithm on k × k blocks to achieve space and time satisfying

ST 2 = O(n3 log |R|)

10.41 Show that the RAM program described in Fig. 10.22 can be converted to a branching
program of space O(S) and time O(T).

Chapter Notes
The first formal study of space–time tradeoffs was made by Cobham [73]. He considered
computations on one-tape Turing machines using as a space measure the logarithm of the
number of configurations, and obtained quadratic lower bounds on the space–time product to
recognize strings representing palindromes and perfect squares.

The pebble-game model was implicitly used by Paterson and Hewitt [239] to study pro-
gram schemas, uninterpreted graphs representing programs. They derived the space lower
bound of Lemma 10.2.1, thereby demonstrating that recursive programs are more power-
ful than nonrecursive ones. Cook [75,79] asked how much space (how many pebbles) was
needed to execute a program schema with n vertices and obtained the result for pyramids of
Lemma 10.2.2, showing that the minimum space is at least Ω(

√
n) for some schemas. The

minimum-space question was answered by Hopcroft, Paul, and Valiant [140], who proved
Theorem 10.7.1, and Paul, Tarjan, and Celoni [246], who obtained Theorem 10.8.1. The
pebble model first formally appeared in [140]. Gilbert, Lengauer, and Tarjan [115] and Loui
[205] have shown that the languages associated with minimal pebblings of DAGs (described
at the end of Section 10.2) are PSPACE-complete.

In addition to studying the minimum space needed for a computation, researchers also
examined tradeoffs between space and time. Paterson and Hewitt [239] studied the conversion
of a linear recursive program schema into a non-recursive one and demonstrated that the time
needed satisfies T = Ω(n1+1/(S−1)) for S ≥ 2. (See Chandra [66] and Swamy and Savage
[321]) for more details on this problem.)

A number of other authors have identified graphs exhibiting non-trivial exchanges of space
for time. Pippenger [254] gave a graph on n vertices for which T = Ω(n log log n) when
S = O(n/ log n), and Savage and Swamy [293] demonstrated that the FFT graph requires S
and T satisfying ST = Θ(n2). (This is the first tradeoff result for a natural algorithm. Their
upper bound is given in Theorem 10.5.5.) Later Tompa [333] and Reischuk [279] exhibited
graphs requiring T = Ω(n log n) and T = Ω(n logt n) for any integer t, respectively, when
S = Θ(n/ log n).

Paul and Tarjan [245], Lingas [201], and van Emde Boas and van Leeuwen [349] gave

graphs with T increasing from O(n) to T = 2Ω(n1/2), T = 2Ω(n1/3), and T = 2Ω(n1/4 log n),
respectively, when S drops by a constant amount from S = O(n1/2), S = O(n1/3) and
S = O(n1/4), respectively. Theorem 10.3.1 is from [349], as is Problem 10.14. Carl-
son and Savage [64] took a different tack and exhibited graphs for which T is superlinear,
namely, T = 2Ω(log n log log n) over a range of values of S, namely, Ω(log n) ≤ S ≤
O(n1/2/ log n). References to the worst-case exchange of space for time are given in Sec-
tion 10.6.

c©John E Savage Chapter Notes 527

Grigoriev [121] gave the first space–time lower bounds that apply to all graphs for a prob-
lem (see Corollary 10.4.1), the essential idea of which is generalized in Theorem 10.4.1. Savage
[291] introduced the w(u, v)-flow measure used in this version of a theorem to derive lower
bounds on area–time tradeoffs for VLSI algorithms. Grigoriev [121] also established Theo-
rem 10.4.2 and derived a tradeoff lower bound on polynomial multiplication that is equiva-
lent to Theorem 10.5.1 on convolution. The improved version of Theorem 10.4.2, namely
Theorem 10.5.4, is original with this book.

Lower bounds using the Grigoriev approach explicitly require that the sets over which
functions are defined be finite. Tompa [331,332] eliminated the requirement for finite sets but
required instead that functions be linear. Using concentrator properties of matrices deduced
by Valiant [343], Tompa derived a lower bound on ST for superconcentrators that he applied
to matrix-vector multiplication and polynomial multiplication. He developed a similar lower
bound for the DFT. (See Abelson [2] for a generalization of some of these results to continuous
functions.) The lower bound of Theorem 10.5.5 uses Tompa’s DFT proof but does not require
that straight-line programs be linear.

The result on cyclic shift (Theorem 10.5.2) is due to Savage [292]. (This paper also gener-
alizes Grigoriev’s model to I/O-oblivious FSMs, extends JáJá’s [147] space–time lower bound
for matrix inversion, and derives space–time lower bounds for transitive functions and banded
matrices.) The result on integer multiplication (Theorem 10.5.3) is due to Savage and Swamy
[294]. In [331] Tompa also obtained Theorem 10.5.6 on merging. Transitive functions de-
fined in Problem 10.22 were introduced by Vuillemin [355].

In [333] Tompa examined the graph associated with the algorithm for transitive closure
based on successive squarings described in Section 6.4 and demonstrated that it can be peb-
bled either in a polynomial number of steps or with small space, namely O(log2 n), but not
both. Carlson [61] demonstrated that algorithms for convolution based on FFT graphs (see
Section 6.7.4) require that T = Θ(n3/S2 + n2(log n)/S), which doesn’t come close to
matching the lower bound of Theorem 10.5.1. However, through the judicious replacement
of back-to-back FFT subgraphs in the standard convolution algorithm, Carlson [62] was able
to achieve the bounds T = Θ(n log S + n2(log S)/S), which are optimal over all FFT-based
convolution algorithms and nearly as good as the T = Θ(n2/S) bounds. (See also [63].)
Carlson and Savage [65] explored for a number of problems the size of the smallest graphs that
can be pebbled with a small number of pebbles and demonstrated a tradeoff between size and
space.

Pippenger [251] has surveyed many of the results described above as well as those on the
black-white pebble game described below.

Several extensions of the pebble game have been developed. One of these is the red-blue
pebble game discussed in Chapter 11 and its generalization, the memory hierarchy game.
Another is the black-white pebble game whose rules are the following: a) a black pebble can be
placed on an input vertex at any time and on a non-input vertex only if its predecessors carry
pebbles, whether white or black; b) a black pebble may be removed at any time; c) a white
pebble can be placed on a vertex at any time; d) a white pebble can be removed only if all its
predecessors carry pebbles. The placement of white pebbles models a non-deterministic guess.
The removal of a white vertex is allowed only when the guess has been verified. Questions
this game makes possible are whether the minimum space required for a graph is lower with
the black-white pebble game than with the standard game and whether for a given amount of
space, the time required is lower. The black-white game was introduced by Cook and Sethi

528 Chapter 10 Space–Time Tradeoffs Models of Computation

[78], who showed that the minimum space for the pyramid graph is at least
√

N/2−1. Meyer
auf der Heide [222] proved that this minimum space is at most �n/2� + 2 and established in
general that any graph with minimum space n in the black-white game has minimum space at
most (n2 −n)/2 + 1 in the standard game. The latter result is the pebbling analog of Savitch’s
theorem (Theorem 8.5.5).

Loui [206] and Meyer auf der Heide [222] have shown that the minimum space with the
black-white game is at least one half that for the standard pebble game for balanced trees, a
result extended by Lengauer and Tarjan [196] to all trees and then by Klawe [167]. Wilber
[363] has exhibited an infinite family of graphs for which the black-white minimum space is
smaller than the minimum space with the standard game by more than a constant factor.

All of the pebble games mentioned above are one-person games; that is, one person plays
the game. A two-person game introduced by Venkateswaran and Tompa [352] models parallel
complexity classes. Savage and Vitter [296] have also introduced a model of parallel pebbling.

Branching programs have been known as binary decision diagrams for at least 30 years
[15], although their importance to CAD was recognized only in the last 10 or 12 years. (See
[60]). Branching programs were proposed as a vehicle for studying space–time problems by
Pippenger and first studied by Tompa [331], who cites Pippenger for Lemma 10.9.2. Borodin,
Fischer, Kirkpatrick, Lynch, and Tompa [55] derived a lower bound of ST = Ω(n2) to
sort n items with decision branching programs. Borodin and Cook [53] formulated the same
problem in terms of the general branching programs of Section 10.9 and developed the general
framework used in Theorem 10.11.1.

Yesha [370] developed lower bounds on the space–time product with branching prob-
lems for the discrete Fourier transform (see Theorem 10.13.7) and matrix multiplication over
restricted domains. Abrahamson [6] (see also [4]) derived the lower bound on ST 2 in The-
orem 10.13.4, thereby improving upon the matrix multiplication bound of Yesha. He also
extended the Borodin-Cook model to probabilistic branching programs (see Problem 10.37)
and derived the lower bound on ST for convolution (Theorem 10.13.1), integer multiplica-
tion (Theorem 10.13.2), matrix-vector multiplication (Theorem 10.13.3), and matrix inver-
sion (Theorem 10.13.6). He also developed a lower bound of Ω(n3) on ST to compute the
product PAQ of three n×n matrices, where P and Q are permutation matrices. Abrahamson
has also studied Boolean matrix multiplication in the general branching program model [5].
Beame [34] has obtained the result of Theorem 10.13.8 showing that the unique elements
problem requires that ST = Ω(n2) for general branching programs, which implies the lower
bound on sorting stated in Theorem 10.13.9.

In the comparison-based branching program model, Borodin, Fich, Meyer auf der Heide,
Upfal, and Wigderson [54] derive the lower bound ST = Ω(n3/2√log n) for the element-
distinctness problem on n inputs. For the same computational model, Yao [369] improved
this to ST = Ω(n2−ε(n)), where ε(n) is a decreasing function of n.

C H A P T E R

Memory-Hierarchy Tradeoffs

Although serial programming languages assume that programs are written for the RAM model,
this model is rarely implemented in practice. Instead, the random-access memory is replaced
with a hierarchy of memory units of increasing size, decreasing cost per bit, and increasing
access time. In this chapter we study the conditions on the size and speed of these units when
a CPU and a memory hierarchy simulate the RAM model. The design of memory hierarchies
is a topic in operating systems.

A memory hierarchy typically contains the local registers of the CPU at the lowest level and
may contain at succeeding levels a small, very fast, local random-access memory called a cache,
a slower but still fast random-access memory, and a large but slow disk. The time to move data
between levels in a memory hierarchy is typically a few CPU cycles at the cache level, tens of
cycles at the level of a random-access memory, and hundreds of thousands of cycles at the disk
level! A CPU that accesses a random-access memory on every CPU cycle may run at about
a tenth of its maximum speed, and the situation can be dramatically worse if the CPU must
access the disk frequently. Thus it is highly desirable to understand for a given problem how
the number of data movements between levels in a hierarchy depends on the storage capacity
of each memory unit in that hierarchy.

In this chapter we study tradeoffs between the number of storage locations (space) at each
memory-hierarchy level and the number of data movements (I/O time) between levels. Two
closely related models of memory hierarchies are used, the memory-hierarchy pebble game and
the hierarchical memory model, which are extensions of those introduced in Chapter 10.

In most of this chapter it is assumed not only that the user has control over the I/O algo-
rithm used for a problem but that the operating system does not interfere with the I/O oper-
ations requested by the user. However, we also examine I/O performance when the operating
system, not the user, controls the sequence of memory accesses (Section 11.10). Competi-
tive analysis is used in this case to evaluate two-level LRU and FIFO memory-management
algorithms.

529

530 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

11.1 The Red-Blue Pebble Game
The red-blue pebble game models data movement between adjacent levels of a two-level mem-
ory hierarchy. We begin with this model to fix ideas and then introduce the more general
memory-hierarchy game. Both games are played on a directed acyclic graph, the graph of a
straight-line program. We describe the game and then give its rules.

In the red-blue game, (hot) red pebbles identify values held in a fast primary memory
whereas (cold) blue pebbles identify values held in a secondary memory. The values identified
with the pebbles can be words or blocks of words, such as the pages used by an operating
system. Since the red-blue pebble game is used to study the number of I/O operations necessary
for a problem, the number of red pebbles is assumed limited and the number of blue pebbles is
assumed unlimited. Before the game starts, blue pebbles reside on all input vertices. The goal
is to place a blue pebble on each output vertex, that is, to compute the values associated with
these vertices and place them in long-term storage. These assumptions capture the idea that
data resides initially in the most remote memory unit and the results must be deposited there.

RED-BLUE PEBBLE GAME

• (Initialization) A blue pebble can be placed on an input vertex at any time.

• (Computation Step) A red pebble can be placed on (or moved to) a vertex if all its imme-
diate predecessors carry red pebbles.

• (Pebble Deletion) A pebble can be deleted from any vertex at any time.

• (Goal) A blue pebble must reside on each output vertex at the end of the game.

• (Input from Blue Level) A red pebble can be placed on any vertex carrying a blue pebble.

• (Output to Blue Level) A blue pebble can be placed on any vertex carrying a red pebble.

The first rule (initialization) models the retrieval of input data from the secondary mem-
ory. The second rule (a computation step) is equivalent to requiring that all the arguments
on which a function depends reside in primary memory before the function can be computed.
This rule also allows a pebble to move (or slide) to a vertex from one of its predecessors, mod-
eling the use of a register as both the source and target of an operation. The third rule allows
pebble deletion: if a red pebble is removed from a vertex that later needs a red pebble, it must
be repebbled.

The fourth rule (the goal) models the placement of output data in the secondary memory
at the end of a computation. The fifth rule allows data held in the secondary memory to be
moved back to the primary memory (an input operation). The sixth rule allows a result to
be copied to a secondary memory of unlimited capacity (an output operation). Note that a
result may be in both memories at the same time.

The red-blue pebble game is a direct generalization of the pebble game of Section 10.1
(which we call the red pebble game), as can be seen by restricting the sixth rule to allow
the placement of blue pebbles only on vertices that are output vertices of the DAG. Under
this restriction the blue level cannot be used for intermediate results and the goal of the game
becomes to minimize the number of times vertices are pebbled with red pebbles, since the
optimal strategy pebbles each output vertex once.

c©John E Savage 11.1 The Red-Blue Pebble Game 531

A pebbling strategy P is the execution of the rules of the pebble game on the vertices of
a graph. We assign a step to each placement of a pebble, ignoring steps on which pebbles are
removed, and number the steps consecutively. The space used by a strategy P is defined as
the maximum number of red pebbles it uses. The I/O time, T2, of P on the graph G is the
number of input and output (I/O) steps used by P . The computation time, T1, is the number
of computation steps of P on G. Note that time in the red pebble game is the time to place red
pebbles on input and internal vertices; in this chapter the former are called I/O operations.

Since accesses to secondary memory are assumed to require much more time than accesses
to primary memory, a minimal pebbling strategy, Pmin, performs the minimal number of
I/O operations on a graph G for a given number of red pebbles and uses the smallest number
of red pebbles for a given I/O time. Furthermore, such a strategy also uses the smallest number

of computation steps among those meeting the other requirements. We denote by T
(2)
1 (S, G)

and T
(2)
2 (S, G) the number of computation and I/O steps in a minimal pebbling of G in the

red-blue pebble game with S red pebbles.
The minimum number of red pebbles needed to play the red-blue pebble game is the

maximum number of predecessors of any vertex. This follows because blue pebbles can be used
to hold all intermediate results. Thus, in the FFT graph of Fig. 11.1 only two red pebbles are
needed, since one of them can be slid to the vertex being pebbled. However, if the minimum
number of pebbles is used, many expensive I/O operations are necessary.

In Section 11.2 we generalize the red-blue pebble game to multiple levels and consider two
variants of the model, one in which all levels including the highest can be used for intermediate
storage, and a second in which the highest level cannot be used for intermediate storage. The
second model (the I/O-limited game) captures aspects of the red-blue pebble game as well as
the red pebble game of Chapter 10.

An important distinction between the pebble game results obtained in this chapter and
those in Chapter 10 is that here lower bounds are generally derived for particular graphs,
whereas in Chapter 10 they are obtained for all graphs of a problem.

Figure 11.1 An eight-input FFT graph showing three two-input FFT subgraphs.

532 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

11.1.1 Playing the Red-Blue Pebble Game
The rules for the red-blue pebble game are illustrated by the eight-input FFT graph shown in
Fig. 11.1. If S = 3 red pebbles are available to pebble this graph (at least S = 4 pebbles are
needed in the one-pebble game), a pebbling strategy that keeps the number of I/O operations
small is based on the pebbling of sub-FFT graphs on two inputs. Three such sub-FFT sub-
graphs are shown by heavy lines in Fig. 11.1, one at each level of the FFT graph. This pebbling
strategy uses three red pebbles to place blue pebbles on the outputs of each of the four lowest-
level sub-FFT graphs on two inputs, those whose outputs are second-level vertices of the full
FFT graph. (Thus, eight blue pebbles are used.) Shown on a second-level sub-FFT graph are
three red pebbles at the time when a pebble has just been placed on the first of the two outputs
of this sub-FFT graph. This strategy performs two I/O operations for each vertex except for
input and output vertices. A small savings is possible if, after pebbling the last sub-FFT graph
at one level, we immediately pebble the last sub-FFT graph at the next level.

11.1.2 Balanced Computer Systems
A balanced computer system is one in which no computational unit or data channel becomes
saturated before any other. The results in this chapter can be used to analyze balance. To
illustrate this point, we examine a serial computer system consisting of a CPU with a random-
access memory and a disk storage unit. Such a system is balanced for a particular problem if
the time used for I/O is comparable to the time used for computation.

As shown in Section 11.5.2, multiplying two n× n matrices with a variant of the classical
matrix multiplication algorithm requires a number of computations proportional to n3 and a
number of I/O operations proportional to n3/

√
S, where S is the number of red pebbles or

the capacity of the random-access memory. Let t0 and t1 be the times for one computation
and I/O operation, respectively. Then the system is balanced when t0n

3 ≈ t1n
3/
√

S. Let the
computational and I/O capacities, Ccomp and CI/O, be the rates at which the CPU and disk
can compute and exchange data, respectively; that is, Ccomp = 1/t0 and CI/O = 1/t1. Thus,
balance is achieved when the following condition holds:

Ccomp

CI/O
≈
√

S

From this condition we see that if through technological advance the ratio Ccomp/CI/O in-
creases by a factor β, then for the system to be balanced the storage capacity of the system, S,
must increase by a factor β2.

Hennessy and Patterson [132, p. 427] observe that CPU speed is increasing between 50%
and 100% per year while that of disks is increasing at a steady 7% per year. Thus, if the ratio
Ccomp/CI/O for our simple computer system grows by a factor of 50/7 ≈ 7 per year, then
S must grow by about a factor of 49 per year to maintain balance. To the extent that matrix
multiplication is typical of the type of computing to be done and that computers have two-
level memories, a crisis is looming in the computer industry! Fortunately, multi-level memory
hierarchies are being introduced to help avoid this crisis.

As bad as the situation is for matrix multiplication, it is much worse for the Fourier trans-
form and sorting. For each of these problems the number of computation and I/O operations
is proportional to n log2 n and n log2 n/ log2 S, respectively (see Section 11.5.3). Thus, bal-

c©John E Savage 11.2 The Memory-Hierarchy Pebble Game 533

ance is achieved when

Ccomp

CI/O
≈ log2 S

Consequently, if Ccomp/CI/O increases by a factor β, S must increase to Sβ . Under the
conditions given above, namely, β ≈ 7, a balanced two-level memory-hierarchy system for
these problems must have a storage capacity that grows from S to about S7 every year.

11.2 The Memory-Hierarchy Pebble Game
The standard memory-hierarchy game (MHG) defined below generalizes the two-level red-
blue game to multiple levels. The L-level MHG is played on directed acyclic graphs with pl

pebbles at level l, 1 ≤ l ≤ L − 1, and an unlimited number of pebbles at level L. When
L = 2, the lower level is the red level and the higher is the blue level. The number of pebbles
used at the L − 1 lowest levels is recorded in the resource vector p = (p1, p2, . . . , pL−1),
where pj ≥ 1 for 1 ≤ j ≤ L − 1. The rules of the game are given below.

STANDARD MEMORY-HIERARCHY GAME

R1. (Initialization) A level-L pebble can be placed on an input vertex at any time.

R2. (Computation Step) A first-level pebble can be placed on (or moved to) a vertex if all its
immediate predecessors carry first-level pebbles.

R3. (Pebble Deletion) A pebble of any level can be deleted from any vertex.

R4. (Goal) A level-L pebble must reside on each output vertex at the end of the game.

R5. (Input from Level l) For 2 ≤ l ≤ L, a level-(l − 1) pebble can be placed on any vertex
carrying a level-l pebble.

R6. (Output to Level l) For 2 ≤ l ≤ L, a level-l pebble can be placed on any vertex carrying a
level-(l − 1) pebble.

The first four rules are exactly as in the red-blue pebble game. The fifth and sixth rules general-
ize the fifth and sixth rules of the red-blue pebble game by identifying inputs from and outputs
to level-l memory. These last two rules allow a level-l memory to serve as temporary storage
for lower-level memories.

In the standard MHG, the highest-level memory can be used for storing intermediate
results. An important variant of the MHG is the I/O-limited memory-hierarchy game, in
which the highest level memory cannot be used for intermediate storage. The rules of this
game are the same as in the MHG except that rule R6 is replaced by the following two rules:

I/O-LIMITED MEMORY-HIERARCHY GAME

R6. (Output to Level l) For 2 ≤ l ≤ L − 1, a level-l pebble can be placed on any vertex
carrying a level-(l − 1) pebble.

R7. (I/O Limitation) Level-L pebbles can only be placed on output vertices carrying level-
(L − 1) pebbles.

534 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

The sixth and seventh rules of the new game allow the placement of level-L pebbles only on
output vertices. The two-level version of the I/O-limited MHG is the one-pebble game studied
in Chapter 10. As mentioned earlier, we call the two-level I/O-limited MHG the red pebble
game to distinguish it from the red-blue pebble game and the MHG. Clearly the multi-level
I/O-limited MHG is a generalization of both the standard MHG and the one-pebble game.

The I/O-limited MHG models the case in which accesses to the highest level memory take
so long that it should be used only for archival storage, not intermediate storage. Today disks
are so much slower than the other memories in a hierarchy that the I/O-limited MHG is the
appropriate model when disks are used at the highest level.

The resource vector p = (p1, p2, . . . , pL−1) associated with a pebbling strategy P speci-
fies the number of l-level pebbles, pl, used by P . We say that pl is the space used at level l by
P . We assume that pl ≥ 1 for 1 ≤ l ≤ L, so that swapping between levels is possible. The

I/O time at level l with pebbling strategy P and resource vector p, T (L)
l (p, G,P), 2 ≤ l ≤ L,

with both versions of the MHG is the number of inputs from and outputs to level l. The com-
putation time with pebbling strategy P and resource vector p, T

(L)
1 (p, G,P), in the MHG

is the number of times first-level pebbles are placed on vertices by P . Since there is little risk of

confusion, we use the same notation, T
(L)
l (p, G,P), in the standard and I/O-limited MHG

for the number of computation and I/O steps.
The definition of a minimal MHG pebbling is similar to that for a red-blue pebbling.

Given a resource vector p, Pmin is a minimal pebbling for an L-level MHG if it minimizes
the I/O time at level L, after which it minimizes the I/O time at level L − 1, continuing in
this fashion down to level 2. Among these strategies it must also minimize the computation
time. This definition of minimality is used because we assume that the time needed to move
data between levels of a memory hierarchy grows rapidly enough with increasing level that it is
less costly to repebble vertices at or below a given level than to perform an I/O operation at a
higher level.

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

Figure 11.2 Pebbling an eight-input FFT graph in the three-level MHG.

c©John E Savage 11.3 I/O-Time Relationships 535

11.2.1 Playing the MHG
Figure 11.2 shows the FFT graph on eight inputs being pebbled in a three-level MHG with
resource vector p = (2, 4). Here black circles denote first-level pebbles, shaded circles denote
second-level pebbles and striped circles denote third-level pebbles. Four striped, three shaded
and two black pebbles reside on vertices in the second row of the FFT. One of these shaded
second-level pebbles shares a vertex with a black first-level pebble, so that this black pebble can
be moved to the vertex covered by the open circle without deleting all pebbles on the doubly
covered vertex.

To pebble the vertex under the open square with a black pebble, we reuse the black pebble
on the open circle by swapping it with a fourth shaded pebble, after which we place the black
pebble on the vertex that was doubly covered and then slide it to the vertex covered by the
open box. This graph can be completely pebbled with the resource vector p = (2, 4) using
only four third-level pebbles, as the reader is asked to show. (See Problem 11.3.) Thus, it can
also be pebbled in the four-level I/O-limited MHG using resource vector p = (2, 4, 4).

11.3 I/O-Time Relationships
The following simple relationships follow from two observations. First, each input and output
vertex must receive a pebble at each level, since every input must be read from level L and
every output must be written to level L. Second, at least one computation step is needed for
each non-input vertex of the graph. Here we assume that every vertex in V must be pebbled
to pebble the output vertices.

LEMMA 11.3.1 Let α be the maximum in-degree of any vertex in G = (V , E) and let In(G)
and Out(G) be the sets of input and output vertices of G, respectively. Then any pebbling P of G
with the MHG, whether standard or I/O-limited, satisfies the following conditions for 2 ≤ l ≤ L:

T
(L)
l (p, G,P) ≥ |In(G)|+ |Out(G)|

T
(L)
1 (p, G,P) ≥ |V | − |In(G)|

The following theorem relates the number of moves in an L-level game to the number in
a two-level game and allows us to use prior results. The lower bound on the level-l I/O time
is stated in terms of sl−1 because pebbles at levels 1, 2, . . . , l − 1 are treated collectively as red
pebbles to derive a lower bound; pebbles at level l and above are treated as blue pebbles.

THEOREM 11.3.1 Let sl =
∑l−1

j=1 pj . Then the following inequalities hold for every L-level

standard MHG pebbling strategy P for G, where p is the resource vector used by P and T
(2)
1 (S, G)

and T
(2)
2 (S, G) are the number of computation and I/O operations used by a minimal pebbling in

the red-blue pebble game played on G with S red pebbles:

T
(L)
l (p, G,P) ≥ T

(2)
2 (sl−1, G) for 2 ≤ l ≤ L

Also, the following lower bound on computation time holds for all pebbling strategies P in the
standard MHG:

T
(L)
1 (p, G,P) ≥ T

(2)
1 (s1, G),

536 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

In the I/O-limited case the following lower bounds apply, where α is the maximum fan-in of any
vertex of G:

T
(L)
l (p, G,P) ≥ T

(2)
2 (sl−1, G) for 2 ≤ l ≤ L

T
(L)
1 (p, G,P) ≥ T

(2)
2 (sL−1, G)/α

Proof The first set of inequalities is shown by considering the red-blue game played with
S = sl−1 red pebbles and an unlimited number of blue pebbles. The S red pebbles and
sL−1 − S blue pebbles can be classified into L − 1 groups with pj pebbles in the jth
group, so that we can simulate the steps of an L-level MHG pebbling strategy P . Because
there are constraints on the use of pebbles in P , this strategy uses a number of level-l I/O
operations that cannot be larger than the minimum number of such I/O operations when
pebbles at level l − 1 or less are treated as red pebbles and those at higher levels are treated

as blue pebbles. Thus, T
(L)
l (p, G,P) ≥ T

(2)
2 (sl−1, G). By similar reasoning it follows that

T
(L)
1 (p, G,P) ≥ T

(2)
1 (s1, G).

In the above simulation, blue pebbles simulating levels l and above cannot be used arbi-
trarily when the I/O-limitation is imposed. To derive lower bounds under this limitation, we
classify S = sL−1 pebbles into L− 1 groups with pj pebbles in the jth group and simulate
in the red-blue pebble game the steps of an L-level I/O-limited MHG pebbling strategy P .
The I/O time at level l is no more than the I/O time in the two-level I/O-limited red-blue
pebble game in which all S red pebbles are used at level l − 1 or less.

Since the number of blue pebbles is unlimited, in a minimal pebbling all I/O operations
consist of placing of red pebbles on blue-pebbled vertices. It follows that if T I/O operations
are performed on the input vertices, then at least T placements of red pebbles on blue-
pebbled vertices occur. Since at least one internal vertex must be pebbled with a red pebble
in a minimal pebbling for every α input vertices that are red-pebbled, the computation time

is at least T/α. Specializing this to T = T
(2)
2 (sL−1, G) for the I/O-limited MHG, we have

the last result.

It is important to note that the lower bound to T
(2)
1 (S, G,P) for the I/O-limited case is

not stated in terms of |V |, because |V | may not be the same for each values of S. Consider the
multiplication of two n × n matrices. Every graph of the standard algorithm can be pebbled
with three red pebbles, but such graphs have about 2n3 vertices, a number that cannot be
reduced by more than a constant factor when a constant number of red pebbles is used. (See
Section 11.5.2.) On the other hand, using the graph of Strassen’s algorithm for this problem
requires at least Ω(n.38529) pebbles, since it has O(n2.807) vertices.

We close this section by giving conditions under which lower bounds for one graph can
be used for another. Let a reduction of DAG G1 = (V1, E1) be a DAG G0 = (V0, E0),
V0 ⊆ V1 and E0 ⊆ E1, obtained by deleting edges from E1 and coalescing the non-terminal
vertices on a “chain” of vertices in V1 into the first vertex on the chain. A chain is a sequence
v1, v2, . . . , vr of vertices such that, for 2 ≤ i ≤ r − 1, vi is adjacent to vi−1 and vi+1 and no
other vertices.

LEMMA 11.3.2 Let G0 be a reduction of G1. Then for any minimal pebbling Pmin and 1 ≤
l ≤ L, the following inequalities hold:

T
(L)
l (p, G1,Pmin) ≥ T

(L)
l (p, G0,Pmin)

c©John E Savage 11.4 The Hong-Kung Lower-Bound Method 537

Proof Any minimal pebbling strategy for G1 can be used to pebble G0 by simulating moves
on a chain with pebble placements on the vertex to which vertices on the chain are coalesced
and by honoring the edge restrictions of G1 that are removed to create G0. Since this strategy
for G1 may not be minimal for G0, the inequalities follow.

11.4 The Hong-Kung Lower-Bound Method
In this section we derive lower limits on the I/O time at each level of a memory hierarchy
needed to pebble a directed acyclic graph with the MHG. These results are obtained by com-
bining the inequalities of Theorem 11.3.1 with a lower bound on the I/O and computation
time for the red-blue pebble game.

Theorem 10.4.1 provides a framework that can be used to derive lower bounds on the I/O
time in the red-blue pebble game. This follows because the lower bounds of Theorem 10.4.1
are stated in terms of TI , the number of times inputs are pebbled with S red pebbles, which
is also the number of I/O operations on input vertices in the red-blue pebble game. It is
important to note that the lower bounds derived using this framework apply to every straight-
line program for a problem.

In some cases, for example matrix multiplication, these lower bounds are strong. However,
in other cases, notably the discrete Fourier transform, they are weak. For this reason we intro-
duce a way to derive lower bounds that applies to a particular graph of a problem. If that graph
is used for the problem, stronger lower bounds can be derived with this method than with the
techniques of Chapter 10. We begin by introducing the S-span of a DAG.

DEFINITION 11.4.1 Given a DAG G = (V , E), the S-span of G, ρ(S, G), is the maximum
number of vertices of G that can be pebbled with S pebbles in the red pebble game maximized over
all initial placements of S red pebbles. (The initialization rule is disallowed.)

The following is a slightly weaker but simpler version of the Hong-Kung [137] lower
bound on I/O time for the two-level MHG. This proof divides computation time into con-
secutive intervals, just as was done for the space–time lower bounds in the proofs of Theo-
rems 10.4.1 and 10.11.1.

THEOREM 11.4.1 For every pebbling P of the DAG G = (V , E) in the red-blue pebble game
with S red pebbles, the I/O time used, T

(2)
2 (S, G,P), satisfies the following lower bound:

�T (2)
2 (S, G)/S�ρ(2S, G) ≥ |V | − |In(G)|

Proof Divide P into consecutive sequential sub-pebblings {P1,P2, . . . ,Ph}, where each
sub-pebbling has S I/O operations except possibly the last, which has no more such opera-

tions. Thus, h = �T (2)
2 (S, G,P)/S�.

We now develop an upper bound Q to the number of vertices of G pebbled with red
pebbles in any sub-pebbling Pj . This number multiplied by the number h of sub-pebblings
is an upper bound to the number of vertices other than inputs, |V |− |In(G)|, that must be
pebbled to pebble G. It follows that

Qh ≥ |V | − |In(G)|

The upper bound on Q is developed by adding S new red pebbles and showing that
we may use these new pebbles to move all I/O operations in a sub-pebbling Pt to either

538 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

the beginning or the end of the sub-pebbling without changing the number of computation
steps or I/O operations. Thus, without changing them, we move all computation steps to a
middle interval of Pt, between the higher-level I/O operations.

We now show how this may be done. Consider a vertex v carrying a red pebble at some
time during Pt that is pebbled for the first time with a blue pebble during Pt (vertex 7 at
step 11 in Fig. 11.3). Instead of pebbling v with a blue pebble, use a new red pebble to
keep a red pebble on v. (This is equivalent to swapping the new and old red pebbles on v.)
This frees up the original red pebble to be used later in the sub-pebbling. Because we attach
a red pebble to v for the entire pebbling Pt, all later output operations from v in Pt can
be deleted except for the last such operation, if any, which can be moved to the end of the
interval. Note that if after v is given a blue pebble in P , it is later given a red pebble, this red
pebbling step and all subsequent blue pebbling steps except the last, if any, can be deleted.
These changes do not affect any computation step in Pt.

Consider a vertex v carrying a blue pebble at the start of Pt that later in Pt is given a
red pebble (see vertex 4 at step 12 in Fig. 11.3). Consider the first pebbling of this kind.
The red pebble assigned to v may have been in use prior to its placement on v. If a new
red pebble is used for v, the first pebbling of v with a red pebble can be moved toward
the beginning of Pt so that, without violating the precedence conditions of G, it precedes
all placements of red pebbles on vertices without pebbles. Attach this new red pebble to v
during Pt. Subsequent placements of red pebbles on v when it carries a blue pebble during
Pt, if any, are thereby eliminated.

121110

4321

8

9

5 6 7

Pt

Step 1 2 3 4 5 6 7 8 9 10 11 12 13
Pebble R1 R2 R2 B R2 R2 R1 B R2 R2 B R2 R2
Vertex ↓ 1 ↓ 2 5 ↑ 5 ↓ 2 6 ↓ 3 ↑ 6 ↓ 4 7 ↑ 7 ↓ 4 8
Step 14 15 16 17 18 19 20 21 22 23
Pebble R1 R2 R2 R2 R2 R1 R2 R2 R2 R2
Vertex ↓ 5 ↓ 7 9 ↓ 7 11 ↓ 6 ↓ 8 10 ↓ 8 12

Figure 11.3 The vertices of an FFT graph are numbered and a pebbling schedule is given in
which the two numbered red pebbles are used. Up (down) arrows identify steps in which an
output (input) occurs; other steps are computation steps. Steps 10 through 13 of the schedule Pt

contain two I/O operations. With two new red pebbles, the input at step 12 can be moved to the
beginning of the interval and the output at step 11 can be moved after step 13.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 539

We now derive an upper bound to Q. At the start of the pebbling of the middle interval
of Pt there are at most 2S red pebbles on G, at most S original red pebbles plus S new red
pebbles. Clearly, the number of vertices that can be pebbled in the middle interval with first-
level pebbles is largest when all 2S red pebbles on G are allowed to move freely. It follows
that at most ρ(2S, G) vertices can be pebbled with red pebbles in any interval. Since all
vertices must be pebbled with red pebbles, this completes the proof.

Combining Theorems 11.3.1 and 11.4.1 and a weak lower limit on the size of T
(L)
l (p, G),

we have the following explicit lower bounds to T
(L)
l (p, G).

COROLLARY 11.4.1 In the standard MHG when T
(L)
l (p, G) ≥ β(sl−1 − 1) for β > 1, the

following inequality holds for 2 ≤ l ≤ L:

T
(L)
l (p, G) ≥ β

β + 1
sl−1

ρ(2sl−1, G)
(|V | − |In(G)|)

In the I/O-limited MHG when T
(L)
l (p, G) ≥ β(sl−1 − 1) for β > 1, the following inequality

holds for 2 ≤ l ≤ L:

T
(L)
l (p, G) ≥ β

β + 1
sL−1

ρ(2sL−1, G)
(|V | − |In(G)|)

11.5 Tradeoffs Between Space and I/O Time
We now apply the Hong-Kung method to a variety of important problems including matrix-
vector multiplication, matrix-matrix multiplication, the fast Fourier transform, convolution,
and merging and permutation networks.

11.5.1 Matrix-Vector Product
We examine here the matrix-vector product function f

(n)
Ax : Rn2+n �→ Rn over a commutative

ring R described in Section 6.2.1 primarily to illustrate the development of efficient multi-
level pebbling strategies. The lower bounds on I/O and computation time for this problem
are trivial to obtain. For the matrix-vector product, we assume that the graphs used are those
associated with inner products. The inner product u · v of n-vectors u and v over a ring R
is defined by:

u · v =
n∑

i=1

ui · vi

The graph of a straight-line program to compute this inner product is given in Fig. 11.4, where
the additions of products are formed from left to right.

The matrix-vector product is defined here as the pebbling of a collection of inner product
graphs. As suggested in Fig. 11.4, each inner product graph can be pebbled with three red
pebbles.

THEOREM 11.5.1 Let G be the graph of a straight-line program for the product of the matrix A
with the vector x. Let G be pebbled in the standard MHG with the resource vector p. There is a

540 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

xnx2a1,2 a1,nx3a1,1 a1,3x1

12 13

19
15

11
7

1 2 4 5 8 9

1814

16 17

3 6 10

Figure 11.4 The graph of an inner product computation showing the order in which vertices
are pebbled. Input vertices are labeled with the entries in the matrix A and vector x that are
combined. Open vertices are product vertices; those above them are addition vertices.

pebbling strategy P of G with pl ≥ 1 for 2 ≤ l ≤ L−1 and p1 ≥ 3 such that T
(L)
1 (p, G,P) =

2n2 − n, the minimum value, and the following bounds hold simultaneously:

n2 + 2n ≤ T
(L)
l (p, G,P) ≤ 2n2 + n

Proof The lower bound T
(L)
l (p, G,P) ≥ n2+2n, 1 ≤ l ≤ L, follows from Lemma 11.3.1

because there are n2 + n inputs and n outputs to the matrix-vector product. The upper
bounds derived below represent the number of operations performed by a pebbling strategy
that uses three level-1 pebbles and one pebble at each of the other levels.

Each of the n results of the matrix-vector product is computed as an inner product in
which successive products ai,jxj are formed and added to a running sum, as suggested by
Fig. 11.4. Each of the n2 entries of the matrix A (leaves of inner product trees) is used in
one inner product and is pebbled once at levels L, L−1, . . . , 1 when needed. The n entries
in x are used in every inner product and are pebbled once at each level for each of the n
inner products. First-level pebbles are placed on each vertex of each inner product tree in the
order suggested in Fig. 11.4. After the root vertex of each tree is pebbled with a first-level
pebble, it is pebbled at levels 2, . . . , L.

It follows that one I/O operation is performed at each level on each vertex associated
with an entry in A and the outputs and that n I/O operations are performed at each level
on each vertex associated with an entry in x, for a total of 2n2 + n I/O operations at each
level. This pebbling strategy places a first-level pebble once on each interior vertex of each
of the n inner product trees. Such trees have 2n − 1 internal vertices. Thus, this strategy
takes 2n2 − n computation steps.

As the above results demonstrate, the matrix-vector product is an example of an I/O-
bounded problem, a problem for which the amount of I/O required at each level in the
memory hierarchy is comparable to the number of computation steps. Returning to the dis-
cussion in Section 11.1.2, we see that as CPU speed increases with technological advances, a
balanced computer system can be constructed for this problem only if the I/O speed increases
proportionally to CPU speed.

The I/O-limited version of the MHG for the matrix-vector product is the same as the
standard version because only first-level pebbles are used on vertices that are neither input or
output vertices.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 541

11.5.2 Matrix-Matrix Multiplication
In this section we derive upper and lower bounds on exchanges between I/O time and space
for the n×n matrix multiplication problem in the standard and I/O-limited MHG. We show
that the lower bounds on computation and I/O time can be matched by efficient pebbling
strategies.

Lower bounds for the standard MHG are derived for the family Fn of inner product
graphs for n×n matrix multiplication, namely, the set of graphs to multiply two n×n ma-
trices using just inner products to compute entries in the product matrix. (See Section 6.2.2.)
We allow the additions in these inner products to be performed in any order.

The lower bounds on I/O time derived below for the I/O-limited MHG apply to all DAGs
for matrix multiplication. Since these DAGs include graphs other than the inner product trees
in Fn, one might expect the lower bounds for the I/O-limited case to be smaller than those
derived for graphs in Fn. However, this is not the case, apparently because efficient pebbling
strategies for matrix multiplication perform I/O operations only on input and output vertices,
not on internal vertices. The situation is very different for the discrete Fourier transform, as
seen in the next section.

We derive results first for the red-blue pebble game, that is, the two-level MHG, and then
generalize them to the multi-level MHG. We begin by deriving an upper bound on the S-span
for the family of inner product matrix multiplication graphs.

LEMMA 11.5.1 For every graph G ∈ Fn the S-span ρ(S, G) satisfies the bound ρ(S, G) ≤
2S3/2 for S ≤ n2.

Proof ρ(S, G) is the maximum number of vertices of G ∈ Fn that can be pebbled with
S red pebbles from an initial placement of these pebbles, maximized over all such initial
placements. Let A, B, and C be n × n matrices with entries {ai,j}, {bi,j}, and {ci,j},
respectively, where 1 ≤ i, j ≤ n. Let C = A × B. The term ci,j =

∑
k ai,kbk,j is

associated with the root vertex in of a unique inner product tree. Vertices in this tree are
either addition vertices, product vertices associated with terms of the form ai,kbk,j , or input
vertices associated with entries in the matrices A and B. Each product term ai,kbk,j is
associated with a unique term ci,j and tree, as is each addition operator.

Consider an initial placement of S ≤ n2 pebbles of which r are in addition trees (they
are on addition or product vertices). Let the remaining S − r pebbles reside on input
vertices. Let p be the number of product vertices that can be pebbled from these pebbled
inputs. We show that at most p + r − 1 additional pebble placements are possible from the
initial placement, giving a total of at most π = 2p + r − 1 pebble placements. (Figure 11.5

a1,1 b1,2 a1,2 b2,2

(b)(a)

a2,1 b1,1 a2,2 b2,1 a2,1 b1,2 a2,2 b2,2

(c) (d)

a1,1 b1,1 a1,2 b2,1

Figure 11.5 Graph of the inner products used to form the product of two 2 × 2 matrices.
(Common input vertices are repeated for clarity.)

542 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

shows a graph G for a 2 × 2 matrix multiplication algorithm in which the product vertices
are those just below the output vertices. The black vertices carry pebbles. In this example
r = 2 and p = 1. While p + r − 1 = 2, only one pebble placement is possible on addition
trees in this example.)

Given the dependencies of graphs in Fn, there is no loss in generality in assuming that
product vertices are pebbled before pebbles are advanced in addition trees. It follows that at
most p+r addition-tree vertices carry pebbles before pebbles are advanced in addition trees.
These pebbled vertices define subtrees of vertices that can be pebbled from the p + r initial
pebble placements. Since a binary tree with n leaves has n − 1 non-leaf nodes, it follows
that if there are t such trees, at most p+ r− t pebble placements will be made, not counting
the original placement of pebbles. This number is maximized at t = 1. (See Problem 11.9.)

We now complete the proof by deriving an upper bound on p. Let A be the 0−1 n×n
matrix whose (i, j) entry is 1 if the variable in the (i, j) position of the matrix A carries a
pebble initially and 0 otherwise. Let B be similarly defined for B. It follows that the (i, j)
entry, δi,j , of the matrix product C = A × B, where addition and multiplication are over
the integers, is equal to the number of products that can be formed that contribute to the
(i, j) entry of the result matrix C. Thus p =

∑
i,j δi,j . We now show that p ≤

√
S(S−r).

Let A and B have a and b 1’s, respectively, where a+ b = S− r. There are at most a/α
rows of A containing at least α 1’s. The maximum number of products that can be formed
from such rows is ab/α because each 1 in B combine with a 1 in each of these rows. Now
consider the product of other rows of A with columns of B. At most S such row-column
inner products are formed since at most S outputs can be pebbled. Since each of them
involves a row with at most α 1’s, at most αS products of pairs of variables can be formed.
Thus, a total of at most p = ab/α + αS products can be formed. We are free to choose
α to minimize this sum (α =

√
ab/S does this) but must choose a and b to maximize it

(a = (S−r)/2 satisfies this requirement). The result is that p ≤
√

S(S−r). We complete
the proof by observing that π = 2p + r − 1 ≤ 2

√
SS for r ≥ 0.

Theorem 11.5.2 states bounds that apply to the computation and I/O time in the red-blue
pebble game for matrix multiplication.

THEOREM 11.5.2 For every graph G in the family Fn of inner product graphs for multiplying
two n × n matrices and for every pebbling strategy P for G in the red-blue pebble game that
uses S ≥ 3 red pebbles, the computation and I/O-time satisfy the following lower bounds:

T
(2)
1 (S, G,P) = Ω(n3)

T
(2)
2 (S, G,P) = Ω

(
n3

√
S

)
Furthermore, there is a pebbling strategy P for G with S ≥ 3 red pebbles such that the following
upper bounds hold simultaneously:

T
(2)
1 (S, G,P) = O(n3)

T
(2)
2 (S, G,P) = O

(
n3

√
S

)
The lower bound on I/O time stated above applies for every graph of a straight-line program for
matrix multiplication in the I/O-limited red-blue pebble game. The upper bound on I/O time

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 543

also applies for this game. The computation time in the I/O-limited red-blue pebble game satisfies
the following bound:

T
(2)
1 (S, G,P) = Ω

(
n3

√
S

)
Proof For the standard MHG, the lower bound to T

(2)
1 (S, G,P) follows from the fact that

every graph in Fn has Θ(n3) vertices and Lemma 11.3.1. The lower bound to T
(2)
2 (S, G)

follows from Corollary 11.4.1 and Lemma 11.5.1 and the lower bound to T
(2)
1 (S, G,P)

for the I/O-limited MHG follows from Theorem 11.3.1.
We now describe a pebbling strategy that has the I/O time stated above and uses the

obvious algorithm suggested by Fig. 11.6. If S red pebbles are available, let r = �
√

S/3� be
an integer that divides n. (If r does not divide n, embed A, B and C in larger matrices for
which r does divide n. This requires at most doubling n.) Let the n×n matrices A, B and
C be partitioned into n/r × n/r matrices; that is, A = [ai,j], B = [bi,j], and C = [ci,j],
whose entries are r×r matrices. We form the r×r submatrix ci,j of C as the inner product
of a row of r × r submatrices of A with a column of such submatrices of B:

ci,j =
r∑

q=1

ai,q × bq,j

We begin by placing blue pebbles on each entry in matrices A and B. Compute ci,j by
computing ai,q × bq,j for q = 1, 2, . . . , r and adding successive products to the running
sum. Keep r2 red pebbles on the running sum. Compute ai,q × bq,j by placing and holding
r2 red pebbles on the entries in ai,q and r red pebbles on one column of bq,j at a time. Use
two additional red pebbles to compute the r2 inner products associated with entries of ci,j

in the fashion suggested by Fig. 11.4 if r ≥ 2 and one additional pebble if r = 1. The
maximum number of red pebbles in use is 3 if r = 1 and at most 2r2 + r + 2 if r ≥ 2.
Since 2r2 + r + 2 ≤ 3r2 for r ≥ 2, in both cases at most 3r2 red pebbles are needed. Thus,
there are enough red pebbles to play this game because r = �

√
S/3� implies that 3r2 ≤ S,

the number of red pebbles. Since r ≥ 1, this requires that S ≥ 3.

×

= BC A

n

nn

Figure 11.6 A pebbling schema for matrix multiplication based on the representation of a
matrix in terms of block submatrices. A submatrix of C is computed as the inner product of a
row of blocks of A with a column of blocks of B.

544 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

This algorithm performs one input operation on each entry of ai,q and bq,j to compute
ci,j . It also performs one output operation per entry to compute ci,j itself. Summing over
all values of i and j, we find that n2 output operations are performed on entries in C. Since
there are (n/r)2 submatrices ai,q and bq,j and each is used to compute n/r terms cu,v, the
number of input operations on entries in A and B is 2(n/r)2r2(n/r) = 2n3/r. Because
r = �

√
S/3�, we have r ≥

√
S/3 − 1, from which the upper bound on the number of

I/O operations follows. Since each product and addition vertex in each inner product graph
is pebbled once, O(n3) computation steps are performed.

The bound on T
(2)
2 (S, G,P) for the I/O-limited game follows from two observations.

First, the computational inequality of Theorem 10.4.1 provides a lower bound to TI , the
number of times that input vertices are pebbled in the red-pebble game when only red
pebbles are used on vertices. This is the I/O-limited model. Second, the lower bound of
Theorem 10.5.4 on T (actually, TI) is of the form desired.

These results and the strategy given for the two-level case carry over to the multi-level case,
although considerable care is needed to insure that the pebbling strategy does not fragment
memory and lead to inefficient upper bounds.

Even though the pebbling strategy given below is an I/O-limited strategy, it provides
bounds on time in terms of space that match the lower bounds for the standard MHG.

THEOREM 11.5.3 For every graph G in the family Fn of inner product graphs for multiplying
two n × n matrices and for every pebbling strategy P for G in the standard MHG with resource
vector p that uses p1 ≥ 3 first-level pebbles, the computation and I/O time satisfy the following
lower bounds, where sl =

∑l
j=1 pj and k is the largest integer such that sk ≤ 3n2:

T
(L)
1 (p, G,P) = Ω

(
n3
)

T
(L)
l (p, G,P) =

{
Ω
(
n3/

√
sl−1

)
for 2 ≤ l ≤ k

Ω
(
n2
)

for k + 1 ≤ l ≤ L

Furthermore, there is a pebbling strategy P for G with p1 ≥ 3 such that the following upper bounds
hold simultaneously:

T
(L)
1 (p, G,P) = O(n3)

T
(L)
l (p, G,P) =

{
O
(
n3/

√
sl−1

)
for 2 ≤ l ≤ k

O
(
n2
)

for k + 1 ≤ l ≤ L

In the I/O-limited MHG the upper bounds given above apply. The following lower bound on the
I/O time applies to every graph G for n×n matrix multiplication and every pebbling strategy P ,
where S = sL−1:

T
(L)
l (p, G,P) = Ω

(
n3/

√
S
)

for 1 ≤ l ≤ L

Proof The lower bounds on T
(L)
l (p, G,P), 2 ≤ l ≤ L, follow from Theorems 11.3.1 and

11.5.2. The lower bound on T
(L)
1 (p, G,P) follows from the fact that every graph in Fn

has Θ(n3) vertices to be pebbled.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 545

r1 = �
√

s1/3�

r2 = r1�
√

s2 − 1/(
√

3r1)�

r3 = r2�
√

s3 − 1/(
√

3r2)�

Figure 11.7 A three-level decomposition of a matrix.

We now describe a multi-level recursive pebbling strategy satisfying the upper bounds
given above. It is based on the two-level strategy given in the proof of Theorem 11.5.2. We
compute C from A and B using inner products.

Our approach is to successively block A, B, and C into ri × ri submatrices for i =
k, k − 1, . . . , 1 where the ri are chosen, as suggested in Fig. 11.7, so they divide on another
and avoid memory fragmentation. Also, they are also chosen relative to si so that enough
pebbles are available to pebble ri × ri submatrices, as explained below.

ri =

⎧⎪⎪⎨⎪⎪⎩
⌊√

s1/3
⌋

i = 1

ri−1

⌊√
(si − i + 1)/(

√
3ri−1)

⌋
i ≥ 2

Using the fact that b/2 ≤ a�b/a� ≤ b for integers a and b satisfying 1 ≤ a ≤ b (see
Problem 11.1), we see that

√
(si − i + 1)/12 ≤ ri ≤

√
(si − i + 1)/3. Thus, si ≥

3r2
i + i− 1. Also, r2

k ≤ n2 because sk ≤ 3n2.
By definition, sl pebbles are available at level l and below. As stated earlier, there is at

least one pebble at each level above the first. From the sl pebbles at level l and below we
create a reserve set containing one pebble at each level except the first. This reserve set is
used to perform I/O operations as needed.

Without loss of generality, assume that rk divides n. (If not, n must be at most doubled
for this to be true. Embed A, B, and C in such larger matrices.) A, B, and C are then
blocked into rk×rk submatrices (call them ai,j , bi,j , and ci,j), and these in turn are blocked
into rk−1×rk−1 submatrices, continuing until 1×1 submatrices are reached. The submatrix
ci,j is defined as

546 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

ci,j =
rk∑

q=1

ai,q × bq,j

As in Theorem 11.5.2, ci,j is computed as a running sum, as suggested in Fig. 11.4,
where each vertex is associated with an rk × rk submatrix. It follows that 3r2

k pebbles at
level k or less (not including the reserve pebbles) suffice to hold pebbles on submatrices ai,q,
bq,j and the running sum. To compute a product ai,q × bq,j , we represent ai,q and bq,j as
block matrices with blocks that are rk−1 × rk−1 matrices. Again, we form this product as
suggested in Fig. 11.4, using 3r2

k−1 pebbles at levels k− 1 or lower. This process is repeated
until we encounter a product of r1 × r1 matrices, which is then pebbled according to the
procedure given in the proof of Theorem 11.5.2.

Let’s now determine the number of I/O and computation steps at each level. Since all
non-input vertices of G are pebbled once, the number of computation steps is O(n3). I/O
operations are done only on input and output vertices. Once an output vertex has been
pebbled at the first level, reserve pebbles can be used to place a level-L pebble on it. Thus
one output is done on each of the n2 output vertices at each level.

We now count the I/O operations on input vertices starting with level k. n×n matrices
A, B, and C contain rk×rk matrices, where rk divides n. Each of the (n/rk)2 submatrices
ai,q and bq,j is used in (n/rk) inner products and at most r2

k I/O operations at level k are
performed on them. (If most of the sk pebbles at level k or less are at lower levels, fewer
level-k I/O operations will be performed.) Thus, at most 2(n/rk)2(n/rk)r2

k = 2n2/rk

I/O operations are performed at level k. In turn, each of the rk × rk matrices contains
(rk/rk−1)2 rk−1 × rk−1 matrices; each of these is involved in (rk/rk−1) inner products
each of which requires at most r2

k−1 I/O operations. Since there are at most (n/rk−1)2

rk−1 × rk−1 submatrices in each of A, B, and C, at most 2n3/rk−1 I/O operations are
performed at level k − 1. Continuing in this fashion, at most 2n3/rl I/O operations are
performed at level l for 2 ≤ l ≤ k. Since rl ≥

√
(si − i + 1)/12, we have the desired

conclusion.
Since the above pebbling strategy does not place pebbles at level 2 or above on any vertex

except input and output vertices, it applies in the I/O-limited case. The lower bound follows
from Lemma 11.3.1 and Theorem 11.5.2.

11.5.3 The Fast Fourier Transform
The fast Fourier transform (FFT) algorithm is described in Section 6.7.3 (an FFT graph is
given in Fig. 11.1). A lower bound is obtained by the Hong-Kung method for the FFT by
deriving an upper bound on the S-span of the FFT graph. In this section all logarithms have
base 2.

LEMMA 11.5.2 The S-span of the FFT graph F (d) on n = 2d inputs satisfies ρ(S, G) ≤
2S log S when S ≤ n.

Proof ρ(S, G) is the maximum number of vertices of G that can be pebbled with S red
pebbles from an initial placement of these pebbles, maximized over all such initial place-
ments. G contains many two-input FFT (butterfly) graphs, as shown in Fig. 11.8. If v1

and v2 are the output vertices in such a two-input FFT and if one of them is pebbled, we

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 547

v1

u2

v2

p1

u1

p2

Figure 11.8 A two-input butterfly graph with pebbles p1 and p2 resident on inputs.

obtain an upper bound on the number of pebbled vertices if we assume that both of them
are pebbled. In this proof we let {pi | 1 ≤ i ≤ S} denote the S pebbles available to pebble
G. We assign an integer cost num(pi) (initialized to zero) to the ith pebble pi in order to
derive an upper bound to the total number of pebble placements made on G.

Consider a matching pair of output vertices v1 and v2 of a two-input butterfly graph
and their common predecessors u1 and u2, as suggested in Fig. 11.8. Suppose that on the
next step we can place a pebble on v1. Then pebbles (call them p1 and p2) must reside on
u1 and u2. Advance p1 and p2 to both v1 and v2. (Although the rules stipulate that an
additional pebble is needed to advance the two pebbles, violating this restriction by allowing
their movement to v1 and v2 can only increase the number of possible moves, a useful effect
since we are deriving an upper bound on the number of pebble placements.)

After advancing p1 and p2, if num(p1) = num(p2), augment both by 1; otherwise,
augment the smaller by 1. Since the predecessors of two vertices in an FFT graph are in
disjoint trees, there is no loss in assuming that all S pebbles remain on the graph in a
pebbling that maximizes the number of pebbled vertices. Because two pebble placements
are possible each time num(pi) increases by 1 for some i, ρ(S, G) ≤ 2

∑
1≤i≤S num(pi).

We now show that the number of vertices that contained pebbles initially and are con-
nected via paths to the vertex covered by pi is at least 2num(pi). That is, 2num(pi) ≤ S
or num(pi) ≤ log2 S, from which the upper bound on ρ(S, G) follows. Our proof is by
induction. For the base case of num(pi) = 1, two pebbles must reside on the two immedi-
ate predecessors of a vertex containing the pebble pi. Assume that the hypothesis holds for
num(pi) ≤ e − 1. We show that it holds for num(pi) = e. Consider the first point in
time that num(pi) = e. At this time pi and a second pebble pj reside on a matching pair
of vertices, v1 and v2. Before these pebbles are advanced to these two vertices from u1 and
u2, the immediate predecessors of v1 and v2, the smaller of num(pi) and num(pj) has a
value of e − 1. This must be pi because its value has increased. Thus, each of u1 and u2

has at least 2e−1 predecessors that contained pebbles initially. Because the predecessors of u1

and u2 are disjoint, each of v1 and v2 has at least 2e = 2num(pi) predecessors that carried
pebbles initially.

This upper bound on the S-span is combined with Theorem 11.4.1 to derive a lower
bound on the I/O time at level l to pebble the FFT graph. We derive upper bounds that match
to within a multiplicative constant when the FFT graph is pebbled in the standard MHG. We
develop bounds for the red-blue pebble game and then generalize them to the MHG.

548 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

THEOREM 11.5.4 Let the FFT graph on n = 2d inputs, F (d), be pebbled in the red-blue
pebble game with S red pebbles. When S ≥ 3 there is a pebbling of F (d) such that the following
bounds hold simultaneously, where T

(2)
1 (p1, F (d)) and T

(2)
2 (p1, F (d)) are the computation and

I/O time in a minimal pebbling of F (d):

T
(2)
1 (S, F (d)) = Θ(n log n)

T
(2)
2 (S, F (d)) = Θ

(
n log n

log S

)
Proof The lower bound on T

(2)
1 (S, F (d)) is obvious; every vertex in F (d) must be peb-

bled a first time. The lower bound on T
(2)
2 (S, F (d)) follows from Corollary 11.4.1, Theo-

rem 11.3.1, Lemma 11.5.2, and the obvious lower bound on |V |. We now exhibit a pebbling
strategy giving upper bounds that match the lower bounds up to a multiplicative factor.

As shown in Corollary 6.7.1, F (d) can be decomposed into �d/e� stages, �d/e� stages
containing 2d−e copies of F (e) and one stage containing 2d−k copies of F (k), k = d −
�d/e�e. (See Fig. 11.9.) The output vertices of one stage are the input vertices to the next.
For example, F (12) can be decomposed into three stages with 212−4 = 256 copies of F (4)

on each stage and one stage with 212 copies of F (0), a single vertex. (See Fig. 11.10.) We use
this decomposition and the observation that F (e) can be pebbled level by level with 2e + 1
level-1 pebbles without repebbling any vertex to develop our pebbling strategy for F (d).

Given S red pebbles, our pebbling strategy is based on this decomposition with e =
d0 = �log2(S − 1). Since S ≥ 3, d0 ≥ 1. Of the S red pebbles, we actually use only
S0 = 2d0 + 1. Since S0 ≤ S, the number of I/O operations with S0 red pebbles is no

F
(d−e)
b,1 F

(d−e)
b,2 ... F

(d−e)
b,β

F
(e)
t,1 F

(e)
t,2 F

(e)
t,3 F

(e)
t,4 F

(e)
t,5 F

(e)
t,6 F

(e)
t,τ...

Figure 11.9 Decomposition of the FFT graph F (d) into β = 2e bottom FFT graphs F (d−e)

and τ = 2d−e top F (e). Edges between bottom and top sub-FFT graphs identify common
vertices between the two.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 549

...

...

...

F (4)

256

Figure 11.10 The decomposition of an FFT graph F (12) into three stages each containing 256
copies of F (4). The gray areas identify rows of F (12) in which inputs to one copy of F (4) are
outputs of copies of F (4) at the preceding level.

less than with S red pebbles. Let d1 = �d/d0�. Then, F (d) is decomposed into d1 stages
each containing 2d−d0 copies of F (d0) and one stage containing 2d−t copies of F (t) where
t = d − d0d1. Since t ≤ d0, each vertex in F (t) can be pebbled with S0 pebbles without
re-pebbling vertices. The same applies to F (d0).

The pebbling strategy for the red-blue pebble game is based on this decomposition.
Pebbles are advanced to outputs of each of the bottom FFT subgraphs F (t) using 2t+1 ≤ S0

red pebbles, after which the red pebbles are replaced with blue pebbles. The subgraphs F (d0)

in each of the succeeding stages are then pebbled in the same fashion; that is, their blue-
pebbled inputs are replaced with red pebbles and red pebbles are advanced to their outputs
after which they are replaced with blue pebbles.

This strategy pebbles each vertex once with red pebbles with the exception of vertices

common to two FFT subgraphs which are pebbled twice. It follows that T
(L)
1 (S, F (d)) ≤

2d+1(d + 1) = 2n(log2 n + 1). This strategy also executes one I/O operation for each
of the 2d inputs and outputs to F (d) and two I/O operations for each of the 2d vertices
common to adjacent stages. Since there are �d/d0� stages, there are �d/d0� − 1 such pairs

of stages. Thus, the number of I/O operations satisfies T
(L)
2 (S, F (d)) ≤ 2d+1�d/d0� ≤

2n(log2 n/(log2 S/4) + 1) = O(n log n/ log S).

The bounds for the multi-level case generalize those for the red-blue pebble game. As with
matrix multiplication, care must be taken to avoid memory fragmentation.

THEOREM 11.5.5 Let the FFT graph on n = 2d inputs, F (d), be pebbled in the standard MHG
with resource vector p. Let sl =

∑l
j=1 pj and let k be the largest integer such that sk ≤ n. When

p1 ≥ 3, the following lower bounds hold for all pebblings of F (d) and there exists a pebbling P for

550 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

which the upper bounds are simultaneously satisfied:

T
(L)
l (p, F (d),P) =

⎧⎪⎪⎨⎪⎪⎩
Θ(n log n) l = 1

Θ
(

n log n
log sl−1

)
2 ≤ l ≤ k

Θ(n) k + 1 ≤ l ≤ L

Proof Proofs of the first two lower bounds follow from Lemma 11.3.1 and Theorem 11.5.4.
The third follows from the fact that pebbles at every level must be placed on each input and
output vertex but no intermediate vertex. We now exhibit a pebbling strategy giving upper
bounds that match (up to a multiplicative factor) these lower bounds for all 1 ≤ l ≤ L.
(See Fig. 11.9.)

We define a non-decreasing sequence d = (d0, d1, d2, . . . , dL−1) of integers used be-
low to describe an efficient multi-level pebbling strategy for F (d). Let d0 = 1 and d1 =
�log(s1 − 1)� ≥ 1, where s1 = p1 ≥ 3. Define mr and dr for 2 ≤ r ≤ L − 1 by

mr =
⌊
�log min(sr − 1, n)�

dr−1

⌋
dr = mrdr−1

It follows that sr ≥ 2dr + 1 when sr ≤ n + 1 since a�b/a� ≤ b. Because �log a� ≥
(log a)/2 when a ≥ 1 and also a�b/a� ≥ b/2 for integers a and b when 1 ≤ a ≤ b (see
Problem 11.1), it follows that dr ≥ log(min(sr − 1, n))/4. The values dl are chosen to
avoid memory fragmentation.

Before describing our pebbling strategy, note that because we assume at least one pebble
is available at each level in the hierarchy, it is possible to perform an I/O operation at each
level. Also, pebbles at levels less than l can be used as though they were at level l.

Our pebbling strategy is based on the decomposition of F (d) into FFT subgraphs F (dk),
each of which is decomposed into FFT subgraphs F (dk−1), and so on, until reaching FFT
subgraphs F (1) that are two-input, two-output butterfly graphs. To pebble F (d) we apply
the strategy described in the proof of Theorem 11.5.4 as follows. We decompose F (2)

into d2/d1 stages, each containing 2d2−d1 copies of F (1), which we pebble with s1 = p1

first-level pebbles using this strategy. By the analysis in the proof of Theorem 11.5.4, 2d2+1

level-2 I/O operations are performed on inputs and outputs to F (d2) as well as another 2d2+1

level-2 I/O operations on the vertices between two stages. Since there are d2/d1 stages, a
total of (d2/d1)2d2+1 level-2 I/O operations are performed. We then decompose F (3) into
d3/d2 stages each containing 2d3−d2 copies of F (2). We pebble F (3) with s2 pebbles at level
1 or 2 by pebbling copies of F (2) in stages, using (d3/d2)2d3+1 level-3 I/O operations and

using (d3/d2)2d3−d2 times as many level-2 I/O operations as used by F (2). Let n
(3)
2 be the

number of level-2 I/O operations used to pebble F (3). Then n
(3)
2 = (d3/d1)2d3+1.

Continuing in this fashion, we pebble F (r), 1 ≤ r ≤ k, with sr−1 pebbles at levels l or
below by pebbling copies of F (r−1) in stages, using (dr/dr−1)2dr+1 level-r I/O operations

and using (dr/dr−1)2dr−dr−1 as many level-j I/O operations for 1 ≤ j ≤ r − 1. Let n
(r)
j

be the number of level-j I/O operations used to pebble F (r). By induction it follows that
n

(r)
j = (dr/dj)2dr+1.

For r ≥ k, the number of pebbles available at level r or less is at least 2d + 1, which is
enough to pebble F (d) by levels without performing I/O operations above level k + 1; this

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 551

means that I/O operations at these levels are performed only on inputs, giving the bound

T
(L)
l (p, F (d),P) = O(n), n = 2d, for k + 1 ≤ r ≤ L. When r ≤ k, we pebble F (d) by

decomposing it into �d/dk� stages such that each stage, except possibly the first, contains
2d−dk copies of the FFT subgraph F (dk). The first stage has 2d−d∗

copies of F (d∗) of depth
d∗ = d−(�d/dk�−1)dk, which we treat as subgraphs of the subgraph F (dk) and pebble to
completion with a number of operations at each level that is at most the number to pebble
F (dk). Each instance of F (dk) is pebbled with sk−1 pebbles at level k − 1 or lower and
a pebble at level k or higher is left on its output. Since sk+1 ≥ n + 1, there are enough
pebbles to do this.

Thus T
(L)
l (p, F (d),P) satisfies the following bound for 1 ≤ l ≤ L:

T
(L)
l (p, F (d),P) ≤ �d/dk�2d−dkT

(L)
l (p, F (dk),P)

Combining this with the earlier result, we have the following upper bound on the number
of I/O operations for 1 ≤ l ≤ k:

T
(L)
l (p, F (d),P) ≤ �d/dk�(dk/dl)2d+1

Since, as noted earlier, dr ≥ log(min(sr − 1, n))/4, we obtain the desired upper bound on

T
(L)
l (p, F (d),P) by combining this result with the bound on n

(k)
l given above.

The above results are derived for standard MHG and the family of FFT graphs. We now
strengthen these results in two ways when the I/O-limited MHG is used. First, the I/O limita-
tion requires more time for a given amount of storage and, second, the lower bound we derive
applies to every graph for the discrete Fourier transform, not just those for the FFT.

It is important to note that the efficient pebbling strategy used in the standard MHG
makes extensive use of level-L pebbles on intermediate vertices of the FFT graph. When this is
not allowed, the lower bound on the I/O time is much larger. Since the lower bounds for the
standard and I/O-limited MHG on matrix multiplication are about the same, this illustrates
that the DFT and matrix multiplication make dramatically different use secondary memory.
(In the following theorem a linear straight-line program is a straight-line program in which
the operations are additions and multiplications by constants.)

THEOREM 11.5.6 Let FFT (n) be any DAG associated with the DFT on n inputs when real-
ized by a linear straight-line program. Let FFT (n) be pebbled with strategy P in the I/O-limited
MHG with resource vector p and let sl =

∑l
j=1 pj . If S = sL−1 ≤ n, then for each pebbling

strategy P , the computation and I/O time at level l must satisfy the following bounds:

T
(L)
l (p, FFT (n),P) = Ω

(
n2

S

)
for 1 ≤ l ≤ L

Also, when n = 2d, there is a pebbling P of the FFT graph F (d) such that the following relations
hold simultaneously when S ≥ 2 log n:

T
(L)
l (p, F (d),P) =

⎧⎨⎩ O
(

n2

S + n log S
)

l = 1

O
(

n2

S + n log S
log sl−1

)
2 ≤ l ≤ L

552 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

Proof The lower bound follows from Theorem 11.3.1 and Theorem 10.5.5. We show that
the upper bounds can be achieved on F (d) under the I/O limitation simultaneously for
1 ≤ l ≤ L.

The pebbling strategy meeting the lower bounds is based on that used in the proof of
Theorem 10.5.5 to pebble F (d) using S ≤ 2d + 1 pebbles in the red pebble game. The
number of level-1 pebble placements used in that pebbling is given in the statement of
Theorem 10.5.5. A level-2 I/O operation occurs once on each of the 2d outputs and 2d−e

times on each of the 2d inputs of the bottom FFT subgraphs, for a total of 2d(2d−e + 1)
times.

The pebbling for the L-level MHG is patterned after the aforementioned pebbling for
the red pebble game, which is based on the decomposition of Lemma 6.7.4. (See Fig. 11.9.)
Let e be the largest integer such that S ≥ 2e + d − e. Pebble the binary subtrees on

2d−e inputs in the 2e bottom subgraphs F
(d−e)
b,m as follows: On an input vertex level-L

pebbles are replaced by pebbles at all levels down to and including the first level. Then level-
1 pebbles are advanced on the subtrees in the order that minimizes the number of level-1
pebbles in the red pebble game. It may be necessary to use pebbles at all levels to make these
advances; however, each vertex in a subtree (of which there are 2d−e+1 − 1) experiences at
most two transitions at each level in the hierarchy. In addition, each vertex in a bottom
tree is pebbled once with a level-1 pebble in a computation step. Therefore, the number of
level-l transitions on vertices in the subtrees is at most 2d+1(2d−e+1 − 1) for 2 ≤ l ≤ L,
since this pebbling of 2e subtrees is repeated 2d−e times.

Once the inputs to a given subgraph F
(e)
t,p have been pebbled, the subgraph itself is

pebbled in the manner indicated in Theorem 11.5.5, using O(e2e/ log sl−1) pebbles at

each level l for 2 ≤ l ≤ L. Since this is done for each of the 2d−e subgraphs F
(e)
t,p , it

follows that on the top FFT subgraphs a total of O(e2d/ log sl−1) level-l transitions occur,

2 ≤ l ≤ L. In addition, each vertex in a graph F
(e)
t,p is pebbled once with a level-1 pebble

in a computation step.
It follows that at most

T
(L)
l (p, F (d),P) = O

(
2d(2d−e+1 − 1) +

e2d

log sl−1

)
level-l I/O operations occur for 2 ≤ l ≤ L, as well as

T
(L)
1 (p, F (d),P) = O(2d(2d−e+1 − 1) + e2d)

computation steps. It is left to the reader to verify that 2e < 2e+d−e ≤ S < 2e+1+d−e−
1 ≤ 42e when e + 1 ≥ log d (this is implied by S ≥ 2d), from which the result follows.

11.5.4 Convolution
The convolution function f

(n,m)
conv : Rn+m �→ Rn+m−1 over a commutative ring R (see

Section 6.7.4) maps an n-tuple a and an m-tuple b onto an (n + m − 1)-tuple c and is
denoted c = a ⊗ b. An efficient straight-line program for the convolution is described in
Section 6.7.4 that uses the convolution theorem (Theorem 6.7.2) and the FFT algorithm.
The convolution theorem in terms of the 2n-point DFT and its inverse is

a ⊗ b = F−1
2n (F2n(a) × F2n(b))

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 553

Obviously, when n = 2d the 2n-point DFT can be realized by the 2n-point FFT. The DAG
associated with this algorithm, shown in Fig. 11.11 for d = 4, contains three copies of the
FFT graph F (2d).

We derive bounds on the computation and I/O time in the standard and I/O-limited
memory-hierarchy game needed for the convolution function using this straight-line program.
For the standard MHG, we invoke the lower bounds and an efficient algorithm for the FFT.
For the I/O-limited MHG, we derive new lower bounds based on those for two back-to-back
FFT graphs as well as upper bounds based on the I/O-limited pebbling algorithm given in
Theorem 11.5.4 for FFT graphs.

THEOREM 11.5.7 Let G
(n)
convolve be the graph of a straight-line program for the convolution of

two n-tuples using the convolution theorem, n = 2d. Let G
(n)
convolve be pebbled in the standard

MHG with the resource vector p. Let sl =
∑l

j=1 pj and let k be the largest integer such that

sk ≤ n. When p1 ≥ 3 there is a pebbling of G
(n)
convolve for which the following bounds hold

simultaneously:

T
(L)
l (p, F (d)) =

⎧⎪⎪⎨⎪⎪⎩
Θ(n log n) l = 1

Θ
(

n log n
log sl−1

)
2 ≤ l ≤ k + 1

Θ(n) k + 2 ≤ l ≤ L

Proof The lower bound follows from Lemma 11.3.2 and Theorem 11.5.5. From the for-
mer, it is sufficient to derive lower bounds for a subgraph of a graph. Since F (d) is contained

in G
(n)
convolve, the lower bound follows.

Figure 11.11 A DAG for the graph of the convolution theorem on n = 8 inputs.

554 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

The upper bound follows from Theorem 11.5.5. We advance level-L pebbles to the
outputs of each of the two bottom FFT graphs F (2d) in Fig. 11.11 and then pebble the top
FFT graph. The number of I/O and computation steps used is triple that used to pebble
one such FFT graph. In addition, we perform O(n) I/O and computation steps to combine
inputs to the top FFT graph.

The bounds for the I/O-limited version of the MHG for the convolution problem are
considerably larger than those for the standard MHG. They have a much stronger dependence
on S and n than do those for the FFT graph.

THEOREM 11.5.8 Let H
(n)
convolve be the graph of any DAG for the convolution of two n-tuples

using the convolution theorem, n = 2d. Let H
(n)
convolve be pebbled in the I/O-limited MHG

with the resource vector p and let sl =
∑l

j=1 pj . If S = sL−1 ≤ n, then the time to pebble

H
(n)
convolve at the lth level, T

(L)
l (p, H(n)

convolve), satisfies the following lower bounds simultaneously
for 1 ≤ l ≤ L:

T
(L)
l (p, H(n)

convolve) = Ω
(

n3

S2

)
when S ≤ n/ log n.

Proof A lower bound is derived for this problem by considering a generalization of the
graph shown in Fig. 11.11 in which the three copies of the FFT graph F (2d) are replaced by
an arbitrary DAG for the DFT. This could in principle yield in a smaller lower bound on the
time to pebble the graph. We then invoke Lemma 11.3.2 to show that a lower bound can
be derived from a reduction of this new graph, namely, that consisting of two back-to-back
DFT graphs obtained by deleting one of the bottom FFT graphs. We then derive a lower
bound on the time to pebble this graph with the red pebble game and use it together with
Theorem 11.3.1 to derive the lower bounds mentioned above.

Consider pebbling two back-to-back DAGs for the DFT on n inputs, n even, in the red
pebble game. From Lemma 10.5.4, the n-point DFT function is (2, n, n, n/2)-indepen-
dent. From the definition of the independence property (see Definition 10.4.2), we know
that during a time interval in which 2(S + 1) of the n outputs of the second DFT DAG
on n-inputs are pebbled, at least n/2 − 2(S + 1) of its inputs are pebbled. In a back-to-
back DFT graph these inputs are also outputs of the first DFT graph. It follows that for
each group of 2(S + 1) of these n/2 − 2(S + 1) outputs of the first DFT DAG, at least
n/2 − 2(S + 1) of its inputs are pebbled. Thus, to pebble a group of 2(S + 1) outputs
of the second FFT DAG (of which there are at least �n/(2(S + 1))� groups), at least
�(n/2− 2(S + 1))/2(S + 1)�(n/2− 2(S + 1)) inputs of the first DFT must be pebbled.

Thus, T
(L)
l (p, H(n)

convolve) ≥ n3/(64(S + 1)2), since it holds both when S ≤ n/4
√

2 and
when S > n/4

√
2.

Let’s now consider a pebbling strategy that achieves this lower bound up to a multiplica-
tive constant. The pebbling strategy of Theorem 11.5.5 can be used for this problem. It
represents the FFT graph F (d) as a set of FFT graphs F (e) on top and a set of FFT graphs
F (d−e) on the bottom. Outputs of one copy of F (e) are pebbled from left to right. This
requires pebbling inputs of F (d) from left to right once. To pebble all outputs of F (d), 2d−e

copies of F (e) are pebbled and the 2d inputs to F (d) are pebbled 2d−e times.

c©John E Savage 11.6 Block I/O in the MHG 555

Figure 11.12 An I/O-limited pebbling of a DAG for the convolution theorem showing the
placement of eight pebbles.

Consider the graph G
(n/2)
convolve consisting of three copies of F (d), two on the bottom and

one on top, as shown in Fig. 11.12. Using the above strategy, we pebble the outputs of the
two bottom copies of F (d) from left to right in parallel a total of 2d−e times. The outputs
of these two graphs are pebbled in synchrony with the pebbling of the top copy of F (d). It
follows that the number of I/O and computation steps used on the bottom copies of F (d)

in G
(n/2)
convolve is 2(2d−e) times the number on one copy, with twice as many pebbles at each

level plus the number of such steps on the top copy of F (d). It follows that G
(n/2)
convolve can

be pebbled with three times the number of pebbles at each level as can F (d), with O(2d−e)
times as many steps at each level. The conclusion of the theorem follows from manipulation
of terms.

The bounds given above also apply to some permutation and merging networks. Since,
as shown in Section 6.8, the graph of Batcher’s bitonic merging network is an FFT graph,
the bounds on I/O and computation time given earlier for the FFT also apply to it. Also, as
shown in Section 7.8.2, since a permutation network can be constructed of two FFT graphs
connected back-to-back, the lower bounds for convolution apply to this graph. (See the proofs
of Theorems 11.5.7 and 11.5.8.) The same order-of-magnitude upper bounds follow from
constructions that differ only in details from those given in these theorems.

11.6 Block I/O in the MHG
Many memory units move data in large blocks, not in individual words, as generally assumed
in the above sections. (Note, however, that one pebble can carry a block of data.) Data is
moved in blocks because the time to fetch one word and a block of words is typically about the

556 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

Controller

Disk

In Out

Sector of a
CylinderDisk Rotation

Head Movement

Figure 11.13 A disk unit with three platters and two heads per disk. Each track is divided into
four sectors and heads move in and out on a common arm. The memory of the disk controller
holds the contents of one track on one disk.

same. Figure 11.13 suggests why this is so. A disk spinning at 3,600 rpm that has 40 sectors
per track and 512 bits per sector (its block size) requires about 10 msec to find data in the track
under the head. However, the time to read one sector of 64 bytes (512 bits) is just .42 msec.

To model this phenomenon, we assume that the time to access k disk sectors with con-
secutive addresses is α + kβ, where α is a large constant and β is a small one. (This topic is
also discussed in Section 7.3.) Given the ratio of α to β, it makes sense to move data to and
from a disk in blocks of size about equal to the number of bytes on a track. Some operating
systems move data in track-sized blocks, whereas others move them in smaller units, relying
upon the fact that a disk controller typically keeps the contents of its current track in a fast
random-access memory so that successive sector accesses can be done quickly.

The gross characteristics of disks described by the above assumption hold for other storage
devices as well, although the relative values of the constants differ. For example, in the case of a
tape unit, advancing the tape head to the first word in a consecutive sequence of words usually
takes a long time, but successive words can be read relatively quickly.

The situation with interleaved random-access memory is similar, although the physi-
cal arrangement of memory is radically different. As depicted in Fig. 11.14, an interleaved
random-access memory is a collection of 2r memory modules, r ≥ 1, each containing 2k

b-bit words. Such a memory can simulate a single 2r+k-word b-bit random-access memory.
Words with addresses 0, 2r, 2 2r, 3 2r, . . . , 2k−12r are stored in the first module, words with
addresses 1, 2r + 1, 2 2r + 1, 3 2r + 1, . . . , 2k−12r + 1 in the second module, and words with
addresses 2r − 1, 2 2r − 1, 3 2r − 1, 4 2r − 1, . . . , 2r+k − 1 in the last module.

To access a word in this memory, the high order k bits are provided to each module. If
a set of words is to be read, the words with these common high-order bits are copied to the
registers. If a set of words is to be written, new values are copied from the registers to them.

When an interleaved memory is used to simulate a much faster random-access memory,
a CPU writes to or reads from the 2r registers serially, whereas data is transferred in parallel
between the registers and the modules. The use of two sets of registers (double buffering)

c©John E Savage 11.6 Block I/O in the MHG 557

...

110101100011010001000

a

r
d

111

Double-Buffered Registers

Memory Modules

1111

0000
d

Figure 11.14 Eight interleaved memory modules with double buffering. Addresses are supplied
in parallel while data is pipelined into and out of the memory.

allows the register sets to be alternated so that data can be moved continuously between the
CPU and the modules. This allows the interleaved memory to be about 2r times slower than
the CPU and yet, with a small set of fast registers, appear to be as fast as the CPU. This works
only if the program accessing memory does not branch to a new set of words. If it does, the
startup time to access a new word is about 2r times the CPU speed. Thus, an interleaved
random-access memory also requires time of the form α + kβ to access k words. For example,
for a moderately fast random-access chip technology α might be 80 nanoseconds whereas β
might be 10 nanoseconds, a ratio of 8 to 1.

This discussion justifies assuming that the time to move k words with consecutive addresses
to and from the lth unit in the memory hierarchy is αl + kβl for positive constants αl and
βl, where αl is typically much larger than βl. If k = bl = �αl/βl�, then αl + kβl ≈ 2αl

and the time to retrieve one item and bl items is about the same. Thus, efficiency dictates that
items should be fetched in blocks, especially if all or most of the items in a block can be used if
one of them is used. This justifies the block-I/O model described below. Here we let tl be the
time to move a block at level l. We add the requirement that data stored together be retrieved
together to reflect physical constraints existing in practice.

DEFINITION 11.6.1 (Block-I/O Model) At the lth level in a memory hierarchy, I/O operations
are performed on blocks. The block size and the time in seconds to access a block at the lth level are
bl and tl, respectively. For each l, bl/bl−1 is an integer. In addition, any data written as part of a
block at level l must be read into level l − 1 by reading the entire block in which it was stored.

The lower bounds on the number of I/O steps given in Section 11.5 can be generalized to
the block-I/O case by dividing the number of I/O operations by the size bl of blocks moving
between levels l − 1 and l. This lower bound can be achieved for matrix-vector and matrix-
matrix multiplication because data is always written to and read from the higher-level memory
in the same way for these problems. (See Problems 11.13 and 11.14.)

558 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

For the FFT graph in the standard MHG, instead of pebbling FFT subgraphs on 2dr

inputs, we pebble bl FFT subgraphs on 2dr/bl inputs (assuming that bl is a power of 2).
Doing so allows all the data moving back and forth in blocks between memories to be used
and accommodates the transposition mentioned at the beginning of Section 11.5.3. This
provides an upper bound of O(n log n/(bl−1 log(sl−1/bl−1))) on the I/O time at level l.
Clearly, when bl−1 is much smaller than sl−1, say bl−1 = O(√sl−1), the upper and lower
bounds match to within a multiplicative factor. (This follows because we divide n by bl−1 and
log bl−1 = O(log sl−1).) These observations apply to the FFT-based problems as well.

11.7 Simulating a Fast Memory in the MHG
In this section we revisit the discussion of Section 11.1.2, taking into account that a memory
hierarchy may have many levels and that data is moved in blocks.

We ask the question, “How do we assess the effectiveness of a memory hierarchy on a
particular problem?” For several problems we have upper and lower bounds on their number of
computation and I/O steps in memory hierarchies parameterized by block sizes and numbers of
storage locations. If we add to this mix the time to move a block between levels, we can derive
bounds on the time for all computation and I/O steps. We then ask under what conditions
this time is the best possible. Since data must typically be stored and retrieved from archival
memory, we cannot expect the performance to exceed that of a two-level hierarchy (modeled
by the red-blue pebble game) in which all the available storage locations, except for those in
the archival memory, are in first-level storage. For this reason we use the two-level memory
as our reference model. We now define these terms and state a condition for optimality of a
pebbling strategy.

For 1 ≤ l ≤ L−1 we let tl be the time to move one block of bl words between levels l−1
and l of a memory hierarchy, measured as a multiple of the time to perform one computation
step. Thus, the time for one computation step is t1 = 1.

Let P be a pebbling strategy for a graph G in the L-level MHG that uses the resource
vector p = (p1, p2, . . . , pL−1) (pl pebbles are used at the lth level) and moves data in blocks
of size specified by b = (b2, b3, . . . , bL) (bl words are moved between levels (l− 1) and l). Let

T
(L)
l (p, b, G) denote the number of level-l I/O operations with P on G. We define the time

for the pebbling strategy P , T (P , G) on the graph G as

T (P , G) =
L∑

l=1

tl · T (L)
l (p, b, G)

Thus, T (P , G) measures the absolute time expended to pebble a graph relative to the time
to perform one computation step under the assumption that I/O operations cannot be over-
lapped.

From the above discussion, a pebbling is efficient if T (P , G) is at most some small multiple

of T
(2)
1 (sL−1, G), the normalized time to pebble G in the red-blue pebble game when all the

pebbles at level L − 1 or less in the MHG (there are sL−1 such pebbles) are used as if they
were red pebbles.

A two-level computation exhibits locality of reference if it is likely in the near future
to refer to words currently in its primary memory. Such computations perform fewer I/O
operations than those that don’t meet this condition. This idea extends to multiple levels: a

c©John E Savage 11.8 RAM-Based I/O Models 559

multi-level memory hierarchy exhibits locality of reference if it uses its higher-level memory
units much less often that its lower-level units. Formally, we say that a pebbling strategy P is
c-local if T (P , G) satisfies the following inequality:

L∑
l=1

tl · T (L)
l (p, b, G,P) ≤ c T

(2)
1 (sL−1, G)

The definition of a c-local pebbling strategy is illustrated by the results for matrix multipli-
cation in the standard MHG when block I/O is not used. Let k be the largest integer such that
sk ≤ 3n2. From Theorem 11.5.3 for matrix-matrix multiplication, we see that there exists an
optimal pebbling if

k∑
l=2

tl
bl
√

sl−1
+

L∑
l=k+1

tl
nbl

≤ c∗ (11.1)

for some c∗ > 0 since T
(2)
1 (S, G) = Θ(n3).

We noted in Section 11.1.2 that the imbalance between the computation and I/O times
for matrix multiplication is becoming ever more serious with the advance of technology. We
re-examine this issue in light of the above condition. Consider the case in which k + 1 = L;
that is, the highest-level memory is used to store the arguments and results of a computation.
In this case the second term on the left-hand side of (11.1) is a relative measure of the time
to bring data into lower-level memories from the highest-level memory. It is negligible when
nbL is large. For example, if tL = 2,000,000 and bL = 10,000, say, then n must be at least
200, a modest-sized matrix. The first term on the left-hand side reflects the number of times
data moves between the levels of the hierarchy holding the data. It is small when bl

√
sl−1

is large by comparison with tl for 2 ≤ l ≤ k, a condition that is not hard to meet. For
example, if sl−1 = 32 × 106 (about 4 Mbytes) and bl = 1,000, then tl must be less than
about 45, a condition that certainly applies to low level memories such as today’s random-
access memories. Problems 11.15 and 11.16 provide opportunities to explore this issue with
the FFT and convolution.

11.8 RAM-Based I/O Models
The MHG assumes that computations are done by pebbling the vertices of a directed acyclic
graph. That is, it assumes that computations are straight-line. While the best known algo-
rithms for the problems studied earlier in this chapter are straight-line, some problems are not
efficiently done in a straight-line fashion. For example, binary search in a tree that holds a set
of keys in sorted order (see Section 11.9.1) is much better suited to data-dependent compu-
tation of the kind allowed by an unrestricted RAM. Similarly, the merging of two sorted lists
can be done more efficiently on a RAM than with a straight-line program. For this reason
we consider RAM-based I/O models, specifically the block-transfer model and the hierarchical
memory model.

11.8.1 The Block-Transfer Model
The block-transfer model is a two-level I/O model that generalizes the red-blue pebble game
to RAM-based computations by allowing programs that are not straight-line.

560 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

DEFINITION 11.8.1 The block-transfer model (BTM) is a serial computer in which a CPU is
attached to an M -word primary memory and to a secondary memory of unlimited size that stores
words in blocks of size B. Words are moved in blocks between the memories and words that leave
primary memory in one block must return in that block. An I/O operation is the movement of a
block to or from secondary memory. The I/O time with the BTM is the number of I/O operations.

The secondary memory in the BTM can be a main memory if the primary memory is a
cache, or can be a disk if the primary memory is a random-access memory. In fact, it can model
I/O operations between any two devices. Since a block can be viewed as the contents of one
track of a disk, the time to retrieve any word on the track is comparable to the time to retrieve
the entire track. (See Section 11.6.) Since data is moved in blocks in the BTM, it makes sense
to define simple I/O operations.

DEFINITION 11.8.2 An I/O operation in the BTM is simple if, after a block or word is copied
from one memory to the other, the copy in the first memory is deleted.

Simple I/O operations for the pebble game are defined in Problem 11.10. In this problem
the reader is asked to show that replacing all I/O operations with simple I/O operations has
the effect of at most doubling the number of I/O operations. The proof of this fact applies
equally well to the BTM.

We illustrate the use of the block-transfer model by examining the sorting problem. We
derive a lower bound on the I/O time for all sorting algorithms and exhibit a sorting algorithm
that meets the lower bound, up to a constant multiplicative factor. To derive the lower bound,
we limit the range of sorting algorithms to those based on the comparison of keys, as stated
below. (Sorting algorithms that are not comparison-based, such as the various forms of radix
sort, assume that keys consist of individual digits and that digits are used to classify keys.)

ASSUMPTION 11.8.1 All words to be sorted are located initially in the secondary memory. The
compare-exchange operation is the only operation available to implement sorting algorithms on
the BTM. In addition, an arbitrary permutation of the contents of the primary memory of the BTM
can be done during the time required for one I/O operation.

The assumption that the CPU can perform an arbitrary permutation on the contents of the
primary memory during one I/O operation acknowledges that I/O operations take a very long
time relative to CPU instructions.

Algorithms consistent with these assumptions are described by the multiway decision trees
discussed below. They are a generalization of the binary decision tree, a binary tree in which
each vertex has associated with it a comparison between two variables. For example, if keys x1

and x2 are compared at the root vertex, the comparison has two outcomes, namely x1 < x2 or
x1 ≥ x2, which are associated with the subtrees to the left and right of the root, respectively.
Similar comparisons and outcomes are possible at each vertex of these two subtrees. A sequence
of comparisons terminates on a leaf node.

Since a binary decision tree captures each of the data-dependent comparisons between keys
in comparison-based sorting algorithm, each leaf is associated with the permutation of the
original sequence of variables that puts the sequence into sorted order. Thus, a binary decision
tree for sorting must have at least n! distinct leaves, one for every permutation of n items. The
length of a path through a binary decision tree is the number of comparisons performed on the
particular input, and the length of the longest path is a measure of the worst-case number of

c©John E Savage 11.8 RAM-Based I/O Models 561

comparisons. A binary tree with N leaves has a longest path of length at least log2 N because
if it were smaller, it would have fewer than 2log2 N < N leaves. Since the length of the longest
path is an integer, it must be at least �log2 N�. We summarize this result as a lemma that uses
the lower bound on n! given in Problem 2.23.

LEMMA 11.8.1 The length of the longest path in a binary decision tree that sorts n inputs is at
least �log2 n!� = Θ(n log n).

The multiway decision tree in Fig. 11.15 extends the above concept by permitting multi-
ple comparisons at each vertex. 2k outcomes are possible if k comparisons of variable pairs are
associated with each vertex.

THEOREM 11.8.1 Let B divide M and M divide n. Under Assumption 11.8.1 on the BTM,
in the worst case the number of block I/O steps to sort a set of n records using M words of primary
memory and block size B, TBTMsort(n), satisfies the following bounds for B ≤ M/2 and M
large:

TBTMsort(n) = Θ
(

max
[

n

B
,
(n/B) log(n/B)

log(M/B)

])
Proof Let’s now apply the multiway decision tree to the BTM. Since each path in such a tree
corresponds to a sequence of comparisons by the CPU, the tree must have at least n! leaves.
To complete the lower-bound derivation we need to determine the number of descendants
of vertices in the multiway tree.

Initially the n unsorted words are stored in n/B blocks in the secondary memory. The
first time one of these blocks is moved to the primary memory, up to B! permutations
can be performed on the words in it. No more permutations are possible between these
words no matter how many times they are simultaneously in primary memory, even if they
return to the memory as members of different blocks. When a block of B words arrives in
the M -word memory, the number of possible permutations between them (given that the
order among the M − B words originally in the memory has previously been taken into

2 > 32 ≤ 3 2 > 32 ≤ 3
3 > 5 3 ≤ 5 3 > 5

x3 : x5

3 ≤ 5

x2 : x3

x3 : x4

x2 : x4

x2 : x4

x2 : x5

x1 : x3

x3 : x4

x1 : x3

x1 : x5

Figure 11.15 A multiway decision tree in which multiple comparisons of keys are made at each
vertex.

562 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

account, as has the order among the B words in a block) is at most ρ =
(
M
B

)
, the binomial

coefficient. (To see this, observe that places for the B new (and indistinguishable) words in
the primary memory can be any B of the M indistinguishable places.) It follows that the
multi-comparison decision tree for every BTM comparison-based sorting algorithm on the
BTM has at most n/B vertices with at most ρB! possible outcomes (vertices corresponding
to the first arrival of one of the blocks in primary memory) and that each of the other vertices
has at most ρ outcomes.

It follows that if a sorting algorithm executes TBTMsort(n) block I/O steps, the function
TBTMsort(n) must satisfy the following inequality:

(B!)n/B

(
M

B

)TBTMsort(n)

≥ n!

Using the approximation to n! given in Lemma 11.8.1, the upper bound of (M/B)BeB on(
M
B

)
derived in Lemma 10.12.1, and the fact that T ≥ n/B, we have the desired conclusion.

An upper bound is obtained by extending the standard merging algorithm to blocks of
keys. The merging algorithm is divided into phases, an initialization phase and merging
phases, each of which takes (2n/B) I/O operations. In the initialization phase, a set of
n/M sorted sublists of M keys or M/B blocks is formed by bringing groups of M keys into
primary memory, sorting, and then writing them out to secondary memory. In a merging
phase, M/B sorted sublists of L blocks (L = M/B in the first merging phase) are merged
into one sorted sublist of ML/B blocks, as suggested in Fig. 11.16. The first block of keys
(those with the smallest values) in each sublist is brought into memory and the B smallest
keys in this set is written out to the new sorted sublist that is being constructed. If any
block from an input sublist is depleted, the next block from that list is brought in. There
is always sufficient space in primary memory to do this. Thus, after k phases the sorted
sublists contain (M/B)k blocks. When (M/B)k ≥ n/B, the merging is done. Thus,
(2n/B)�log2(n/B)/ log2(M/B)� I/O operations are performed by this algorithm.

...
Memory

B

M/B

LLPrimary L

Secondary Memory

Secondary Memory...
Figure 11.16 The state of the block merging algorithm after merging four blocks. The algo-
rithm merges M/B sublists, each containing L blocks of B keys.

c©John E Savage 11.9 The Hierarchical Memory Model 563

Similar results can be obtained for the permutation networks defined in Section 7.8.2 (see
Problem 11.18), the FFT defined in Section 6.7.3 (see Problem 11.19), and matrix transposi-
tion defined in Section 6.5.4 (see [9]).

11.9 The Hierarchical Memory Model
In this section we define the hierarchical memory model and derive bounds on the time to do
matrix multiplication, the FFT and binary search in this model. These results provide another
opportunity to evaluate the performance of memory hierarchies, this time with a single cost
function applied to memory accesses at all levels of a hierarchy. We make use of lower bounds
derived earlier in this chapter.

DEFINITION 11.9.1 The hierarchical memory model (HMM) is a serial computer in which a
CPU without registers is attached to a random-access memory of unlimited size for which the time
to access location a for reading or writing is the value of a monotone nondecreasing cost function
ν(a) : � �→ � from the integers � = {0, 1, 2, 3, . . .} to �. The cost of computing
f (n) : An �→ Am with the HMM using the cost function ν(a), Kν(f), is defined as

Kν(f) = max
x

T (x)∑
j=1

ν(aj) (11.2)

where aj , 1 ≤ j ≤ T (x), is the address accessed by the CPU on the jth computational step and
T (x) is the number of steps when the input is x.

The HMM with cost function ν(a) = 1 is the standard random-access machine described
in Section 3.4. While in principle the HMM can model many of the details of the MHG, it
is more difficult to make explicit the dependence of ν(a) on the amount of memory at each
level in the hierarchy as well as the time for a memory access in seconds at that level. Even
though the HMM can model programs with branching and looping, following [7] we assume
straight-line programs when studying the FFT and matrix-matrix multiplication problems with
this model.

Let n(f , x, a) be the number of times that address a is accessed in the HMM for f on
input x. It follows that the cost Kν(f) can be expressed as follows:

Kν(f) = max
x

∑
1≤a

n(f , x, a)ν(a) (11.3)

Many cost functions have been studied in the HMM, including ν(a) = �log2 a�, ν(a) =
aα, and ν(a) = Um(a), where Um(a) is the following threshold function with threshold m:

Um(a) =

{
1 a ≥ m

0 otherwise

It follows that

KUm
(f) = max

x

∑
m≤a

n(f , x, a)

564 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

For the matrix-matrix multiplication and FFT problems, the cost KUm
(f) of computing f is

directly related to the number of I/O operations with the red-blue pebble game played with
S = m red pebbles discussed in Sections 11.5.2 and 11.5.3. For this reason we call this cost
I/O complexity. The principal difference is that in the HMM no cost is assessed for data
stored in the first m memory locations.

Let the differential cost function Δν(a) be defined as

Δν(a) = ν(a)− ν(a− 1)

As a consequence, we can write ν(a) as follows if we set ν(−1) = 0:

ν(a) =
∑

0≤b≤a

Δν(b) (11.4)

Since ν(a) is a monotone nondecreasing function, Δν(m) is nonnegative.
Rewriting (11.3) using (11.4), we have

Kν(f) = max
x

∑
1≤a

n(f , x, a)
∑

0≤b≤a

Δν(b)

=

[
max
x

∞∑
c=0

Δν(c)
∞∑

d=c

n(f , x, d)

]

=
∞∑

c=0

Δν(c)

[
max
x

∞∑
d=c

n(f , x, d)

]
(11.5)

=
∞∑

c=0

Δν(c)KUc
(f)

11.9.1 Lower Bounds for the HMM
Before deriving bounds on the cost to do a variety of tasks in the HMM, we introduce the
binary search problem.

A binary tree is a tree in which each vertex has either one or two descendants except leaf
vertices, which have none. (See Fig. 11.17.) Also, every vertex except the root vertex has one

7 113

6 13

9

20158

17

51

Figure 11.17 A binary search tree.

c©John E Savage 11.9 The Hierarchical Memory Model 565

parent vertex. The length of a path in a tree is the number of edges on that path. The
left (right) subtree of a vertex is the subtree that is detached by removing the left (right)
descending edge. A binary search tree is a binary tree that has one key at each vertex. (This
definition assumes that all the keys in the tree are distinct.) The value of this one key is larger
than that of all keys in the left subtree, if any, and smaller than all keys in the right subtree, if
any. A balanced binary search tree is a binary search tree in which all paths have length k or
k + 1 for some integer k.

LEMMA 11.9.1 The length of the longest path in a binary tree with n vertices is at least �log2(n+
1)/2�.

Proof A longest path in a binary tree with n vertices is smallest when all levels in the tree
are full except possibly for the bottom level. If such a tree has a longest path of length l, it
has between 2l and 2l+1 − 1 vertices. It follows that the longest path in a binary search tree
containing n keys is at least �log2(n + 1)/2�.

The binary search procedure searches a binary search tree for a key value v. It compares
v against the root value, stopping if they are equal. If they are not equal and v is less than the
key at the root, the search resumes at the root vertex of the left subtree. Otherwise, it resumes
at the root of the right subtree. The procedure also stops when a leaf vertex is reached.

We can now state bounds on the cost on the HMM for the logarithmic cost function
ν(a) = �log2 a�. This function applies when the memory hierarchy is organized as a binary
tree in which the low-indexed memory locations are located closest to the roots and the time
to retrieve an item is proportional to the number of edges between it and the root. We use it
to illustrate the techniques developed in the previous section.

Theorem 11.9.1 states lower performance bounds for straight-line algorithms. Thus, the
computation time is independent of the particular argument of the function f provided as
input. Matching upper bounds are derived in the following section. (The logarithmic cost
function is polynomially bounded.)

THEOREM 11.9.1 The cost function ν(a) = �log2 a� on the HMM for the n × n matrix
multiplication function f

(n)
A×B realized by the classical algorithm, the n-point FFT associated with

the graph F (d), n = 2d, comparison-based sorting on n keys f
(n)
sort, and binary search on n keys,

f
(n)
BS , satisfies the following lower bounds:

Matrix multiplication: Kν(f (n)
A×B) = Ω(n3)

Fast Fourier transform: Kν(F (d)) = Ω(n log n log log n)

Comparison-based sorting: Kν(f (n)
sort) = Ω(n log n log log n)

Binary search: Kν(f (n)
BS) = Ω(log2 n)

Proof The lower bounds for the logarithmic cost function ν(a) = �log2 a� use the fact
that Δν(a) = 1 when a = 2k for some integer k but is otherwise 0. It follows from (11.5)

566 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

that

Kν(f) =
t∑

k=1

KU2k
(f) (11.6)

for the task characterized by f , where t satisfies 2t ≤ N and N is the space used by task.
N = 2n2 for n× n matrix multiplication, N = n for the FFT graph F (d), and N = n for
binary search.

In Theorem 11.5.3 it was shown that the number of I/O operations to perform n × n
matrix multiplication with the classical algorithm is Ω(n3/

√
m). The model of this theorem

assumes that none of the inputs are in the primary memory, the equivalent of the first m
memory locations in the HMM.

Since no charge is assessed by the Um(a) cost function for data in the first m memory
locations, a lower bound on cost with this measure can be obtained from the lower bound
obtained with the red-blue pebble game by subtracting m to take into account the first m
I/O operations that need not be performed.

Thus for matrix multiplication, KUm
(f (n)

A×B) = Ω
(
(n3/

√
m)−m

)
. Since(

n3/
√

m
)
−m ≥ (

√
8 − 1)n3/

√
8m

when m ≤ n2/2, it follows from (11.6) that Kν(f (n)
A×B) = Ω(n3) because

∑t
k=0 n3/2k =

Ω(n3).
For the same reason, KUm

(F (d)) = Ω ((n log n)/ log m−m) (see Theorem 11.5.5)
and (n log n/ log m) − m ≥ n log n/(2 log m) for m ≤ n/2. It follows that Kν(F (d))
satisfies

Kν(F (d)) = Ω

(∑
k

n log n

log(2k)

)

= Ω

(
log n∑
k=1

n log n

k

)
= Ω (n log n log log n)

The last equation follows from the observation that
∑p

k=1 1/k is closely approximated by∫ p

1
1
x dx, which is ln p. (See Problem 11.2.)
The lower bound for comparison-based sorting uses the Ω(n log n/ log m) sorting lower

bound for the BTM with a block size B = 1. Since the BTM assumes that no data are res-
ident in the primary memory before a computation begins, the lower bound for the HMM
cost under the Um cost function is Ω ((n log n/ log m)−m). Thus, the FFT lower bound
applies in this case as well.

Finally, we show that the lower bound for binary search is KUm
(f (n)

BS) = Ω(log n −
log m). Each path in the balanced binary search tree has length d = �log(n + 1)/2� or
d− 1. Choose a query path that visits the minimum number of variables located in the first
m memory locations. To make this minimum number as large as possible, place the items
in the first m memory locations as close to the root as possible. They will form a balanced
binary subtree of path length l = �log2(m + 1)/2� or l − 1. Thus no full path will have
more than l edges and l − 1 variables from the first m memory locations. It follows that
there is a path containing at least d− 1− (l− 1) = d− l = �log(n + 1)�− �log(m + 1)�

c©John E Savage 11.10 Competitive Memory Management 567

variables that are not in the first m memory locations. At least one I/O operation is needed
per variable to operate on them. It thus follows that

Kν(f (n)
BS) =

log n∑
d=0

Ω(log n − log(2d))

=
log n∑
d=0

Ω(log n − d)

= Ω(log2 n)

The last inequality is a consequence of the fact that log n − d is greater than (log n)/2 for
d ≤ (log n)/2.

Lower bounds on the I/O complexity for these problems can be derived for a large variety
of cost functions. The reader is asked in Problem 11.20 to derive such bounds for the cost
function ν(a) = aα.

11.9.2 Upper Bounds for the HMM
A natural question in this context is whether these lower bounds can be achieved. We al-
ready know from Theorems 11.5.3 and 11.5.5 that for each allocation of memory to each
memory-hierarchy level, it is possible to match upper and lower bounds on the number of I/O
operations and computation time. As a consequence, for each of these problems near-optimal
solutions exist for any cost function on memory accesses for these problems.

11.10 Competitive Memory Management
The results stated above for the hierarchical memory model assume that the user has explicit
control over the location of data, an assumption that does not apply if storage is allocated by an
operating system. In this section we examine memory management by an operating system
for the HMM model, that is, algorithms that respond to memory requests from programs to
move stored items (instructions and data) up and down the memory hierarchy. We examine
offline and online memory management algorithms. An offline algorithm is one that has
complete knowledge of the future. Online algorithms cannot predict the future and must act
only on the data received up to the present time.

We use competitive analysis, a type of analysis not appearing elsewhere in this book, to
show that the two widely used online page-replacement algorithms, least recently used (LRU)
and first-in, first-out (FIFO), use about twice as many I/O operations as does MIN, the opti-
mal offline page-replacement algorithm, when these two algorithms are allowed to use about
twice as much memory as MIN. Competitive analysis bounds the performance of an online
algorithm in terms of that of the optimum offline algorithm for the problem without knowing
the performance of the optimum algorithm.

Virtual memory-management systems allow the programmer to program for one large
virtual random-access memory, such as that assumed by the HMM, although in reality the
memory contains multiple physical memory units one of which is a fast random-access unit
accessed by the CPU. In such systems the hardware and operating system cooperate to move

568 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

data from secondary storage units to the primary storage unit in pages (a collection of items).
Each reference to a virtual memory location is checked to determine whether or not the refer-
enced item is in primary memory. If so, the virtual address is converted to a physical one and
the item fetched by the CPU. If not (if a page fault occurs), the page containing the virtual
address is moved into primary memory and the tables used to translate virtual addresses are
updated. The item at the virtual address is then fetched. To make room for the newly fetched
page, one page in the fast memory is moved up the memory hierarchy.

A page-replacement algorithm is an algorithm that decides which page to remove from a
full primary memory to make space for a new page. We describe and analyze page-replacement
algorithms for two-level memory hierarchies both because they are important in their own right
and because they are used as building blocks for multi-level page-replacement algorithms. A
two-level hierarchy has primary and secondary memories. Let the primary memory contain n
pages and let the secondary memory be of unlimited size.

The FIFO (first-in, first-out) page-replacement algorithm is widely used because it is sim-
ple to implement. Under this replacement policy, the page replaced is the first page to have
arrived in primary memory. The LRU (least recently used) replacement algorithm requires
keeping for each page the time it was last accessed and then choosing for replacement the page
with the earliest time, an operation that is more expensive to implement than the FIFO shift
register.

Under the optimal two-level page-replacement algorithm, called MIN, primary memory
is initialized with the first n pages to be accessed. MIN replaces the page pi in primary memory
whose time ti of next access is largest. If some other page, pj , were replaced instead of pi, pj

would have to return to the primary memory before pi is next accessed, and one more page
replacement would occur than is required by MIN.

Implementing MIN requires knowledge of the future, a completely unreasonable assump-
tion on the part of the operating system designer. Nonetheless, MIN is very useful as a standard
against which to compare the performance of other page-replacement algorithms such as FIFO
and LRU.

11.10.1 Two-Level Memory-Management Algorithms
To compare the performance of FIFO, LRU, and MIN, we characterize memory use by a
memory-address sequence s = {s1, s2, . . .} of HMM addresses accessed by a computation.
We assume that no memory entries are created or destroyed. We let FFIFO(n, s), FLRU(n, s),
and FMIN(n, s) be the number of page faults with each page-replacement algorithm on the
memory address sequence s when the primary memory holds n pages.

We now bound the performance of the FIFO and LRU page-replacement algorithms in
terms of that of MIN. We show that if the number of pages available to FIFO and LRU
is double the number available to MIN, the number of page faults with FIFO and LRU is
at most about double the number with MIN. It follows that FIFO and LRU are very good
page-replacement algorithms, a result seen in practice.

THEOREM 11.10.1 Let nFIFO, nLRU, and nMIN be the number of primary memory pages used
by the FIFO, LRU, and MIN algorithms. Let nFIFO ≥ nMIN and nLRU ≥ nMIN. Then, for
any memory-address sequence s the following inequalities hold:

FFIFO(nFIFO, s) ≤ nFIFO

nFIFO − nMIN + 1
FMIN(nMIN, s) + nMIN

c©John E Savage Problems 569

FLRU(nLRU, s) ≤ nLRU

nLRU − nMIN + 1
FMIN(nMIN, s) + nMIN

Proof We establish the result for FIFO, leaving it to the reader to show it for LRU. (See
Problem 11.23.) Consider a contiguous subsequence t of s that immediately follows a page
fault under FIFO and during which FIFO makes φFIFO = f ≤ nFIFO page faults. In the
next paragraph we show that at least f different pages are accessed by FIFO during t. Let
MIN make φMIN faults during t. Because MIN has nMIN pages, φMIN ≥ f −nMIN +1 ≥
0. Thus, the ratio of page faults by FIFO and MIN is f/φMIN ≤ f/(f − nMIN + 1).

Let pi be the page on which the fault occurs just before the start of t. To show that at
least f different pages are accessed by FIFO during t, consider the following cases: a) FIFO
faults on pi in t; b) FIFO faults on some other page at least twice in t; and c) neither case
applies. In the first case, FIFO accesses at least nFIFO different pages because if it accessed
fewer, then pi would still be in its primary memory the second time it is accessed. In the
second case, the same statement applies to the page accessed multiple times. In the third
case, FIFO can have only f faults if it accesses at least f different pages during t.

Now subdivide the memory access sequence s into subsequences t0, t1, . . . , tk such that
ti, i ≥ 1, starts immediately after a page fault under FIFO and contains nFIFO faults and
t0 contains at most nFIFO page faults. This set of subsequences can be found by scanning s
backwards. Since MIN makes φMIN

j ≥ nFIFO−nMIN +1 faults on the jth interval, j ≥ 1,
and φMIN

0 ≥ φFIFO
0 −nMIN faults on the zeroth interval (that is, φFIFO

0 ≤ φMIN
0 +nMIN),

the number of faults by FIFO, FFIFO(nFIFO, s) = φFIFO
0 +φFIFO

1 + · · ·+φFIFO
k satisfies

the condition of the theorem because φFIFO
j ≤ nFIFOφMIN

j /(nFIFO − nMIN + 1) for
j ≥ 1.

The upper bounds are almost best possible because, as stated in Problem 11.24, for any
online algorithm A there is a memory-access sequence such that the number of page faults
FA(s) satisfies the following lower bound:

FA(nA, s) ≥ nA

nA − nMIN + 1
FMIN(nMIN, s)

The difference between this lower bound and the upper bounds given for FIFO and LRU
is nMIN, which takes into account for the possibility that the initial entries in the primary
memory of MIN and FIFO can be completely different.

It follows that the FIFO and LRU page-replacement strategies are very effective strategies
for two-level memory hierarchies.

. .

Problems
MATHEMATICAL PRELIMINARIES

11.1 Let a and b be integers satisfying 1 ≤ a ≤ b. Show that b/2 ≤ a�b/a� ≤ b.

Hint: Consider values of b in the range ka ≤ b ≤ (k + 1)a for k an integer.

11.2 Derive a good lower bound on
∑m

k=1(1/k) of the form Ω(log m) using an approach
similar to that of Problem 2.2.

570 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

PEBBLING MODELS

11.3 Show that the graph of Fig. 11.2 can be completely pebbled in the three-level MHG
with resource vector p = (2, 4) using only four third-level pebbles.

11.4 Consider pebbling a graph with the red-blue game. Suppose that each I/O operation
uses twice as much time as a computation step. Show by example that a red-blue
pebbling minimizing the total time to pebble a graph does not always minimize the
number of I/O operations.

I/O TIME RELATIONSHIPS

11.5 Let Smin be the minimum number of pebbles needed to pebble the graph G = (V , E)
in the red pebble game. Show that if in the MHG a pebbling strategy P uses sk pebbles
at level k or less and sk ≥ Smin + k − 1, then no I/O operations at level k + 1 or
higher are necessary except on input and output vertices of G.

11.6 The rules of the red-blue pebble game suggest that inputs should be prefetched from
high-level memory units early enough that they arrive when needed. Devise a schedule
for delivering inputs so that the number of I/O operations for matrix multiplication is
minimized in the red-blue pebble game.

THE HONG-KUNG LOWER-BOUND METHOD

11.7 Derive an expression for the S-span ρ(S, G) of the binary tree G shown in Fig. 11.4.

11.8 Consider the pyramid graph G on n inputs shown in Fig. 11.18. Determine its S-span
ρ(S, G) as a function of S.

11.9 In Problem 2.3 it is shown that every binary tree with k leaves has k−1 internal vertices.
Show that if t binary trees have a total of p pebbles, at most p − 1 pebbling steps are
possible on these trees from an arbitrary initial placement without re-pebbling inputs.

Hint: The vertices that can be pebbled from an initial placement of pebbles form a set
of binary trees.

11.10 An I/O operation is simple if after a pebble is placed on a vertex the pebble currently
residing on that vertex is removed. Show that at most twice as many I/O operations are
used at each level by the MHG when every I/O operation is simple.

n

Figure 11.18 The pyramid graph.

c©John E Savage Problems 571

Hint: Compare pebble placement with and without the requirement that placements
be simple, arguing that if a pebble removed by a simple I/O operation is needed later it
can be obtained by one simple I/O operation for each of the original I/O operations.

TRADEOFFS IN THE MEMORY HIERARCHIES

11.11 Using the results of Problem 11.8, derive good upper and lower bounds on the I/O
time to pebble the pyramid graph of Fig. 11.18 in terms of n.

11.12 Under the conditions of Problem 11.4, show that any pebbling of a DAG for convolu-
tion of n-sequences with the minimal pebbling strategy when S ≥ Smin and n is large
has much larger total cost than a strategy that treats blue pebbles as red pebbles.

BLOCK I/O IN THE MHG

11.13 Determine how efficiently matrix-vector multiplication can be done in the block-I/O
model described in Section 11.6.

11.14 Show that matrix-matrix multiplication can be done efficiently in the block-I/O model
described in Section 11.6.

SIMULATING FAST MEMORIES

11.15 Determine conditions on a memory hierarchy under which the FFT can be executed
efficiently in the standard MHG. Discuss the extent to which these conditions are likely
to be met in practice.

11.16 Repeat the previous problem for convolution realized by the algorithm stated in the
convolution theorem.

11.17 The definition of a minimal pebbling stated in Section 11.2 assumes that it is much
more expensive to perform a high-level I/O operation than a low-level one. Determine
the extent to which the lower bound of Theorem 11.4.1 depends on this assumption.
Apply your insight to the problem of matrix multiplication of n × n matrices in the
three-level MHG in which s1 < 3n2 and s2 ≥ 3n2. (See Theorem 11.5.3.) Determine
whether increasing the number of level-3 I/O operations affects the number of level-2
I/O operations.

THE BLOCK-TRANSFER MODEL

11.18 Derive a lower bound on the time to realize a permutation network on n inputs in the
block-transfer model.

Hint: Count the number of orderings possible between the n inputs. Base your argu-
ment on the number of orderings within blocks and between elements in the primary
memory, and the number of ways of choosing which block from the secondary memory
to move into the primary memory.

11.19 Derive a lower bound on the time to realize the FFT graph on n inputs in the block-
transfer model.
Hint: Use the result of Section 7.8.2 to argue that an n-point FFT graph cannot have
many fewer vertices than there are switches in a permutation network.

572 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

THE HIERARCHICAL MEMORY MODEL

11.20 Derive the following lower bounds on the cost of computing the following functions
when the cost function is ν(a) = aα:

Matrix multiplication: Kν(f (n)
A×B) =

⎧⎪⎨⎪⎩
Ω(n2α+2) if α > 1/2

Ω(n3 log n) if α = 1/2

Ω(n3) if α < 1/2

Fast Fourier transform: K(n)
c (F (d)) = Ω(nα+1)

Binary search: Kν(f (n)
BS) = Ω(nα)

Hint: Use the following identity to recast expressions for the computation time:

n∑
k=1

Δg(k)h(k) = −
n−1∑
k=1

Δh(k)g(k + 1) + g(n + 1)h(n)− g(1)h(1)

11.21 A cost function ν(a) is polynomially bounded if for some K > 1 and all a ≥ 1.
ν(2a) ≤ Kν(a). Let the cost function ν(a) be polynomially bounded. Show that
there are positive constants c and d such that ν(a) ≤ cad.

11.22 Derive a good upper bound on the cost to sort in the HMM with the logarithmic cost
function �log a�.

COMPETITIVE MEMORY MANAGEMENT

11.23 By analogy with the proof for FIFO in the proof of Theorem 11.10.1, consider any
memory-address sequence s and a contiguous subsequence t of s that immediately
follows a page fault under LRU and during which LRU makes φLRU = f ≤ nLRU

page faults. Show that at least f different pages are accessed by LRU during t.

11.24 Let A be any online page-replacement algorithm that uses nA pages of primary memory.
Show that there are arbitrarily long memory-address sequences s such that the number
of page faults with A, FA(s), satisfies the following lower bound, where nMIN is the
number of pages used by the optimal algorithm MIN:

FA(s) ≥ nA

nA − nMIN + 1
FMIN(s)

Hint: Design a memory-address sequence s of length nA with the property that the
first nA −nMIN + 1 accesses by A are to pages that are neither in A’s or MIN’s primary
memory. Let S be the nA + 1 pages that are either in MIN’s primary memory initially
or those accessed by A during the first nA −nMIN + 1 accesses. Let the next nMIN − 1
page accesses by A be to pages not in S.

c©John E Savage Chapter Notes 573

Chapter Notes
Hong and Kung [137] introduced the first formal model for the I/O complexity of problems,
the red-blue pebble game, an extension of the pebble game introduced by Paterson and Hewitt
[239]. The analysis of Section 11.1.2 is due to Kung [178]. Hong and Kung derived lower
bounds on the number of I/O operations needed for specific graphs for matrix multiplication
(Theorem 11.5.2), the FFT (Theorem 11.5.4), odd-even transposition sort and a number of
other problems. Savage [295] generalized the red-blue pebble game to the memory-hierarchy
game, simplified the proof of Theorem 11.4.1, and obtained Theorems 11.5.3 and 11.5.5 and
the results of Section 11.3. Lemma 11.5.2 is implicit in the work of Hong and Kung [137];
the simplified proof given here is due to Agrawal and Vitter [9]. The results of Section 11.5.4
are due to Savage [295].

The two-level contiguous block-transfer model of Section 11.8.1 was introduced by Savage
and Vitter [296] in the context of parallel space–time tradeoffs. The analysis of sorting of
Section 11.8.1 is due to Agrawal and Vitter [9]. In this paper they also derive similar bounds
on the I/O time to realize the FFT, permutation networks and matrix transposition.

The hierarchical memory model of Section 11.9 was introduced by Aggarwal, Alpern,
Chandra, and Snir [7]. They studied a number of problems including matrix multiplication,
the FFT, sorting and circuit simulation, and examined logarithmic, linear, and polynomial
cost functions. The two-level bounds of Section 11.10 are due to Sleator and Tarjan [311].
Aggarwal, Alpern, Chandra, and Snir [7] extended this model to multiple levels. The MIN
page-replacement algorithm described in Section 11.10 is due to Belady [35].

Two other I/O models of interest are the BT model and the uniform memory hierarchy.
Aggarwal, Chandra, and Snir [8] introduced the BT model, an extension of the HMM model
supporting block transfers in which a block of size b ending at location x is allowed to move
in time f(x) + b. They establish tight bounds on computation time for problems including
matrix transpose, FFT, and sorting using the cost functions �log x�, x, and xα for 1 ≤ α ≤ 1.

Alpern, Carter, and Feig [18] introduced the uniform memory hierarchy in which the
uth memory has capacity αρ2u, block size ρu, and time ρu/β(u) to move a block between
levels; β(u) is a bandwidth function. They allow I/O overlap between levels and determine
conditions under which matrix transposition, matrix multiplication, and Fourier transforms
can and cannot be done efficiently.

Vitter and Shriver [354] have examined three parallel memory systems in which the mem-
ories are disks with block transfer, of the HMM type, or of the BT type. They present a
randomized version of distribution sort that meets the lower bounds for these models of com-
putation. Nodine and Vitter [232] give an optimal deterministic sorting algorithm for these
memory models.

C H A P T E R

VLSI Models of Computation

The electronics revolution initiated by the invention of the transistor by Schockley, Brattain,
and Bardeen in 1947 accelerated with the invention of the integrated circuit in 1958 and 1959
by Jack Kilby and Robert Noyce. An integrated circuit contains wires, transistors, resistors,
and other components all integrated on the surface of a chip, a piece of semiconductor material
about the size of a thumbnail. And the revolution continues. The number of components that
can be placed on a semiconductor chip has doubled almost every 18 months for about 40 years.
Today more than 10 million of them can fit on a single chip. Integrated circuits with very large
numbers of components exhibit what is known as very large-scale integration (VLSI). This
chapter explores the new models that arise as a result of VLSI.

As the size of the electronic components decreased in size, the area occupied by wires
consumed an increasing fraction of chip area. In fact, today some applications devote more
than half of their area to wires. In this chapter we examine VLSI models of computation
that take this fact into account. Using simulation techniques analogous to those employed in
Chapter 3, we show that the performance of algorithms on VLSI chips can be characterized
by the product AT 2, where A is the chip area and T is the number of steps used by a chip
to compute a function. We relate AT 2 to the planar circuit size Cp,Ω(f) of a function f , a
measure that plays the role for VLSI chips that circuit size plays for FSMs. The AT 2 measure
is the direct analog of the measure CΩ(δ, λ)T for the finite-state machine that was introduced
in Chapter 3, where CΩ(δ, λ) is the size of a circuit to simulate the next-state and output
functions of the FSM. We also relate the measure A2T to Cp,Ω(f).

575

576 Chapter 12 VLSI Models of Computation Models of Computation

12.1 The VSLI Challenge
The design of VLSI chips represents an enormous intellectual challenge akin to that of con-
structing very large programs. They each involve the assembly of millions of elements, instruc-
tions in the case of software, and electronic components in the case of chips. The design and
implementation of VLSI chips is also challenging because it involves many steps and many
technologies. In this section we provide a brief introduction to this process as preparation
for the introduction of the VLSI models and algorithms that are the principal topics of this
chapter.

12.1.1 Chip Fabrication
A VLSI chip consists of a number of conducting, insulating, and doped layers that are placed
on a semiconductor substrate. (A doped layer is created on the surface of the substrate by
infusing small concentrations of impurities into the semiconductor. This is called doping.)
The layers are created using masks, templates with open regions through which ionizing radi-
ation is projected onto the surface of the semiconductor. The radiation changes the chemical
properties of a previously deposited photosensitive material so that the exposed regions can
be washed away with a solvent. The material that is now exposed can be doped or removed.
Doping is used to create transistors and wires. A removal step is used when a metallic layer has
been previously deposited from which sections are to be removed, leaving wires. A chip may
have several layers of wires separated by layers of insulating material in addition to the doped
layers that form transistors and wires. The layout of a NAND gate is shown schematically in
Fig. 12.1, in which the shadings of rectangles and annotations identify to a chip designer the
types of materials used to realize the gate.

�
�
�
�

c

Vss

p-plus
p-well

Vdd

ba

c

a b

(a) (b)

Figure 12.1 The schematic layout of a NAND gate and its logical symbol.

c©John E Savage 12.1 The VSLI Challenge 577

Geometric design rules specify the amounts of overlap of and separation between metal and
dopant rectangles that are needed to guarantee the desired electrical and electronic properties of
a VLSI circuit. If wires are too thin, electrons, which move through them at very high speeds,
can cause excess heating as well as dislodge atoms and create an open circuit (this is called
metal migration), especially at points at which a wire bends to descend into a well created
during chip fabrication. Similarly, if wires are too close, an error in registration of masks may
cause short circuits between wires. Also, since transistors are constructed through the doping
and overlaying of insulating and conducting materials, if the regions defining a transistor are
too small, it will not behave as expected.

The geometric design rules for a particular chip technology can be quite complex. For the
purpose of analysis they are simplified into a few rules concerning the width and separation
of rectangles, the amount of area required for contacts between wires on layers separated by
insulation, and the size of the various rectangular regions that form gates and transistors. As
suggested by this discussion, a VLSI chip is quasiplanar; that is, its components lie on a few
layers, which are separated by insulation except where contacts are made between layers.

12.1.2 Design and Layout
Many tools and techniques have been developed to address the complexity of chip layout.
Typically these tools and techniques use abstraction; that is, they decompose a problem into
successively lower level units of increasing complexity. At each level the number of units in-
volved in a design is kept small so that the design is comprehensible.

The design of a VLSI chip begins with the specification of its functionality at the func-
tional or algorithmic level. Either a function or an algorithm is given as the starting point.
An algorithm is then produced and translated into a specification at the architectural level.
At this level a chip is specified in terms of large units such as a CPU, random-access memory,
bus, floating-point unit, and I/O devices. (The material of Chapters 3 and 4 is relevant at this
level.) After an architectural specification is produced, design commences at the logical level.
Here particular methods for realizing architectural units are chosen. For example, an adder
could be realized either as a ripple or a carry-lookahead adder depending on the stated speed
and cost objectives. (The material of Chapter 2 applies at this level.)

At the gate level, the next level in the design process, a technology, such as NMOS and
CMOS, is chosen in which to realize the transistors and wires. This involves specifications of
widths for wires, the number of layers of metal, and other things. If new transistor layouts are
used, their physics is often simulated to determine their electrical properties.

At the next level, the layout level, a gate-level design is translated into physical positions for
modules, gates, and wires. Often at this level a rough layout is produced manually, after which
automatic routing and compaction algorithms are invoked to route wires between modules
and squeeze out the unnecessary area. Space must be reserved on each layout for I/O pads,
rectangular regions large enough to connect external wires. They serve as ports through which
data is read and written. Because these wires and pads are very large by comparison with the
wires on the chip, there is a practical limit on the number of I/O ports on a chip. A port can
be both an input and an output port.

Once a layout is complete it is usually simulated logically, that is, at the level of Boolean
gates. Parts of it may also be simulated electrically, a much more time-consuming process given
the much lower level of detail that it entails.

578 Chapter 12 VLSI Models of Computation Models of Computation

After a chip has been fabricated it is then tested. Because the testing process for a complete
chip cannot be exhaustive, due to the number of configurations that are possible, subunits are
often isolated and tested. Testing circuitry is often built into a chip to simplify the testing
process.

Because the design, layout, simulation, and testing of VLSI chips is complex and error
prone, computer-aided design (CAD) tools have been developed. CAD is very large subject
beyond the scope of this book. Instead, we limit our attention in this chapter to the perfor-
mance of VLSI chips.

12.2 VLSI Physical Models
Of all the parameters that affect the performance of a VLSI chip, its area is one of the most
important. Equally important are the width of and separation between wires, both of which
are directly related to area. Area is important for two reasons. First, a larger area means a chip
can have more computing elements and do more work. Also, more area means a chip can have
more I/O ports to facilitate data movement on and off the chip.

Unfortunately, the area of a chip has a practical limit due to imperfections that occur in the
chip manufacturing process. A single very small piece of dust or a dislocation in the crystalline
semiconductor substrate, each of which can be large by comparison with the dimensions of
components, can destroy a chip. As a consequence, only a small fraction (the yield) of the
chips resulting from a fabrication process work. The rest must be discarded.

The yield of a chip is very sensitive to its size. If the number of faults per unit area is
F , with very high probability a fault occurs if the area A of a chip exceeds 1/F . As F is
reduced by improvements in the manufacturing process, the area of any one chip can increase.
However, if F is fixed, so is the value of A at which an economical yield is possible. (F has
not decreased much over time.) To make chip manufacture economical, dozens of chips are
manufactured together on a circular wafer of 4 to 8 inches in diameter. The wafer is then sliced
into individual chips. If the die size is chosen correctly, a fixed fraction of the chips on a wafer
will work. The importance of testing becomes evident in light of these observations.

Because the area of a chip has a practical upper limit, the width and separation of wires
determine the number of components that can be placed on a chip. As mentioned above, the
technology for chip manufacture places a lower limit on these parameters as well as the area of
chip components.

To simplify our modeling and analysis, we assume that the minimal width and separation
of wires is λ (the minimum feature size) and that each gate, memory cell, port, and pair
of crossing wires has area λ2. There is no great loss in assuming a single number for wire
width and separation and one number for the minimal area of components because in practice
the width and separation of wires of different kinds and the area of components are all small
multiples of common values. The only component for which these assumptions are weak is
the pads for I/O ports, which are generally very much larger than λ2. It is important to be
cognizant of this fact in drawing conclusions.

Since chips are quasiplanar, we assume that each chip has at most ν ≥ 1 layers on which
wires can reside but that there is only one layer of gates. Also, since wires are rectangular, it
is impractical for them to meet at angles that are not close to 0 or 45 degrees. In fact, wires
are usually rectilinear, that is, run horizontally and vertically. Thus, we assume that wires are
rectilinear.

c©John E Savage 12.3 VLSI Computational Models 579

To complete the physical modeling of chips we recognize three types of transmission
model, the synchronous, transmission-line, and diffusion models. The synchronous model
assumes that one unit of time is needed to transmit a bit across a wire, independent of its
length. This is a good model when the switching time of gates is large by comparison with
the time to transmit data through a wire or when wires are short, a situation that prevails for
most designs. When it does not prevail, the unit of transmission time can be increased so that
it does apply. The transmission-line model assumes that the time to transmit a bit across a
wire is proportional to its length (see Problems 12.1 and 12.2), whereas the diffusion model
assumes it is quadratic in its length. The models apply to VLSI chip technologies at different
wire lengths. The synchronous, transmission-line, and diffusion models apply to wires that are
short, medium-length, and long, respectively.

Although we do not examine energy consumption in this chapter, the type of gate used
can have a large impact on the amount of energy consumed during a computation. NMOS
transistors consume energy all the time, whereas CMOS transistors consume energy only when
they change their state.

When the area of I/O pads and gates are comparable, the placement of the pads on a VLSI
chip can have a big impact on the area occupied by a chip. For example, if the chip realizes a
tree and its n leaves (and their pads) are placed on the boundary of a convex region, as noted
in Problem 12.3, the chip must have area proportional to n log n. However, as shown in
Section 12.5.1, when its leaves can be placed anywhere, there is a layout for a tree (known as
the H-tree) that has area proportional to n. If the I/O pads are much larger than the gates, the
impact of their placement is diminished.

12.3 VLSI Computational Models
We assume that a VLSI chip implements a finite-state machine instantiated as a clocked se-
quential machine. (A chip could also model an analog computer rather than a digital one, a
topic not discussed in this book.) Although every FSM is eventually realized from two-input
gates, binary memory cells, and wires carrying binary values (see Section 3.1), chips are gener-
ally designed around an aggregate model for data. That is, if operations are done on integers,
the wires associated with an integer travel together on the chip surface. Although the time re-
quired for an operation on data depends on the size of alphabet from which the data is drawn
and on the complexity of the operation itself, we simplify the analysis by assuming that one
unit of time is taken. A more sophisticated analysis takes these factors into account.

To be concrete we let the states of an FSM be represented as tuples over a set X of binary
b-tuples. We also assume that gates realize functions {h : X2 �→ X} and that memory cells
hold one value of X . We recognize a logic circuit over the set X as the graph of a straight-line
in which the operations are drawn from a basis {h : X2 �→ X}. This model is used to study
problems defined over non-binary alphabets, such as matrix multiplication and the discrete
Fourier transform over rings.

We continue to use the notation λ for the minimum feature size of a VLSI chip even
though we now allow data to be treated as values in the set X . When the set X is big, it will
be important to make use of its size in accounting for the area occupied by wires and gates, an
issue that we ignore in this chapter.

Computation time in the synchronous model is the number of steps executed by a chip.
This is the same measure of time used for finite-state machines. Computation time in the

580 Chapter 12 VLSI Models of Computation Models of Computation

other models is the elapsed time in seconds, which is approximated by the number of steps
multiplied by the length of the longest step. This time is generally a function of the area of the
chip and the problem for which the chip is designed.

Another measure of time, but one that is given only a cursory examination, is the period
P of a VLSI chip. This is the time between successive inputs to a pipelined chip, one designed
to receive a new set of inputs while the previous inputs are propagating through it. Pipelining
is illustrated in Section 12.5.1 on H-trees and Section 11.6 on block I/O.

In this chapter we assume that VLSI chips compute a single function f : Xn �→ Xm,
a perfectly general assumption that allows any FSM computation to be performed. While
this allows the VLSI chip to be a CPU or a RAM, to convey ideas we limit our attention
to functions that are simply defined, such as matrix multiplication and the discrete Fourier
transform.

The variables of the function computed by a VLSI chip are supplied via its I/O ports. A
single port can receive the values of multiple variables but at different time instances. Also,
the value of a variable can be supplied at multiple ports, either in the same time step or in
multiple time steps. However, the outputs of a function computed by a chip are supplied once
to an output port. As noted above, a port can be either an input or output port or serve both
purposes, but not in the same time step.

As with the FSM, we cannot allow either the time or the I/O port at which data is received
as input or is supplied as output to be data-dependent. To do otherwise is to assume that an
external agent not included in the model is performing computations on behalf of the user.
We can expect misleading results if this is allowed. Thus, we assume that each I/O operation
is where- and when-oblivious; that is, where an input or output occurs is data-independent,
as are the times at which the I/O operations occur.

For many VLSI computations it is important that the input data be read once by the
chip even if it may be convenient to read it multiple times. (These are called semellective or
read-once computations.) For example, if a chip is connected to a common bus it may be
desirable to supply the data on which the chip operates once rather than add hardware to the
chip to allow it to request external data. However, in other situations it may be desirable to
provide data to a chip multiple times. Such computations are called multilective. Multilective
computations must be where- and when-oblivious.

If a multilective VLSI algorithm reads its n input variables βμn times but only μn times
when multiple inputs of a variable (at multiple time steps) at one I/O port are treated as a
single input, then the algorithm is (β, μ)-multilective.

12.4 VLSI Performance Criteria
As stated in Theorem 7.4.1, the product pTp of the time, Tp, and the number of processors, p,
in a parallel network of RAM processors to solve a problem cannot be less than the serial time,
Ts, on a serial RAM with the same total storage capacity for that problem. Applying this result
to the VLSI model, since the number of processors of any given size that can be placed on a
chip of area A is proportional to A, it follows that the product AT of area with the time T
for a chip to complete a task cannot be less than the serial time to compute the same function
using a single processor; that is, AT = Ω(Ts).

In the next section we show that the matrix-vector multiplication and prefix functions can
be realized optimally with respect to the AT measure. This holds because these problems have

c©John E Savage 12.5 Chip Layout 581

low complexity. For problems of higher complexity, such as n×n matrix-matrix multiplication,
we cannot achieve AT -optimality because stronger lower bounds apply. In particular, both
AT 2 and A2T must grow as n4 for this problem, as we show. AT , AT 2 and A2T are the only
measures of VLSI performance considered in this chapter.

12.5 Chip Layout
In this section we describe and discuss layouts for a number of important graphs and problems.
These include balanced binary trees, multi-dimensional meshes, and the cube-connected cycle.

12.5.1 The H-Tree Layout
H-trees are embeddings of binary trees that use area efficiently. Let Hk be an H-tree with 4k

leaves. Figure 12.2 shows the H-tree H2 with 16 darkly shaded squares that can be viewed
either as subtrees or leaves. The lightly shaded regions are internal vertices of the binary tree.
Leaves often perform special functions that are not performed by internal vertices whereas
internal vertices of a tree often perform the same function. Each quadrant of the tree shown in
Fig. 12.2 can be viewed as the H-tree H1 on four subtrees or leaves.

The layout of Hk is recursively defined as follows: replace each of the four leaves of Hk−1

with a copy of H1. Thus, H2 in Fig. 12.2 is obtained by replacing each leaf in H1 with a copy
of H1.

We now derive an upper bound on the area of an H-tree under the assumption that each
vertex is square, leaf vertices occupy area b2, and the separation between leaf vertices is c. If
S(k) is the length of a side of Hk, then S(1) = 2b + c. Also, from the recursive construction
of Hk the following recurrence holds:

S(k) = 2S(k − 1) + c

Figure 12.2 The H-tree H2 containing 16 subtrees (or leaves).

582 Chapter 12 VLSI Models of Computation Models of Computation

The solution to this recurrence is S(k) = (b + c)2k − c as the reader can verify. Since
Hk has n = 4k leaves and area An = (S(k))2, it follows that an n-vertex H-tree has area
An ≤ n(b + c)2.

To appreciate the importance of the H-tree construction, observe that its leaves are interior
to the layout. Given the usual drawing of a binary tree one is tempted to place its leaves along
the boundary of a chip. If this boundary is convex, the area of a binary tree on n leaves must
be at least proportional to n log n. (See Problem 12.3.)

MATRIX-VECTOR MULTIPLICATION ON AN H-TREE We now describe an algorithm based on an
H-tree that multiplies an n×n matrix A with an n-vector x, n = 2k, by forming the n inner
products of the n rows of A with x. (Matrix-vector multiplication is defined in Section 6.2.2.)
This algorithm assumes that one unit of time is taken to store one piece of data and to perform
an addition or multiplication on data.

On the first time step of our algorithm the components of the vector x are supplied in
parallel to the n leaves of the tree and stored there. On the second time step components of
the first row of A are also provided in parallel to the leaves. In the third time step the product
of corresponding components of x and the first row of A are multiplied. In k = log2 n
additional time steps these products are added in the H-tree and the result supplied as output.
In the next two steps the second row of A is supplied as input and its components multiplied
by those of x. After k additional steps these products are summed and the result generated
as output. This process is repeated for each of the remaining rows of A. This algorithm is
semellective.

Since we treat the time to add and multiply as the basis for measuring the time required
by this H-tree, each inner product requires O(log n) time and the n inner products require
O(n log n) time. However, if each addition vertex in this tree can also store its result (thereby
causing a slight increase in area), a new row of A can be supplied to the H-tree in each unit
of time (we say the period of the computation is P = 1) because a series of partial results
can move through the tree in parallel. This is an example of pipelining. In this case the time
to perform the n inner products is O(n + log n) = O(n). If pipelining is not used, this
matrix-vector multiplication algorithm does not make the best use of area and time, as we now
show.

Even without pipelining there exists an AT optimal algorithm for matrix-vector multipli-
cation. Let n be such that n/ log2 n is a power of 4. Decompose each row of A as well as x
into (log2 n)-tuples. This is equivalent to representing the n×n matrix A by a n×(n/ log2 n)
matrix B whose entries are 1 × log2 n matrices (equivalently, (log2 n)-vectors) and to repre-
senting x by an (n/ log2 n)-vector y whose components are (log2 n)-vectors.

We implement this computation on an H-tree with O(n/ log n) area. To compute the
inner product of A’s jth row with x, sequentially supply to each H-tree leaf the components
of one (log2 n)-vector of y and the corresponding vector in the jth row of B. Supply the
individual components of these (log2 n)-vectors in alternate cycles. After a leaf vertex receives
the corresponding components of A and x, it multiplies them and adds the result to its running
sum. Upon completion of an inner product of two (log2 n)-vectors, the leaf vertices make their
values available to be added in the H-tree in O(log n) steps. After n of these operations, all n
inner products of Ax are computed.

This algorithm uses T = O(n log n) time but only has area A = O(n/ log n). Thus,
its area–time product satisfies AT = O(n2), which is optimal since each of the n2 + n

c©John E Savage 12.5 Chip Layout 583

components of A and x must be read. This algorithm is multilective because it supplies each
component of x n times.

PREFIX COMPUTATION ON AN H-TREE The H-tree is also an effective way to do a prefix com-
putation. Prefix computations (let � be the associative operator) are naturally executed on
trees. A tree-based prefix computation is described in Problem 7.31. One datum enters the
root of the tree; the rest travel up from the leaves. When implemented on an H-tree, this algo-
rithm uses area O(n) on n inputs and time O(log n), giving an AT product of O(n log n).
This algorithm is semellective.

This algorithm can be converted into an AT -optimal algorithm using a technique similar
to that used above. We subdivide the input n-tuple x into (log2 n)-tuples, of which there are
(n/ log2 n), and serially form the associative combination of the (log2 n) components of each
tuple using � in (log2 n) steps. We then perform the prefix computation on these (n/ log2 n)
results. To complete the computation, for 1 ≤ j ≤ (n/ log2 n) − 1 we reread each of the
original (log2 n)-tuples in parallel and add the (j − 1)st result (the zeroth result is 0) to the
first component of the jth (log2 n)-tuple, and then serially perform a prefix computation on
these new (log2 n)-tuples.

We increase (n/ log2 n) to the next power of 4 (adding inputs whose corresponding out-
puts are ignored) and embed the tree of Fig. 7.23 directly into an H-tree. The initial associative
combination of (log2 n)-tuples and the final prefix computation on (log2 n)-tuples are done
at vertices of the H-tree that are I/O vertices of the prefix tree. This algorithm takes time
O(log n) on the initial and final phases as well as on the prefix computation. Since the area of
the layout is O(n/ log2 n) and every one of the n inputs must be read, its area–time product,
AT , is O(n) which is optimal. This algorithm is multilective since each input is supplied
twice.

12.5.2 Multi-dimensional Mesh Layouts
As explained in Section 7.5, many important problems can be solved with systolic arrays. If
the cells of one- and two-dimensional systolic arrays are of fixed size and quasiplanar, they can
be embedded directly onto a chip with area proportional to the number of cells. Applying the
results of Theorems 7.5.1, 7.5.2, and 7.5.3 we have the following facts concerning the area and
time for three important problems when realized by such arrays.

Problem Dimensions Area Time

n× n Matrix-Vector Multiplication 1D O(n) O(n)

Bubble Sort of n items 1D O(n) O(n)

Batcher’s Odd-Even Sorting of n items 1D O(n) O(n)
√

n ×
√

n Matrix-Matrix Multiplication 2D O(n) O(
√

n)

Fully normal algorithms for problems such as shifting, summing, broadcasting, and fast
Fourier transform on n = 22d inputs can each be done in O(log n) steps on the n-vertex hy-
percube or the canonical cube-connected cycles network on n vertices. From Theorems 7.7.4
and 7.7.5 these problems can also be solved in O(n) and O(

√
n) steps, respectively, on n-

vertex one- and two-dimensional systolic arrays. We summarize these facts in Figure 12.3.

584 Chapter 12 VLSI Models of Computation Models of Computation

Problem Dimensions Area Time

Shifting of n-vector 1D O(n) O(n)
2D O(n) O(

√
n)

Summing n items 1D O(n) O(n)
2D O(n) O(

√
n)

Broadcasting to n locations 1D O(n) O(n)
2D O(n) O(

√
n)

n-point FFT 1D O(n) O(n)
2D O(n) O(

√
n)

Figure 12.3 Area vs. time performance of VLSI algorithms for four problems.

In Section 12.6 we show that shifting of an n-vector, the n-point FFT, and n× n matrix-
matrix multiplication each require area A and time T satisfying AT 2 = Ω(n2). Consequently,
the 2D algorithms cited above for these problems are optimal to within a constant factor.

In the next section we now show that every normal algorithm can be implemented on
the cube-connected cycles (CCC) network in time T satisfying Ω(log n) ≤ T ≤ O(

√
n)

and that the CCC network can be embedded in the plane using area A = O(n2/T 2). In
Theorems 12.7.2 and 12.7.3 we show that these implementations are optimal up to constant
multiplicative factors with respect to area and time for the three problems mentioned above.

12.5.3 Layout of the CCC Network
In Section 7.7.6 we describe the realization of a fully normal algorithm on the canonical CCC
network. The realization extends directly from the canonical CCC network to a general (k, d)-
CCC network in which there are 2d cycles and 2k vertices on each cycle. (See Fig. 12.4.)

A fully normal algorithm is simulated on the CCC network by giving the processors on
the jth cycle, 0 ≤ j ≤ 2d − 1, the addresses i + j2k where 0 ≤ i ≤ 2k − 1. The cycles
are treated as 1D arrays and used to simulate a normal algorithm on the first k dimensions
exactly as is done in Section 7.7.6. These simulations are done in parallel after which the
swaps across the higher-order d dimensions are simulated by first rotating the leading element
on each cycle to the first of the inter-cycle edges. After executing one swap, each cycle is
advanced one step so that the second elements on each cycle are aligned with the first of the
high-order dimensions. At this point the first elements on each cycle are aligned with the edge
associated with the second of the high-order dimensions. Thus, while swaps are done between
the second elements on each cycle across the first of the high-order dimensions, swaps occur
between leading elements along the second of the high-order dimensions. This rotating and
swapping is done until all cycle elements have been swapped across all high-order dimensions.

This algorithm performs O(2k) steps on the cycles to perform swaps across low-order
dimensions and align the cycles for swaps at higher dimensions. An additional O(d) steps are
used to perform swaps on the d high-order dimensions. Thus, the number of steps used by
this algorithm, T , satisfies T = O(2k + d). The number of processors used in (k, d)-CCC
network, n, satisfies n = 2d+k.

c©John E Savage 12.5 Chip Layout 585

Figure 12.4 An embedding of a (k, d)-CCC network in the plane for k = 3 and d = 4. The
2d columns represent cycles of length 2k ≥ d. For 1 ≤ j ≤ d, the jth vertex on each cycle is
connected to the jth vertex on another cycle.

Figure 12.4 shows a layout of a (3, 4)-CCC network. A layout for a general (k, d)-CCC
network, 2k ≥ d, can be developed following this pattern. Place each cycle of length 2k in
a column. Use 2d − 1 rows to make connections between columns. These rows are divided
into d sets. The first set, consisting of one row, connects adjacent columns. The second
set, containing two rows, connects every other column. The jth set, containing 2j−1 rows,
connects every 2jth column. The number of rows used for these connections is 1 + 2 + 4 +
· · ·+ 2d−1 = 2d − 1. Since d processors are used in each column to make these connections,
each column contains 2k − d ≥ 0 processors not connected to other columns. (These are
suggested by the lightly shaded vertices.) It follows that this layout has 2d + 2k − (d+ 1) rows
and 2d+1 columns. If a wire is assumed to have the same width as a processor, the layout has
area A = 2d+1(2d + 2k − (d + 1)).

Recall that n = 2d+k and 2k ≥ d or k ≥ log2 d. It follows that T = Θ(2k+d) = Θ(2k).
Since k ≥ log2 d, T = Ω(d) = Ω(log n). Also, when k ≤ d, 22k ≤ n and T ≤ O(

√
n). We

summarize this result below.

THEOREM 12.5.1 Every fully normal algorithm for a n-processor hypercube can be implemented
on a CCC network whose VLSI layout has area A and uses time T satisfying the following bound
for Ω(log n) ≤ T = O(

√
n).

AT 2 = O(n2)

586 Chapter 12 VLSI Models of Computation Models of Computation

This result can be applied to any of the fully normal algorithms described in Section 7.6
and the Beneš permutation network discussed in Section 7.8.2.

12.6 Area–Time Tradeoffs
The AT 2 measure encountered in the last section is fundamental to VLSI computation. This
is established by deriving a lower bound on AT 2 in terms of the planar circuit complexity,
Cp,Ω(f), of the function f computed by a VLSI chip of area A in T steps. A similar result is
derived for the product A2T . The planar circuit size of f is the size of the smallest memoryless
planar circuit for f . The measures AT 2 and A2T are the sizes of two different memoryless
planar circuits that compute the same mapping from inputs to outputs as a VLSI chip of area
A that executes T steps.

12.6.1 Planar Circuit Size
We now formally define planar circuit size and show how it relates to the standard circuit size
measure.

DEFINITION 12.6.1 A planar circuit over the set X is a logic circuit over the set X that has been
embedded in the plane in such a way that gates do not overlap but edges may cross. A planar circuit
is semellective if there is a unique vertex at which each input variable is supplied. Otherwise, the
planar circuit is multilective.

The size of a planar circuit is the number of inputs, edge crossings, and gates drawn from
a basis Ω = {h : X2 �→ X} that the circuit contains. The planar circuit size of a function
f : Xn �→ Xm over Ω, Cp,Ω(f), is the size of the smallest planar circuit for f over the basis Ω.

A multilective circuit of order μ, μ ≥ 1, for a function f : Bn �→ Bm has μn input vertices.
The size of the smallest multilective planar circuit of order μ for f is denoted C

(μ)
p,Ω(f). If the planar

circuit is semellective, the planar circuit size of f is denoted C
(1)
p,Ω(f) or Cp,Ω(f) when confusion

is not likely.

Every binary function has a planar circuit. To see this, observe that every function has a
circuit, which is a graph, and that every graph has a planar embedding with edge crossings.
The planar circuit size of a function is at worst quadratic in its standard circuit size, as we now
show.

LEMMA 12.6.1 The (multilective) planar circuit and standard size of f : Bn �→ Bm relative to
the basis Ω are in the following relationship where r is the fan-in of Ω.

CΩ(f) + n ≤ Cp,Ω(f) ≤ r2C2
Ω(f)/2 + CΩ(f) + n

Proof The first inequality follows because the planar circuit size measure includes inputs,
crossings, and gates, whereas the circuit size measure includes only gates.

Consider an embedding of a standard circuit for f containing CΩ(f) gates. In such
an embedding it is not necessary for any two edges to intersect more than once because if
they violate this condition the edge segments between any two successive crossings can be
swapped so that these two crossings can be eliminated. Since every gate has at most r inputs,
a minimal standard circuit for f has at most rCΩ(f) edges connecting gates. It follows that

c©John E Savage 12.6 Area–Time Tradeoffs 587

(b)(a)

Figure 12.5 Two simulations of a T -step VLSI chip computation by a planar circuit.

the number of crossings does not exceed r2CΩ(f)2/2 because there are at most
(
q
2

)
ways of

forming pairs drawn from a set of size q and q = rCΩ(f). Combining this with the number
of inputs and gates, we have the desired upper bound.

In Section 12.7 we show that f
(n)
cyclic nearly meets the upper bound of Lemma 12.6.1. That

is, the planar circuit size of this function is nearly quadratic in its standard circuit size.

12.6.2 Computational Inequalities
We now show that every VLSI chip computation can be simulated by planar circuits of size
O(AT 2) and O(A2T). The simulation is patterned on the simulations of Chapter 3; that is,
the loop that constitutes the computation by the chip with memory is unwound to create a
planar circuit. Instead of passing the outputs of the next-state/output circuit to binary memory
cells they are passed to another copy of the circuit.

Figure 12.5 shows two simulations of a T -step VLSI chip computation by a planar circuit.
The first is obtained by placing T copies of the chip one above the other and supplying the
state output of one copy to the state input of the next copy. The second is simulated by placing
T copies of the chip side by side and running wires from the state output of one chip to the
state input of the next. We convert each of these memoryless circuits to planar circuits and
bound the number of inputs, crossings and gates they contain. Recall that we assume that
wires are rectilinear; that is, they run only horizontally and vertically.

Since the number of wire layers on a single chip is bounded, it does not hurt to assume
that the centerlines of parallel wires on different planes are displaced slightly. (It is bad practice
to overlap wires because one wire can induce currents in the other.) Now make the width of
wires and the area of gates infinitesimal. (Wires are shrunk to their centerline.) As shown in
Fig. 12.6(a), each two-input gate is replaced by an infinitesimal vertex connected by a straight-
line to its output and the two connections from its inputs are made by wires that contain bends
(two wires touch). This converts a single chip to a planar graph with wires that touch or cross.
(See Fig. 12.6(b) and (c)).

We now bound nw, the number of wires, and ng, the number of gates on a chip of area
A. Since each wire has width λ and length at least λ and each gate occupies area λ2, nw and

588 Chapter 12 VLSI Models of Computation Models of Computation

(a) (b) (c)

Figure 12.6 (a) The result of shrinking a physical gate to a point. (b) A crossing of two wires,
and (c) four types of connection between two wires.

ng satisfy the following bounds.

nw ≤ A/λ2

ng ≤ A/λ2

Because each point of crossing or touching of wires occupies area at least λ2, the number
of points at which wires cross and touch on each of the ν layers of a chip that has area A is
at most A/λ2. As shown in Fig. 12.6(a), when gates are made infinitesimal two additional
bends are created at the point at which the output wire touches the gate. This can be viewed
as adding four wire bends per gate. Since the number of gates is at most A/λ2, we have the
following bound on ncr, the number of wire crossings and touchings.

ncr ≤ (ν + 4)A/λ2

Consider the first of the two simulations. T layers of one chip are placed one above the
other. To expose overlapping wires, displace all layers to the northeast by an infinitesimal
amount. Every pair of wires that cross or meet has the potential to introduce crossings, as
suggested in Fig. 12.7(a) and (b). The maximum number of crossings that can be introduced
per touching or crossing of wires is T 2. Since the number of input vertices is O(AT), this
provides an upper bound of O(AT 2) on the number of inputs, gates, and crossings of the
resultant planar circuit.

Now consider the second simulation. T copies of one chip are laid side-by-side and the
layout of each chip opened and at most nw parallel wires inserted to make connections to
adjacent chips. Since there are nw wire segments on a single chip, at most n2

w new wire
crossings are introduced on one chip. Thus, the number of inputs, gates, and crossings in this
layout is O(AT + n2

wT) = O(A2T).
The following theorem, which is an application of Theorem 3.1.1 to the VLSI model,

summarizes the above results. It makes use of the fact the planar circuit size of a function
f computed by a VLSI chip of the kind described above is no larger than that of the planar
circuits just constructed. This theorem demonstrates the importance of the measures AT 2 and
A2T as characterizations of the complexity of VLSI computations. It also shows that lower
bounds on the performance of VLSI chips can be obtained in terms of the planar circuit size
of the functions computed by them.

c©John E Savage 12.6 Area–Time Tradeoffs 589

T

(a)

T

(b)

T

T

Figure 12.7 Crossings obtained by translating infinitesimally to the northeast T copies of (a)
one crossing and (b) the four possible connections between two wires.

THEOREM 12.6.1 Let f
(T)
M be the function computed by a VLSI chip that realizes the FSM M

in T steps. The planar circuit size over a basis Ω = {h : X2 �→ X} of any function f computed
by M in T steps satisfies the following inequalities:

Cp,Ω0(f) = O(AT 2)
Cp,Ω0(f) = O(A2T)

If M is multilective of order μ, then Cp,Ω(f) is replaced by C
(μ)
p,Ω(f).

It is important to note that these relationships between planar circuit size and the mea-
sures AT 2 and A2T hold for all functions computed by VLSI algorithms, both multi-output
functions and predicates.

In the next section we develop the planar separator theorem that is used in the next section
to derive lower bounds on the planar circuit size of important problems.

12.6.3 The Planar Separator Theorem
The planar separator theorem applies to graphs G = (V , E) for which a non-negative cost
function c is defined on V . The cost of V , denoted, c(V), is the sum of the costs of every
vertex in V . The theorem states that the vertices of every planar graph G on N vertices can be
partitioned into three sets, A, B, and C such that no edge connects a vertex in A with one in
B, the cost of vertices in A, c(A), and those in B, c(B), satisfy c(A), c(B) ≤ 2c(V)/3 and
C contains at most 4

√
N vertices.

The following lemma uses the concept of the spanning tree of a graph, a tree that contains
every vertex of a connected graph G. It shows the existence of a cycle that divides a planar graph
into an “inside” and an “outside” containing about the same number of vertices. The radius
of a rooted spanning tree is the number of edges on the longest path from the root to a vertex.
(See Problem 12.8 for an illustration of the following lemma.)

590 Chapter 12 VLSI Models of Computation Models of Computation

LEMMA 12.6.2 Let G = (V , E) be a finite connected planar graph. Let c be a non-negative
cost function defined on V and let c(V) be the total cost of all vertices in V . If G has a rooted
spanning tree of radius r, then V can be partitioned into sets A, B, and C such that c(A), c(B) ≤
2c(V)/3, no edge joins a vertex of A with one of B, and C contains at most 2r + 1 vertices.

Proof Since the lemma is true if the cost of any vertex exceeds 1/3, assume the converse. Let
G = (V , E) be embedded in the plane. A face of a planar graph is a region bounded by
vertices and edges that does not contain any other vertices and edges. The external face of a
finite planar graph is the face of unbounded area. Since G is finite, it has an external face. A
triangular planar graph is a planar graph in which each face is a triangle. If a planar graph
is not triangular, it can be made triangular by choosing one vertex on the boundary of each
face and adding an edge between it and every other vertex on this face to which it does not
already have an edge. Without loss of generality we assume that G is triangular.

Let T be the spanning tree of radius r postulated in the lemma. Each edge e in E not
on T defines a unique cycle ξ(e) of length at most 2r + 1. The cycle divides V into three
sets, vertices on ξ(e), and vertices on each side of ξ(e). Let c1(e) and c2(e) be the cost of
vertices on either side. (The side with the larger cost is called the inside of the cycle.) We
claim that for some e not on T the larger of c1(e) and c2(e) is more than 2c(V)/3. We
suppose the larger is no more than 2c(V)/3 and establish a contradiction.

Let e = (x, y) be an edge not on T such that μ(e) = max(c1(e), c2(e)) is smallest and
for all other e∗ such that μ(e∗) = μ(e) the inside of ξ(e) has the fewest faces. In case of
ties, let e be chosen arbitrarily. We show the assumption that μ(e) > 2c(V)/3 is false.

Consider the triangle containing the edge e = (x, y) on the side of the cycle ξ(e) that
has largest cost. Let z be the third vertex in this triangle. z is on the spanning tree because
every vertex is on the tree. We consider two cases for z: (a) either edge (x, z) or (y, z) is in
T and (b) neither edge is in T .

In case (a) without loss of generality, let (y, z) be in T . There are two subcases to
consider: (a1) z is on ξ(e) (see Fig. 12.8(a)) and (a2) it is not on ξ(e) (see Fig. 12.8(b)). In
(a1) the edge e′ = (x, z) cannot be a tree edge since T contains no cycles unless the cycle
consists of just the vertices x, y, and z, which is impossible since the inside of ξ(e) contains

e

x

ee

xx

(c)(b)(a)

ξ(e) ξ(e)

z z
e′

e′

y y y

z

Figure 12.8 A non-tree edge e = (x, y) in a triangular planar graph with spanning tree T
defines a cycle ξ(e). The triangle containing e on the larger side of ξ(e) contains a third vertex
z. In (a) and (b) (y, z) is on T , whereas in (c) neither (x, z) nor (y, z) is on T . In (a) (y, z) is
on ξ(e), whereas in (b) it is not.

c©John E Savage 12.6 Area–Time Tradeoffs 591

at least one vertex. But ξ(e′) includes the same set of vertices of V inside it (and has the
same cost) as does ξ(e), although it has fewer faces, contradicting the choice for e = (x, y).

In case (a2) the edge e′ = (x, z) is a non-tree edge since T contains no cycles. The inside
of ξ(e′) contains no more cost and one less face than ξ(e). If the cost inside ξ(e′) is greater
than the cost outside, e′ would have been chosen instead of e. On the other hand, if the
cost inside ξ(e′) is at most the cost outside, since the latter is equal to the cost outside ξ(e),
which is at most c(V)/3, the cost inside ξ(e′) is at most c(V)/3. However, this contradicts
the assumption that μ(e∗) > 2c(V)/3 for all edges e∗.

Consider the case (b) in which neither edge (x, z) nor (y, z) is in T . (See Fig. 12.8(c).)
The edges (x, z) and (y, z) each define a cycle contained within ξ(e). Without loss of gen-
erality assume that the cycle defined by (x, z) has more cost on the inside of ξ(e) than does
the cycle defined by (y, z). Because the cost of vertices on the inside of the original cycle is
more than 2c(V)/3, the cost inside and on ξ((x, z)) is more than c(V)/3. Thus, the cost
outside ξ((x, z)) is less than or equal to 2c(V)/3. If the cost inside ξ((x, z)) is also less
than or equal to 2c(V)/3, we have a contradiction. If greater than 2c(V)/3, ξ((x, z)) is a
cycle with fewer faces for which μ((x, z)) > 2c(V)/3, another contradiction.

The following theorem uses Lemma 12.6.2 together with a spanning tree constructed
through a breadth-first traversal of a connected planar graph to show the existence of a small
separator that divides the vertices into approximately two equal cost parts.

THEOREM 12.6.2 Let G = (V , E) be an N -vertex planar graph having non-negative vertex
costs summing to c(V). Then, V can be partitioned into three sets, A, B, and C, such that no edge
joins vertices in A with those in B, neither A nor B has cost exceeding 2c(V)/3, and C contains
no more than 4

√
N vertices.

Proof We assume that G is connected. If not, embed it in the plane and add edges as
appropriate to make it connected. Assume that it has been triangulated, that is, every face
except for the outermost is a triangle.

Pick any vertex (call it the root) and perform a breadth-first traversal of G. This traversal
defines a BFS spanning tree T of G. A vertex v has level d in this tree if the length of the
path from the root to v has d edges. There are no vertices at level q where q is the level one
larger than that of all vertices. Let Rd be the vertices at level d and let rd = |Rd|.

The reader is asked to show that there is some level m such that the cost of vertices
at levels below and above m each is at most c(V)/2. (See Problem 12.9.) Let l and h,
l ≤ m ≤ h, be levels closest to m that contain at most

√
N vertices. That is, rl ≤

√
N and

rh ≤
√

N . There are such levels because level 0 contains a single vertex and there are none
at level q.

The vertices in G are partitioned into the following five sets: a) L =
⋃

d<l Rd, b) Rl,
c) M =

⋃
l<d<h Rd, d) Rh, and e) H =

⋃
h<d Rd. Since L and H are subsets of the

sets of vertices with levels less than and more than m, c(L), c(H) ≤ c(V)/2. Also, by
construction, rl, rh ≤

√
N . If Rl = Rh = Rm (which implies that M is empty and

l = h = m), let A = L, B = H , and C = Rl = Rh. Then, C is a separator of size at
most

√
N and the theorem holds. If l �= h, then h− l− 1 ≥ 0. Since each of the h− l− 1

levels between l and h has at least
√

N + 1 vertices, it follows that h − l − 1 ≤
√

N − 1
because these levels cannot have more than N − 1 vertices altogether.

Consider the subgraph of G consisting of the vertices in M and the edges between them.
Add a new vertex v0 to replace the vertices in L ∪ Rl and add an edge from v0 to each of

592 Chapter 12 VLSI Models of Computation Models of Computation

the vertices at level l + 1. This operation retains planarity and the resulting graph remains
triangulated because adjacent vertices on Rl+1 have an edge between them. Also, it defines a
spanning tree T ∗ consisting of v0, the new edges, and the projection of the original spanning
tree to the vertices in M . T ∗ has radius at most

√
N .

Apply Lemma 12.6.2 to T ∗ giving v0 zero cost. This lemma identifies three sets of
vertices, A0, B0 and C0, from which we delete v0 and adjacent edges. Since c(M) ≤ c(V),
it follows that there are no edges between vertices in A0 and B0, c(A0), c(B0) ≤ 2c(V)/3,
and |C0| ≤ 2

√
N . Let C = C0 ∪Rl ∪ Rh. It follows that |C| ≤ 4

√
N .

Each of the four sets A0, B0, L, and H has cost at most 2c(V)/3. If any one of them
has cost more than c(V)/3, let it be A and let B be the union of the remaining sets. If none
of them has cost more than c(V)/3 vertices, order the sets by size and let A be the union of
the fewest of these sets whose cost is at least c(V)/3 vertices. This procedure insures that A
has cost between c(V)/3 and 2c(V)/3 which implies that B satisfies the same condition as
A and the theorem is established.

The preceding version of the planar separator theorem only guarantees that the vertices of a
planar graph are divided into two sets whose costs are nearly balanced and a small separator. It
does not insure that the number of vertices in the two sets are balanced. The following lemma
remedies this situation. We leave its proof to the reader. (See Problem 12.10.)

LEMMA 12.6.3 Let G = (V , E) be an N -vertex planar graph having non-negative vertex costs
summing to c(V). Then V can be partitioned into three sets, A, B, and C, such that no edge joins
vertices in A with those in B, neither A nor B has cost exceeding 7c(V)/9, |A|, |B| ≤ 5N/6,
and C contains no more than K1

√
N vertices, where K1 = 4(

√
2/3 + 1).

This new result can be applied to show that the vertices of a planar graph can be partitioned
into many sets each having about the same cost and such that a small set of vertices can be
removed to separate each set from all other sets. This result is also left to the reader. (See
Problem 12.11.)

LEMMA 12.6.4 Let G = (V , E) be an N -vertex planar graph and let c be a non-negative cost
function on V with total cost of c(V). Let P ≥ 2. There are constants 2P/3 ≤ q ≤ 3P and
K2 = 4(

√
2/3 + 1)/(1 −

√
5/6) such that V can be partitioned into q sets, A1, A2, . . . , Aq

such that for 1 ≤ i ≤ q

c(V)/(3P) ≤ c(Ai) ≤ 3c(V)/(2P)

and there are sets Ci, |Ci| ≤ K2

√
N , and Bi = V −Ai −Ci such that no edges join vertices in

Ai with vertices in Bi.

12.7 The Performance of VLSI Algorithms
Using Theorem 12.6.1 and Lemma 12.6.4, we now derive lower bounds on AT 2 and A2T
for individual functions by deriving lower bounds on their planar circuit size. In the following
section we derive lower bounds to the planar circuit size for multi-output functions using the
w(u, v)-flow property of these functions. In Section 12.7.2 we set the stage for deriving lower
bounds on the planar circuit size of predicates.

c©John E Savage 12.7 The Performance of VLSI Algorithms 593

12.7.1 The Performance of VLSI Algorithms on Functions
The w(u, v)-flow property of functions is introduced in Section 10.4.1 and applied to the
study of space–time tradeoffs in the pebble game. In this section we use this property to derive
lower bounds on the semellective planar circuit size of multi-output functions.

DEFINITION 12.7.1 A function f : Xn �→ Xm has a w(u, v)-flow if for all subsets U1 and
V1 of its n input and m output variables with |U1| ≥ u and |V1| ≥ v there is some assignment
to variables not in U1 (variables in U0) such that the resulting subfunction h of f that maps input
variables in U1 to output variables in V1 (the other outputs are discarded) has at least |X|w(u,v)

points in the image of its domain. (Note that w(u, v) ≥ 0.)

A lower bound on planar circuit size of a function f is now derived from its w(u, v)-flow
property. For some functions the parameter P will need to be large for w(u, v) > 0, as is seen
Lemma 12.7.1.

THEOREM 12.7.1 Let f : Xn �→ Xm have a w(u, v)-flow. Then its semellective planar circuit
size must satisfy the following lower bound for u ≥ n(1 − 3/2P), v ≥ m/(3P), and P ≥ 2,
where K2 = 4(

√
2/3 + 1)/(1 −

√
5/6).

Cp,Ω(f) ≥ w2(u, v)
4K2

2

Proof Consider a minimal semellective planar circuit for f : Xn �→ Xm on n inputs con-
taining N = Cp,Ω(f) inputs, gates, and crossings. We apply the version of the planar sepa-
rator theorem given in Lemma 12.6.4 to this circuit by assigning unit weight to each input
vertex and zero weight to all other vertices. For any integer P ≤ |V | we conclude that the
inputs, gates, and crossings of this circuit can be partitioned into q sets {A1, A2, . . . , Aq},
for 2P/3 ≤ q ≤ 3P , such that each set has at least n/(3P) and at most 3n/(2P) input
vertices. Since the average number of output vertices in these sets is m/q, at least one set,
call it A1, has at least the average of output vertices or at least m/3P vertices. Let U0 and
V1 be the sets of inputs and outputs in A1, respectively. Then, n/(3P) ≤ |U0| ≤ 3n/(2P)
and |V1| ≥ m/3P .

For some assignment of values to variables in U0, there are at least |X|w(u,v) values for
the outputs in V1 when u = n − |U0| ≥ n(1 − 3/2P) and v = |V1| ≥ m/(3P). But
all of the values assumed by the outputs in V1 must be assumed by the inputs, gates, and
crossing wires of the separator. Since at most two wires cross, a separator C of size |C| has
at most 2|C| inputs, gates, and wires each of which can have at most |X| values. Thus,
if C1, the separator for A1, has a size satisfying 2|C1| < w(u, v), a contradiction results
and the output variables in V1 cannot assume |X|w(u,v) values. It follows that |C1| ≥
w(u, v)/2. Since C1 ≤ K2

√
N , this implies that N ≥ w2(u, v)/(2K2)2, the desired

conclusion.

We apply this general result to (α, n, m, p)-independent functions and matrix multiplica-
tion. A function is (α, n, m, p)-independent (see Definition 10.4.2) if it has a w(u, v)-flow
satisfying w(u, v) > (v/α)− 1 for n − u + v ≤ p, where n− u ≥ 0.

594 Chapter 12 VLSI Models of Computation Models of Computation

LEMMA 12.7.1 Let f : Xn �→ Xm be (α, n, m, p)-independent. Then for P ≥ (m/3 +
3n/2)/p and m ≥ 2α, f has semellective planar circuit size satisfying the following lower bound:

Cp,Ω(f) ≥ m2

144(αP)2K2
2

Proof f has a w(u, v)-flow satisfying w(u, v) > (v/α) − 1 for n − u + v ≤ p. When
u ≥ n(1 − 3/2P), n − u + v ≤ p is satisfied if v ≤ p − 3n/(2P). Since we also require
that v ≥ m/(3P), this implies that P ≥ (m/3 + 3n/2)/p. Also, v/α − 1 ≥ v/2α if
v ≥ 2α. Substituting m/3P for v, we have the desired conclusion.

In Section 10.5 we have shown that many functions are (α, n, m, p)-independent. We
summarize these results below.

Name Function Independence Property

Wrapped convolution f
(n)
wrapped : R2n �→ Rn (2, 2n, n, n/2)

Cyclic shift f
(n)
cyclic : Bn+�log n� �→ Bn (2, n + �log n�, n, n/2)

Integer multiplication f
(n)
mult : B2n �→ B2n (2, 2n, n, n/2)

n-point DFT Fn : Rn �→ Rn (2, n, n, n/2)

It follows that for each case Lemma 12.7.1 holds when P ≤ m/(6α). Thus, each of the
(α, n, m, p)-independent function has a planar circuit size that is quadratic in n, its number
of inputs. The following theorem results from this observation and Theorem 12.6.1.

THEOREM 12.7.2 The area A and time T required to compute f
(n)
wrapped : R2n �→ Rn,

f
(n)
cyclic : Bn+�log n� �→ Bn, f

(n)
mult : B2n �→ B2n, and Fn : Rn �→ Rn on a semellec-

tive VLSI chip satisfy the following bounds:

AT 2, A2T = Ω(n2)

The AT 2 lower bound can be achieved up to a constant multiplicative factor for each of these
functions for Ω(log n) ≤ T ≤ √

n.

Proof From Theorem 12.5.1 we know that any fully normal algorithm can achieve the
AT 2 = O(n2) for Ω(log n) = T = O(

√
n) on an embedded CCC network. Since cyclic

shift and FFT are shown to be fully normal (see Section 7.7), we have matching upper and
lower bounds for them. From Problem 12.13 we have that the wrapped convolution can
be realized with matching bounds on AT 2 over the same range of values for T . The same
statement applies to integer multiplication (see Problem 12.16).

In Section 12.6.1 we said that we would exhibit a function whose planar circuit size is
nearly quadratic in its standard circuit size. This property holds for the cyclic shifting function

because, as shown in Section 2.5.2, f
(n)
cyclic : Bn+�log n� �→ Bn has circuit size no larger than

O(n log n), whereas from the above its planar circuit size is Θ(n2).
The cyclic shift function is also an example of a function for which most of the chip area

is occupied by wires when T = O(
√

n/ log n), because in this case the area is Ω(n log n) but
the number of gates needed to realize it is O(n log n).

c©John E Savage 12.7 The Performance of VLSI Algorithms 595

Lower bounds on AT 2 and A2T also exist for matrix multiplication. From Lemma 10.5.3

we know that the matrix multiplication function f
(n)
A×B : R2n2 �→ Rn2

has a w(u, v)-flow,
where w(u, v) ≥ (v− (2n2 − u)2/4n2)/2. Using this we have the following lower bound on
the planar circuit size of this function.

THEOREM 12.7.3 The area A and time T required to compute the matrix multiplication function

f
(n)
A×B : R2n2 �→ Rn2

with a semellective VLSI algorithm satisfies the following lower bound:

AT 2, A2T = Ω(n4)

The AT 2 lower bound can be met to within a constant multiplicative factor.

Proof Apply Theorem 12.7.1 to matrix multiplication by replacing the number of input
variables n by 2n2 and the number of output variables m by n2. The w(u, v)-flow function
has value

w(u, v) = (v − (2n2 − u)2/4n2)/2 ≥ n2

2

(
1

3P
−
(

3
2P

)2
)

The right-hand side is maximized when P = 14 and has value greater than n2/163, from
which the conclusion follows.

As shown in Section 7.5.3, two n×n matrix can be multiplied with area A = O(n2) and
time T = n, which meets the lower bound up to a multiplicative factor. Other near-optimal
solutions also exist. (See Problem 12.15.)

12.7.2 The Performance of VLSI Algorithms on Predicates
The approach taken above can be extended to predicates, functions whose range is B. Again
we derive lower bounds on the size of the smallest planar circuit for a function. However, since
the flow of information from inputs to outputs is at most one bit, we must find some other
way to measure the amount of information that must be exchanged between the two halves
of a planar circuit. An extension of the communication complexity measure introduced in
Section 9.7.1 serves this purpose.

The communication complexity measure of Section 9.7.1 assumes that two players ex-
change bits to compute the value of a Boolean function f : Bn �→ B. The input variables
of f are partitioned into two sets U and V and assigned to two players. Given this partition,
the players choose a protocol (a scheme for alternating the transmission of bits from one to
the other) by which to decide the value of f for every input n-tuple of f . The bits of each
n-tuple are partitioned between the two players according to the division of the n input vari-
ables between the sets U and V . The players then use their protocol to determine the value of
f . The communication complexity C(U , V) of this game is the minimum over protocols of
the maximum over input n-tuples of the number of bits exchanged by the players to compute
f given the partition of the input variables into sets U and V . This measure and its associated
game are naturally extended to predicates f : Xn �→ B, whose variables assume values over
the set X . Players now exchange values drawn from the set X .

We can derive a lower bound on planar circuit size by applying the planar separator theo-
rem. Since this theorem partitions the input variables into three sets, A, B, and a separator C,
where A and B contain at most two-thirds of the total number of input vertices, it is natural

596 Chapter 12 VLSI Models of Computation Models of Computation

to extend the standard communication complexity measure to the following VLSI communi-
cation complexity measure for functions f : Xn �→ B.

DEFINITION 12.7.2 The VLSI communication complexity of a predicate f : Xn �→ B,
CCvlsi(f), is the minimum of the communication complexity C(U , V) over all partitions (U , V)
of the variables of f into two sets of size at most 2n/3.

The following theorem, which is left as an exercise (see Problem 12.17), summarizes the
result of applying the VLSI communication complexity measure CCvlsi(f) together with the
planar separator theorem to derive a lower bound on the semellective planar circuit size of
predicates.

THEOREM 12.7.4 Let f : Xn �→ B have VLSI communication complexity CCvlsi(f). Then,
the following bounds hold for the computation of f by a semellective VLSI chip with area A in T
steps.

(CCvlsi(f))2 = O(AT 2), O(A2T)

Note that in a planar circuit all the information passed from each side of the separator
to the other is sent simultaneously, whereas in the communication game players alternate in
sending values drawn from the set X . Because more freedom is granted to players in the com-
munication game (each player can choose data to send based on responses previously received
from the other player), a lower bound on communication complexity is a lower bound on the
amount of information that must be exchange in a planar circuit.

A number of techniques have been developed to derive lower bounds on the planar circuit
size of predicates. One of these uses the pigeonhole principle (also known as a crossing-
sequence argument) to derive lower bounds for predicates that are w(u, v)-separated. This
new property is similar to the w(u, v)-flow property of multi-output functions. It is defined
below.

DEFINITION 12.7.3 A function f : Xn �→ B is w(u, v)-separated if its variables can be per-
muted and partitioned into three sets U , V , and Z, |U | ≥ u and |V | ≥ v, such that there is some
value z for variables in Z and values ui and vi, 1 ≤ i ≤ |X|w(u,v), for variables in U and V ,
respectively, such that the following holds:

f(ui, vj , z) =

{
1 if i = j

0 otherwise

This definition can be applied to predicates that are associated with multi-output functions.
These functions are defined below.

DEFINITION 12.7.4 The characteristic predicate pf : X(n+m) �→ B of f : X(n) �→ X(m) is
defined below.

pf (x, y) =

{
1 if y = f(x)
0 otherwise

It is straightforward to show that the characteristic predicate of a function that has a
w(u, v)-flow is w(u, v)-separated. (See Problem 12.18.) As a consequence, quadratic lower

c©John E Savage 12.8 Area Bounds 597

bounds exist on the semellective planar circuit size of the characteristic predicates of the con-
volution, cyclic shift, integer multiplication, discrete Fourier transform, matrix multiplication
functions, and many others.

12.8 Area Bounds
We now derive lower bounds on the area used by semellective VLSI chip algorithms for a
variety of functions. For the functions considered here, these bounds are linear in their number
of variables. As explained in the Chapter Notes, not all functions are amenable to the type of
analysis presented in this section.

The technique used to derive area lower bounds is similar to that used in Section 10.4.2
to derive lower bounds on the exchange of space for time in the pebble game. If a chip has
many I/O ports, it has large area. On the other hand, if it has a small number of ports, the
inputs to the function computed are received over many cycles. If the function has a large
w(u, v)-flow, by direct analogy with the pebble game, the area must be large to insure that
enough information be stored between cycles.

THEOREM 12.8.1 Let β ≥ 1. If f : Xn �→ Xm has a w(u, v)-flow, every chip computing f
requires area A = Ω(min((m/2β), w(u, v))), where u = n(1 − 1/β) and v = (m/4β).

Proof If the chip has π I/O pads or can store S values over the alphabet X , it has area
A ≥ λ2 min(π, S). Fix β ≥ 1. Its value is chosen later to provide a strong lower bound. If
π ≥ m/2β, we are done. Thus, we show that S ≥ w(u, v) when π < m/2β.

Let the VLSI algorithm have T time steps and let hi ≤ π outputs be generated on the
ith time step, 1 ≤ i ≤ T . Create q intervals of consecutive time steps as follows: The first
interval contains the first k1 time steps, where k1 is such that the total number of outputs
produced during the first k1 steps is as large as possible without exceeding m/β. Successive
intervals are created in the same way, namely by grouping consecutive later time steps to
satisfy the same requirement on the number of outputs produced. For all intervals except
possibly the last, the number of outputs produced is at least (m/β) − π + 1 > (m/2β).
If the last interval contains fewer than (m/2β) outputs, redistribute the elements in the last
two intervals, of which there are at least (m/β)− π + 2 ≥ (m/2β) + 2, so that each has at
least (m/4β) + 1 outputs. It follows that the number of intervals, q, satisfies β ≤ q ≤ 4β.

We now examine the inputs read during intervals. Since there are n inputs to be read
and each is read once, the average number read per interval is n/q which is at most n/β. It
follows that there is some interval I in which at least (m/4β) + 1 outputs are pebbled and
at most n/β inputs are read.

Fix the inputs that are read during I . The remaining inputs, of which there are at least
u = n(1 − 1/β), are free to vary. The number of outputs produced during I is at least
v = (m/4β). Since f has a w(u, v)-flow, if S < w(u, v), the v outputs, whose values are
determined by the values stored on the chip at the beginning of I , cannot assume all their
values. It follows that S ≥ w(u, v), which is the desired conclusion.

We now apply this bound to (α, n, m, p)-independent functions. Later we apply it to the
matrix multiplication function.

THEOREM 12.8.2 Let f : Xn �→ Xm be (α, n, m, p)-independent. It requires area A =
λ2((mp/(n + m/4)α)− 1) when realized by a semellective VLSI algorithm.

598 Chapter 12 VLSI Models of Computation Models of Computation

Proof We apply Theorem 12.8.1 with u = n(1 − 1/β) and v = (m/4β). Because f is
(α, n, m, p) independent, w(u, v) > v/α− 1 for n− u + v ≤ p. Since n− u = n/β and
v = (m/4β), this implies that β ≥ (n + m/4)/p. The lower bound of Theorem 12.8.1
then is the smaller of (m/2β) and (m/4αβ)− 1. Since we are free to choose β, we choose
it to make the smaller of the two as large as possible. In particular, we set β = (n+m/4)/p,
which provides the desired result.

Because all of the (α, n, m, p)-independent functions listed in Theorem 12.7.2 have n,
m, and p proportional to one another, each requires area A = Ω(n), as stated below. It
follows that the lower bound AT 2 = Ω(n2) for these problems cannot be achieved to within
a constant multiplicative factor if T grows more rapidly with n than

√
n.

COROLLARY 12.8.1 The functions f
(n)
wrapped : R2n �→ Rn, f

(n)
cyclic : Bn+�log n� �→ Bn,

f
(n)
mult : B2n �→ B2n, and Fn : Rn �→ Rn each require area A = Ω(n) when realized by a

semellective VLSI algorithm.

A similar result applies to matrix multiplication.

THEOREM 12.8.3 The area A required to compute the matrix multiplication function f
(n)
A×B :

R2n2 �→ Rn2
with a semellective VLSI algorithm satisfies A = Ω(n2)

Proof We apply Theorem 12.8.1 with n and m replaced by 2n2 and n2, respectively. Since
u = 2n2(1 − 1/β) and v = (n2/4β), the lower bound on w(u, v)-flow for matrix multi-
plication function satisfies the following

w(u, v) = (v − (2n2 − u)2/4n2)/2 ≥ n2

2

(
1

4β
− 1

β2

)
The lower bound is a positive multiple of n2 if β > 4 and largest for β = 8, from which
the desired conclusion follows.

. .
Problems
VLSI COMPUTATIONAL MODELS

12.1 Assume the I/O ports are on the periphery of a convex chip. In the speed-of-light model
show that if p such ports all have paths to some point on the chip, then the time for
data supplied to each port to reach that point is Θ(p).

12.2 Under the assumptions of Problem 12.1, derive a lower bound on the time to compute
a function f on n inputs under the additional assumption that there is a path on the
chip from the port at which each variable arrives to the port at which f is produced.

Hint: Show that the time required is at least the sum of the number of cycles needed
to read all n inputs and the time for data to travel across the chip. State these times in
terms of p and choose p to maximize the smaller of these two lower bounds.

c©John E Savage Problems 599

CHIP LAYOUT

12.3 Show that every layout of a balanced binary tree on n leaves in which the root and the
leaves are placed on the boundary of a convex region has area proportional to n log n.

Hint: Consider an inscribed quadrilateral defined by the longest chord and a chord
perpendicular to it.

12.4 The n × n mesh-of-trees network, n = 2r, is described in Problem 7.4. Give an area-
efficient layout for an arbitrary graph in this family of graphs and derive an expression
for its area.

12.5 Let n = 2k. As suggested in Fig. 12.9, the n × n tree of meshes Tn is a binary tree
in which each vertex is a mesh and the meshes are decreasing in size with distance from
the root. The edges between vertices are bundles of parallel wires. The root vertex is
an n × n mesh, its immediate descendants are n/2 × n meshes, and their immediate
descendants are n/2 × n/2 descendants, and so on.
The depth-d, n × n mesh of trees, Tn,d, is Tn that has been truncated to vertices at
distance d or less from the root.
Determine the area of an area-efficient layout of the tree Tn,d.

COMPUTATIONAL INEQUALITIES

12.6 Use the results of Problem 12.11 to extend Theorem 12.7.1 to multilective planar
circuits of order μ.

12.7 Further extend the results of Problem 12.6 to (β, μ)-multilective VLSI algorithms by
showing that, at the expense of a small increase in AT 2 and A2T , multiple inputs of a
variable at the same I/O port can be treated as a single input, thereby possibly reducing
the multilective order of the corresponding planar circuit. This implies that if multiple
copies of each variable are read at a single port, then the semellective planar circuit size
is a lower bound to both AT 2 and A2T .

Figure 12.9 The 4 × 4 tree of meshes, T4.

600 Chapter 12 VLSI Models of Computation Models of Computation

THE PLANAR SEPARATOR THEOREM

12.8 The pizza pie graph G = (V , E) has n = |V | − 1 vertices that are uniformly spaced
points on a circle as well as a vertex at the center of the circle. E consists of the arcs
between vertices on the circle and edges between the central vertex and vertices on the
circle.

When n = 12, triangulate G by adding edges between vertices on its external face.
Illustrate Lemma 12.6.2 by choosing a cost function c and constructing two sets whose
cost at most 2 c(V)/3 and a separator containing at most three vertices.

12.9 In a spanning tree for a graph G = (V , E) the level of a vertex is the length of the path
from the root to it. Given a non-negative cost function on the vertices of G totaling
c(V), show there is some level m such that the cost of vertices at levels less than and
more than m each is at most c(V)/2.

12.10 (Two-Cost Planar Separator Theorem) Let G = (V , E) be an N -vertex planar graph
having non-negative vertex costs summing to c(V). Show that V can be partitioned
into three sets, A, B, and C, such that no edge joins vertices in A with those in B,
neither A nor B has cost exceeding 7c(V)/9, |A| and |B| contain at most 5N/6
vertices, and C contains no more than K1

√
N vertices, where K1 = 4(

√
2/3 + 1).

Hint: Apply the planar separator theorem twice. The first time use it to partition V
into two sets of about the same size and a separator. If each of the two sets has cost
at most 2c(V)/3, the result holds. If not, make a second application of the planar
separator theorem to the set with larger cost. Show that it is possible to combine sets to
simultaneously meet both the size and cost requirements.

12.11 Let G = (V , E) be an N -vertex planar graph and let c be a non-negative cost function
on V with total cost c(V). Let P ≥ 2. Show there are constants 2P/3 ≤ q ≤ 3P and
K2 = 4(

√
2/3 + 1)/(1 −

√
5/6) such that V can be partitioned into q sets, A1, A2,

. . . , Aq such that for 1 ≤ i ≤ q

c(V)/(3P) ≤ c(Ai) ≤ 3c(V)/(2P)

and there are sets Ci, |Ci| ≤ K2

√
N , and Bi = V −Ai −Ci such that no edges join

vertices in Ai with vertices in Bi.
Hint: When P = 2, use the result of Problem 12.10 and combine the vertices of the
separator with the other two sets to satisfy the necessary conditions. When P > 2,
subdivide any set with cost exceeding c(V)/P into two sets and a separator using the
two-cost planar separator theorem. Assign vertices of the separator to these two sets to
keep the cost in balance.

THE PERFORMANCE OF VLSI ALGORITHMS

12.12 Show that the function defined by the product of three square matrices has a semel-
lective planar circuit size that is quadratic in its number of variables and that it can be
realized by a VLSI chip with AT 2 that meets the semellective planar circuit size lower
bound.

12.13 Show that the wrapped convolution function f
(n)
wrapped : R2n �→ Rn, can be realized

as an embedded CCC network on a VLSI circuit with area A and time T satisfying
AT 2 = Θ(n2) for Ω(log n) ≤ T ≤

√
n.

c©John E Savage Chapter Notes 601

12.14 Design a VLSI chip for n×n matrix multiplication that achieves AT 2 = n4 log2 n for
T = O(log n).
Hint: Represent each matrix as a 2 × 2 matrix of (n/2)× (n/2) matrices and use the
standard algorithm that performs eight multiplications of (n/2) × (n/2) matrices. A
multiplier has one side longer than the other. Place the long side of the (n/2)× (n/2)
matrix multiplier at right angles to the long side of the n × n matrix multiplier. Apply
this rule to the recursive construction of the multiplier.

12.15 Show that an algorithm of the kind described in Problem 12.14 can be combined with
a mesh-based matrix multiplication algorithm of the kind described in Section 7.5.3 to
produce a family of algorithms that achieve the lower bound on n×n matrix multipli-
cation for Ω(log n) ≤ T ≤ n.

12.16 Devise a VLSI chip for n-bit integer multiplication function chip that uses area A and
time T efficiently.

Hint: Let x and y denote binary numbers. Recursively form the product of these
integers as the sum of two products, that of x with the high-order (n/2) bits of y and
that of x with the low-order (n/2) bits of y. Use carry-save addition where possible.

12.17 Give a proof of Theorem 12.7.4.

12.18 Show that the characteristic predicate of a function that has a w(u, v)-flow is w(u, v)-
separated.

AREA BOUNDS

12.19 Show that any VLSI algorithm that realizes a superconcentrator on n inputs requires
area Θ(n).

Chapter Notes
Mead and Conway wrote an influential book [213] that greatly simplified the design rules for
VLSI chips and made VLSI design accessible to a large audience. Ullman [339] summarized
the status of the field around 1984 and Lengauer [193] addressed the VLSI layout problem.
Lengauer has also written a survey paper [194] that provides an overview of the theory of VLSI
algorithms as of about 1990. The three transmission models described in Section 12.2 reflect
the analysis of Zhou, Preparata, and Khang [372].

Thompson [326] obtained the first important tradeoff results for the VLSI model of com-
putation. He demonstrated that under a suitable model a lower bound of AT 2 = Ω(n2)
could be derived for the discrete Fourier transform, a result he subsequently extended to sort-
ing [327]. Generalizations of this model were made to convex chips [59], compact plane
regions [195], and other closely related models [202]. Vuillemin [355] extended the models
to include pipelining. Chazelle and Monier [67] introduced the transmission-line model de-
scribed in Problems 12.1 and 12.2. For a discussion of other models that take into account the
effects of distributed resistance, capacitance and inductance, see [40] and [372].

Systolic algorithms, which make good use of area and time, were popularized by Kung
[177] and others (see, for example, [104,122,179,180,181,190]). The H-tree featured in Sec-
tion 12.5.1 is due to Mead and Rem [214]. Prefix computations are discussed in Chapter 2.
The cube-connected cycles network (its layout is given in Section 12.5.3) and the efficient

602 Chapter 12 VLSI Models of Computation Models of Computation

realization of normal algorithms are due to Preparata and Vuillemin [262], as explained in
Chapter 7. Lengauer [193] provides an in-depth treatment of algorithms for VLSI chip lay-
out.

Most authors prefer to derive lower bounds on AT 2 by partitioning the planar region oc-
cupied by chips [59,195,326]. In effect, they employ a physical version of the planar separator
theorem. The characterization of VLSI lower bounds in terms of planar circuit complexity in-
troduced by Savage [288] reinforces the connection between memoryless and memory-based
computation explored in Chapter 3 but for planar computations by VLSI chips. It also pro-
vides an opportunity to introduce the elegant planar separator theorem of Lipton and Tarjan
[203]. Lipton and Tarjan [204] developed quadratic lower bounds on the planar circuit size of
shifting and matrix multiplication before the connection was established between VLSI com-
plexity and planar circuit size. Improving upon results of [288], McColl [209] and McColl and
Paterson [210] show that almost all Boolean functions on n variables require a planar circuit
size of Ω(2n) and that this lower bound can be achieved for all functions to within a constant
multiplicative factor close to 1. Turán [336] has shown that the upper bound of Lemma 12.6.1
is tight by exhibiting a family of functions of linear standard circuit size whose planar circuit
size is quadratic.

Abelson [1] and Yao [366] studied communication complexity with fixed partitions. Yao
[367] and Lipton and Sedgewick [202] made explicit the implicit connection between VLSI
communication complexity and the derivation of the AT 2 lower bounds. (See also [236],
[12], and [194] for a discussion of the conditions under which lower bounds can be derived
on the VLSI communication complexity measure.)

Many authors have contributed to the derivation of semellective lower bounds for partic-
ular functions. Among these are Thompson [326,327,328,329], who obtained bounds of the
form AT 2 = Ω(n2) for the DFT and sorting, as did Abelson and Andreae [3] and Brent
and Kung [59] for integer multiplication, JáJá and Kumar [149] for a variety of problems, Bi-
lardi and Preparata [41] for sorting, Savage for matrix multiplication, inversion, and transitive
closure [289] and binary integer powers and reciprocals [288], and Vuillemin for transitive
functions [355] (see Problem 10.22). These authors generally show that the lower bounds for
functions can be met either to within a small multiplicative constant factor.

Good VLSI designs have been given by Baudet, Preparata, and Vuillemin [31] for con-
volution, Guibas and Liang [123] for systolic stacks, queues, and counters, and Kung and
Song [183] and Kung, Ruane, and Yen [182] on 2D convolution. Also, Luk and Vuillemin
[207] give an optimal VLSI integer multiplier and Mehlhorn has provided optimal algorithms
for integer division and square rooting [217] whose range of optimality has been extended
by Mehlhorn and Preparata [219]. Preparata [258] has given a mesh-based optimal VLSI
multiplier for large integers and Preparata and Vuillemin have given optimal algorithms for
multiplying square [260] and triangular matrices [261]. C. Savage [284] has given a systolic
algorithm for graph connectivity.

Lower bounds for the semellective computation of predicates by VLSI algorithms have
been derived by Yao [367] for graph isomorphism, by Lipton and Sedgewick [202] for the
recognition of context-free languages, pattern matching, and binary integer factorization test-
ing, and by Savage [288] for the characteristic predicates of multi-output functions.

Hochschild [134], Kedem and Zorat [163,164], Savage [290,291], and Turán [337] have
developed lower bounds on performance of multilective VLSI algorithms. Savage has explored
multilective planar circuit size [291], giving a multi-output function with a Ω(n4/3) lower

c©John E Savage Chapter Notes 603

bound. Turán [337] exhibits a function and a predicate with Ω(n3/2 log n) and Ω(n log n)
lower bounds to their multilective planar circuit size, respectively. The w(u, v)-flow and
w(u, v)-separated properties used in Section 12.7 were introduced in [291].

Lower bounds on the area of chips have been explored by a number of authors. Yao [367]
examined addition; Baudet [30] studied functions that do not have a large information flow;
Heintz [131] derived bounds for matrix-matrix multiplication; Leighton [191] introduced and
used the crossing number of a graph to derive area bounds; Siegel [309] derived bounds for
sorting; and Savage [288] examined functions with many subfunctions. Bilardi and Preparata
[42] have generalized arguments of [30] and [152] to derive stronger area–time lower bounds
for functions, such as prefix, for which the information flow arguments give weak results.
Lower bounds on the area of multilective chips were obtained by Savage [291], Hromkovič
[142,143], and Ďuriš and Galil [93].

Models for 3D VLSI chips, which are not yet a reality, have been introduced by Rosenberg
[282,283] and studied by Preparata [263].

Bibliography

[1] H. Abelson, “Lower Bounds on Information Transfer in Distributed Computations,” 19th Ann.
IEEE Symp. Foundations of Computer Science (1978), 151–158.

[2] H. Abelson, “A Note on Time-Space Tradeoffs for Computing Continuous Functions,” Inf. Proc.
Letters 8 (1979), 215–217.

[3] H. Abelson and P. Andreae, “Information Transfer and Area-Time Tradeoffs for VLSI Multiplica-
tion,” Comm. ACM 23 (1980), 20–23.

[4] K. Abrahamson, “Time-Space Tradeoffs for Branching Programs Contrasted with Those for Straight-
Line Programs,” Proc. 27th Ann. IEEE Symp. Foundations of Computer Science (1986), 402–409.

[5] K. Abrahamson, “A Time-Space Tradeoff for Boolean Matrix Multiplication,” Proc. 31st Ann.
IEEE Symp. Foundations of Computer Science (1990), 412–419.

[6] K. Abrahamson, “Time-Space Tradeoffs for Algebraic Problems on General Sequential Machines,”
J. Comp. Systems Sci. 43 (1991), 269–289.

[7] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir, “A Model for Hierarchical Memory,” Proc. 19th
Ann. ACM Symp. Theory of Computing (1987), 305–314.

[8] A. Aggarwal, A. Chandra, and M. Snir, “Hierarchical Memory with Block Transfer,” Proc. 28th
Ann. IEEE Symp. Foundations of Computer Science (1987), 204–216.

[9] A. Aggarwal and J. S. Vitter, “The Input/Output Complexity of Sorting and Related Problems,”
Comm. ACM 31 (1988), 1116–1127.

[10] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[11] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools, Addison-
Wesley, Reading, MA, 1986.

[12] A. V. Aho, J. D. Ullman, and M. Yannakakis, “On Notions of Information Transfer in VLSI
Circuits,” 15th Ann. ACM Symp. Theory of Computing (1983), 133–139.

[13] M. Ajtai, “Σ1
1-Formulae on Finite Structures,” Ann. Pure and Applied Logic 24 (1983), 1–48.

605

606 Bibliography Models of Computation

[14] M. Ajtai, J. Komlós, and E. Szemerédi, “Sorting in c log n Parallel Steps,” Combinatorica 3 (1983),
1–19.

[15] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans. Computers C-27 (1978), 509–516.

[16] S. G. Akl, Parallel Computation: Models and Methods, Prentice-Hall, Inc., Upper Saddle River,
NJ, 1997.

[17] N. Alon and R. B. Bopanna, “The Monotone Circuit Complexity of Boolean Functions,” Combi-
natorica 7 (1987), 1–22.

[18] B. Alpern, L. Carter, and E. Feig, “Uniform Memory Hierarchies,” Proc. 31st Ann. IEEE Symp.
Foundations of Computer Science (1990), 600–608.

[19] H. Alt, T. Hagerup, K. Mehlhorn, and F. P. Preparata, “Deterministic Simulation of Idealized
Parallel Computers on More Realistic Ones ,” SIAM J. Computing 16 (1987).

[20] K. Amano and A. Maruoka, “Potential of the Approximation Method,” Proc. 37th Ann. IEEE
Symp. Foundations of Computer Science (1996), 431–440.

[21] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale Computing
Capabilities,” AFIPS JCC 30 (1967), 483–485.

[22] A. E. Andreev, “On a Method for Obtaining Lower Bounds for the Complexity of Individual
Monotone Functions,” Dokl. Akad. Nauk SSSR (Soviet Math. Dokl.) 282 (1985), 1033–1037.

[23] A. E. Andreev, “A Family of Boolean Matrices,” Vestnik Moskov. Univ. Mat. 41 (1986), 97–100,
(in Russian); English translation in Moscow University Math. Bull. 41 (2) (1986), 79–82.

[24] A. E. Andreev, “On a Method for Obtaining More Than Quadratic Effective Lower Bounds for
the Complexity of π-Schemes,” Vestnik Moskov Univ. Math. 42 (1987), 63–66.

[25] S. Axler, Linear Algebra Done Right, Springer, Berlin, Heidelberg, and New York, 1996.

[26] J. Backus, “Can Programming Be Liberated from the von Neumann Style? A Function Style and
Its Algebra of Programs,” Comm. ACM 21 (1978), 613–641.

[27] J. L. Balcázar, J. Dı́az, and J. Gabarrò, Structural Complexity I , Springer-Verlag, Berlin, Heidel-
berg, and New York, 1995.

[28] V. Bar-Hillel, M. Perles, and E. Shamir, “On Formal Properties of Simple Phrase-Structure Gram-
mars,” Zeitschr. Phonetik, Sprachwissenschaft und Kommunikationsforschung 14 (1961), 143–
172.

[29] K. E. Batcher, “Sorting Networks and Their Applications,” Proc. AFIPS SJCC 32 (1968), 307–
314.

[30] G. M. Baudet, “On the Area Required by VLSI Circuits,” in VLSI Systems and Computations, H.
T. Kung, B. Sproull, and G. Steele, eds., Computer Science Press, Rockville, MD, 1981, 100–107.

[31] G. M. Baudet, F. P. Preparata, and J. E. Vuillemin, “Area-Time Optimal VLSI Circuits for Convo-
lution,” IEEE Trans. on Computers C-32 (July 1983), 684–688.

[32] R. Beals, T. Nishino, and K. Tanaka, “More on the Complexity of Negation-Limited Circuits,”
Proc. 27th Ann. ACM Symp. Theory of Computing (1995), 585–595.

[33] P. W. Beame, S. A. Cook, and H. J. Hoover, “Log Depth Circuits for Division and Related Prob-
lems,” SIAM J. Comput. 15 (1986), 994–1003.

[34] P. Beame, “A General Sequential Time-Space Tradeoff for Finding Unique Elements,” Proc. 21st
Ann. ACM Symp. Theory of Computing (1989), 197–203.

[35] L. Belady, “A Study of Replacement Algorithms for a Virtual-Store Computer,” IBM Systems J. 5
(1966), 78–101.

c©John E Savage Bibliography 607

[36] V. E. Beneš, “Permutation Groups, Complexes, and Rearrangeable Multistage Connecting Net-
works,” Bell Syst. Techn. J. 43 (1964), 1619–1640.

[37] S. Berkowitz, “On Some Relationships Between Monotone and Non-monotone Circuit Complex-
ity,” University of Toronto, Technical Report, 1982.

[38] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

[39] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, and P. Spirakis, “BSP vs. LogP,” Proc. 8th
Ann. ACM Symp. Parallel Algorithms and Architectures (1996), 25–32.

[40] G. Bilardi, M. Pracchi, and F. P. Preparata, “A Critique of Network Speed in VLSI Models of
Computation,” IEEE J. Solid-State Circuits SC-17 (1982), 696–702.

[41] G. Bilardi and F. P. Preparata, “Area-Time Lower-Bound Techniques with Applications to Sorting,”
Algorithmica 1 (1986), 65–91.

[42] G. Bilardi and F. P. Preparata, “Size-Time Complexity of Boolean Networks for Prefix Computa-
tions,” JACM 36 (1989), 362–382.

[43] G. Bilardi and F. P. Preparata, “Horizons of Parallel Computation,” J. Parallel and Distributed
Computing 27 (1995), 172–182.

[44] D. Bini and V. Y. Pan, Polynomial and Matrix Computations, Birkhauser, Boston, 1994.

[45] G. E. Blelloch, Vector Models for Data-Parallel Computing, MIT Press, Cambridge, MA, 1990.

[46] M. Blum, “A Machine-Independent Theory of the Complexity of Recursive Functions,” JACM 14
(1967), 322–336.

[47] M. Blum, “On Effective Procedures for Speeding Up Algorithms,” JACM 18 (1971), 290–305.

[48] N. Blum, “A Boolean Function Requiring 3n Network Size,” Theoret. Comp. Sci. 28 (1984),
337–345.

[49] R. B. Bopanna, “Amplification of Probabilistic Boolean Functions,” in Advances in Computer
Research, Vol. 5: Randomness and Computation, S. Micali, ed., JAI Press, Greenwich, CT, 1989,
27–45.

[50] R. B. Bopanna and M. Sipser, “The Complexity of Finite Functions,” in Handbook of Theoretical
Computer Science, Vol. A , J. van Leeuwen, ed., Elsevier, Amsterdam, NY, Oxford, Tokyo; MIT
Press, Cambridge, MA, 1990, 757–804.

[51] A. Borodin, “Computational Complexity and the Existence of Complexity Gaps,” JACM 19
(1972), 158–174.

[52] A. Borodin, “On Relating Time and Space to Size and Depth,” SIAM J. Comput. 6 (1977), 733–
744.

[53] A. Borodin and S. Cook, “A Time-Space Tradeoff for Sorting on a General Sequential Model of
Computation,” SIAM J. Comput. 11 (1982), 287–297.

[54] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson, “A Time-Space Tradeoff
for Element Distinctness,” SIAM J. Comput. 16 (1987), 97–99.

[55] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa, “A Time-Space Tradeoff
for Sorting and Related Non-Oblivious Computations,” J. Comp. Systems Sci. 22 (1981), 351–
364.

[56] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

[57] R. P. Brent, “On the Addition of Binary Numbers,” IEEE Trans. Computers 19 (1970), 758–759.

[58] R. P. Brent, “The Parallel Evaluation of General Arithmetic Expressions,” JACM 21 (1974), 201–
206.

608 Bibliography Models of Computation

[59] R. P. Brent and H. T. Kung, “The Area-Time Complexity of Binary Multiplication,” JACM 28
(July 1981), 521–534.

[60] R. E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams,” ACM
Comput. Surveys 24 (1992), 293–318.

[61] D. A. Carlson, “Time-Space Tradeoffs for Back-to-Back FFT Algorithms,” IEEE Trans. Computers
C-32 (1983), 585–589.

[62] D. A. Carlson, “Time-Space Efficient Algorithms for Computing Convolutions and Related Prob-
lems,” Info. and Computation 75 (1987), 1–14.

[63] D. A. Carlson, “Upper and Lower Bounds on Time-Space Tradeoffs for Computations with Em-
bedded Fast Fourier Transforms,” SIAM J. Discr. Math. 1 (1988), 22–37.

[64] D. A. Carlson and J. E. Savage, “Extreme Time-Space Tradeoffs for Graphs with Small Space
Requirements,” Inf. Proc. Letters 14 (1982), 223–227.

[65] D. A. Carlson and J. E. Savage, “Size-Space Tradeoffs for Oblivious Computations,” J. Comp.
Systems Sci. 2 (1983), 65–81.

[66] A. K. Chandra, “Efficient Compilation of Linear Recursive Programs,” Proc. 14th Ann. IEEE
Symp. Switching and Automata Theory (1973), 16–25.

[67] B. Chazelle and L. Monier, “A Model of Computation for VLSI with Related Complexity Results,”
JACM 32 (1985), 573–588.

[68] N. Chomsky, “Three Models for the Description of Languages,” PGIT 2 (1956), 113–124.

[69] N. Chomsky, “On Certain Formal Properties of Grammars,” Info. and Control 2 (1959), 137–
167.

[70] N. Chomsky, “Context-Free Grammar and Pushdown Storage,” MIT Research Laboratory in Elec-
tronics, Quarterly Progress Report, Cambridge, MA, 1965.

[71] N. Chomsky and G. A. Miller, “Finite-State Languages,” Info. and Control 1 (1958), 91–112.

[72] A. Church, “An Unsolvable Problem of Elementary Number Systems,” Amer. J. Math. 58 (1936),
345–363.

[73] A. Cobham, “The Recognition Problem for the Set of Perfect Squares,” IEEE 7th Ann. IEEE
Symp. Switching Automata Theory (1966), 78–87.

[74] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” Proc. 3rd Ann. ACM Symp. The-
ory of Computing (1971), 151–158.

[75] S. A. Cook, “An Observation on Time-Storage Trade Off,” Proc. 5th Ann. Symp. Theory of Com-
puting (1973), 29–33.

[76] S. A. Cook, “Deterministic CFL’s Are Accepted Simultaneously in Polynomial Time and Log
Squared Space,” Proc. 11th Ann. ACM Symp. Theory of Computing (1979), 338–345.

[77] S. A. Cook and R. A. Reckhow, “Time-Bounded Random Access Machines,” J. Comp. Systems
Sci. 7 (1973), 354–475.

[78] S. A. Cook and R. Sethi, “Storage Requirements for Deterministic Polynomial Finite Recognizable
Languages,” J. Comp. Systems Sci. 13 (1976), 25–37.

[79] S. A. Cook, “An Observation on Time-Storage Trade Off,” J. Comp. Systems Sci. 9 (1974), 308–
316.

[80] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier
Series,” Math. Computation 19 (1965), 297–301.

[81] D. Coppersmith and S. Winograd, “Matrix Multiplication via Arithmetic Progressions,” J. Sym-
bolic Computing 9 (1990), 251–280.

c©John E Savage Bibliography 609

[82] L. Csanky, “Fast Parallel Matrix Inversion,” SIAM J. Comput. 5 (1976), 618–623.

[83] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser, R. Subramonian,
and T. von Eicken, “LogP: A Practical Model of Parallel Computation,” Comm. ACM 39 (1996),
78–85.

[84] R. Cypher and G. Plaxton, “Deterministic Sorting in Nearly Logarithmic Time on the Hypercube
and Related Computers,” Proc. 22nd Ann. ACM Symp. Theory of Computing (1990), 193–203.

[85] E. Dekel, D. Nassimi, and S. Sahni, “Parallel Matrix and Graph Algorithms,” SIAM J. Comput.
10 (1981), 657–675.

[86] E. Demenkov, A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “New Upper Bounds on the
Boolean Circuit Complexity of Symmetric Functions,” Information Processing Letters 110 (2010),
264–267.

[87] P. E. Dunne, “Lower Bounds on the Monotone Network Complexity of Threshold Functions,”
Proc. 22nd Ann. Allerton Conf. Communication, Control and Computing (1984), 911–920.

[88] P. E. Dunne, “Techniques for the Analysis of Monotone Boolean Networks,” University of War-
wick, Ph.D. Dissertation, Theory of Computation Report No. 69, Coventry, England, 1984.

[89] P. E. Dunne, “The Complexity of Central Slice Functions,” Theoret. Comp. Sci. 44 (1986), 247–
257.

[90] P. E. Dunne, “On Monotone Simulations of Non-monotone Networks,” Theoret. Comp. Sci. 66
(1989), 15–25.

[91] P. E. Dunne, “Relationships Between Monotone and Non-monotone Network Complexity,” in
Boolean Function Complexity, M. S. Paterson, ed., London Math. Soc., Lecture Note Series 169,
Cambridge University Press, Cambridge, 1992, 1–24.

[92] P. E. Dunne, The Complexity of Boolean Networks, Academic Press, London, 1988.

[93] P. Ďuriš and Z. Galil, “On the Power of Multiple Reads in a Chip,” Info. and Control 104 (1993),
277–287.

[94] J. Earley, “An Efficient Context-Free Parsing Algorithm,” Comm. ACM 13 (1970), 94–102.

[95] D. M. Eckstein, “Simultaneous Memory Access,” Computer Science Dept., Iowa State University,
TR-79-6, Ames, IA, 1979.

[96] J. Edmonds, “Paths, Trees, Flowers,” Canad. J. Math. 17 (1965), 449–467.

[97] J. Evey, “Application of Pushdown Store Machines,” Proc. AFIPS FJCC (1963), 215–217.

[98] D. K. Faddeev and V. N. Faddeeva, Computional Methods in Linear Algebra, W. H. Freeman, San
Francisco, 1963.

[99] C. N. Fischer and R. J. Le Blanc, Jr., Crafting a Compiler, Benjamin/Cummings, Menlo Park, CA,
1988.

[100] M. J. Fischer, “The Complexity of Negation-Limited Networks – A Brief Survey,” in Automata
Theory and Formal Languages, H. Brakhage, ed., Springer-Verlag, Lecture Notes in Computer
Science, 33, Berlin, Heidelberg, and New York, 1975, 71–82.

[101] M. J. Fischer, A. R. Meyer, and M. S. Paterson, “Ω(n log n) Lower Bounds on Length of Boolean
Formulas,” SIAM J. Comput. 11 (1982), 416–427.

[102] M. J. Flynn, “Very High-Speed Computing Systems,” Proc. IEEE 54 (1966), 1901–1909.

[103] S. Fortune and J. Wyllie, “Parallelism in Random Access Machines,” Proc. 10th Ann. ACM Symp.
Theory of Computing (1978), 114–118.

[104] M. J. Foster and H. T. Kung, “The Design of Special-Purpose VLSI Chips,” Computer 13 (1980),
26–40.

610 Bibliography Models of Computation

[105] J. B. Fraleigh and R. A. Beauregard, Linear Algebra, Third Edition, Addison-Wesley, Reading,
MA, 1995.

[106] J. Friedman, “Constructing O(n log n) Size Monotone Formulae for the kth Elementary Sym-
metric Polynomial of n Boolean Variables,” SIAM J. Comput. 15 (1986), 641–654.

[107] M. Furst, J. Saxe, and M. Sipser, “Parity Circuits and the Polynomial Time Hierarchy,” Math.
Systems Theory 17 (1984), 13–27.

[108] Z. Galil, “Some Open Problems in the Theory of Computation as Questions About Two-Way
Deterministic Pushdown Automaton Languages,” Math. Systems Theory 10 (1974), 211–218.

[109] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[110] S. B. Gaskov, “The Depth of Boolean Functions,” Probl. Kibern. 34 (1978 (in Russian)), 265–268.

[111] J. vonzur Gathen, “Parallel Linear Algebra,” in Synthesis of Parallel Algorithms, John H. Reif, ed.,
Morgan Kaufmann, San Mateo, CA, 1993.

[112] A. M. Gentleman, “Complexity Results for Matrix Computations on Parallel Processors,” JACM
25 (1978), 112–115.

[113] A. Gibbons and P. Spirakis, Lectures on Parallel Computation, Cambridge University Press, Cam-
bridge, 1993.

[114] E. N. Gilbert, “Lattice-Theoretic Properties of Frontal Switching Functions,” J. Math. and Phys.
33 (1954), 57–97.

[115] J. R. Gilbert, T. Lengauer, and R. E. Tarjan, “The Pebbling Problem Is Complete in Polynomial
Space,” SIAM J. Comput. 9 (1980), 513–524.

[116] M. Goldmann and J. Håstad, “A Simple Lower Bound for Monotone Cliques Using a Communi-
cation Game,” Inf. Proc. Letters 41 (1992), 221–226.

[117] L. M. Goldschlager, “The Monotone and Planar Circuit Value Problems,” ACM SIGACT News
9 (1977), 25–29.

[118] L. M. Goldschlager, “A Unified Approach to Models of Synchronous Parallel Machines,” JACM
29 (1982), 1073–1086.

[119] L. M. Goldschlager, “A Universal Interconnection Pattern for Parallel Computers,” JACM 30
(1983), 1073–1086.

[120] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel Computation, Oxford University
Press, Oxford, 1995.

[121] D. Y. Grigoriev, “An Application of Separability and Independence Notions for Proving Lower
Bounds of Circuit Complexity,” Notes of Scientific Seminars, Steklov Math. Inst. 60 (1976), 35–
48.

[122] L. J. Guibas, H. T. Kung, and C. D. Thompson, “Direct VLSI Implementation of Combinatorial
Algorithms,” Proc. Conf. Very Large Scale Integration: Architecture, Design, Fabrication (1979).

[123] L. J. Guibas and F. M. Liang, “Systolic Stacks, Queues, and Counters,” Proc. Conf. on Advanced
Research in VLSI (1982), 155–164.

[124] J. Håstad, “Almost Optimal Lower Bounds for Small Depth Circuits,” in Advances in Computer
Research, Vol. 5: Randomness and Computation, S. Micali, ed., JAI Press, Greenwich, CT, 1989,
143–170.

[125] A. Haken, “Counting Bottlenecks to Show Monotone P �= NP,” Proc. 36th Ann. IEEE Symp.
Foundations of Computer Science (1995), 36–40.

[126] L. H. Harper and J. E. Savage, “On the Complexity of the Marriage Problem,” Adv. Math 9
(1972), 299–312.

c©John E Savage Bibliography 611

[127] J. Hartmanis, P. M. Lewis II, and R. E. Stearns, “Hierarchies of Memory-Limited Computations,”
Proc. 6th Ann. Symp. Switching Circuit Theory and Logic Design (1965), 179–190.

[128] J. Hartmanis and R. E. Stearns, “On the Computational Complexity of Algorithms,” Trans. AMS
117 (1965), 285–306.

[129] P. J. Hatcher and M. J. Quinn, Data-Parallel Programming on MIMD Computers, MIT Press,
Cambridge, MA, 1991.

[130] M. T. Heideman, D. H. Johnson, and C. S. Burrus, “Gauss and the History of the Fast Fourier
Transform,” Arch. Hist. Exact Sci. 34 (1985), 265–277.

[131] C. A. Heintz, LRI, Univ. Paris-Sud, On the Area Required for Matrix Multiplication with VLSI
Algorithms, Orsay, France, 1981.

[132] J. Hennessy and D. Patterson, Computer Architecture — A Quantitative Approach , Morgan Kauf-
mann, San Mateo, CA, 1990.

[133] W. D. Hillis and G. L. Steele, Jr., “Data-Parallel Algorithms,” Comm. ACM 29 (1986), 1170–
1183.

[134] P. Hochschild, “Multiple Cuts, Input Repetition, and VLSI Complexity,” Info. Processing Letters
24 (1987), 19–24.

[135] R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger, Bristol, 1981.

[136] L. Hodes and E. Specker, “Length of Formulas and Elimination of Quantifiers I,” in Contribu-
tions to Mathematical Logic, H. A. Schmidt, K. Schutte, and J.-J. Thiele, eds., North-Holland,
Amsterdam, 1968, 175–188.

[137] J. -W. Hong and H. T. Kung, “I/O Complexity: The Red-Blue Pebble Game,” Proc. 13th Ann.
ACM Symp. Theory of Computing (1981), 326–333.

[138] H. J. Hoover, M. M. Klawe, and N. J. Pippenger, “Bounding Fan-Out in Logical Networks,”
JACM 31 (1984), 13–18.

[139] J. E. Hopcroft, “An n log n Algorithm for Minimizing States in a Finite Automaton,” in Theory
of Machines and Computations, Z. Kohavi and A. Paz, eds., Academic Press, New York, 1971,
189–196.

[140] J. E. Hopcroft, W. J. Paul, and L. G. Valiant, “On Time Versus Space,” JACM 24 (1977), 332–337.

[141] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

[142] J. Hromkovič, “Nonlinear Lower Bounds on the Number of Processors of Circuits with Sublinear
Separators,” Info. and Computation 95 (1991), 117–128.

[143] J. Hromkovič, “Branching Programs Provide Lower Bounds on the Areas of Multilective Deter-
ministic and Nondeterministic VLSI-Circuits,” Info. Processing Letters 95 (1992), 168–178.

[144] D. A. Huffman, “The Synthesis of Sequential Switching Circuits,” J. Franklin Inst. 257 (1954),
161–190, 275-303.

[145] N. Immerman, “Nondeterministic Space is Closed under Complementation,” SIAM J. Comput.
17 (1988), 935–938.

[146] K. Iverson, A Programming Language, John Wiley & Sons, New York, 1962.

[147] J. JáJá, “Time-Space Tradeoffs for Some Algebraic Problems,” JACM 30 (1983), 657–667.

[148] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.

[149] J. JáJá and V. K. P. Kumar, “Information Transfer in Distributed Computing with Applications to
VLSI,” JACM 31 (January 1984), 150–162.

612 Bibliography Models of Computation

[150] D. Johnson, J. E. Savage, and L. R. Welch, “Combinational Complexity Measures as a Function
of Fan-Out,” Jet Propulsion Laboratory, Technical Report No. 32-1526, 1972.

[151] D. S. Johnson, “A Catalog of Complexity Classes,” in Handbook of Theoretical Computer Science,
Vol. A , J. van Leeuwen, ed., Elsevier, Amsterdam, NY, Oxford, Tokyo; MIT Press, Cambridge,
MA, 1990, 68–161.

[152] R. B. Johnson, “The Complexity of a VLSI Adder,” Info. Processing Letters 11 (1980), 92–93.

[153] N. D. Jones and W. T. Laaser, “Complete Problems for Deterministic Polynomial Time,” Theoret.
Comp. Sci. 3 (1976), 105–117.

[154] B. H. H. Juurlink and H. A. G. Wijshoff, “A Quantitative Comparison of Parallel Computational
Models,” Proc. 8th Ann. ACM Symp. Parallel Algorithms and Architectures (1996), 13–24.

[155] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Automata,” Dokl. Akad.
Nauk SSSR (Soviet Math. Dokl.) 145 (1962), 293–294, (in Russian);
English translation in Sov. Phys.–Dokl. 19 (1963), 595–596.

[156] M. Karchmer, Communication Complexity: A New Approach to Circuit Depth , MIT Press, Cam-
bridge, MA and London, England, 1989.

[157] M. Karchmer and A. Wigderson, “Monotone Circuits for Connectivity Require Superlogarithmic
Depth,” Proc. 20th Ann. ACM Symp. Theory of Computing (1988), 539–550.

[158] A. R. Karlin and E. Upfal, “Parallel Hashing – An Efficient Implementation of Shared Memory,”
Proc. 18th Ann. ACM Symp. Theory of Computing (1986), 160–168.

[159] R. Karp, “Reducibility Among Combinatorial Problems,” in Complexity of Computer Computa-
tions, R. E. Miller and J. Thatcher, eds., Plenum, New York, 1972,
85–104.

[160] R. M. Karp and R. J. Lipton, “Some Connections Between Nonuniform and Uniform Complexity
Classes,” Proc. 12th Ann. ACM Symp. Theory of Computing (April 28-30, 1980), 302–309.

[161] R. M. Karp and V. Ramachandran, “A Survey of Parallel Algorithms for Shared-Memory Ma-
chines,” in Handbook of Theoretical Computer Science, Vol. A , J. van Leeuwen, ed., Elsevier,
Amsterdam, NY, Oxford, Tokyo; MIT Press, Cambridge, MA, 1990, 870–941.

[162] T. Kasami, “An Efficient Recognition and Syntax Algorithm for Context-Free Languages,” Air
Force Cambridge Research Laboratory, Report AFCRL-65-758, Cambridge, MA, 1965.

[163] Z. M. Kedem and A. Zorat, “Replication of Inputs May Save Computational Resources in VLSI,”
in VLSI Systems and Computations, H. T. Kung, B. Sproull, and G. Steele, eds., Computer Science
Press, Rockville, MD, 1981, 52–60.

[164] Z. M. Kedem and A. Zorat, “On Relations Between Input and Communication/Computation,”
Proc. 22nd Ann. IEEE Symp. Foundations of Computer Science (1981), 37–44.

[165] L. G. Khachian, “A Polynomial Time Algorithm for Linear Programming,” Dokl. Akad. Nauk
SSSR (Soviet Math. Dokl.) 244 (1979), 1093–1096.

[166] L. S. Khasin, “Complexity Bounds for the Realization of Monotone Symmetrical Functions by
Means of Formulas in the Basis +, ·, −,” Dokl. Akad. Nauk SSSR (Soviet Math. Dokl.) 189
(1970), 752–755, (in Russian); English translation in Soviet Phys. Dokl. 14(12) (1970), 1149–
1151.

[167] M. M. Klawe, “A Tight Bound for Black and White Pebbles on the Pyramid,” Proc. 24th Ann.
IEEE Symp. Foundations of Computer Science (1983), 410–419.

[168] S. C. Kleene, “General Recursive Functions of Natural Numbers,” Math. Annalen 112 (1936),
727–742.

c©John E Savage Bibliography 613

[169] M. Kloss, “Estimates of the Complexity of Solutions of Systems of Linear Equations,” Dokl. Akad.
Nauk SSSR (Soviet Math. Dokl.) 171 (1966), 781–783, (in Russian); English translation in Soviet
Math. Dokl. 7 (6) (1966), 1537–1540.

[170] D. E. Knuth, The Art of Computer Programming – Sorting and Searching, Vol. 3 , Addison-
Wesley, Reading, MA, 1973.

[171] D. E. Knuth, “Big Omicron and Big Omega and Big Theta,” ACM SIGACT News 8 (1976),
18–24.

[172] E. Koutsoupias, “Improvements on Khrapchenko’s Theorem,” Theoret. Comp. Sci. 116 (1993),
399–403.

[173] V. M. Krapchenko, “Asymptotic Estimation of Addition Time of a Parallel Adder,” Probl. Kibern.
19 (1967), 107–122, (in Russian); English translation in Syst. Theory Res. 19 (1970), 105–122.

[174] V. M. Krapchenko, “A Method of Determining Lower Bounds for the Complexity of Π-Schemes,”
Aametki 10 (1971), 83–92, (in Russian); English translation in Math. Notes. 10(1) (1971), 474–
479.

[175] V. M. Krapchenko, “The Complexity of Symmetrical Functions by Formulae,” Mat. Zametki 11
(1972), 109–120, (in Russian); English translation in Math. Notes 11(1) (1972), 70–76.

[176] R. E. Krichevskii, “Complexity of Contact Circuits Realizing a Function of Logical Algebra,” Dokl.
Akad. Nauk SSSR (Soviet Math. Dokl.) 151 (1963), 803–806, (in Russian); English translation in
Soviet Phys. Dokl. 8(8) (1964), 770–772.

[177] H. T. Kung, “Let’s Design Algorithms for VLSI Systems,” Proc. Caltech Conf. VLSI: Architecture,
Design, Fabrication (1979), 65–90.

[178] H. T. Kung, “Memory Requirements for Balanced Computer Architectures,” J. Complexity 1
(1985), 147–157.

[179] H. T. Kung and P. L. Lehman, “Systolic (VLSI) Arrays for Relational Database Operations,” Proc.
ACM SIGMOD Int. Symp. Management of Data (1980), 105–116.

[180] H. T. Kung and C. E. Leiserson, “Systolic Arrays (for VLSI),” in Sparse Matrix Proceedings 1978,
I. S. Duff and G. W. Stewart, eds., SIAM, 1979, 256–282.

[181] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI Processor Arrays,” in Introduction to VLSI
Systems, C. Mead and L. Conway, eds., Addison-Wesley, Reading, MA, 1980, 271–292.

[182] H. T. Kung, L. M. Ruane, and D. W. L. Yen, “A Two-Level Pipelined Systolic Array for Convolu-
tions,” in VLSI Systems and Computations, H. T. Kung, B. Sproull, and G. Steele, eds., Computer
Science Press, Rockville, MD, 1981, 255–264.

[183] H. T. Kung and S. W. Song, “A Systolic 2-D Convolution Chip,” in Multicomputers and Image
Processing: Algorithms and Programs, K. Preston, Jr. and L. Uhr, eds., Academic Press, New York,
1982, 373–384.

[184] S. Y. Kuroda, “Classes of Languages and Linear-Bounded Automata,” Info. and Control 7 (1964),
207–223.

[185] R. E. Ladner, “The Circuit Value Problem Is Log-Space Complete for P,” ACM SIGACT News 7
(1975), 18–20.

[186] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” JACM 27 (1980), 831–838.

[187] E. A. Lamagna, “The Complexity of Monotone Networks for Certain Bilinear Forms,” IEEE Trans.
Computers 28 (1979), 773–782.

[188] E. A. Lamagna and J. E. Savage, “Combinational Complexity of Some Monotone Functions,”
Proc. 15th Ann. IEEE Symp. Switching and Automata Theory (1974), 140–144.

614 Bibliography Models of Computation

[189] P. S. Landweber, “Three Theorems on Phrase-Structure Grammars of Type 1,” Info. and Control
6 (1963), 131–136.

[190] P. L. Lehman, “A Systolic (VLSI) Array for Processing Simple Relational Queries,” in VLSI Systems
and Computations, H. T. Kung, B. Sproull, and G. Steele, eds., Computer Science Press, Rockville,
MD, 1981, 285–295.

[191] F. T. Leighton, “New Lower Bound Techniques for VLSI,” Math. Systems Theory 17 (1984),
47–70.

[192] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,
Morgan Kaufman, San Mateo, CA, 1992.

[193] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, Chi-
chester, England, 1990.

[194] T. Lengauer, “VLSI Theory,” in Handbook of Theoretical Computer Science, Vol. A , J. van Leeuwen,
ed., Elsevier, Amsterdam, NY, Oxford, Tokyo; MIT Press, Cambridge, MA, 1990, 836–868.

[195] T. Lengauer and K. Mehlhorn, “Four Results on the Complexity of VLSI Computations,” in Ad-
vances in Computing Research, F. P. Preparata, ed. #2, JAI Press, Greenwich, CT, 1984, 1–22.

[196] T. Lengauer and R. E. Tarjan, “The Space Complexity of Pebble Games on Trees,” Inf. Proc. Letters
10 (1980), 184–188.

[197] T. Lengauer and R. E. Tarjan, “Asymptotically Tight Bounds on Time-Space Tradeoffs in a Pebble
Game,” JACM 29 (1982), 1087–1130.

[198] S. J. Leon, Linear Algebra with Applications, Prentice-Hall, Englewood Cliffs, NJ, 1997 .

[199] L. A. Levin, “Universal Sorting Problems,” Probl. Peredaci Informacii 9 (1973), 115–116, (in Rus-
sian); English translation in Problems of Information Transmission 9 (1973) 265–266.

[200] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[201] A. Lingas, “A PSPACE-Complete Problem Related to a Pebble Game,” in Automata Languages
and Programming, G. Aussiello and C. Boehm, eds., Springer-Verlag, Lecture Notes in Computer
Science, 62 , Berlin, Heidelberg, and New York, 1978, 300–321.

[202] R. J. Lipton and R. Sedgewick, “Lower Bounds for VLSI,” Proc. 13th Ann. ACM Symp. Theory
of Computing (1981), 300–307.

[203] R. J. Lipton and R. E. Tarjan, “A Separator Theorem for Planar Graphs,” SIAM J. Appl. Math. 36
(1979), 177–189.

[204] R. J. Lipton and R. E. Tarjan, “Applications of a Planar Separator Theorem,” SIAM J. Comput. 9
(1980), 615–627.

[205] M. C. Loui, “Minimum Register Allocation Is Complete in Polynomial Space,” Lab. Comp. Sci.,
MIT, Technical Memorandum TM-128, Cambridge, MA, 1979.

[206] M. C. Loui, “The Space Complexity of Two Pebble Games on Trees,” Lab. Comp. Sci., MIT,
Technical Memorandum TM-133, Cambridge, MA, 1979.

[207] W. K. Luk and J. E. Vuillemin, “Recursive Implementation of Optimal-Time VLSI Integer Mul-
tiplier,” in Advances in Computing Research, 2 , F. P. Preparata, ed., JAI Press, Greenwich, CT,
1984, 67–93.

[208] O. B. Lupanov, “A Method of Circuit Synthesis,” Ivz. V.U.Z. Radiofiz. 1 (1958), 120–140.

[209] W. F. McColl, “Planar Circuits Have Short Specifications,” in Proc. Symp. Theoretical Aspects
of Computer Science, K. Mehlhorn, ed. #2, Springer-Verlag, Lecture Notes in Computer Science,
182, 1985, 231–242.

c©John E Savage Bibliography 615

[210] W. F. McColl and M. S. Paterson, “The Planar Realization of Boolean Functions,” Info. Processing
Letters 24 (1987), 165–170.

[211] W. S. McCulloch and E. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,”
Bull. Math. Biophysics 5 (1943), 115–133.

[212] R. McNaughton and H. Yamada, “Regular Expressions and State Graphs for Automata,” IEEE
Trans. Electronic Computers EC-9 (1960), 39–47.

[213] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.

[214] C. A. Mead and M. Rem, “Cost and Performance of VLSI Computing Structures,” IEEE J. Solid
State Circuits SC-14 (1979), 455–462.

[215] G. H. Mealy, “A Method for Synthesizing Sequential Circuits,” Bell Syst. Techn. J. 34 (1955),
1045–1079.

[216] K. Mehlhorn, “Some Remarks on Boolean Sums,” Acta Informatica 12 (1979), 371–375.

[217] K. Mehlhorn, “AT 2 Optimal VLSI Integer Division and Integer Square Rooting,” Integration 2
(1984), 163–167.

[218] K. Mehlhorn and Z. Galil, “Monotone Switching Circuits and Boolean Matrix Product,” Com-
puting 16 (1976), 99–111.

[219] K. Mehlhorn and F. P. Preparata, “Area-Time Optimal Division for T = O((log n)1+ε),” Info.
and Computation 72 (1987), 270–282.

[220] K. Mehlhorn and E. M. Schmidt, “Las Vegas Is Better than Determinism in VLSI and Distributive
Computing,” Proc. 14th Ann. ACM Symp. Theory of Computing (1982), 330–337.

[221] K. Mehlhorn and U. Vishkin, “Randomized and Deterministic Simulations of PRAMs by Parallel
Machines with Restricted Granularity of Parallel Memories,” Acta Informatica 21 (1984), 339–
374.

[222] F. Meyer auf der Heide, “A Comparison Between Two Variations of a Pebble Game on Graphs,”
Theoret. Comp. Sci. 13 (1981), 315–322.

[223] E. F. Moore, “Gedanken-Experiments on Sequential Machines,” in Automata Studies (Annals of
Mathematics Studies, No. 34) , Princeton University Press, Princeton, NJ, 1956, 129–153.

[224] D. E. Muller, “Complexity in Electronic Switching Circuits,” IRE Trans. Comput. EC-5 (1956),
15–19.

[225] D. E. Muller and F. P. Preparata, “Minimal Delay Networks for Sorting and Switching,” Proc. 6th
Ann. Princeton Conf. Information Sciences and Systems (1972), 138–139.

[226] D. E. Muller and F. P. Preparata, “Bounds to Complexities of Networks for Sorting and Switching,”
JACM 22 (1975), 195–201.

[227] J. Myhill, “Finite Automata and the Representation of Events,” Wright Patterson AFB, Technical
Note WADD 57-624, Dayton, OH, 1957.

[228] J. Myhill, “Linear Bounded Automata,” Wright-Patterson Air Force Base, Ohio, WADD Tech.
Note, 1960.

[229] A. Nerode, “Linear Automaton Transformations ,” Proc. Amer. Math. Soc. 9 (1958), 541–544.

[230] E. I. Nečiporuk, “A Boolean Function,” Dokl. Akad. Nauk SSSR (Soviet Math. Dokl.) 169 (1966),
765–766, (in Russian); English translation in Soviet Math. Dokl. 7 (4) (1966), 999–1000.

[231] E. I. Nečiporuk, “A Boolean Matrix,” Probl. Kibern. 21 (1969), 237–240, (in Russian); English
translation in Systems Theory Research 21(4) (1971), 236–239.

[232] M. H. Nodine and J. S. Vitter, “Large-Scale Sorting in Parallel Memories (Extended Abstract),”
Proc. 3rd Ann. Symp. Parallel Algorithms and Architectures (1991), 29–39.

616 Bibliography Models of Computation

[233] A. G. Oettinger, “Automatic Syntactic Analysis and the Pushdown Store,” Proc. Symp. Applied
Math. 12 (1961).

[234] Y. Ofman, “On the Algorithmic Complexity of Discrete Functions,” Dokl. Akad. Nauk SSSR
(Soviet Math. Dokl.) 145 (1962), 48–51, (in Russian); English translation in Soviet Math. Dokl. 7
(7) (1963), 589–591.

[235] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.

[236] C. H. Papadimitriou and M. Sipser, “Communication Complexity,” J. Comp. System Sciences 28
(1984), 260–269.

[237] M. S. Paterson, “An Introduction to Boolean Function Complexity,” Astérique 38-39 (1976), 183–
201.

[238] M. S. Paterson, “Complexity of Monotone Networks for Boolean Matrix Product,” Theoret.
Comp. Sci. 1 (1979), 13–20.

[239] M. S. Paterson and C. E. Hewitt, “Comparative Schematology,” in Proc. Project MAC Conf.
Concurrent Systems and Parallel Computation, Woods Hole, MA, 1970, 119–127.

[240] M. S. Paterson and L. G. Valiant, “Circuit Size Is Nonlinear in Depth,” Theoret. Comp. Sci. 2
(1976), 397–400.

[241] M. S. Paterson, “New Bounds on Formula Size,” in Proc. 3rd GI Conf. Theoret. Computer Sci-
ence, Springer-Verlag, Lecture Notes in Computer Science, 48 , Berlin, Heidelberg, and New York,
1977, 17–26.

[242] M. S. Paterson, N. Pippenger, and U. Zwick, “Faster Circuits and Shorter Formulae for Multi-
ple Addition, Multiplication and Symmetric Boolean Functions,” Proc. 31st Ann. IEEE Symp.
Foundations of Computer Science (1990), 642–650.

[243] M. S. Paterson, N. Pippenger, and U. Zwick, “Optimal Carry-Save Networks,” in Boolean Func-
tion Complexity, M. S. Paterson, ed., Cambridge University Press, London Mathematical Society
Lecture Note Series, 169, Cambridge, 1992, 174–201.

[244] W. Paul, “A 2.5N Lower Bound for the Combinational Complexity of Boolean Functions,” SIAM
J. Comput. 6 (1977), 427–443.

[245] W. J. Paul and R. E. Tarjan, “Time-Space Trade-Offs in a Pebble Game,” Acta Informatica 10
(1978), 111–115.

[246] W. J. Paul, R. E. Tarjan, and J. R. Celoni, “Space Bounds for a Game on Graphs,” Math. Systems
Theory 10 (1977), 239–251.

[247] G. L. Peterson, “An Upper Bound on the Size of Formulae for Symmetric Boolean Functions,”
Dept. Computer Science, Univ. Washington, Tech. Report 78-03-01, 1978.

[248] N. Pippenger, “Short Formulae for Symmetric Functions,” IBM T. J. Watson Research Center,
Research Report RC-5143, Yorktown Heights, NY, 1974.

[249] N. Pippenger, “On Simultaneous Resource Bounds,” JACM 26 (1979), 361–381.

[250] N. Pippenger, “On Another Boolean Matrix,” Theoret. Comp. Scii. 11 (1980), 49–56.

[251] N. Pippenger, “Pebbling,” Proc. 5th Ann. IBM Symp. Math. Foundations of Computer Science
(1980).

[252] N. Pippenger and M. J. Fischer, “Relations Among Complexity Measures,” JACM 26 (1979),
361–381.

[253] N. Pippenger and L. G. Valiant, “Shifting Graphs and Their Properties,” JACM 23 (1976), 423–
432.

[254] N. Pippenger, “A Time-Space Trade-off,” JACM 25 (1978), 509–512.

c©John E Savage Bibliography 617

[255] E. L. Post, “Finite Combinatory Processes,” J. Symbolic Logic 1 (1936), 103–105.

[256] V. R. Pratt, “The Power of Negative Thinking in Multiplying Boolean Matrices,” SIAM J. Comput.
4 (1974), 326–330.

[257] V. R. Pratt, “Every Prime Has a Succinct Certificate,” SIAM J. Comput. 4 (1975), 214–220.

[258] F. P. Preparata, “A Mesh-Connected Area-Time Optimal VLSI Multiplier of Large Integers,” IEEE
Trans. Computers C-32 (1983), 194–198.

[259] F. P. Preparata and D. E. Muller, “Efficient Parallel Evaluation of Boolean Expressions,” IEEE
Trans. Computers C-25 (1976), 548–549.

[260] F. P. Preparata and J. E. Vuillemin, “Area-Time Optimal VLSI Networks for Multiplying Matrices,”
Info Processing Letters 11 (1980), 77–80.

[261] F. P. Preparata and J. E. Vuillemin, “Optimal Integrated-Circuit Implementation of Triangular
Matrix Inversion,” Parallel Processing (1980), 211–216.

[262] F. P. Preparata and J. E. Vuillemin, “The Cube-Connected Cycles: A Versatile Network for Parallel
Computation,” Comm. ACM 24 (1981), 300–309.

[263] F. P. Preparata, “Optimal Three-Dimensional VLSI Layouts,” Math. Systems Theory 16 (1983),
1–8.

[264] P. Pudlák, “Bounds for Hodes-Specker Theorem,” in Logic and Machines: Decision Problems and
Complexity, Springer-Verlag, Lecture Notes in Computer Science, 171 , Berlin, Heidelberg, and
New York, 1984, 421–445.

[265] M. J. Quinn, Parallel Computing: Theory and Practice, McGraw-Hill, New York, 1994.

[266] M. O. Rabin and D. Scott, “Finite Automata and Their Decision Problems,” IBM J. Res. Devel.
3 (1959), 114–125.

[267] A. Ranade, “How to Emulate Shared Memory,” Proc. 28th Ann. IEEE Symp. Foundations of
Computer Science (1987), 185–194.

[268] B. Randell, ed., The Origins of Digital Computers: Selected Papers, Springer-Verlag, Berlin, Hei-
delberg, and New York, 1982.

[269] R. Raz and A. Wigderson, “Monotone Circuits for Matching Require Linear Depth,” Proc. 22nd
Ann. ACM Symp. Theory of Computing (1990), 287–292.

[270] A. A. Razborov, “Lower Bounds on the Monotone Complexity of Some Boolean Functions,” Dokl.
Akad. Nauk SSSR (Soviet Math. Dokl.) 281 (1985), 798–801, (in Russian); English translation in
Soviet Math. Dokl. 31 (1985), 354–357.

[271] A. A. Razborov, “A Lower Bound on the Monotone Network Complexity of the Logical Perma-
nent,” Mat. Zametki 37 (1985), 887–900, (in Russian); English translation in Math. Notes 37 (6)
(1985), 485–493.

[272] A. A. Razborov, “Lower Bounds on the Size of Bounded Depth Networks over a Complete Basis
with Logical Addition,” Mat. Zametki 41 (1987), 598–607, (in Russian); English translation in
Math. Notes 41 (4) (1987), 333–338.

[273] A. A. Razborov, “On the Method of Approximations,” Proc. 21st Ann. ACM Symp. Theory of
Computing (1989), 167–176.

[274] N. P. Red’kin, “Proof of Minimality of Circuits Consisting of Functional Elements,” Probl. Kibern.
23 (1973), 83–102, (in Russian); English translation in: Syst. Theory Research 23 (1973) 102–107.

[275] N. P. Red’kin, “On the Realization of Monotone Boolean Functions by Contact Circuits,” Probl.
Kibern. 35 (1979), 87–110.

[276] N. P. Red’kin, “Minimal Realization of a Binary Adder,” Probl. Kibern. 38 (1981), 181–216, 272.

618 Bibliography Models of Computation

[277] J. H. Reif, ed., Synthesis of Parallel Algorithms, Morgan Kaufmann, San Mateo, CA, 1993.

[278] J. H. Reif and S. R. Tate, “Optimal Size Integer Division Circuits,” Proc. 21st Ann. ACM Symp.
Theory of Computing (1989), 264–273.

[279] R. Reischuk, “Improved Bounds on the Problem of Time-Space Trade-off in the Pebble Game,”
JACM 27 (1980), 839–849.

[280] H. G. Rice, “Classes of Recursively Enumerable Sets and Their Decision Problems,” Trans. AMS
74 (1953), 358–366.

[281] J. Riordan and C. E. Shannon, “The Number of Two-Terminal Series-Parallel Networks,” J. Math.
Phys. 21 (1942), 83–93.

[282] A. L. Rosenberg, “Three-Dimensional Integrated Circuitry,” in VLSI Systems and Computations,
H. T. Kung, B. Sproull, and G. Steele, eds., Computer Science Press, Rockville, MD, 1981, 69–80.

[283] A. L. Rosenberg, “Three-Dimensional VLSI: A Case Study,” JACM 30 (1983), 397–416.

[284] C. Savage, “A Systolic Design for Connectivity Problems,” IEEE Trans. Computers C-33 (1984),
99–104.

[285] J. E. Savage, “The Complexity of Decoders – Part II: Computational Work and Decoding Time,”
IEEE Trans. Inf. Theory IT-17 (1971), 77–84.

[286] J. E. Savage, “Computational Work and Time on Finite Machines,” JACM 19 (1972), 660–674.

[287] J. E. Savage, The Complexity of Computing, John Wiley & Sons, New York, 1976.

[288] J. E. Savage, “Planar Circuit Complexity and the Performance of VLSI Algorithms,” in VLSI Sys-
tems and Computations, H. T. Kung, B. Sproull, and G. Steele, eds., Computer Science Press,
Rockville, MD, 1981, 61–68.

[289] J. E. Savage, “Area-Time Tradeoffs for Matrix Multiplication and Related Problems in VLSI Mod-
els,” J. Comp. Systems Sci. (1981), 230–242.

[290] J. E. Savage, “Multilective Planar Circuit Size,” Proc. 20th Ann. Allerton Conf. on Communica-
tion, Control, and Computing (1982), 665–671.

[291] J. E. Savage, “The Performance of Multilective VLSI Algorithms,” J. Comp. Systems Sci. 29
(1984), 243–273.

[292] J. E. Savage, “Space-Time Tradeoffs for Banded Matrix Problems,” JACM 31 (1984), 422–437.

[293] J. E. Savage and S. Swamy, “Space-Time Tradeoffs on the FFT Algorithm,” IEEE Trans. Info. Th.
IT-24 (1978), 563–568.

[294] J. E. Savage and S. Swamy, “Space-Time Tradeoffs for Oblivious Integer Multiplication,” in Au-
tomata, Languages and Programming, H. A. Maurer, ed., Springer-Verlag, Lecture Notes in Com-
puter Science, 71, Berlin, Heidelberg, and New York, 1979, 498–504.

[295] J. E. Savage, “Extending the Hong-Kung Model to Memory Hierarchies,” in Computing and
Combinatorics, Ding-Zhu Du and Ming Li, eds., Springer-Verlag, Lecture Notes in Computer
Science, 959 , 1995, 270–281.

[296] J. E. Savage and J. S. Vitter, “Parallelism in Space-Time Tradeoffs,” in VLSI: Algorithms and
Architectures, P. Bertolazzi and F. Luccio, eds., Elsevier Science Publishers (North Holland), 1985,
49–58.

[297] W. J. Savitch, “Relationships Between Nondeterministic and Deterministic Tape Complexities,” J.
Comp. Systems Sci. 4 (1970), 177–192.

[298] W. J. Savitch and M. J. Stimson, “Time-Bounded Random Access Machines with Parallel Process-
ing,” JACM 26 (1979), 103–118.

c©John E Savage Bibliography 619

[299] T. J. Schaefer, “The Complexity of Satisfiability Problems,” Proc. 10th Ann. ACM Symp. Theory
of Computing (1978), 216–226.

[300] C. P. Schnorr, “Zwei Lineare untere Schranken fur die Komplexitat Boolescher Funktionen,” Com-
puting 13 (1974), 155–171.

[301] C. P. Schnorr, “The Network Complexity and the Turing Machine Complexity of Finite Func-
tions,” Acta Informatica 7 (1976), 95–107.

[302] C. P. Schnorr, “A 3n-Lower Bound on the Network Complexity of Boolean Functions,” Theoret.
Comp. Sci. 10 (1980), 83–92.

[303] A. Schönhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,” Computing 7 (1971),
281–292.

[304] U. Schürfeld, “New Lower Bounds on the Formula Size of Boolean Functions,” Acta Informatica
19 (1983), 183–194.

[305] M. P. Schutzenberger, “On Context-Free Languages and Pushdown Automata,” Info. and Control
6 (1963), 246–264.

[306] C. E. Shannon, “A Symbolic Analysis of Relay and Switching Circuits,” Trans. AIEE 57 (1938),
713–723.

[307] C. E. Shannon, “The Synthesis of Two-Terminal Switching Circuits,” Bell Syst. Techn. J. 28
(1949), 59–98.

[308] J. C. Shepherdson and H. E. Sturgis, “Computability of Recursive Functions,” JACM 10 (1963),
217–255.

[309] A. Siegel, “Tight Area Bounds and Provably Good AT 2 Bounds for Sorting Circuits,” New York
University, Report No. 122, New York, 1985.

[310] S. Skyum and L. G. Valiant, “A Complexity Theory Based on Boolean Algebra,” JACM 32 (1985),
484–502.

[311] D. D. Sleator and R. E. Tarjan, “Amortized Efficiency of List Update and Paging Rules,” Comm.
ACM 28 (1985), 202–208.

[312] C. H. Smith, A Recursive Introduction to the Theory of Computation, Springer-Verlag, New York,
1994.

[313] R. Smolensky, “Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complex-
ity,” Proc. 19th Ann. ACM Symp. Theory of Computing (1987), 77–82.

[314] P. M. Spira, “On Time-Hardware Complexity Tradeoffs for Boolean Functions,” Proc. 4th Hawaii
Int. Symp. System Science (1971), 525–527.

[315] M. Spivak, Calculus, W. A. Benjamin, San Francisco, 1976.

[316] L. J. Stockmeyer and A. R. Meyer, “Word Problems Requiring Exponential Time,” Proc. 5th Ann.
ACM Symp. Theory of Computing (1973), 1–9.

[317] L. Stockmeyer and U. Vishkin, “Simulation of Parallel Random Access Machines by Circuits,”
SIAM J. Comput. 13 (1984), 409–422.

[318] H. S. Stone, “Parallel Processing with the Perfect Shuffle,” IEEE Trans. Computers C-20 (1971),
153–161.

[319] V. Strassen, “Gaussian Elimination Is Not Optimal,” Numer. Math 13 (1969), 354–356.

[320] B. A. Subbotovskaya, “Realizations of Linear Functions by Formulas Using +, ·, −,” Dokl. Akad.
Nauk SSSR (Soviet Math. Dokl.) 136 (1961), 553–555, (in Russian); English translation in Soviet
Math. Dokl. 2 (1961), 110–112.

620 Bibliography Models of Computation

[321] S. Swamy and J. E. Savage, “Space-Time Tradeoffs for Linear Recursion,” Math. Systems Theory
16 (1983), 9–27.

[322] R. Szelepscényi, “The Method of Forcing for Nondeterministic Automata,” Bull. EATCS 33
(1987), 96–100.

[323] K. Tanaka and T. Nishino, “On the Complexity of Negation-Limited Boolean Networks (Prelimi-
nary Version),” Proc. 26th Ann. ACM Symp. Theory of Computing (1994), 38–47.

[324] É. Tardos, “The Gap Between Monotone and Non-Monotone Circuit Complexity is Exponential,”
Combinatorica 8 (1988), 141–142.

[325] S. R. Tate, “Newton Iteration and Integer Division,” in Synthesis of Parallel Algorithms, John H.
Reif, ed., Morgan Kaufmann, San Mateo, CA, 1993.

[326] C. D. Thompson, “Area-Time Complexity for VLSI,” Proc. 11th Ann. ACM Symp. Theory of
Computing (1979), 81–88.

[327] C. D. Thompson, “A Complexity Theory for VLSI,” Dept. Computer Science, Carnegie-Mellon
University, Ph.D. Thesis, 1980.

[328] C. D. Thompson, “Fourier Transforms in VLSI,” IEEE Trans. Computers C-32 (1983), 1047–
1057.

[329] C. D. Thompson, “The VLSI Complexity of Sorting,” IEEE Trans. Computers C-32 (1983),
1171–1184.

[330] J. Tiekenherinrich, “A 4n Lower Bound on the Monotone Network Complexity of a One-Output
Boolean Function,” Inf. Proc. Letters 18 (1984), 201–202.

[331] M. Tompa, “Time-Space Tradeoffs for Computing Functions, Using Connectivity Properties of
Their Circuits,” J. Comp. Systems Sci. 20 (1980), 118–132.

[332] M. Tompa, “Corrigendum: Time-Space Tradeoffs for Computing Functions, Using Connectivity
Properties of Their Circuits,” J. Comput. System Sci. 23 (1981), 106.

[333] M. Tompa, “Two Familiar Transitive Closure Algorithms Which Admit No Polynomial Time,
Sublinear Space Implementations,” SIAM J. Comput. 11 (1982), 130–137.

[334] B. A. Trakhtenbrot, “Turing Computations with Logarithmic Delays,” Algebra i Logika 3 (1964),
33–48.

[335] B. A. Trakhtenbrot, “A Survey of Russian Approaches to Perebor (Brute-Force Search) Algorithms,”
Ann. Hist. of Comput. 6 (1984), 384–400.

[336] G. Turán, “Lower Bounds for Synchronous Circuits and Planar Circuits,” Info. Processing Letters
30 (1989), 37–40.

[337] G. Turán, “On restricted Boolean circuits,” in Proceedings of the International Conference on
Fundamentals of Computation Theory, J. Csirik, J. Demetrovics and F. Gécseg, eds., Springer,
Lecture Notes in Computer Science, 380, New York, 1989, 460–469.

[338] A. M. Turing, “On Computable Numbers with an Application to the Entscheidungsproblem,”
Proc. London Math. Soc. 42 (1936), 230–265, Correction in Vol. 43, pp. 544-546.

[339] J. D. Ullman, Computational Aspects of VLSI , Computer Science Press, Rockville, MD, 1984.

[340] E. Upfal, “A Probabilistic Relation Between Desirable and Feasible Models of Parallel Computa-
tion,” Proc. 16th Ann. ACM Symp. Theory of Computing (1984), 258–265.

[341] E. Upfal and A. Wigderson, “How to Share Memory in a Distributed System,” JACM 34 (1987),
116–127.

[342] L. G. Valiant, “General Context-Free Recognition in Less Than Cubic Time,” J. Comp. Systems
Sci. 10 (1975), 308–315.

c©John E Savage Bibliography 621

[343] L. G. Valiant, “Graph-Theoretic Properties in Computational Complexity,” J. Comp. Systems Sci.
13 (1976), 278–285.

[344] L. G. Valiant, “Completeness Classes in Algebra,” Proc. 11th Ann. ACM Symp. Theory of Com-
puting (1979), 249–261.

[345] L. G. Valiant, “Reducibility by Algebraic Projections,” L’Enseignement Math. XXVIII (1982),
253–268.

[346] L. G. Valiant, “Short Monotone Formulae for the Majority Function,” J. Algorithms 5 (1984),
363–366.

[347] L. G. Valiant, “Negation is Powerless for Slice Functions,” SIAM J. Comput. 15 (1986), 531–535.

[348] L. G. Valiant, “A Bridging Model for Parallel Computation,” Comm. ACM 33 (1990), 103–111.

[349] P. van Emde Boas and J. van Leeuwen, “Move Rules and Trade-Offs in the Pebble Game,” Vakgroep
Informatica, Univ. Utrecht, Report RUU-CS-78-4, Utrecht, Netherlands, 1978.

[350] P. van Emde Boas, “Machine Models and Simulations,” in Handbook of Theoretical Computer
Science, Vol. A , J. van Leeuwen, ed., Elsevier, Amsterdam, NY, Oxford, Tokyo; MIT Press, Cam-
bridge, MA, 1990, 2–66.

[351] C. C. Van Voorhis, “An Improved Lower Bound for Sorting Networks,” IEEE Trans. Computers
C-21 (1972), 612–613.

[352] H. Venkateswaran and M. Tompa, “A New Pebble Game That Characterizes Parallel Complexity
Classes,” SIAM J. Comput. 18 (1989), 53–549.

[353] U. Vishkin, “Implementation of Simultaneous Memory Address Access in Models That Forbid It,”
J. Algorithms 4 (1983), 45–50.

[354] J. S. Vitter and E. A. M. Shriver, “Optimal Disk I/O with Parallel Block Transfer,” Proc. 22nd
Ann. ACM Symp. Theory of Computing (1990), 159–169.

[355] J. Vuillemin, “A Combinatorial Limit to the Computing Power of VLSI Circuits,” Proc. 21st Ann.
IEEE Symp. Foundations of Computer Science (Oct. 13-15, 1980), 294–300.

[356] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Computers EC-13 (1964), 14–17.

[357] I. Wegener, “Boolean Functions Whose Monotone Complexity Is of Size n2/ log n,” Theoret.
Comp. Sci. 21 (1982), 213–224.

[358] I. Wegener, “On the Complexity of Slice Functions,” Theoret. Comp. Sci. 38 (1985), 55–68.

[359] I. Wegener, “Relating Monotone Formula Size and Monotone Depth of Boolean Functions,” Inf.
Proc. Letters 16 (1983), 41–42.

[360] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner, Stuttgart and New York, 1987.

[361] J. Weiss, “An n3/2 Lower Bound on the Monotone Network Complexity of the Boolean Convolu-
tion,” Info. and Control 59 (1983), 184–188.

[362] J. R. Wicks, Linear Algebra: An Interactive Laboratory Approach with Mathematica, Addison
Wesley Longman, Reading, MA, 1996.

[363] R. Wilber, “White Pebbles Help,” J. Comp. Systems Sci. 36 (1988), 108–124.

[364] S. Winograd, “On the Algebraic Complexity of Functions,” Actes Congrès Int. Math. 3 (1970),
283–288.

[365] M. Wloka, “Parallel VLSI Synthesis,” Dept. of Computer Science, Brown University, CS-91-35,
1991.

[366] A. C-C. Yao, “Some Complexity Questions Related to Distributive Computing,” Proc. 11th Ann.
ACM Symp. Theory of Computing (1979), 209–213.

622 Bibliography Models of Computation

[367] A. C-C. Yao, “The Entropic Limitations on VLSI Computations,” Proc. 13th Ann. ACM Symp.
Theory of Computing (1981), 308–311.

[368] A. C-C. Yao, “Separating the Polynomial-Time Hierarchy by Oracles,” Proc. 26th Ann. IEEE
Symp. Foundations of Computer Science (1985), 1–10.

[369] A. C-C. Yao, “Near-Optimal Time-Space Tradeoff for Element Distinctness,” Proc. 29st Ann.
IEEE Symp. Foundations of Computer Science (1988), 91–97.

[370] Y. Yesha, “Time-Space Tradeoffs for Matrix Multiplication and the Discrete Fourier Transform on
Any General Sequential Random-Access Computer,” J. Comp. Systems Sci. 29 (1984), 183–197.

[371] D. H. Younger, “Recognition and Parsing of Context-Free Languages in Time n3,” Info. and Con-
trol 10 (1967), 189–208.

[372] D. Zhou, F. P. Preparata, and S. M. Khang, “Interconnection Delay in Very High-Speed VLSI,”
IEEE Trans. Circuits and Systems 38 (1991), 779–790.

[373] U. Zwick, “Optimizing Nečiporuk’s Theorem,” Dept. Computer Science, Tel Aviv Univ., Tech.
Report 86/1987, 1987.

[374] U. Zwick, “A 4n Lower Bound on the Combinational Complexity of Certain Symmetric Boolean
Functions over the Basis of Unated Dyadic Boolean Functions,” SIAM J. Comput. 20 (1991),
499–505.

Index

Note to the Reader: (*) identifies a reference to a section.

1D arrays,
embedding in 2D meshes 297(*)
simulation of 2D array on 298

2-SAT language 363
2D meshes,

embedding 1D arrays in 297(*)
fully normal algorithms on 306(*)
matrix multiplication on 295(*), 296
normal algorithm on 307
simulation on 1D array 298

3-COLORING language 359
3-SAT language 356

A
Abelson, H. 527 602 605
abnormal termination 210
Abrahamson, K. 528 605
absorption rules,

Boolean expressions 41
accept state 179
acceptance,

See, language(s)
accepting halt state 214

standard TM 210
accumulator 111

simple CPU,
circuits 146

accumulator (cont.)
simple CPU (cont.)

design spec 138
activation records 339
addition 58(*)

adder,
carry lookahead, circuit for 61
carry-save, circuit for 64
FSM 108
full 59
ripple 58
ripple, FSM simulating 107

carry lookahead 60(*)
function,

circuit for 60
integer 231
matrix 242

rings 239
simulating, with shallow circuit 105(*)

addr 110
address,

memory 111
MAR, simple CPU design spec 138
sequence 568

adjacency,
list 30
matrix 11

Boolean 248

623

624 INDEX Models of Computation

adversarial strategy, monotone
communication game 443 445
447

advice function 382
Aggarwal, A. 563 573 605
Aho, A. V. 278 279 602 605
Ajtai, M. 274 456 457 459 606
Akers, S. B. 528 606
Akl, S. G. 323 606
AKS sorting network 274
algebraic,

circuits 35 283
(chapter) 237(*)

properties, of Boolean functions 40(*)
algorithms 210

ascending 301
block merging 561 562
brief history 6
Cocke-Kasami-Younger, parsing 189
convolution, fast, complexity of 270
Csanky’s 260 262
descending 301
divide-and-conquer 67
dynamic programming 165
FFT 266(*)

convolution 263(*), 269
FSM minimal 175(*), 176
fully normal 307
implemenation by machines 170
inversion, arbitrary non-singular matrices

259
LDLT factorization 259
matrix,

inversion 260
multiplication 242 422
multiplication, improvements on 244

memory-management, two-level 568(*)
multiplication, standard integer 63
Newton’s approximation 69
normal 301(*), 301

ascending/descending 306 307
AT 2 upper bound for 585
cyclic shifting on the hypercube 304
fully 301 307
fully, on 2D arrays 306(*)
on CCC networks 307(*), 308
PRAM EREW simulation of 313

offline 567
online 567
page-replacement 567

FIFO 568

algorithms (cont.)
page-replacement (cont.)

LRU 568
MIN 568

parallel, performance 289(*)
polynomial time, CFL recognition 189
reachability, paths explored by 344
reciprocal 70
regular languages, decision problems 171
sorting 301 302
stable sorting 304
Strassen’s 245(*)

matrix multiplication 247
systolic, simulation on systolic array 298
VLSI,

performance of 592(*)
performance of, on functions 593(*)
performance of, on predicates 595(*)

VLSI design algorithmic level 577
Alon, N. 457 606
Alpern, B. 563 573 605 606
alphabet 9 181

choice input 214
DFSM 154
tape 214

Alt, H. 323 606
ALTERNATING QUANTIFIED SATISFIABILITY

language 369
GENERALIZED GEOGRAPHY

correspondance 371
Amano, K. 424 457 606
ambiguous languages 187
Amdahl, G. M. 323 606
Amdahl’s law 290(*)
Andreae, P. 602 605
Andreev, A. E. 456 457 606
annihilator,

under multiplication, rings 239
approximation method,

approximator circuits 426
monotone circuits, lower bounds derivation

424(*), 424
test inputs,

negative 425
positive 425

approximator(s),
b-approximator 448
circuits 426 427√

n-approximator 450
ARBITRARY PRAM model 313

c©John E Savage INDEX 625

architecture,
RAM 110(*)
VLSI 577

array(s),
See also, matrix(s); mesh(es)
1D,

embedding in 2D meshes 297(*)
simulation of 2D array on, 298

hypercube embedding of 299(*)
linear,

bubble sort on 294
matrix multiplication on 294
matrix-vector multiplication on 293(*)
shuffle permutations 304(*)
sorting on 294(*)
unshuffle permutations 304(*)

PRAM simulation 313(*)
systolic 27 28

multiplication 296
systolic algorithm simulation on, 298

ascending algorithms 301
assembly language 112

assembler 141
instructions 112
simple CPU 140(*)

assignment,
operation 17
state, problem 107

associative operator 41 48 56 102
asynchronous parallel computers 285
Aussiello, G. 614
automaton,

brief history 4
linear bounded 204
pushdown, See PDA

Axler, S. 606

B
Babbage, Charles,

Analytical Engine 4
Backus, J. 323 606
backward substitution 263
bad matrix 504
balanced,

binary tree 564
associative operator 48

computer systems 532(*)
partition 425

Balcázar, J. L. 389 606

bandwidth 284
Bar-Hillel, V. 207 606
basis,

change 396(*)
circuit 38 239
complete 84 392
dyadic unate 392
fan-in 392
full two-input 392
logic circuit 11
monotone, completeness for the monotone

functions 392
standard 373 392
step 15

Batcher, K. E. 279 323 606
Batcher’s bitonic merging network 271 272

as ascending algorithm 302
complexity of 273

Baudet, G. M. 602 603 606
BDD (binary decision diagram) 490
Beals, R. 456 606
Beame, P. W. 72 88 528 606
Beauregard, R. A. 609
Belady, L. 573 606
Beneš, V. E. 323 607
Beneš network 289 310

global routing network example 310
Berkowitz, S. 458 607
Bertolazzi, P. 618
Bertsekas, D. P. 323 607
BFS spanning tree 591
big Oh notation, O() 13

divide-and-conquer multiplication 66
big Omega notation, Ω() 13
big Theta notation, Θ() 13
Bilardi, G. M. 323 601 602 603 607
bilinear form 420

semi-disjoint 420
replacement rule 420

binary,
decision diagram 490
functions 12 39

tree circuits for 78
merging 414
numbers, FSM adding 101
relation 10
representation, of integers 58

626 INDEX Models of Computation

binary (cont.)
representation, standard 8
search,

lower performance bounds 565
procedure 565
tree 564

sorting 85
functions, as symmetric function 74
monotone circuits lower bounds 413

trees 78 564
balanced 564
balanced, associative operator 48
balanced, pebbling 465
complete balanced 463 464
complete balanced, space lower bounds on

465
longest path length 565
longest path length for sorting 560
number of unlabeled 78
search 564

Bini, D.607
binomial theorems451
bipartite graph467
bisection width,

graph, network 287
bit reverse permutation267
bitonic,

sequence 278
sorter 271 272 278

blank symbol214
Blelloch, G. E.323 607
block ,

I/O 557
in the MHG 555(*)

block,
matrix 243
merging algorithm 561 562
row 503
transfer I/O model, See BTM

Blum, M.389 607
Blum, N.455 607
Boehm, C.614
Boolean,

adjacency matrix 248
circuits 35 283
convolution 419
convolution, function 422
functions 12 39

algebraic properties of 40(*)
circuit-size lower bound for most 77
circuit-size upper bound for all 82

Boolean (cont.)
functions (cont.)

class 400 403
class Q

(n)
2,3 401

computing on CRCW PRAM 314
depth lower bound for most 79
depth upper bound for all 80
(k, s)-Lupanov representation in 81
logic gate implementation of 16
maxterm of 43
minterm of 42
negations needed to realize 409
normal form expansions 42(*)

matrix,
powers of 248

matrix multiplication 244 422
monotone circuits and 423
optimal monotone circuit 424

straight-line program, circuit as graph of 37
variable 11

boot program141
Bopanna, R. B.89 456 457 606 607
Borodin, A.279 337 389 497 504 528 607
Borodin-Cook lower-bound method497(*)

applications 505(*)
convolution 505(*)
DFT 513(*)
integer multiplication 506(*)
matrix inversion 511(*)
matrix multiplication 509(*)
matrix-vector product 507(*)
sorting 516(*)
unique elements 514(*)

bounded,
computations, impossibility theorem for 24
depth circuits 393 448(*)
depth parity circuits,

exponential size 448(*)
exponential size of 450

memory, RAM 19 111 122
Brakhage, H.609
branching program(s)488(*)

comparison with other computational
models 493(*)

computation on 489
decision 489
efficient,

for cyclic shifting 496(*)
for merging 496(*)

general 490

c©John E Savage INDEX 627

branching program(s) (cont.)
lower bound method 498
normal-form 492
pebble game,

comparison with 493
lower bound from 494

RAM,
lower bound from 494
simulation 495

space 490
space–time,

tradeoffs 26
tradeoffs, analysis with 461

straight-line programs vs. 496(*)
Brent, R. P.88 323 455 601 602 607 608
Brent’s principle291(*)
broadcasting on the hypercube303(*)
Bryant, R. E.528 608
BSP (bulk synchronous parallelism)

model317(*)
BTM (block-transfer model)559(*)

sorting time 561
bubble sort294
Burrus, C. S.279 611
butterfly graph,

as ascending algorithm 301
comparator network replacement with 273
FFT 238
network 289

C
CAD (computer-aided design)578
canonical,

CCC network 307
normal algorithms on 308

TM encoding 221
capacity,

computational 532
I/O 532
storage 111

TM 119
cardinality, set7
Carlson, D. A.526 527 608
carry,

generate function 103
generation 59
lookahead adder 60(*), 105

circuit for 61

carry (cont.)
propagate function 103
propagation 59
save adder 64
save multiplier, circuit for 66
terminate function 103

Carter, L.573 606
Cartesian product8
Cayley-Hamilton theorem260
CCC (cube-connected cycles)300(*)

canonical networks 307
normal algorithms on 307(*), 308
VLSI layout of, 584(*)

ceiling function13
cells,

systolic arrays 292
Celoni, J. R.526 616
central slice435
certificate329

succinct 100
CFL (context-free language)22 153 183(*)

Chomsky,
hierarchy component 5
language type 182
normal form 187

machine type that corresponds to, (table)
182

parsing 186(*)
PDA,

acceptance of 192 192(*)
languages are 194

properties 197(*)
closure 198(*)
non-closure 199

pumping lemma 197(*)
recognition, polynomial time algorithm 189

chain536
Chandra, A. K.526 563 573 605 608
characteristic,

functions 13 375
polynomial, matrix 260

Chazelle, B. M.601 608
chip(s)575

area 27
layout,

H-tree 581(*)
VLSI 581(*)

VLSI,
fabrication of 576(*)
layout 28

628 INDEX Models of Computation

choice,
agent 99
input 99

alphabet 214
string 215
string, NDTM 120
verification of a string in a language by

121
Chomsky,

hierarchy 5 182
normal form, CFLs 187

Chomsky, N.207 236 608
Church, A.236 608

as a founder of theoretical computer science
4

Church-Turing thesis209
circuit(s),

accumulator input, simple CPU 146
addition function 60
algebraic 35 283

(chapter) 237(*)
LDLT factorization of SPD matrices 258

approximator 426 427 429 430
basis 239
Boolean 35 283 410
bounded FSM, computations and 96(*)
bounded-depth 393 448(*)

errors with b-approximator of 448
parity, exponential size 448(*)
parity, exponential size of 450

bounded-fan-out 395
carry lookahead adder 61
carry-save,

adder 64
multiplier 66

combinatorial, (chapter) 237(*)
comparator 35
complexity 27(*)

(chapter) 391(*)
classes 380(*)
measures of 40(*), 393(*)
measures, relationships among 394(*)
relationship to TM computation time 5

computations,
equivalence between FSM and 96
reductions of TM computations to 128 (*)

counting function 75
CREW PRAM,

equivalence 376(*), 379
simulation by 377

circuit(s) (cont.)
cyclic shifting 50
decoder 54
demultiplexer function 55
depth 11 35 40 239 394 436(*)

binary multiplication function 66
decoder 54
formula size vs 396(*)
in a simple CPU 146(*)
monotone communication game

relationship 441
relationship between formula size and 397
simple lower bounds on 399
with fan-out s 394

designing 36(*)
divide-and-conquer multiplier 67
encoder 52
encoder function 52
families 373

log-space uniform 373
uniform 373

fan-out-1 392
and formula size relationship 394

FFT, algorithm 267
FSM, compared with 94
full-adder 18
functions,

computed by 38(*), 39(*), 392
graph of Boolean straight-line program 37
integrated 575
log-space uniform,

computable by polytime DTMs 374
polytime DTM functions are computable

by 374
PRAM relationship 378

logic 11 16 17 392
as computational model 16(*)
(chapter) 35(*)
standard basis of 38
VLSI computational model 579

lower bounds, methods for deriving 399(*)
models 392(*), 451

parallel memoryless computational 282
monotone 27 353 392

Boolean convolution 419
Boolean matrix multiplication on 423
lower bound, approximation method

derivation 424(*)
lower bound, for binary sorting 413
lower bound, for merging 414

c©John E Savage INDEX 629

circuit(s) (cont.)
monotone (cont.)

lower bound, function replacement
method derivation 417(*)

lower bound, methods for deriving 412(*)
lower bound, path-elimination method

413(*)
lower bound, slice functions derivation

431(*)
optimal, Boolean matrix multiplication

424
paths 414
realization of pseudo-negations 432
size, clique function 430
slice functions 434
vertext-disjoint paths 415

multiplexer function 55
P/poly language acceptance 383
parallel prefix function 57
planar,

size lower bound in terms of w(u, v)-flow
593

size lower bounds for independent
functions 594

size, relationship between AT 2 and A2T
and 589

size, relationship between standard and
586(*)

size, VLSI chips 586(*)
polynomial size 382(*)
PRAM relationship 378
prefix, parallel, efficient 57(*)
RAM, next-state/output functions 120
random-access memory 116
reciprocal function 72
safe 106
Schönhage-Strassen 67
sequential 106

as concrete implementation of sequential
machine model 5

designing 106(*)
shallow,

FSM simulation 100(*), 102 104
simulating addition with 105(*)

simulation,
by dataflow computers 283
of FSM 95
of TM 124(*), 125 129 134(*)

size 11 35 40 239 393
as quantity whose rate of growth is

significant 13

circuit(s) (cont.)
size (cont.)

basis change effect on 396(*)
Boolean convolution 419
bound for indirect storage access function

405
bounds on 402
decoder 54
fan-out impact on 394(*)
gate-elimination method for 400(*)
in a simple CPU 146(*)

lower bound, for functions in F
(n,k)
s 403

lower bound, for functions in Q
(n)
2,3 401

lower bound, for most Boolean functions
77

simple lower bounds on 400
slice function relationship 432
upper bound, for all Boolean fucntions 82
upper bounds on 79(*)
with fan-out s 393

specialized 48(*)
straight-line programs and 36(*)
symmetric functions 76
synchronous FSM simulation 98
transitive closure 251
tree 78

decomposition of 398
for binary functions 78

uniform 373(*), 373
recognition NSPACE language 375
TM equivalence 374(*)

CIRCUIT SAT language132
CIRCUIT SATISFIABILITY language128
CIRCUIT VALUE language128 130 131 352

complexity theory role 128
CIRCUIT VALUE problem40
circulant277

matrix 244
CISC (complex instruction set computer)138
classes,

complexity 26(*)
equivalence 10 172

classification,
decision problem 334(*)
of problems, issues and parameters 328(*)

clause(s),
Horn 385
SATISFIABILITY language 132 328
triangles 359

630 INDEX Models of Computation

clique function412
communication complexity of 447
lower bound, technical lemma 445 446
monotone circuit size 430
monotone depth 442(*)

clique player,
monotone communication game 442

clock106
closure,

Kleene 158 163
properties,

CFL 198(*)
of regular languages 170

rings 239
transitive 182 248(*)

application to parsing CFLs 190
circuits for 251 252
function, complexity of 249
matrix 248
reduction of matrix multiplication

function to 250
cmd110
coarse-grained parallel computers284
Cobham, A.526 608
Cocke, J.207
color player442
combinatorial circuits, (chapter)237(*)
combiners406
COMMON model, PRAM313
communication,

complexity 437
depth relationship 438 439
monotone depth relationship 440(*)
of clique function 447
VLSI 595

game 437 441 447
parity communication problem 438

commutativity40
non, matrix multiplication 242
rings 239 264(*)

comparator,
based, merging networks 481
circuit 35
element 481
function 270
networks 270 271

compare-exchange operation560

competitive,
analysis 567
memory management 567(*)

compiler187
complementary number system432
complementation,

CFL, not closed under 199
complements,

complexity class 343(*)
decision problem 329
language 170

decision problems and 329(*)
NP 347(*)
Schur 254

complete,
basis 84 392

formula size relationship 399
language 130(*)

NP 130
P 130

problems 350(*), 351
records 339

complexity,
circuit 27(*)

bounded-fanout 395
(chapter) 391(*)
depth 436(*)
measures of 40(*), 393(*)
measures, relationships among 394(*)
relationship to TM computation time 5

classes 26(*), 334
(chapter) 327(*)
circuit, containment of 381
circuits 380(*)
complements of 343(*)
relationships among 342
space-bounded 338(*)
time-bounded 337(*)
time-bounded and space-bounded

relationships 341(*)
time-bounded, containment among 337
transformation class relationships with

350
communication 437

depth relationship 439
general depth and 438(*)
monotone depth relationship 440(*)
of clique function 447
VLSI 595

complex instruction set computer, See CISC
computational 23(*)

c©John E Savage INDEX 631

complexity (cont.)
computational (cont.)

brief history 5
I/O 563

brief history 6
measures, size of smallest circuit for a

function 118
theory, P and NP-complete language role

128
TM vs circuit size, as tool to resolve P

?
= NP

equality question 128
transitive closure frunction 249

composition,
function 231
log-space TM 351

computability,
(chapter) 209
feasible problems, serial computation thesis

330
computation,

bounded, impossibility theorem for 24
capacity 532
circuit,

equivalence between FSM and 96
model, logic circuits as 16(*)
reductions of TM computations to 128(*)

cost, with HMM 563
data-dependent, branching programs 488
function, by standard TM 210
locality of reference 558
multilective 580
on a branching program 489
parallel 27(*)

(chapter) 281
circuit models 372

period 582
prefix 55(*), 583(*)
read-once 580
restricted models of, representing 217(*)
semellective 580
serial, thesis 330
step, red-blue pebble game 530
time,

in the VLSI synchronous model 579
pebbling strategy 531

computational,
complexity 23(*)

brief history 5
inequalities 23(*)

for FSM 95(*)
for interconnected FSMs 97

computational (cont.)
inequalities (cont.)

for the random-access memory 117(*)
for the TM 127 134 127(*)
RAM 118
VLSI chips 587(*)

models 16(*)
branching program comparison

with 493 (*)
parallel 282(*)
(part I - chapters 2-7) 35
serial 331(*)
VLSI 579(*)
VLSI, (chapter) 575(*)

time, TM relationship to circuit complexity
5

work,
on FSM 96
on PRAM 290

computer(s),
balanced systems 532(*)
distributed memory 284 285
distributed shared memory 285
networked 287(*)
parallel,

Brent’s principle 291(*)
Flynn’s taxonomy 285
memoryless 282(*)
synchronous 285
unstructured, circuit as form of 283
with memory 283(*)

science 3
shared memory 284

concatenation9
CFL closed under 198
NFSM 164
string 158

concurrency,
See also, PRAM
power of 314(*)

conditional vector operations286
configuration,

graph 218 334 340
TM, k-tape 218

connection network289
context-free grammar22 183

Chomsky normal form 187
context-sensitive grammar183
context-sensitive language(s)183(*), 183

Chomsky,
hierarchy component 5

632 INDEX Models of Computation

context-sensitive language(s) (cont.)
Chomsky (cont.)

language type 182
machine type that corresponds to, (table)

182
contradiction, proof by15(*)
control,

CPU, simple CPU 142(*)
unit 20

PDA 177
standard TM 210
TM 118

variable 144 474
controllers406
convolution,

Boolean,
circuit size 419
function, circuit size lower bound 422

as Borodin-Cook lower-bound method,
application 505(*)

complexity of fast algorithm 270
FFT-based algorithm 269

and 263(*)
function 268
I/O time bounds 553
space-I/O time tradeoffs 552(*)
systolic arrays and 28
theorem 268(*)
wrapped 276 473(*), 474 505

space–time lower bound 505
Conway, L.323 613 615
Conway, L. A.601
Cook, S. A.72 88 152 323 389 390 497 504

526 527 528 606 607 608
Cooley, J. W.279 608
Coppersmith, D.245 278 608
corollaries,

area lower bounds, for independent
functions, (12.8.1) 598

Boolean convolution function circuit size
lower bound, (9.6.1) 422

containment between time-bounded
complexity classes, (8.5.2) 341

distinguishable functions, space–time lower
bound for, (10.11.1) 500

existence of languages not in P, (8.6.1) 343
FFT decomposition, (6.7.1) 267
FSM, minimal-state, characterization of,

(4.7.1) 174

corollaries (cont.)
Grigoriev’s lower-bound method, (10.4.1)

471
I/O complexity bounds, multi-level, (11.4.1)

539
languages, accepted by NDTM accepted by

DTM, (5.2.1) 216
matrix multiplication function, vis-a-vis

transitive closure, (6.4.1) 250
nondeterministic space classes closed under

complements, (8.6.2) 346
Savitch’s Theorem, (8.5.1) 340
separator theorem for trees, (9.2.1) 397
space–time product lower bound for

independent functions, (10.4.1)
471

time-bounded and space-bounded
complexity class relationships,
(8.5.2) 341

Turing machine time lower bounds, (3.9.1)
128

counter,
incrementing/decrementing 148
modulo-p 148

counting,
binary trees 78
function 75

CPU (central processing unit)19 110
booting 141
circuit size and depth 146(*)
control, simple CPU 142(*)
simple,

design 111 137(*)
instructions 140
micro-instructions 142
microcode 142
registers 138

timing, simple CPU 142(*)
CRCW (Concurrent Read/Concurrent

Write) PRAM313
computing Boolean functions on 314
simulation by EREW PRAM 314

CREW (Concurrent Read/Exclusive Write)
PRAM313

circuits,
and 317(*)
equivalence 376(*), 379
simulation by 377

P-complete problems 380

c©John E Savage INDEX 633

CREW (Concurrent Read/Exclusive Write)
PRAM (cont.)

realization of log-space transformations on
380

crossbar network289
crossing-sequence argument596
cryptography,

brief history 7
Csanky, L.279 609
Csanky’s algorithm262

fast matrix inversion with 260
Csirik, J.620
Culler, D. E.323 609
cycle(s)10

cube-connected, See CCC
fetch-and-execute 20
inside of the 590

cyclic shifting474(*)
circuit 49
efficient branching programs for 496(*)
functions 48 474

circuits for 50
independence properties 474
reductions between logical shifting

functions 51
space–time lower bound 475

on the hypercube 303(*), 304
reductions, between logical and 50(*)

Cypher, R.323 609

D
DAG (directed acyclic graph)10

adjacency matrix relationship 248
circuits 238
convolution theorem, FFT application 269
logic circuit as a 16
maximal path length 249
space upper bounds 483

DAM (directed acyclic multigraph)489
data-dependent computation,

branching programs 488
dataflow computer,

circuit simulation by 283
decidable languages223(*), 225

standard TM 210
decimal,

standard representation 8
decision,

binary decision diagram 490

decision (cont.)
branching program 489
problems 328

classification of 334(*)
complement of 329
language complements and 329(*), 330
regular languages, algorithms 171

tree 489
multiway 561

decoder53(*)
function 53

circuit for 54
definitions,

basis,
measure 397
of a circuit 38

big,
Oh notation, O() 13
Omega notation, Ω() 13
Theta notation, Θ() 13

bilinear form 420
block I/O model 557
Boolean,

convolution function 419
function class 400 403
matrix multiplication 422

branching program 489
space on 490

BTM 559
central slice 435
Chomsky normal form 187
circuit 38

depth 40 394
depth with fan-out s 394
family 373
family, log-space uniform 373
planar circuit size 586(*)
size 40 393
size with fan-out s 393

communication,
complexity, of a communication game

437
complexity, VLSI 596

commutative rings 264
complete problems 351
complexity,

class 334
class, complements 343

634 INDEX Models of Computation

definitions (cont.)
complexity (cont.)

communication, of a communication
game 437

communication, VLSI 596
computation on a branching program 489
configuration,

graph 218
k-tape TM 218

decision problems and their languages 328
depth, circuit 40
derivation, phrase-structure grammar 182
DFSM 154

equivalence classes 176
(φ, λ, μ, ν, τ)-distinguishability 497
DTM 119

language in P 120
equivalence,

classes 172
relation, DFSM 172
relation, for a language 172
relation, refinement 173
relation, right-invarian 172
right-invariant, for a language 173
states 175

expressions, regular 158
final state, FSM 92
formula, size 394
FSM,

computational work on 96
next-state function 92
output alphabet 92
output function 92

functions,
advice 382
computed by straight-line programs, 38
next-state, FSM 92
pairing 382
partial recursive 232
polynomial advice 382
primitive recursive 231
proper 330
reductions between 46
symmetric 74

general branching program 490
goal, communication game 437
grammar,

context-free 183
context-sensitive 183
phrase-structure 182
regular 184

definitions (cont.)
hard problems 351
hierarchical memory model 563
I/O,

operation 559
operations, simple 560
time 559

immediate derivation, phrase-structure
grammar 182

implicants 417
(α, n, m, p)-independent function 469
induction hypothesis 15
initial state, FSM, 92
input alphabet, FSM 92
Kronecker product 503
language,

CIRCUIT SAT 132
CIRCUIT VALUE 130
context-free 183
context-sensitive 183
FAN-OUT TWO CIRCUIT SAT language

150
in NP 120
in P 120
MONOTONE CIRCUIT VALUE 150
P-complete 130
phrase-structure 182
recognition, FSM 92
regular 158 184
SATISFIABILITY 132

matrix,
multiplication ring operations 245
nice and ok 501

monotone,
communication game 441
function replacement rule 418

multigraph 489
multiplication, smallest circuit 67
n-indistinguishable 175
NC languages 380
NDTM 120 214

language in NP 120
NFSM 154
non-terminals, phrase-structure grammar

182
notation,

big Oh, O() 13
big Omega, Ω() 13
big Theta, Θ() 13

P and NP,
complete problems 352

c©John E Savage INDEX 635

definitions (cont.)
P and NP (cont.)

problems 335
P/poly languages 383
permutation 74
planar circuit size 586(*)
programs, straight-line 38
proof by contradiction 15
protocol, communication game 437
reducibility 226
reduction,

between functions 46
via subfunction relationship 46

regular,
expressions 158
languages 158
sets 158

rings 239(*)
S-span of a DAG 537
set,

neighborhood 408
of states, FSM 92
regular 158

size, circuit 40
slice functions 431
space-bounded complexity classes 338
SPD matrices 253
start symbol, phrase-structure grammar 182
straight-line programs 38

functions computed by 38
subfunctions 46

reductions via 46
superconcentrator 485
terminals, phrase-structure grammar 182
time-bounded complexity classes 337
TM,

canonical encoding 221
configuration 218
standard 210

transformation 348
and complexity class relationships 350
classes 350

transitive,
closure, phrase-structure grammar 182
transformations 350

unique elements 514
universal 114
vertex-disjoint 485
w(u,v)-flow 469

degree,
in 10

degree (cont.)
out 10

Dekel, E.323 609
Demetrovics, J.620
DeMorgan’s rules,

Boolean expressions 41
demultiplexer55(*)
dependent variables399
depth,

circuit 11 35 40 239 394 436(*)
basis change effect on 396(*)
bounded 448(*)
errors with b-approximator of 448
formula size vs 396(*)
in a simple CPU 146(*)
monotone communication game

relationship, 441
relationship between formula size and 397
simple lower bounds on 400
with fan-out s 394

communication complexity,
relationship 438 (*)

lower bound, for most Boolean functions 79
monotone,

clique function 442(*)
communication complexity relationship

440(*)
upper bound, for all Boolean functions 80

derivation181
immediate 182
leftmost 186
parsing 186
rightmost 186

descending algorithms301 306 307
designing,

circuits 36(*)
deterministic,

FSM, See DFSM
PDA 177
Turing machine, See DTM

DFSM (deterministic finite-state machine)98
154

See also, FSM; NFSM
equivalence relation 172
languages accepted by, same as languages

accepted by NFSMs 156
minimal, equivalence relation 177
NFSM equivalence 156

636 INDEX Models of Computation

DFT (discrete Fourier transform)263 264 (*)
as Borodin-Cook lower-bound method,

application 513(*)
independence properties 479
inverse 265
space–time,

lower bounds 480 513
product 479(*)

vector-matrix product 513
diagonalization225
diagram,

binary decision 490
state 18 30

FSM 21
diameter,

graph, network 287
Dı́az, J.389 606
difference,

languages 170
sets 7
symmetric, between sets 234

diffusion model,
VLSI 579

Ding-Zhu, Du618
directed graph10
directed multigraph489
discrete Fourier transform,

See, DFT
disjoint sets7
(φ, λ, μ, ν, τ)-distinguishability property497
distinguishability properties,

flow property relationship to 500
matrix multiplication 509
matrix-vector product 508
(φ, λ, μ, ν, τ) 497
unique elements 515

distributed,
computing, brief history 6
memory computer 284 285

routing in 309
shared memory computer 285

distributive laws41
distributivity,

Boolean expressions 42
divide-and-conquer,

multiplier, circuit for 67
strategies, trees 288

division,
of integers 68
reciprocal and 68

domain,

of a function 11
dominant terms,

as rate of grown indicator 13
big Oh notation, O() 13
big Omega notation, Ω() 13
big Theta notation, Θ() 13

doped layer576
doping576
DTM ACCEPTANCE language354
DTM (deterministic Turing machine),

language acceptance 333
language in P 120
multi-tape 333
P problems 335
polynomial-time 330 374(*)
recursive language 333
simulation of RAM 332
standard 118 210(*)

dual-rail logic84
Duff, I. S.613
Dunne, P. E.89 457 458 609
Ďuriš, P.603 609
dyadic unate basis392
dynamic programming algorithm165

E
Earley, J.207 609
Eckert4
Eckstein, D. M.323 609
edge(s)10
Edmonds, J.330 609
efficiency,

PRAM 290
eigenvalues261
eigenvector261
electronic lock148
elementary symmetric functions74
elimination method,

gates,
for circuit size 400(*)
general circuits 400

Gaussian 274
paths, monotone circuits, lower bounds

derivation 413(*)
embedding,

1D arrays in 2D meshes 297(*)
arrays in hypercubes 299(*)
graph, problem 289

empty,

c©John E Savage INDEX 637

set, acceptance problem 229
string 181

empty (cont.)
tape acceptance problem 228

emulation147(*)
encoder51(*)

circuit 52
function, circuit for 52

encoding,
canonical, of TM 221
string, TM and 222(*)
unary 383

end-of-tape marker210
endpoint,

set 426
size 426

ENIAC4
enumeration tape215
equivalence,

class 10 172
DFSM and NFSM 156(*)
regular expressions 159
relations 10 172

DFSM 172
on languages 171(*)
on states 171(*)
refinement 173
right-invariant 172
right-invariant 173

states 175
ERCW (Exclusive Read/Concurrent Write)

PRAM313
EREW (Exclusive Read/Exclusive Write)

PRAM simulation313
by hypercube network 317
CRCW PRAM 314
of normal algorithm 313

error function451
Evey, J.207 609
EXACT COVER language360
exclusive access,

PRAM 312
existential quantification365
expansion,

series, Taylor 73
sum-of-products 44

exponential,
functions 13

exponential (cont.)
size, bounded-depth parity circuits 448 450
time, polynomial time compared with 330

expressions,
See, regular expressions

EXPTIME class337
complexity class relationships 341

extreme tradeoffs466(*), 467

F
face,

planar graph 590
factorization,

prime 87
Schur 254(*)

Faddeev, D. K.279 609
Faddeeva, V. N.279 609
fan-in,

circuit 38
of a basis 392
trees 394

fan-out,
circuit 38

size impact 394(*)
reduction 150

construction used for 215
fan-out-1 circuit392 393

relationship to formula size 394
fast Fourier transform,

See, FFT
feasible381

problems 335
Feig, E.573 606
fetch-and-execute cycle20 110 138 139(*)
FFT (fast Fourier transform),

algorithm 266(*), 267 301
convolution and 263(*)

circuit 266
convolution application 269
decomposition 267
graph,

butterfly 238
decomposition 267 548
pebbling 463
pebbling of 25
with column numberings 302

I/O time bounds,
in red-blue pebble game 547
MHG 549 551

638 INDEX Models of Computation

FFT (fast Fourier transform) (cont.)
lower performance bounds 565
S-span 546
space-I/O time tradeoffs 546(*)
straight-line program for 238

Fich, F.528 607
field274
FIFO (first-in, first-out),

LRU analysis relative to 568
page-replacement algorithm 568

final state92 154
fine-grained parallel computers283 284
finite,

functions 12
language 9

finite-state machine,
See, FSM

first order linear recurrence86
Fischer, C. N609
Fischer, M. J.152 456 528 607 609 613 616
flip-flop109
floor function13
FLOP (floating point operations per

second)282
flow properties,

distinguishability property relationship to
500

functions 469(*)
matrix multiplication 477

Flynn, M. J.323 609
Flynn’s taxonomy,

parallel computers 285
form,

bilinear 420
semi-disjoint 420
semi-disjoint, replacement rule 420

formal,
computational models 4
languages 4 21

brief history 5
Chomsky language hierarchy 5

formula,
fan-out-1 circuit 392 393
size 394

bounds on 397
circuit depth vs 396(*)
fan-out-1 relationship 394
lower bounds for 404(*)
over two different bases 399

Fortune, S.323 390 609
Foster, M. J.601 609

Fourier,
See, DFT; FFT

Fraleigh, J. B.609
Friedman, J.456 610
FSM (finite-state machine)92(*)

See also, DFSM; NFSM
adder 108
adding two binary numbers 101
bounded,

circuits and 96(*)
brief history 5
(chapter) 153(*)
choice input 99
circuit,

compared with 94
computation equivalence 96
for 23
simulation of 95

computational,
inequalities 95(*), 95
model 18(*)
work on 96

computing exclusive or of its inputs 93
decision problems, algorithms 171
deterministic 98
equivalence of DFSM and NFSM 156(*)
exclusive or computation 97
functions computed by 22 94(*), 95
interconnction 97
language,

are regular 185
association with 173
described by regular expressions 164
recognition by 22

minimal algorithm for 175(*), 176
models 154(*)
nondeterministic 98(*), 154
PDA control unit as a 177
pumping lemma for 168(*)
RAM as 111(*)
regular expressions,

recognition by 160(*)
relationship with 158

regular language recognition by 184
ripple adder simulaton by 107
simulating with shallow circuits 100(*)
state-diagram 21
synchronous 97

circuit simulating 98
interconnection of 97(*)

c©John E Savage INDEX 639

FSM (finite-state machine) (cont.)
TM,

control unit as 118
relationship 217
tape unit as 118

universal RAM for 114
VLSI chip design use 27

full adder59
carry-save adder realization by 64
circuit 18

full two-input basis392
fully normal algorithms301 306

on 2D arrays 307
function(s)10 11

addition 58 60 231
advice, polynomial 382
binary 12 39

tree circuits for 78
Boolean 12

algebraic properties of 40(*)
circuit-size lower bound for most 77
circuit-size upper bound for all 82
class 400 403
class Q

(n)
2,3 401

complex 77(*)
computing on CRCW PRAM 314
depth lower bound for most 79
depth upper bound for all 80
(k, s)-Lupanov representation in 81
logic gate implementation of 16
maxterm of 43
minterm of 42
negations 409(*), 410 411
sum of 44

carry-generate 103
carry-propagate 103
carry-terminate 103
ceiling 13
characteristic 13 375
circuits that compute 39(*)
comparator 270
complete 11 119
composition 231
computation, by standard TM 210
computed by,

circuit 38(*), 392
DTM 119
FSM 22 92 94(*), 95
straight-line program 38
TM 230(*)

domain 11

function(s) (cont.)
error 451
exponential 13
finite 12
floor 13
implication 410
linear 13
logarithmic 13
monotone 85 392 418
naming 16
next-set 154
next-state 18

DFSM 154
DTM 119
NDTM 120
RAM 120
standard TM 210

output 18
pairing 382
partial 11

DTM 119 333
recursive 231 232 233(*)
standard TM 210

polynomial, as real number functions 13
predecessor 232
prefix 55

parallel, circuit for 57
primitive recursive 231(*)
projection 231
proper subtraction 232
punctured threshold 410
quadratic 14
range 11
rate of growth 13(*)
real number use by 12
realizing subfunction of 47
reductions between 46(*)
semi-disjoint 421
slice 431(*)
space-bounded 342(*)
successor 231
superpolynomial 330
symmetric 74(*)
total 210
transition 212
truth table 12 40
zero 231

Furst, M.459 610

640 INDEX Models of Computation

G
Gabarrò, J.389 606
Galil, Z.389 457 603 609 610 615
game(s),

communication,
complexity of 437
monotone 441 442

geography 369
I/O limited 531
memory-hierarchy pebble 533(*)

rules 533
monotone communication, adversarial

strategy 447
on graphs, PSPACE-complete problems

relationship 365
pebble 24 25

basic lower bounds method 470
branching program comparison with 493
brief history 6
lower bounds 470(*)
playing 463(*)
red-blue 26 530(*), 532(*), 542
space–time tradeoff analysis with 461
worst-case tradeoffs 483(*)

universal vs existential 369
gap theorem316 337
Garey, M. R.389 610
Gaskov, S. B.89 610
gate(s)392

circuit 38
logic 16

Gaussian elimination274
GENERALIZED GEOGRAPHY language370
Gentleman, A. M.323 610
geography game369
Gécseg, F.620
Gibbons, A.323 610
Gilbert, E. N.457 610
Gilbert, J. R.526 610
global routing networks310(*)
Goldmann, M.458 610
Goldschlager, L. M.323 389 390 610
grammar181

context-free 22 183
Chomsky normal form 187

context-sensitive 183
phrase-structure 182
regular 153 184

graphs,
bipartite 467

graphs (cont.)
bisection width, network 287
butterfly,

as ascending algorithm 301
comparator network replacement with

273
FFT 238
network 289

circuit as 37
configuration 218 334
diameter, network 287
directed,

adjacency matrix relationship 248
paths 249

directed acyclic 10
circuits 238
logic circuit as a 16

embedding problem 289
FFT 463
hypercube 288
inner product 541
mesh 288
path in a 10
pizza pie 600
pyramid 465

pebbling 466
trees 288
undirected 10

Greenlaw, R.389 390 610
grep command168(*)
Grigoriev, D. Yu.471 527 610
Grigoriev’s lower-bound method468(*), 470

471 472(*)
Guibas, L. J.601 602 610

H
H-tree VLSI chip layout581(*)

matrix-vector multiplication 582(*)
prefix computation on 583(*)

Hagerup, T.323 606
Haken, A.457 610
HALF-CLIQUE CENTRAL SLICE,

function 435
language 435

HALT (halt register)111
simple CPU design spec 138

halt state,
DTM 119
TM, nondeterministic 120

c©John E Savage INDEX 641

halting,
problem 227 228

halting (cont.)
program 113

HAMILTONIAN PATH language387
Harper, L. H.456 610
Hartmanis, J.336 389 610 611
Håstad, J.458 459 610
Hatcher, P. J.323 611
Heideman, M. T.279 611
height, parse tree186
Heintz, C. A.603 611
Hennessy, J.532 611
Herley, K. T.323 607
Hewitt, C. E.526 573 616
hierarchy,

Chomsky 5 182
memory,

HMM 562(*)
tradeoffs, (chapter) 529(*)

space 336(*)
time 336(*)

Hillis, W. D.323 611
history of theoretical computer science4(*)
HMM (hierarchical memory model)562(*)

cost of problems in 565
lower bounds 564(*)
upper bounds 567(*)

Hochschild, P.602 611
Hockney, R. W.322 611
Hodes, L.456 611
Hong, J.-W.537 573 611
Hong-Kung lower-bound method537(*)
Hoover, H. J.72 88 389 390 455 606 610 611
Hopcroft, J. E.207 236 278 279 389 526 605

611
Horn clause385
Hromkovič, J.603 611
Huffman, D. A.207 611
hypercube(s)288

based machines 298(*)
broadcasting on 303(*)
cycle shifting on 303(*)
embedding arrays in 299(*)
fast matrix multiplication on 308(*)
normal algorithms 301(*)
PRAM simulation 313(*), 315(*)
sorting algorithm 302
summing on 302(*)

I
I/O (input/output)26

block 557
in the MHG 555(*)

bounded problem 540
bounds, matrix-vector product 539
capacity 532
complexity 563

bounds 539
brief history 6

I/O time bounds 535
limited,

game 531
memory hierarchy game 533

models,
block-transfer 559(*)
RAM-based 559(*)

operations 26 559
pebbling strategy 531
simple 560

pads, VLSI layout 577
time 559

MHG 534
pebbling strategy 531
space tradeoffs 24(*), 539(*), 541(*),

546(*), 552(*)
time bounds 536

for convolution 553
for FFT 547 551
in MHG 544 549
red-blue pebble game 537 542

ideal PRAM312
idempotence, semirings252
identities,

matrix 240
regular expressions 160
rings 239

Immerman, N.389 611
Immerman-Szelepscényi theorem344
implicant417
implication function410
impossibility theorem24 95 96
in wrd110
in-degree10
incrementing/decrementing counter148
independence properties,

cyclic shifting functions 474
DFT 479
matrix multiplication 470
wrapped convolution 473

642 INDEX Models of Computation

INDEPENDENT SET language357
indirect storage access function404 407
induction15(*)
inequalities,

computational 23(*), 95
for FSM 95(*)
for interconnected FSMs 97
for random-access memory 117(*)
for TM 127(*)
RAM 118
VLSI chips 587(*)

Markov’s 515
initial state92 214

DFSM 154
DTM 119
NDTM 120
PDA 177
TM, standard 210

initialization,
red-blue pebble game 530

inner product241
graphs, pebbling 472
matrix multiplication 242
alphabet 92
choice 99

NDTM 120
operation, red-blue pebble game 530
vertex 10

INR (input register)111
simple CPU design spec 138

insertion sorting network270
instruction,

assembly language 112
direct memory 140
indirect memory 140
set, simple CPU 140(*)
variable 143

integer(s),
addition function 231
INTEGER PROGRAMMING language 362
multiplication 475(*)

algorithm 63
binary function, space–time lower bound

475
function 232
function, space–time lower bound 475
space–time lower bound 507

representation 8 58
integrated circuits575
interconnection, synchronous FSM97(*)
interleaved random-access memory556

interrupt139
intersection,

CFL, not closed under 199
languages 170
sets 7

inversion,
DFT 265
matrix 243 252(*)

algorithm 260
Borodin-Cook lower-bound method

application 511(*)
Csanky’s algorithm 262
fast 260(*)
function, reduction from matrix

multiplication to 253
function, triangular matrices 256
non-singular 243
reduction to SPD matrix inversion 254
space–time lower bound 512

rings 239
triangular matricies 255(*)

isomorphism,
DFSM, conditions for 174

Iverson, K.323 611

J
JáJá, J.279 323 527 602 611
Jesshope, C. R.322 611
Johnson, D.455 611
Johnson, D. H.279 611
Johnson, D. S.388 389 610 612
Johnson, R. B.603 612
Jones, N. D.389 612
jump value,

for space 483
Juurlink, B. H. H.323 612
(k, s)-Lupanov representation80 82

K
Karatsuba, A.88 612
Karchmer, M.458 612
Karlin, A. R.323 612
Karp, R. M.88 152 323 388 389 390 609 612
Kasami, T.207 612
Kedem, Z. M.602 612
Khachian, L. G.353 389 612
Khang, S. M.601 622
Khasin, L. S.456 612

c©John E Savage INDEX 643

Kirkpatrick, D. G.528 607
Klawe, M. M.455 528 611 612
Kleene,

closure 9 158
CFL closed under 198
NFSM acceptance of 163

star 158
Kleene, S. C.236 612
Kloss, M.456 612
Knuth, D. E.32 279 323 613
Kohavi, Z.611
Komlós, J.274 456 457 606
Koutsoupias, E.456 613
Krapchenko lower bound407(*)
Krapchenko, V. M.88 456 613
Krichevskii, R. E.456 613
Kronecker product,

nice matrices 503
three-matrix product in terms of 511

Kumar, V. K. P.602 611
Kung, H. T.323 537 573 601 602 606 608

609 610 611 612 613 617 618
Kuroda, S. Y.207 613

L
L2 decision problem338
L decision problem338
Laaser, W. T.389 612
Ladner, R. E.152 389 613
Lamagna, E. A.457 613
Landweber, P. S.207 613
language(s)181

2-SAT 363
3-SAT 356
3-COLORING 359
ACCEPTANCE 215

BY NDTM AND DTM 215 216
DTM 119 333
LIMITS 223(*)
NDTM 120 333

ALTERNATING QUANTIFIED

SATISFIABILITY,
PSPACE-complete language 369

assembly 112 140(*)
instructions 112

associated with a decision problem 329
CFL, Chomsky normal form 187

language(s) (cont.)

CIRCUIT SAT 132 355

CIRCUIT SATISFIABILITY 128

CIRCUIT VALUE 128 130 131 352

closed under an operation 170

complements 170 329(*), 330

complete 130(*)

context-free 22 153 183(*)

closure properties 198(*)

parsing 186(*)

PDA acceptance 192(*)

context-sensitive 182 183(*)

decidable 223(*)

decision problems relationship to 328(*)

difference between 170

DTM ACCEPTANCE 354

efficiently parallelizable 380(*)

element distinctness 233

equivalence relations on 171(*)

EXACT COVER 360

existence of languages not in P 343

finite 9

formal 21 181(*)

Chomsky language hierarchy 5

FSM,

described by regular expressions 164(*)

GENERALIZED GEOGRAPHY 370

HALF-CLIQUE CENTRAL SLICE 435

HAMILTONIAN PATH 387

INDEPENDENT SET 357 358

infinite 9

INTEGER PROGRAMMING 362

intersection of 170 171

LINEAR INEQUALITIES 353

machine 140

MONOTONE CIRCUIT VALUE 150 353

NAESAT 353 356

NC 380

NDTM machine recognition 215

non-recursively enumerable 224

NP 26 120

condition for P = NP 130

relationship to NDTM 26

NP-complete,

644 INDEX Models of Computation

language(s) (cont.)
NP-complete (cont.)

brief history 5
reduction to 132(*)

NSPACE, recognition by uniform circuit
family 375

P 120
condition for P = NP 130

P-complete,
brief history 5
log-space reduction 131
reduction to 130(*)

P/poly 382(*), 383
phrase-structure 182 182(*), 219(*)

are recursively enumerable 220
recursively enumerable languages are 219

programming, brief history of 4
properties, context-free 197(*)
QUANTIFIED SATISFIABILITY 365 366 367
recognition 215

by FSM 22 92 154
by TM 210
(chapter) 153
DFSM 154
NFSM 154
TM 119

recursive 210
DTM 333

recursively enumerable 210 223 224(*)
as Chomsky hierarchy component 5
but not decidable 225(*)
phrase-structure relationship 219 220

reducibility 226(*)
regular 22 153 158 170(*), 184(*)

as Chomsky hierarchy component 5
conditions for 174(*)
conditions for finite and infinite 169
machine type that corresponds to, (table)

182
SATISFIABILITY 132 133 353 356
strings and 9(*)
SUBSET SUM 361
TASK SEQUENCING 361
undecidable 228 229 230
unsolvable 223
verification of 121

latency26 284
layout, VLSI577(*)
LDLT factorization of SPD matrices257(*)
Le Blanc, Jr., R. J.609
Lehman, P. L.601 614

Leighton, F. T.323 603 613 614
Leiserson, C. E.323 601 613
lemmas,

approximator circuits,
on negative test inputs, (9.6.6) 427
on negative test inputs, (9.6.7) 428
positive test inputs, (9.6.8) 429

basis change effect on circuit size and depth,
(9.2.3) 396

binary trees,
longest path length, (11.9.1) 565
longest path length for sorting, (11.8.1)

560
number of unlabeled, (2.12.2) 78

Boolean,
function negations, circuits for, (9.5.1)

410
matrices, powers of, (6.4.1) 248
matrix multiplication by monotone

circuits, (9.6.3) 423
matrix multiplication on monotone

circuits, (9.6.4) 423
branching program,

pebble-game lower bound from, (10.9.3)
494

RAM lower bound from, (10.9.4) 494
ST lower bound for, by reductions,

(10.11.2) 500
circuits,

for cyclic shifting, (2.5.1) 50
for demultiplexer function, (2.5.6) 55
for multiplexer function, (2.5.5) 55
for next-state/output functions, (3.5.1)

120
size bound for indirect storage access

function, (9.4.1) 405
size, relationship between planar and

standard, (12.6.1) 586
class Q

(n)
2,3 of Boolean functions, (9.3.1) 401

clique function, positive test inputs for,
(9.6.5) 425

clique lower bound technical lemma,
(9.7.3) 445
(9.7.4) 446
(9.7.5) 446

communication complexity no more than
depth, (9.7.1) 438

commutative rings,
example, (6.7.1) 264
example, (6.7.2) 264

c©John E Savage INDEX 645

lemmas (cont.)
comparator-based merging networks,

disjoint paths in, (10.5.5) 481
counting, function, circuit for (2.11.1) 75
CREW PRAM simulation by circuits,

(8.14.1) 377
cyclic shifting independence properties,

(10.5.2) 474
decoder function, circuit for, (2.5.4) 54
decomposition of trees into subtrees, (9.2.4)

397
depth no more than communication

complexity, (9.7.2) 439
DFT,

independence properties, (10.5.4) 479
vector-matrix product is 1/4-ok,

(10.13.5) 513
distinguishability properties,

flow property relationship to, (10.11.1)
500

wrapped convolution, (10.13.1) 505
encoder function, circuit for(2.5.3) 52
errors with,

b-approximator of, (9.7.6) 448√
n-approximator of parity, (9.7.7) 450

fan-out-1 circuits and formula size),
relationship between, (9.2.2) 394

FFT decomposition, (6.7.4) 267
functions,

cyclic shifting, circuit for, (2.5.1) 50
cyclic shifting, reductions between logical

and (2.5.2) 51
realizing subfunction of, (2.4.1) 47

I/O time bounds, reductions between,
(11.3.2) 536

inverse DFT, (6.7.3) 265
Kronecker product of nice matrices,

(10.12.2) 503
lower bounds, indirect storage access

function, (9.4.2) 407
matrix,

multiplication distinguishability
properties, (10.13.3) 509

multiplication, flow properties, (10.5.3)
477

multiplication, independence properties
of, (10.4.1) 470

multiplication, S-span for, (11.5.1) 541
nice (10.12.1) 501
product, inverting, (6.2.1) 243

lemmas (cont.)
matrix (cont.)

vector product distinguishability
properties, (10.13.2) 508

maximal path length in DAG, (6.4.2) 249
monom removal, (9.6.1) 418
normal-form branching programs equivalent

to general ones, (10.9.2) 492
pebbling,

balanced binary trees, (10.2.1) 465
pyramid graph, (10.2.2) 466

pigeon-hole principle, (1.3.2) 16
planar circuit, size lower bounds for

independent functions, (12.7.1)
593

planar separator theorem,
conditional, (12.6.2) 590
multi-set, (12.6.4) 592
two-cost, (12.6.3) 592

PRAM and log-space uniform circuit
relationship, (8.14.2) 378

proof by induction example, (1.3.1) 15
pumping 153

application of, (4.13.2) 198
CFL, (4.13.1) 197
finite and infinite regular languages,

(4.5.2) 169
regular languages (4.5.1) 169

QUANTIFIED SATISFIABILITY language,
log-space hard, (8.12.2) 367
PSPACE-complete, (8.12.1) 366

realization of log-space transformations on
CREW PRAM, (8.14.3) 380

realizing subfunction of a function, (2.4.1)
47

reduction,
between logical and cyclic shifting

functions, (2.5.2) 51
from matrix multiplication to matrix

inverse, (6.5.1) 253
of matrix inversion to SPD matrix

inversion, (6.5.2) 254
of shifting to multiplication, (2.9.1) 68
of squaring to reciprocal function,

(2.10.1) 73
use of, (5.8.1) 227

regular languages, conditions for finite and
infinite, (4.5.2) 169

replacement rule semi-disjoint bilinear form,
(9.6.2) 420

rooted tree fan-in, properties of, (9.2.1) 394

646 INDEX Models of Computation

lemmas (cont.)
S-span for FFT, (11.5.2) 546
Schur complement of SPD matrix is SPD,

(6.5.3) 255
simple I/O time lower bounds, (11.3.1) 535
simulation of decision branching programs

by general branching programs,
(10.9.1) 491

slice functions, representation, (9.6.9) 431
squaring function, (2.9.2) 68
states, equivalence relation refinement,

(4.7.1) 175
superconcentrator,

linear-size, existence of, (10.8.1) 485
technical lemma on, (10.8.2) 486
technical lemma on, (10.8.3) 486

three-matrix product in terms of Kronecker
product, (10.13.4) 511

tree circuit, for binary functions, (2.12.1) 78
unique elements,

distinguishability properties, (10.13.7)
515

technical lemma, (10.13.6) 514
unsolvability, (5.8.1) 227
wrapped convolution,

distinguishability properties, (10.13.1)
505

independence properties, (10.5.1) 473
Lengauer, T.482 526 528 601 602 610 614
length,

path 10
strings 9

Leon, S. J.614
level,

multigraphs 492
Leverrier’s theorem261
Levin, L. A.88 389 614
Lewis, H. R.236 389 614
Lewis II, P. M.389 610
lexical analysis181
lexicographical order222
Li, Ming618
Liang, F. M.602 610
linear,

arrays 292 293(*), 294 304(*)
bounded automaton 182 204
combination, matrix 242
equation systems 241 242 262(*)
equations, solutions 263
functions, as real number functions 13

linear (cont.)
independence, matrix 243
recurrence, first order, of length n 86

LINEAR INEQUALITIES language,
inequalities 353

Lingas, A.526 614
Lipton, R. J.601 602 612 614
list,

adjacency 30
ranking problem 321

literals,
positive 385
SATISFIABILITY language 132

load balancing56
local routing networks309(*)
locality of reference558
log-space,

computations 342
hard for PSPACE, QUANTIFIED

SATISFIABILITY language 367
P-complete problems, justification for 352
programs 129
PSPACE-complete problems,

ALTERNATING QUANTIFIED

SATISFIABILITYlanguage 369
GENERALIZED GEOGRAPHYlanguage

370
QUANTIFIED SATISFIABILITY language

367 369
reduction 131
TM, composition of 351
transformations,

on CREW PRAM, realization of 380
transitivity of 350

uniform,
circuits 373
circuits 374
PRAMs 377

logarithm functions13
logic,

circuits 392
(chapter) 35(*)
computational model 16(*)
computational model, VLSI 579

dual-rail 84
gate 16
mathematical, as foundation for theoretical

computer science 4
operations 48(*)

logical shifting reduction50(*), 68
LogP model317(*)

c©John E Savage INDEX 647

loosely coupled,
computer network 284

Loui, M. C.526 528 614
lower triangular,

matrix 240
LRU (least recently used) page-replacement

algorithm568
Luccio, F.618
Luk, W. K.602 614
Lupanov, O. B.89 614
Lynch, N. A.528 607

M
machine(s),

language 140
programs 141

with memory,
See also FSM; PDA; RAM; Turing

machine
(chapter) 91(*)

main diagonal,
matrix 240

many-to-one reductions227
mappings11

state-to-state 101
MAR (memory address register)111

simple CPU design spec 138
marker,

end-of-tape 210
Markov’s inequality515
Maruoka, A.424 457 606
masks576
mathematical,

logic, as foundation for theoretical computer
science 4

preliminaries 7(*)
matrix(s)11 240(*)

addition function 242
adjacency 11 248
bad 504
block 243
Boolean, powers of 248
characteristic polynomial 260
circulant 244
decomposition 246
good 504
identity 240
inversion 252(*)

algorithm 260

matrix(s) (cont.)
inversion (cont.)

Borodin-Cook lower-bound method
application 511(*)

Csanky’s algorithm 262
fast 260(*)
function, reduction from matrix

multiplication to 253
function, triangular matrices 256
reduction to SPD matrix inversion 254
space–time lower bound 512

linear combination 243
lower triangular 240
main diagonal 240
multiplication 242 244(*), 477(*), 509

application to parsing CFL’s 190
Boolean 244 422
Borodin-Cook lower-bound method

application 509(*)
family of inner-product graphs 541
fast, on a hypercube 308(*)
flow properties 477
independence properties of 470
on a 2D mesh 295(*)
on a hypercube 308
on linear arrays 294
reduction to matrix inversion 253
reduction to transitive closure 250
S-span for 541
size and depth bounds 247
space–time lower bound 472 479 511
space-I/O time tradeoffs 541(*)
standard algorithm 422
Strassen’s algorithm 245(*), 247
three-matrix product space–time lower

bound 512
nice 501

Kronecker product 503
non-singular, inverse 243
ok 501
permutation 244 477
product, inverting 243
properties,

nice 501(*)
ok 501(*)

rank 243
scalar product 240
SPD 253(*)

LDLT factorization of 257
reduction of matrix inversion to 254
Schur complement is SPD 255

648 INDEX Models of Computation

matrix(s) (cont.)
square 240
standard matrix multiplication algorithm

242
symmetric 240
Toeplitz 243
trace 261
transitive closure 248
transpose 240
triangular, inversion of 255(*)
upper triangular 240
Vandermonde 265
vector product 241

Borodin-Cook lower-bound method
application 507(*)

DFT 513
distinguishability properties 508
on a linear array 293(*)
on an H-tree 582(*)
space-I/O time tradeoffs 539(*)
space–time lower bound 508

zero 240
Mauchly4
Maurer, H. A.618
maxterm43

monotone 441
McColl, W. F.602 614
McCulloch, W. S.207 615
McNaughton, R.207 615
MDR (memory data register)111

simple CPU design spec 138
Mead, C. A.323 601 613 615
Mealy, G. H.152 207 615
Mealy machine200

FSM 93
Mehlhorn, K.323 457 458 601 602 606 614

615
memory,

address 111
MAR, simple CPU design spec 138
sequence 568

bounded, RAM 19 111 122
distributed,

computer 285
routing in 309
shared, computer 285

fast, simulation in MHG. 558(*)
hierarchical models 562(*), 563

pebble game, See MHG
tradeoffs, (chapter) 529(*)

interleaved random-access 556

memory (cont.)
locality of reference 558
machines with, (chapter) 91(*)
management 567

algorithms, two-level 568(*)
competitive 567(*)

number of gates, RISC and CISC CPUs
compared with 138

organizations, language relationship to 5
page-replacement algorithms 567

FIFO 568
LRU 568
MIN 568

parallel computers with 283(*)
random-access 114(*)

circuit 116
shared, computer 284
unbounded, RAM 111
units, clocked 106
virtual memory-management systems 567

merging,
bitonic, sorting via 271(*)
block, algorithm for 561
efficient branching programs for 496(*)
monotone circuits lower bounds for 414
networks 270(*), 481(*)

Batcher’s bitonic 271 273
comparator-based 481
space–time lower bound 482

problem 270
mesh(es)288

2D arrays,
embedding 1D arrays in 297(*)
fully normal algorithms on 306(*)
matrix multiplication on 295(*), 296
normal algorithm on 307
simulation on 1D array 298

multi-dimensional 292 292(*)
layouts, VLSI chips 583(*)

row-major order 293
toroidal 293
of trees 319 599

message,
passing 284
priority 316

metal migration577
Meyer, A. R.389 456 609 619
Meyer auf der Heide, F.528 607 615
MHG (memory-hierarchy pebble

game) 533 (*)
block I/O in 555(*)

c©John E Savage INDEX 649

MHG (memory-hierarchy pebble game)
(cont.)

convolution bounds 553
fast memory simulation in 558(*)
I/O time bounds,

for FFT in 551
for matrix multiplication in 544

on FFT graph, bounds 549
playing 534
rules 533

Micali, S.607 610
micro cycle139
micro-instructions139

simple CPU 142
affecting registers 145

microcode,
execute portion 143
simple CPU 142

Miller, G. A.207 608
Miller, R. E.612
MIMD (multiple instruction, multiple

data)285
MIN,

page-replacement algorithm 568
minimal,

DFSM, equivalence relation 177
FSM,

algorithm 175(*)
algorithm for 176
conditions for 174

pebbling 534
strategy 531

minimization232
state 171(*)

problem 158
minimum,

feature size, VLSI chip wires 578
space, existence of graph requiring large 488

minterm42
monotone 441

MISD (multiple instruction, single data)286
models,

branching program 488(*)
BSP 317(*)
circuit 372(*), 392(*)

parallel memoryless computational 282
computational 16(*)

branching program comparison
with 493 (*)

logic circuits as 16(*)
parallel 282(*)

models (cont.)
computational (cont.)

(part I - chapters 2-7) 35
restricted, representing 217(*)
serial 331(*)
VLSI, (chapter) 575(*)

data parallel 286(*), 286
FSM 154(*)
hierarchical memory 562(*), 563
I/O,

block-transfer 559(*)
RAM-based 559(*)

LogP 317(*)
machine,

parallel 29
sequential 5

MIMD 285
MISD 286
nondeterministic 4
PRAM 32 311 376(*)

as canonical structured parallel machine
311(*)

RAM 19(*)
role and types 3
SIMD 285
SISD 285
SPMD, data parallel model implementation

by 287
TM, standard 210(*)
VLSI,

computational 579(*)
diffusion 579
physical 578(*)
synchronous 579
transmission 579
transmission-line 579

modulo-p counter148
modulus,

functions, as symmetric function 74
Monier, L. M.601 608
monom417

removing 418
monotone,

basis 392
circuits 27 353 392
communication game 441

rules 442
depth, communication complexity

relationship 440(*)
functions 85 392

replacement rules 418

650 INDEX Models of Computation

monotone (cont.)
implicant 417
increasing 392
maxterm 441
minterm 441
prime implicant 417

MONOTONE CIRCUIT VALUE language150
353

Moore, E. F.93 152 207 615
Moore machine,

FSM 93
Muller, D. E.88 89 455 457 615 617
multi-dimensional meshes292 292(*)
multi-tape,

TM 119
multigraphs489

level 492
multilective computation580
multiplexer54(*)

function, circuit for 55
multiplier,

carry-save, circuit for 66
divide-and-conquer, circuit for 67

multiway decision tree561
Munro, I.279 607
Myhill, J.174 207 615
Myhill-Nerode theorem174(*)

N
n-indistinguishable states175
NAESAT language356
naming function16
Nassimi, D.323 609
natural numbers8
NC languages380
NDTM (nondeterministic Turing

machine)120(*), 214(*)
See also, DTM; Turing machine (TM)
language acceptance 333

by both DTM and 215 216
multi-tape 333

DTM simulation of 216
NP language 120

relationship to 26
NP problems 335
one-tape 333
recursive language 333

Nečiporuk, E. I.456 457 615
Nečiporuk lower bound405(*)

near-ring86
negations,

Boolean function 409 410
negative literal385
neighborhood,

set 408
Nerode, A.174 207 615
networks,

Beneš, global routing network example 310
brief history 6
CCC 307

normal algorithms on 308
comparator 270 271
computer 284 287(*)
connection 289
crossbar 289
hypercube, PRAM simulation 315(*), 317
merging 270(*), 481(*)

Batcher’s bitonic 271 273
comparator-based 481
space–time lower bound 482

mesh of trees 319
permutation 310
routing 309(*)
sorting 270(*)

Newton approximation algorithm69
NEXPTIME class337
next-set function,

NFSM 154
next-state function18 92 214

DFSM 154
DTM 119
NDTM 120
standard TM 210

NFSM (nondeterministic finite-state
machine)98(*), 154

acceptance of 163 164
DFSM equivalence 156
Kleene closure acceptance by 163
languages accepted by, same as languages

accepted by DFSMs 156
regular expression recognition by 160 161

162
regular language acceptance 185

nice matrices501
Kronecker product 503

Nishino, T.456 606 620
NL problems338

2-SAT language in 363
complexity class relationships 341

no-op115

c©John E Savage INDEX 651

Nodine, M. H.573 615
non-ambiguous languages187
non-redundant,

branching program 490
non-singular,

matrix 243
non-terminal,

phrase-structure grammar 182
self-embedding 206
symbols 22

nondeterministic98
FSM, See NFSM
models 4
PDA 177
Turing machine, See NDTM

normal algorithms301(*)
on 2D array 307
ascending 306
AT 2 upper bound for 585
on CCC networks 308
cyclic shifting on the hypercube 304
fully 301 306

normal form,
Boolean function expansions 42(*)
branching program 492
comparison of 45(*)
conjunctive 43
disjunctive 42
product-of-sums 44(*)
ring-sum 45(*)
standard circuit construction methods 40
sum-of-products 44(*)

normalization263
notation,

big Oh, O() 13
big Omega, Ω() 13
big Theta, Θ() 13
binary relations 9
computational work done by a FSM 24
empty,

set 7
string 9

equivalence classes 10
integer operations 8
positive closure 9
product, equivalent number of logic

operations employed 24
register transfer 142
set 7 9

NP (nondeterministic polynomial time),
complement of 347(*)

NP (nondeterministic polynomial time)
(cont.)

complete,
problems that are 127
reducibility used to identify 227
simulation use to show 23

complete language 130(*)
brief history 5
complexity theory role 128
reduction to 132(*)

distinguishing P from, circuit complexity as
method for 391

equal to P question, as outstanding
computer science problem 121

language 120
condition for P = NP 130
relationship to NDTM 26

P as subset of 121
problems 335

NP-complete problems355(*)
3-COLORING language 359
3-SATlanguage 356
boundary between P-complete problems and

363(*)
CIRCUIT SAT 355
EXACT COVER language 360
HALF-CLIQUE CENTRAL SLICE language

435
INDEPENDENT SET language 357 358
INTEGER PROGRAMMING language 362
justification for 352
NAESAT language 356
SATISFIABILITY language 356
slice functions 435
SUBSET SUM language 361
succession of reductions 358
TASK SEQUENCING language 361

NPSPACE,
complexity class relationships 341
decision problem 338
language 375

NSPACE(r(n))334
TIME(r(n)) relationship with 341

NTIME(r(n))334
SPACE(r(n)) relationship with 341

number(s),
natural 8
systems 8(*)

number system,
complementary 432 433

652 INDEX Models of Computation

O
oblivious,

data 309
odd-even,

transposition sort 294
Oettinger, A. G.207 615
offline algorithm567
Ofman, Yu.88 456 612 616
ok matrices501
one-dimensional meshes292
online algorithm567
OPC (operation code register)111

simple CPU design spec 138
operator,

associative 48 56 102
balanced binary tree 48

oracle,
function 216
tape 216 333

oracle Turing machine,
See, OTM

ordering,
snake row 297

OTM (oracle Turing machine)216 333
out wrd110
out-degree10
output,

alphabet 92
function 18 92
next-state/output RAM functions,

circuits for 120
operation, red-blue pebble game 530
vertex 10

OUTR (output register)111
simple CPU design spec 138

overflow,
addition 61

P
P

?
= NP problem,
importance of 336
outstanding computer science problem 121
TM complexity vs circuit size complexity as

tool for resolving 128
P (polynomial time),

algorithm, CFL recognition 189
characteristics 5

P (polynomial time) (cont.)
complexity class relationships 341

to each other and to 381
distinguishing NP from, circuit complexity

as method for 391
existence of languages not in 343
hard problems, LINEAR INEQUALITIES 353
log-space contained in 342
problems 130(*), 328(*), 335
reduction 132

P-complete problems120 130 352(*)
boundary between NP-complete problems

and 363(*)
brief history 5
complexity theory role 128
condition for P = NP 130
CREW PRAM solutions 380
DTM ACCEPTANCE 354
examples of, CIRCUIT VALUE language 128
justification for 352
log-space reduction, 131
MONOTONE CIRCUIT VALUE 353
problems that are 127
reduction to 130(*)
subset of NP 121

P/poly languages383
page,

fault 567
replacement algorithms 567 568

pairing function382
Pan, V. Y.607
Papadimitriou, C. H.152 236 347 389 390

602 614 616
parallel,

algorithms, performance 289(*)
computation 27(*)

(chapter) 281
circuit models 372
models 282(*)
thesis 379(*)

computers 282 284
Amdahl’s law 290(*)
asynchronous 285
Brent’s principle 291(*)
Flynn’s taxonomy 285
memoryless 282(*)
synchronous 285
unstructured, circuit as form of 283
with memory 283(*)

data model 286(*)
languages, efficiently parallelizable 380(*)

c©John E Savage INDEX 653

parallel (cont.)
machines,

P-complete language problem 128
PRAM 6 27 29 311(*)

prefix, circuits, efficient 57(*)
parallelizable381
parity,

bounded-depth parity circuits,
exponential size 448(*)
exponential size of 450

communication problem 438
function 43

parsing22 181
CFL 186(*)
Cocke-Kasami-Younger algorithm 189
parse tree 186

Chomsky normal form 197
parser 186

partial,
computations 210 211
functions 11 210

DTM computation 333
NDTM computation 333
recursive 232 233(*)
standard TM 210
TM 119

partition,
balanced 425

Paterson, M. S.89 455 456 457 458 526 573
602 609 614 616

path(s)10
directed graph 10

maximal path length 249
elimination method, monotone circuits,

lower bounds derivation 413(*)
external length 451
length 10

binary search tree 564
longest,

binary tree 565
for sorting, binary tree 560

monotone circuits 414
rich 499
unddirected graph 10
vertex-disjoint, monotone circuits 415

Patterson, D.323 532 609 611
Paul, W. J.455 456 526 611 616
Paz, A.611
PC (program counter)111

simple CPU design spec 138
PDA (pushdown automata)20 177(*)

CFL acceptance 192 192(*)
(chapter) 153(*)

PDA (pushdown automata) (cont.)
computational model 5 20(*)
languages accepted by, are context-free 194
one-way input tape 178
stack 178
state diagram 179 180
TM relationship 217

pebble game24
basic lower bounds method 470
branching program comparison

with 488 (*), 493
brief history 6
lower bounds 470(*)
memory-hierarchy 533(*)
pebbling,

balanced binary trees 465
FFT graph 463
inner product graphs 472
minimal 534
pyramid graph 466
strategy 531 558

playing 463(*)
red-blue 26

deletion of pebbles 530
playing 532(*)
rules and strategies 530(*)

relationship to red-blue pebble game 530
rules and strategies 462
space lower bounds 470(*), 471
space–time tradeoff analysis with 461
worst-case tradeoffs 483(*)

period,
computation 582
VLSI chip 580

Perles, M.207 606
permutation74 244

bit reverse 267
matrix 244 477
network 310

Beneš, global routing network example
310

routing problem 309
shuffle, on linear arrays 304(*)
unshuffle, on linear arrays 304(*)

Peterson, G. L.456 616
phrase-structure languages182(*)

are recursively enumerable 220
machine type that corresponds to, (table)

182

654 INDEX Models of Computation

phrase-structure languages (cont.)
recursively enumerable languages are 219
TM and 219(*)

Pietracaprina, A.323 607
pigeon-hole principle15(*), 16 168
pipelining307
Pippenger, N.152 390 455 456 457 526 527

528 611 616
Pitts, E.207 615
pizza pie graph600
planar circuit size586(*)

lower bound,
for independent functions 594
in terms of w(u, v)-flow 593

relationship between AT 2 and A2T and 589
planar graph,

face 590
triangular 590

planar separator theorem589(*), 591
conditional 590
multi-set 592
two-cost 592 600

Plaxton, G.323 609
pointer doubling321
polylogarithmic13 79
polynomial12

advice function 382
characteristic, of a matrix 260
functions, as real number functions 12
language in NP 120
language in P 120
time, See P

pop,
PDA 177
state 180

ports,
VLSI layout 577

POSE (product-of-sums expansion)44(*)
positive,

closure 9 158
instance, monotone communication game

442
literal 385
test inputs 425

approximator circuits 429
possible accept state179
Post, E. L.236 616
power,

set 8
Pracchi, M.601 607

PRAM (parallel random-access machine),
as parallel machine 27
as synchronous shared memory model 285
brief history 6
characteristics of 29
circuit relationship 378
CRCW 314
CREW 380

circuit equivalence 376(*), 379
circuits and 317(*)
simulation by circuits 377

efficiency 290
EREW,

CRCW PRAM simulation 314
simulation by hypercube network 317
simulation of normal algorithm 313

hypercube network simulation of 315(*)
log-space uniform 377 378
model 376(*)

as canonical structured parallel machine
311(*)

processor-time tradeoff 290
simulation, of trees, arrays, and hypercubes

313(*)
speed 290

Pratt, V. R.389 457 617
precise,

TM 334
predecessor function232
predicate15 232
prefix,

circuits, parallel, efficient 57(*)
computation 55(*), 583(*)

segmented 56
function 55

parallel, circuit for 57
Preparata, F. P.88 323 455 457 601 602 603

606 607 614 615 617 622
Preston, Jr., K.613
primality problem347

primality is in intersection of NP and coNP
348

test for 347
prime,

factorization 87
implicant 417

primitive recursive functions231(*)
priority,

message 316

c©John E Savage INDEX 655

PRIORITY model,
PRAM 313

problems, feasible 335
complete 129 350(*), 351
decision,

classification issues 328(*), 334(*)
complement of 329
language complements and 329(*), 330
regular languages, algorithms 171

hard 350(*), 351
NL 338

2-SAT language in 363
complexity class relationships 341

NP-complete 352 355(*)
3-COLORINGlanguage 359
additional examples 357(*)
boundary between P-complete problems

and 363(*)
EXACT COVER language 360
INDEPENDENT SET language graph 358
INTEGER PROGRAMMING language 362
justification for 352
SATISFIABILITY language 356
SUBSET SUM language 361
succession of reductions 358
TASK SEQUENCINGlanguage 361

P
?
= NP 5

P-complete 352 352(*)
boundary between NP-complete problems

and 363(*)
DTM ACCEPTANCE 354
justification for 352
MONOTONE CIRCUIT VALUE 353

P-hard, LINEAR INEQUALITIES 353
PSPACE-complete 365(*)

ALTERNATING QUANTIFIED

SATISFIABILITY language 369
GENERALIZED GEOGRAPHY language

370
QUANTIFIED SATISFIABILITY language

365 366 367 369
state minimization 158
TSP, NP-complete association with 5
unsolvable 227(*)

product,
Cartesian 8
Kronecker 503
matrix-vector 507(*), 508
variables 44
vector-matrix, DFT 513

program(s),
boot 141
branching 488(*)

comparison with other computational
models 493(*)

straight-line programs vs. 496(*)
correctness 5
halting 113
machine language 141
RAM 112(*)
recursion 375
straight-line 17 35 238(*)

branching programs vs. 496(*)
circuits and 36(*)

tree 491
programming,

dynamic, algorithm 165
projection function231
proof,

by contradiction 15(*)
by induction 15(*)
methods of 15(*)

propagation,
carry 59

proper,
integer subtraction function 232
subset 7
subtraction 232

properties,
algebraic, of Boolean functions 40(*)
CFL 197(*)

closure 198(*)
non-closure 199

closure, regular languages 170
distinguishability,

(φ, λ, μ, ν, τ) 497
flow property relationship to 500
matrix multiplication 509
matrix-vector product 508
unique elements 515

flow 469
distinguishability property relationship to

500
functions 469(*)
matrix multiplication 477

independence,
cyclic shifting functions 474
DFT 479
matrix multiplication 470
wrapped convolution 473

656 INDEX Models of Computation

properties (cont.)
matrices,

nice 501(*)
ok 501(*)

regular,
expressions 159
languages 170(*)

rooted tree fan-in 394
of semirings 251
sets 8
trees 397

protocol,
communication game 437

pseudo-negations432
realization by monotone circuits 432

PSPACE decision problem338
PSPACE-complete problems365(*)

ALTERNATING QUANTIFIED

SATISFIABILITY language 369
GENERALIZED GEOGRAPHY language 370
QUANTIFIED SATISFIABILITY language 365

tree circuit 366
Pucci, G.323 607
Pudlák, P.456 617
pumping lemma153

application of 198
CFL 197(*)
FSM 168(*)
regular languages, conditions for finite and

infinite 169
punctured threshold function410
pyramid graph465

pebbling 466

Q
quadratic function14
quantification,

existential 365
universal 365

QUANTIFIED SATISFIABILITY language365
367 369

tree circuit 366
quasiplanar577
query,

superfluous 499
Quinn, M. J.323 611 617

R
Rabin, M. O.152 207 617
radius of a rooted spanning tree589
radix sort286
RAM (random-access machine),

architecture 110(*)
as serial computational model 331(*)
based I/O models 559(*)
bounded-memory 111
branching program simulation 495
circuits, next-state/output functions 120
computational inequalities for 117(*), 118
computational models 19(*)
FSM 111(*)
memory hierarchy simulations, speed and

size tradeoffs, (chapter) 529(*)
programs 112(*), 113
simulation 122 332
space 332

use 495
time 332
TM relationship to 124
unbounded-memory 111
universal 114(*)

Ramachandran, V.323 388 390 612
Ranade, A.323 617
Randell, B.32 617
random-access memory19 114(*)

architectural components 110
circuit 116
design 115(*)
interleaved 556

range,
of a function 11

rank,
matrix 243

RASP (random-access stored program
machine)114

rate of growth,
functions 13(*)

Raz, R.458 617
Razborov, A. A.457 459 617
reachability,

algorithm,
paths explored by 344
reachable vertex counting program 345

problem 338
read115

once computation 580

c©John E Savage INDEX 657

real numbers,
functions using 12

reciprocal,
algorithm 70
division and 68
function,

circuit for 72
reduction of squaring to 73

integer 68
reduction from 72(*)

Reckhow, R. A.323 389 608
recognition,

language 215
by FSM 154
(chapter) 153
DFSM 154
NFSM 154
TM 119

regular,
expressions, by FSM 160(*), 161
languages 184(*)
languages, by FSM 185

records,
activation 339
complete 339

rectilinearity,
VLSI wire layouts 578

recurrence,
first-order linear, of length n 86

recursion,
decomposition, of set of strings 166
enumerable language, as Chomsky hierarchy

component 5
language, DTM 333
partial recursive functions 231 232(*)

RAM computability of 233(*)
primitive recursive functions 231(*)
standard TM 210

recursively enumerable languages223
are phrase-structure 219
but not decidable 226 228
Chomsky hierarchy component 5
decidable 225(*)
phrase-structure languages are 220
standard TM 210

red pebble game,
See, pebble game

Red’kin, N. P.88 455 457 617
red-blue pebble game,

See also, pebble game

red-blue pebble game (cont.)
I/O time bounds for matrix multiplication

in 542
on FFT graph, computation and I/O time

lower bounds 547
playing 532(*)
rules and strategies 530(*)

reducibility226(*)
classifying languages as unsolvable using 227
unsolvability and 226(*)

reduction348(*)
between logical and cyclic shifting functions

51
CIRCUIT SAT language to NAESATlanguage

357
from Turing to circuit computations 128(*)
function 46(*)
I/O time bounds 536
integer reciprocal 72(*)
log-space 131
logical and cyclic shifting 50(*)
many-to-one 227 348
multiplication 68(*)
NP-complete languages 132(*)
P-complete languages 130(*)
polynomial time 132
problem-solving method 35
of squaring to reciprocal function, reduction

of squaring to 73
subfunction relationship 46
to complete problems 129
Turing 348 385

refinement,
equivalence relation 173

on states 175
reflexive,

relation 10
register(s)109

pebble game relationship to 6
set 138(*)
simple CPU 138
transfer notation 142

regular,
expressions 158(*)

equivalence of 159
FSM and 160(*)
FSM languages described by 164(*)
NFSM recognition of 160 161 162 163
properties of 159
recognition by FSM 160(*)
string search use 168(*)

658 INDEX Models of Computation

regular (cont.)
grammar 184
languages 22 158 184(*)

as Chomsky hierarchy component 5
as Chomsky language type 182
closure properties 170
conditions for 174(*)
conditions for finite and infinite 169
decision problems on, algorithms 171
machine type that corresponds to, (table)

182
properties of 170(*)
pumping lemma 169
recognition 184(*)
regular language acceptance 185

machine recognition problem 229
machine recognition problem 229
set 158

Reif, J. H.72 88 323 610 617 618 619
Reischuk, R.526 618
reject state179
relations9(*)

equivalence 10 172
DFSM 172
for a language 172
on languages 171(*)
on states 171(*)
right-invariant 172 173

reflexive 10
symmetric 10
transitive 10

Rem, M.601 615
replacement,

function replacement method, monotone
circuit lower bounds
derivation 417 (*)

rules 417
monotone functions 418
semi-disjoint bilinear form 420

representation,
integers 8
(k, s)-Lupanov 80 81 82
restricted models of computation 217(*)
standard,

binary 8
decimal 8

reset, flip-flop109
resource,

bounds 330(*)
transformations 348

resource (cont.)
vector 534

rewriting strings181
Rice, H. G.236 618
Rice’s Theorem229 230
rich path499
right-invariant equivalence relation172 173
rings239(*)

commutative 264(*)
linear arrays 292
matrix multiplication 242 245
near 86
semirings 251

Riordan, J.89 618
ripple adder58 107
RISC (reduced instruction set computer)138
root(s),

of unity, in commutative rings 264
rooted directed acyclic multigraph 489
vertex 489

Rosenberg, A. L.603 618
routing309

networks 309(*), 310(*)
permutation problem 309

row-major order,
meshes 293

RSE (ring-sum expansion)45(*)
Ruane, L. M.602 613
rules,

absorption, in Boolean expressions 41
DeMorgan’s, in Boolean expressions 41
replacement 417

semi-disjoint bilinear form 420
Ruzzo, W. L.389 390 610

S
S-span,

DAG 537
matrix multiplication 541

safe,
circuit 107

Sahay, A.323 609
Sahni, S.323 609
Santos, E. E.323 609
SATISFIABILITY language132 133 328 356
satisfiable328
Savage, C.602 618

c©John E Savage INDEX 659

Savage, J. E.89 152 389 455 456 457 526 527
528 573 602 603 608 610 611 613
618 619

Savitch, W. J.323 389 618
Savitch’s theorem339 340
Saxe, J.459 610
CIRCUIT SAT language355
scalar product,

matrix 240
Schäfer, T. J.389 618
Schauser, K. E.323 609
Schmidt, E. M.458 615
Schmidt, H. A.611
Schnorr, C. P.152 455 619
Schönhage, A.67 88 619
Schönhage-Strassen circuit67
Schur,
Schürfeld, U.619

complement 254
factorization 254(*)

Schutte, K.611
Schutzenberger, M. P.207 619
Scott, D.152 207 617
search,

binary 565
tree 564

Sedgewick, R.601 602 614
self-terminating machine problem230
semantics,

programming language, brief history 5
semellective computation580
semi-disjoint bilinear form,

replacement rule 420
semi-disjoint function,

circuit size lower bound 421
semigroup56
semirings251
separator theorem,

for trees 397
planar 589(*), 591

conditional 590
multi-set 592
two-cost 592 600

sequences,
bitonic 278

sequential,
circuits 106

as concrete implementation of sequential
machine model 5

constructing from a FSM 92

sequential (cont.)
circuits (cont.)

designing 106(*)
machine, sequential circuit as concrete

implementation of 5
serial,

computation thesis 330
computational models 331(*)

branching program 488(*)
space, parallel time relationship to 379

series,
expansion, Taylor 73

set(s)7
binary relation over 9
cardinality 7
characteristics of 7(*)
difference 7
disjoint 7
final states,

DFSM 154
PDA 177

flip-flop 109
instruction, simple CPU 140(*)
intersection 7
matrix over 240
membership notation 7
neighborhood 408
power 8
properties 8
regular 158
strings, concatenation 9
symmetric difference 234
totally ordered 270
union 7

Sethi, R.527 605 608
shallow,

circuits,
simulating addition with 105(*)
simulating FSM with 100(*)

Shamir, E.207 606
Shannon, C. E.88 89 618 619

contributions to theoretical computer
science 4

shared memory computer284
Shepherdson, J. C.389 619
shifting,

circuits, cyclic 49
cyclic 474(*)

function 474
functions, independence properties 474
functions, space–time lower bound 475

660 INDEX Models of Computation

shifting (cont.)
cyclic (cont.)

on the hypercube 303(*), 304
reductions between logical shifting

and 50 (*)
functions 48(*)

cyclic 48
cyclic, circuits for 50

logical,
reduction to multiplication 68
reductions between cyclic shifting

and 50 (*)
Shriver, E. A. M.573 621
shuffle permutations304

on linear arrays 304(*)
Siegel, A.603 619
signed two’s complement61
SIMD (single instruction, multiple data)

model285
simulation23

branching program 491
circuit,

by dataflow computers 283
of FSM 95
of TM 124(*), 134(*)

CPU by another CPU 147(*)
CRCW PRAM, by EREW PRAM 314
CREW PRAM, by circuits 377
FSM, by shallow circuits 102 104
of 2D array on 1D array 298
of fast memory in the MHG 558(*)
of normal algorithm, PRAM EREW 313
PRAM,

by hypercube network 315(*)
of trees, arrays, and hypercubes 313(*)

by precise TM 334
RAM,

branching program 495
by DTM 332
by TM 122

TM, single-tape simulation of multi-tape
213

sink vertex489
Sipser, M.89 456 459 602 607 610 616
SISD (single instruction, single data)

model285
size,

circuit 11 35 239
as quantity whose rate of growth is

significant 13
basis change effect on 396

size (cont.)
circuit (cont.)

bounds on 402
fan-out impact on 394(*)
gate-elimination method for 400(*)
in a simple CPU 146(*)
monotone, clique function 430
planar 586(*)
simple lower bounds on 400
slice function relationship 432
upper bounds on 79(*)
with fan-out s 393

exponential, bounded-depth parity circuits
450

formula 394
bounds on 397
circuit depth vs 396(*)
fan-out-1 relationship 394
lower bounds for 404(*)
over two different bases 399

monotone circuits, slice functions 434
planar circuits, relationship between AT 2

and A2T and 589
polynomial, circuits of 382
speed tradeoffs,

(chapter) 461(*)
in memory hierarchies 529(*)

Skyum, S.457 619
Sleator, D. D.573 619
slice functions,

central slice 435
circuit size relationship 432
HALF-CLIQUE CENTRAL SLICE,

function 435
language 435

monotone circuits 431(*)
NP-complete 435
representation 431

sliding,
red-blue pebble game 462 530

Smith, C. H.152 619
Smolensky, R.459 619
snake row ordering297 316
Snir, M.563 573 605
solvable task210
solving,

linear systems 262(*)
Song, S. W.602 613
SOPE (sum-of-products expansion)44(*)
sorting,

algorithm 301 302

c©John E Savage INDEX 661

sorting (cont.)
binary 85

functions as symmetric function 74
monotone circuits lower bounds 413

bitonic 271 272 278
as Borodin-Cook lower-bound method,

application 516(*)
BTM 561
bubble sort 294
comparison-based, lower performance

bounds 565
linear arrays 294(*)
longest path length, for binary tree 560
networks 270(*)

AKS 274
fast 274(*)
insertion 270

odd-even transposition 294
problem 270
radix sort 286
space–time lower bounds 516
stable sorting algorithm 304
via bitonic merging 271(*)

space,
bounded,

complexity classes 338(*)
complexity classes, time-bounded

complexity class relationships with
341(*)

functions 342(*)
branching program 490
deterministic, nondeterministic time

contained in 341
hierarchy 336(*)
I/O time tradeoffs 539(*)

convolution 552(*)
FFT 546(*)
matrix-matrix multiplication 541(*)
vector-matrix product 539(*)

jump value for 483
log-space,

contained in polynomial-time 342
reduction 131

lower bounds 465(*)
pebble game 470(*)

MHG 534
minimum 465

existence of graph requiring large 488
nondeterministic space classes closed under

complements 346
OTM 217 333

space (cont.)
pebbling strategy 531
quantity whose rate of growth is significant

13
RAM 332 495
serial, parallel time relationship to 379
time,

and I/O tradeoffs 24(*)
bounds on MHG 544
lower bound, cyclic shifting functions 475
lower bound, DFT 480 513
lower bound, integer multiplication 507
lower bound, matrix inversion 512
lower bound, matrix multiplication 511
lower bound, matrix-vector product 508
lower bound, merging networks 482
lower bound, sorting 516
lower bound, unique elements 516
lower bound, wrapped convolution 505
product for branching programs 500
product, matrix multiplication 472(*)
product (ST) 118
tradeoffs, (chapter) 461(*)
tradeoffs in memory hierarchies, (chapter)

529(*)
tradeoffs, matrix multiplication 479
tradeoffs, pebble game study of, brief

history 6
TM 333
upper bounds 483(*)

SPACE(r(n))334
NTIME(r(n)) relationship with 341
space hierarchy 337

spanning tree589
BFS 591

SPD (symmetric positive definite)
matrices253(*), 253

inversion, reduction of matrix inversion to
254

LDLT factorization of 257(*), 257 258 259
Schur complement of SPD matrix is SPD

255
Specker, E.456 611
speedup,

PRAM 290
Spira,P. M.455 619
Spirakis, P.323 607 610
Spivak, M.72 619

662 INDEX Models of Computation

SPMD (single program multiple data)
model,

data parallel model implementation by 287
Sproull, B.606 612 613 617 618
square,

matrix 240
squaring function68
ST (space–time product)118
stable sorting algorithm304
stack,

alphabet, PDA 177
PDA 177

stacking state178
standard,

basis 373 392
of a logic circuit 38

representation,
binary 8
decimal 8

start,
symbols 22

state(s)30
accept 179
assignment, problem 107
branching program 495
diagram 18 30

FSM 21
equivalence 175

relations on 171(*)
relations refinement on 175

final, DFSM 154
initial,

DTM 119
NDTM 120

minimization 171(*)
problem 158

n-indistinguishable 175
next,

DTM 119
NDTM 120

next-state/output RAM functions, circuits
for 120

possible accept 179
reject 179
set of,

DFSM 154
DTM 119
NDTM 120

stacking 178
to-state mappings 101

Stearns, R. E.336 389 610 611

Steele, G.323 606 611 612 613 617 618
step,

basis 15
Stewart, G. W.613
Stimson, M. J.323 618
Stockmeyer, L. J.389 390 619
Stone, H. S.323 619
storage,

access function 54
capacity 111

TM 119
stored-program concept110
straight-line program(s)17 35 238(*)

algorithms, lower performance bounds 565
Boolean, circuit as graph of 37
branching programs vs. 496(*)
circuits,

and 36(*)
representation of 37 238

functions computed by 38
realizing subfunction of a function 47

Strassen, V.67 88 245 278 618 619
Strassen’s algorithm245(*)

matrix multiplication 247
strategy,

adversarial 443 445 447
pebbling 531 558

strict refinement173
string(s)9

acceptance 92
by FSM 154
DFSM 154
DTM 119
NFSM 154

choice input, acceptance by NDTM 120
concatenation 158
empty 9
encoding of, TM and 222(*)
languages and 9(*)
relation to alphabets 9
searching for, with grep 168(*)
sets of, concatenation 9

Sturgis, H. E.389 619
Subbotovskaya, B. A.456 619
subfunctions,

realizing, of a function 47
relationship, reduction via 46

Subramonian, R.323 609
subset(s)7
SUBSET SUM language361

c©John E Savage INDEX 663

substitution,
backward 263
constants, in Boolean expressions 41

subtraction61(*)
function, proper 232

successor function231
succinct,

certificate 100
sum44

Boolean function 44
summing,

on the hypercube 302(*)
operations 48

superconcentrator485 486
superfluous query499
superpolynomial function330
Swamy, S.526 527 618 619
symbol(s),

non-terminal 22
start 22
terminal 22

symmetric,
difference, between sets 234
elementary, functions as symmetric function

74
functions 74(*)

circuits for 76
matrix 240
positive definite matrices, See SPD
relation 10

synchronous,
FSM 97

circuit simulating 98
model, VLSI 579
parallel computers 285

systems,
balanced computer 532(*)
number 8(*)

systolic array27 28 292
Szelepscényi, R.389 620
Szemerédi, E.274 456 457 606

T
table lookup493
Tanaka, K.456 606 620
tape,

alphabet 214
DTM 119
NDTM 120

tape (cont.)
alphabet (cont.)

PDA 177
standard TM 210

empty, acceptance problem 228
enumeration 215
head 20
multi, TM 119
one, TM 118
oracle 216 333
PDA, blank symbol 177
TM 20 118 149 210 213(*)

Tardos, É.457 620
Tarjan, R. E.482 526 528 573 602 610 614

616 619
TASK SEQUENCING language361
Tate, S. R.72 88 618 620
taxonomy,

Flynn’s, parallel computers 285
Taylor series expansion72 73
terminal(s),

phrase-structure grammar 182
symbols 22

termination,
abnormal 210

terms,
dominant,

as rate of grown indicator 13
big Oh notation 13
big Omega notation 13
big Theta notation 13

test cases,
approximation method 425

Thatcher, J.612
theorems,

2-SAT language in NL, (8.11.1) 363
(2.6.1), theorem 3.2.1 as restatement of 102
3-COLORING is NP-complete,

(8.10.4) 359
3-SATis NP-complete, (8.10.1) 356
addition function, circuit for (2.7.1) 60
algorithms,

Csanky’s, for matrix inversion, (6.5.6) 262
decision problems on regular languages,

(4.6.2) 171
fast, convolution complexity of, (6.7.3)

270
FFT, (6.7.1) 267
FFT-based for convolution, (6.7.2) 269
fully normal ascending/descending,

(7.7.4) 306

664 INDEX Models of Computation

theorems (cont.)
algorithms (cont.)

hypercube sorting, (7.7.1) 302
LDLT factorization of SPD matrices,

(6.5.3) 259
matrix inversion, (6.5.4) 260
minimal FSM, (4.7.2) 176
normal, EREW PRAM simulation,

(7.9.1) 313
normal, on 2D array, (7.7.5) 307
normal, on CCC network, (7.7.6) 308
polynomial time, CFL recognition,

(4.11.2) 189
Strassen’s matrix multiplication, (6.3.1)

247
ALTERNATING QUANTIFIED

SATISFIABILITY language,
log-space complete for PSPACE, (8.12.2)

369
Amdahl’s law, (7.4.2) 290
area lower bound, for matrix multiplication,

(12.8.3) 598
AT 2 and A2T lower bounds and

communcation complexity,
(12.7.4) 596

AT 2 and A2T lower bounds for
independent functions, (12.7.2)
593

AT 2 and A2T lower bounds for matrix
multiplication, (12.7.3) 595

AT 2 upper bound for normal algorithms,
(12.5.1) 585

basic pebble-game lower bound method,
(10.4.1) 470

Batcher’s bitonic merging network, (6.8.2)
273

complexity of, (6.8.3) 273
binomial 451
Boolean,

convolution circuit size, (9.6.3) 419
functions, circuit-size upper bound for all,

(2.13.2) 82
functions, depth lower bound for most,

(2.12.2) 79
functions, depth upper bound for all,

(2.13.1) 80
functions, negations needed to realize,

(9.5.1) 409
matrix multiplication optimal monotone

circuit, (9.6.5) 424

theorems (cont.)
bounded-depth parity circuits, have

exponential size, (9.7.4) 450
bounded-fan-out circuits, (9.2.1) 395
branching program, basic, lower bound

method, (10.11.1) 498
Brent’s principle, (7.4.3) 291
broadcasting on the hypercube, (7.7.2) 303
BTM sorting time, (11.8.1) 561
bubble sort, on linear array, (7.5.2) 294
carry lookahead adder, circuit for (2.7.2) 61
carry-save adder, circuit for (2.9.1) 64
Cayley-Hamilton 260
CFL,

Chomsky normal form for, (4.11.1) 187
closure properties, (4.13.1) 198
non-closure properties, (4.13.2) 199
PDA acceptance of, (4.12.1) 192
recognition, polynomial time algorithm,

(4.11.2) 189
chip area,

lower bound in terms of w(u, v)-flow,
(12.8.1) 597

lower bounds for independent functions,
(12.8.2) 597

Chomsky normal form, for CFLs, (4.11.1)
187

circuit(s),
Boolean convolution, size, (9.6.3) 419
bounded-depth parity, have exponential

size, (9.7.4) 450
bounded-fan-out, (9.2.1) 395
complexity classes, containment of,

(8.15.1) 381
complexity classes, P/poly, (8.15.2) 383
computations, equivalence between FSM

and, (3.12) 96
CREW PRAM equivalence, (8.14.1) 379
depth, relationship between formula size

and, (9.2.2) 397
for addition function, (2.7.1) 60
for carry lookahead adder. (2.7.2) 61
for carry-save adder, (2.9.1) 64
for carry-save multiplier, (2.9.2) 66
for divide-and-conquer multiplier, (2.9.3)

67
for parallel prefix function, (2.6.1) 57
for reciprocal function, (2.10.1) 72
for symmetric functions, (2.11.1) 76
for transitive closure, (6.4.3) 251

c©John E Savage INDEX 665

theorems (cont.)
circuit(s) (cont.)

log-space uniform, polytime DTM
functions are computable by,
(8.13.1) 374

MONOTONE CIRCUIT VALUElanguage,
is P-complete, (8.9.1) 353

monotone, lower bound for binary
sorting, (9.6.1) 413

monotone, lower bound for merging,
(9.6.2) 414

monotone optimal, Boolean matrix
multiplication, (9.6.5) 424

monotone, realization of
pseudo-negations by, (9.6.8) 432

monotone, size of clique function, (9.6.6)
430

planar, relationship between size and AT 2

and A2T , (12.6.1) 589
planar, size lower bound in terms of

w(u, v)-flow, (12.7.1) 593
semi-disjoint function, size lower bound,

(9.6.4) 421
shallow circuit simulation of FSM, (3.2.1)

102
shallow circuit simulation of FSM, (3.2.2)

104
simulation of TM (3.9.1) 125
size, and depth, simple lower bounds on

(9.3.1) 400
size, lower bound for most Boolean

functions, (2.12.1) 77
size lower bounds for functions in F

(n,k)
s ,

(9.3.3) 403
size lower bounds for functions in Q

(n)
2,3 ,

(9.3.2) 401
size, of function and its slices, (9.6.7) 432
size, slice functions have comparable

monotone and non-montone,
(9.6.9) 434

size, upper bound for all Boolean
functions, (2.13.2) 82

uniform circuit family, NSPACE language
recognition by, (8.13.3) 375

CIRCUIT SAT language, (3.9.6) 132
CIRCUIT VALUE language, P-complete

(3.9.5) 131
communication complexity,

AT 2 and A2T lower bounds and,
(12.7.4) 596

equals depth, (9.7.1) 438

theorems (cont.)
communication complexity (cont.)

monotone, equals depth of monotone
functions, (9.7.2) 441

of clique function, (9.7.3) 447
competitive analysis of FIFO and LRU,

(11.10.1) 568
complexity,

Batcher’s bitonic merging network, (6.8.3)
273

classes, circuit, containment of, (8.15.1)
381

classes, circuit, P/poly, (8.15.2) 383
classes, containment among

time-bounded, (8.5.4) 337
classes, time and space-bounded,

relationship between, (8.5.6) 341
communication, AT 2 and A2T lower

bounds and, (12.7.4) 596
communication, equals depth, (9.7.1) 438
communication, of clique function,

(9.7.3) 447
convolution, of fast algorithm, (6.7.3) 270
monotone communication, equals depth

of monotone functions, (9.7.2) 441
of transitive closure function, (6.4.1) 249

computing Boolean functions on CRCW
PRAM, (7.9.2) 314

containment among time-bounded
complexity classes, (8.5.4) 337

containment of,
circuit complexity classes, (8.15.1) 381
deterministic classes and their

complements, (8.6.1) 343
convolution 268(*)

Boolean, circuit size, (9.6.3) 419
complexity of fast algorithm, (6.7.3) 270
FFT-based algorithm, (6.7.2) 269
in I/O-limited MHG, I/O time bounds,

(11.5.8) 553
in MHG, I/O time bounds (11.5.7) 553
wrapped, space–time lower bound,

(10.13.1) 505
wrapped, space–time lower bound,

(10.5.1) 474
CREW PRAM and circuit equivalence,

(8.14.1) 379
cyclic,

shifting on hypercubes, (7.7.3) 304
shifting space–time lower bound, (10.5.2)

475

666 INDEX Models of Computation

theorems (cont.)
decidable languages,

(5.7.1) 224
(5.7.2) 224
(5.7.3) 224
complement is decidable, (5.7.5) 225

DFT,
space–time lower bound, (10.13.7) 513
space–time lower bound, (10.5.5) 480

DTM ACCEPTANCEis P-complete, (8.9.3)
354

empty,
set acceptance problem, (5.8.3) 229
tape acceptance problem, (5.8.2) 228

EREW PRAM simulation,
by hypercube network, (7.9.4) 317
of CRCW PRAM, (7.9.3) 314
of normal algorithm, (7.9.1) 313

EXACT COVERis NP-complete, (8.10.5) 360
existence of graph requiring large minimum

space, (10.8.1) 488
FFT algorithm, (6.7.1) 267
formula size,

and circuit depth, relationship between,
(9.2.2) 397

over two different bases, (9.2.3) 399
FSM,

computational inequalities for
interconnected, (3.1.3) 97

equivalence between circuit computations
and, (3.12) 96

function computed by, (3.1.1) 95
languages are regular, (4.10.1) 185
minimal, algorithm for, (4.7.2) 176
shallow circuit simulation of, (3.2.1) 102
shallow circuit simulation of, (3.2.2) 104

gap, (8.5.3) 337
GENERALIZED GEOGRAPHY language,

log-space complete for PSPACE, (8.12.3)
370

HALF-CLIQUE CENTRAL SLICE language is
NP-complete, (9.6.10) 435

halting problem, unsolvablity, (5.8.1) 228
HMM, cost of problems in, (11.9.1) 565
Hong-Kung lower-bound method, (11.4.1)

537
I/O bounds, matrix-vector product, (11.5.1)

539
I/O time bounds,

for convolution in I/O-limited MHG,
(11.5.8) 553

theorems (cont.)
I/O time bounds (cont.)

for convolution in MHG, (11.5.7) 553
for FFT in I/O-limited MHG, (11.5.6)

551
for FFT in MHG, (11.5.5) 549
for FFT in red-blue pebble game, (11.5.4)

547
for matrix multiplication in MHG,

(11.5.3) 544
for matrix multiplication in red-blue

pebble game, (11.5.2) 542
Immerman-Szelepscényi, (8.6.2) 344
impossibility 96

(3.1.1) 95
for bounded computations 24

INDEPENDENT SET is NP-complete,
(8.10.3) 357

integer,
multiplication, space–time lower bound,

(10.5.3) 475
multiplication space–time lower bound,

(10.13.2) 507
INTEGER PROGRAMMING, is

NP-complete, (8.10.5) 362
justification for P-complete problems,

(8.14.2) 380
Krapchenko lower bound, (9.4.2) 408
languages,

2-SAT, in NL (8.11.1) 363
accepted by NDTM accepted by DTM,

(5.2.2) 215
accepted by NFSMs and DFSMs are

same, (4.2.1) 156
accepted by PDAs are context-free,

(4.12.2) 194
ALTERNATING QUANTIFIED

SATISFIABILITY, log-space
complete for PSPACE, (8.12.2) 369

CIRCUIT SAT, (3.9.6) 132
condition for P = NP, (3.9.4) 130
decidable, (5.7.1) 224
decidable, (5.7.2) 224
decidable, (5.7.3) 224
decidable, complement is decidable,

(5.7.5) 225
FSM, described by regular expressions,

(4.4.2) 164
GENERALIZED GEOGRAPHY, log-space

complete for PSPACE, (8.12.3)
370

c©John E Savage INDEX 667

theorems (cont.)
languages (cont.)

HALF-CLIQUE CENTRAL SLICE, is
NP-complete, (9.6.10) 435

MONOTONE CIRCUIT VALUE is
P-complete, (8.9.1) 353

non-recursively enumerable, (5.7.4) 224
NSPACE, recognition by uniform circuit

family, (8.13.3) 375
P-complete, CIRCUIT VALUE (3.9.5) 131
phrase-structure languages are recursively

enumerable, (5.4.2) 220
phrase-structure, recursively enumerable

languages are, (5.4.1) 219
QUANTIFIED SATISFIABILITY, log-space

complete for PSPACE, (8.12.1) 369
recursively enumerable, are

phrase-structure, (5.4.1) 219
recursively enumerable, but not decidable,

(5.7.6) 226
recursively enumerable, but not decidable,

(5.8.1) 228
recursively enumerable, but not decidable,

(5.8.6) 230
recursively enumerable, phrase-structure

languages are, (5.4.2) 220
regular, closure properties, (4.6.1) 170
regular, conditions for, (4.7.1) 174(*)
regular, decision problems on, (4.6.2) 171
regular, FSM recognition of, (4.10.1) 185
SATISFIABILITY, (3.9.7) 133
undecidable, (5.8.5) 230
undecidable, example, (5.8.2) 228
undecidable, example, (5.8.3) 229
undecidable, example, (5.8.4) 229

LDLT factorization of SPD matrices,
(6.5.2) 257
algorithm for, (6.5.3) 259

Leverrier, (6.5.5) 261
linear, equation solutions, (6.6.1) 263
LINEAR INEQUALITIES, is P-hard, (8.9.2)

353
log-space,

contained in polynomial-time, (8.5.8) 342
uniform circuits computable by polytime

DTMs, (8.13.2) 374
matrix,

inversion algorithm, (6.5.4) 260
inversion for triangular matrices, (6.5.1)

256

theorems (cont.)
matrix (cont.)

inversion, space–time lower bound,
(10.13.6) 512

multiplication as ring, (6.2.1) 242
multiplication on a hypercube, (7.7.7)

308
multiplication on linear array, (7.5.1) 294
multiplication, space–time lower bound,

(10.13.4) 511
multiplication, space–time lower bound,

(10.4.2) 472
multiplication, space–time lower bound,

(10.5.4) 479
SPD, LDLT factorization of, (6.5.2) 257
SPD, LDLT factorization of, algorithm

for, (6.5.3) 259
vector product, space–time lower bound,

(10.13.3) 508
merging network space–time lower bound,

(10.5.6) 482
monotone circuit,

lower bound for binary sorting, (9.6.1)
413

lower bound for merging, (9.6.2) 414
size of clique function, (9.6.6) 430

MONOTONE CIRCUIT VALUE language, is
P-complete, (8.9.1) 353

monotone communication complexity
equals depth of monotone
functions, (9.7.2) 441

multiplication matrix on 2D array, (7.5.3)
296

Myhill-Nerode, (4.7.1) 174(*)
NAESATis NP-complete, (8.10.2) 356
Nečiporuk lower bounds, (9.4.1) 406
nondeterministic time contained in

deterministic space, (8.5.7) 341
normal algorithm on CCC network, (7.7.6)

308
normal algorithms, normal, AT 2 upper

bound for, (12.5.1) 585
NSPACE language recognition by uniform

circuit family, (8.13.3) 375
P and NP complete problems, justification

for, (8.8.2) 352
P-complete problems, justification for,

(8.14.2) 380
P/poly circuit complexity class, (8.15.2) 383
parallel prefix function, circuit for,

(2.6.1) 57

668 INDEX Models of Computation

theorems (cont.)
planar circuit, size lower bound in terms of

w(u, v)-flow, (12.7.1) 593
planar separator 589(*), 590 591

(12.6.2) 591
two-cost 600

polynomial time algorithm, CFL
recognition, (4.11.2) 189

polytime DTM functions are computable by
log-space uniform circuits, (8.13.1)
374

primality,
is in intersection of NP and coNP, (8.6.4)

348
test, (8.6.3) 347

processor-time tradeoff, (7.4.1) 290
QUANTIFIED SATISFIABILITY language,

log-space complete for PSPACE, (8.12.1)
369

RAM,
computational inequalities for, (3.6.1) 118
simulation by DTM, (8.4.1) 332
simulation by TM, (3.8.1) 122
universal, for FSMs, (3.4.1) 114

realization of pseudo-negations by monotone
circuits, (9.6.8) 432

reciprocal function, circuit for (2.10.1) 72
recursively enumerable but non-decidable

language, (5.8.6) 230
reduction,

from matrix multiplication to transitive
closure, (6.4.2) 250

to complete problems, (3.9.3) 129
regular expressions,

FSM languages described by (4.4.2) 164
NFSM recognition of (4.4.1) 160
properties of (.4.3.1) 159

regular languages,
closure properties, (4.6.1) 170
conditions for, (4.7.1) 174(*)
decision problems on, (4.6.2) 171
FSM recognition of, (4.10.1) 185

regular machine recognition problem,
(5.8.4) 229

relationship between planar circuit size and
AT 2 and A2T , (12.6.1) 589

relationships between I/O time bounds,
(11.3.1) 535

Rice’s Theorem, (5.8.5) 230
SATISFIABILITY language, (3.9.7) 133
Savitch’s theorem, (8.5.5) 339

theorems (cont.)
semi-disjoint function circuit size lower

bound, (9.6.4) 421
separator theorem for trees 397 (9.2.1) 397
simple lower bounds on circuit size and

depth, (9.3.1) 400
simulation,

by precise TM, (8.4.2) 334
of 2D array on 1D array, (7.5.4) 298

slice functions have comparable monotone
and non-montone circuit sizes,
(9.6.9) 434

sorting algorithm,
hypercube, (7.7.1) 302

sorting space–time lower bounds, (10.13.9)
516

space,
hierarchy, (8.5.2) 337
upper bounds to pebble graph, (10.7.1)

483
space–time, extreme tradeoffs, (10.3.1) 467
space–time, lower bounds unique elements,

(10.13.8) 516
SPD matrices,

LDLT factorization of, (6.5.2) 257
LDLT factorization of, algorithm for,

(6.5.3) 259
Strassen’s matrix multiplication algorithm,

(6.3.1) 247
SUBSET SUM is NP-complete, (8.10.5) 361
TASK SEQUENCING is NP-complete,

(8.10.5) 361
Taylor’s, (2.10.2) 72
three-matrix product space–time lower

bound, (10.13.5) 512
time,

and space-bounded complexity classes,
relationship between, (8.5.6) 341

bounded complexity classes, containment
among, (8.5.4) 337

hierarchy theorem, (8.5.1) 336
TM,

computational inequalities (3.9.2) 127
computational inequalities, (3.9.8) 134
single-tape simulation of multi-tape,

(5.2.1) 213
transitivity of log-space transformations,

(8.8.1) 350

c©John E Savage INDEX 669

theorems (cont.)
unique elements space–time lower bounds,

(10.13.8) 516
unsolvable problems,

empty set acceptance, (5.8.3) 229
empty tape acceptance, (5.8.2) 228
halting, (5.8.1) 228
Rice’s Theorem, (5.8.5) 230
self-terminating machine, (5.8.6) 230

wrapped convolution,
space–time lower bound, (10.13.1) 505
space–time lower bound, (10.5.1) 474

zero-one principle, (6.8.1) 271
theory,

computer science role, overview,
(chapter) 3 (*)

thesis,
Church-Turing 209
computation,

parallel 379(*)
serial 330

Thiele, J.-J.611
Thompson, C. D.601 602 610 620
three-matrix product,

space–time lower bound 512
threshold,

functions, as symmetric function 74
Tiekenherinrich, J.457 620
tightly coupled computer network284
time,

area tradeoffs, VLSI chip design 586(*)
bounded complexity classes 337(*)

containment among 337
space-bounded complexity class

relationships with 341(*)
branching program computation 489
computation,

in the VLSI synchronous model 579
TM relationship to circuit complexity 5

CPU timing, simple CPU 142(*)
exponential, polynomial time compared with

330
for pebbling strategy 558
hierarchy 336(*)
I/O 559

and computation bounds, red-blue pebble
game 542

lower bounds, red-blue pebble game 537
relationships, MHG 534
space tradeoffs 539(*)

lower bound, TM 127

time (cont.)
MHG 534
nondeterministic, contained in deterministic

space 341
OTM 217 333
parallel, serial space relationship to 379
pebbling, strategy 531
polylogarithmic 128
polynomial,

CFL recognition algorithm 189
characteristics 5
exponential time compared with 330
log-space contained in 342
reduction 132

processor-time tradeoff 290
quantity whose rate of growth is significant

13
RAM 332
space,

and I/O tradeoffs 24(*)
tradeoffs, (chapter) 461(*)
tradeoffs, matrix multiplication, 479
tradeoffs, pebble game study of, brief

history 6
TM 333

TIME(r(n))334
NSPACE(r(n)) relationship with 341
time hierarchy 336

timing,
variable 143

TM,
See, Turing machine (TM)

Toeplitz matrix243
Tompa, M.526 527 528 607 620 621
toroidal meshes293
total,

function, standard TM 210
ordering, set 270

trace,
of a matrix 261

tradeoffs,
extreme 466(*)
space, time, and I/O 24(*)
space–time, (chapter) 461(*)
worst-case, pebble game 483(*)

Trakhtenbrot, B. A.88 152 337 389 620
transformation,

classes 350
log-space,

realization of, on CREW PRAM 380
transitivity of 350

670 INDEX Models of Computation

transformation (cont.)
resource-bounded 348
transitive 350

transition(s),
functions, TM 212
PDA 177
closure 248(*)

application to parsing CFLs 190
circuits for 251
function, complexity of 249
matrix 248
reduction of matrix multiplication

function to 250
log-space transformations 350
relation 10
transformations 350

transmission,
line model, VLSI 579
model, VLSI 579

transpose,
matrix 240

trees,
balanced 288
binary 78

balanced 564
balanced, pebbling 465
complete balanced 463 464
longest path length 560 565
number of unlabeled 78
search 564

circuit 78
combiners 406
controllers 406
decision 489

multiway 561
decomposition of 397
fan-in 394
H-tree 581(*), 583(*)
mesh of 319 599
PRAM simulation 313(*)
program 491
properties 397
rooted tree fan-in properties 394
separator theorem for 397
spanning 589

BFS 591
unbalanced 288

triangles,
clause 359
variable 359

triangular,
matricies 240

inversion of 255(*)
planar graph 590

truth table12
Tsitsiklis, J. N.323 607
TSP (Traveling Salesperson Problem),

NP problem 121
NP-complete association with 5
optimization problem, TSP as special case of

336
problem 335

Tukey, J. W.279 608
tuple,

power set use 8
Turán, Gy.602 603 620
Turing, A. M.118 152 236 389 620
Turing, Alan,

founder of theoretical computer science 4
Turing machine (TM)4 20 118(*), 119

as serial computational model 331
canonical encoding 221
circuit,

complexity relationship to 5
simulations of 124(*), 129

circuit simulation 134(*)
computational inequalities 127(*), 134
computations, reductions to circuit

computations 128(*)
configurations 218
deterministic, See DTM
FSM relationship 217
functions computed by 230(*)
log-space, composition of 351
lower bounds 128
multi-tape 332(*)

simulation 214
single-tape simulation of 213

nondeterministic, See NDTM
oracle, See OTM
PDA relationship 217
phrase-structure languages and 219(*)
precise 334
programming 211
RAM,

relationship to 124
simulation by 122

space 333
standard 210(*)

extensions to 213(*)
string encoding and 222(*)

c©John E Savage INDEX 671

Turing machine (TM) (cont.)
tape 149

double-ended 213
multi 119 213(*)
one-tape 118
unit, RAM simulation 122

time 333
transition functions 212
uniform circuit equivalence 374(*)
universal 121(*), 124 220 221

Turing reduction348 385
two’s complement,

signed 61
two-cost planar separator theorem600
two-level memory management

algorithms568(*)

U
Uhr, L.613
Ullman, J. D.236 278 279 389 601 602 605

611 620
unary encoding383
unbounded,

memory, RAM 111
undecidable languages228 229

Rice’s Theorem 230
undirected graph10
union,

CFL closed under 198
NFSM 164
sets 7

unique elements514
space time lower bounds 516

unit,
control 20
tape 20

unity,
roots of, in commutative rings 264

universal,
quantification 365
RAM 114
TM 124
Turing machine 220(*), 221

universality,
of the RAM 114(*)
of the TM 121(*)

unsatisfiability language328
unshuffle permutations304

on linear arrays 304(*)

unsolvable,
classifying languages as 227
languages 223
problems 227(*)

empty set acceptance 229
empty tape acceptance 228
halting 227
regular machine recognition 229
Rice’s Theorem 230
self-terminating machine 230

reducibility and 226(*)
task 210

Upfal, E.323 528 607 612 620
upper bound,

circuit size, for all Boolean fucntions 82
depth, for all Boolean functions 80
HMM 567(*)
simple RAM CPU 146
space 483(*)

upper triangular,
matrix 240

V
Valiant, L. G.191 207 323 389 455 456 457

458 485 523 526 527 611 616 619
620 621

validity problem347
value,

circuit, problem 40
jump, for space 483
variables 474

van Emde Boas, P.388 390 526 621
van Leeuwen, J.526 607 611 612 614 621
Van Voorhis, C. C.457 621
Vandermonde matrix265
variable(s),

Boolean 11
control 144 474
dependent 399
instruction 143
timing 143
triangles 359
value 474

vector,
conditional vector operations 286
matrix multiplication, on an H-tree 582(*)
matrix product,

Borodin-Cook lower-bound method
application 507(*)

DFT 513

672 INDEX Models of Computation

vector (cont.)
matrix product (cont.)

distinguishability properties 508
space-I/O time tradeoffs 539(*)
space–time lower bound 508

matrix-vector product 241
operation 48
resource 534

Venkateswaran, H.528 621
verification,

languages 121
vertex,

input 10
output 10
root 489
sink 489

vertex-disjoint485
paths, monotone circuits 415

virtual memory-management systems567
Vishkin, U.323 390 615 619 621
Vitter, J. S.528 563 573 605 615 618 621
VLSI (very large-scale integration),

algorithms,
performance of 592(*)
performance of, on functions 593(*)
performance of, on predicates 595(*)

area-time tradeoffs 586(*)
brief history 6
CCC network layout 584(*)
chip,

area 578
area, bounds 597(*)
fabrication of 576(*)

chip layouts 28 581(*)
H-tree 581(*)
multi-dimensional mesh 583(*)

computational inequalities 587(*)
design challenges and issues 576(*)

chip fabrication 576(*)
design 577(*)
layout 577(*)

machine, as example of parallel machine 27
models,

(chapter) 575(*)
computational 579(*)
physical 578(*)

performance criteria 580(*)
planar circuit size 586(*)

von Eicken, T.323 609
von zur Gathen, J.279 610

Vuillemin, J. E.323 527 601 602 606 614 617
621

W
Wallace, C. S.88 456 621
walk10
Wegener, I.89 455 457 458 621
Weiss, J.457 621
Welch, L. R.455 611
when-oblivious580
where-oblivious580
Wicks, J. R.621
Wigderson, A.323 458 528 607 612 617 620
Wijshoff, H. A. G.323 612
Wilber, R.528 621
Winograd, S.245 278 279 608 621
wires,

VLSI chip 578
Wloka, M.621
work,

computational, on FSM 96
worst-case tradeoffs,

pebble game 483(*)
wrapped convolution276 473(*)

space–time lower bound 474 505
Wyllie, J.323 390 609

Y
Yamada, H.207 615
Yannakakis, M.602 605
Yao, A. C.-C.458 459 528 602 603 621 622
Yen, D. W. L.602 613
Yesha, Y.528 622
yield,

parse tree 186
VLSI chip 578

Younger, D. H.207 622

Z
Z34
zero,

function 231
matrix 240
zero-one principle 271

Zhou, D.601 622
Zorat, A.602 612
Zwick, U.455 456 616 622

	Cover Page
	Title Page
	Preface
	Table Of Contents
	I Overview of the Book
	The Role of Theory in Computer Science
	A Brief History of Theoretical Computer Science
	Early Years
	1950s
	1960s
	1970s
	1980s and 1990s

	Mathematical Preliminaries
	Sets
	Number Systems
	Languages and Strings
	Relations
	Graphs
	Matrices
	Functions
	Rate of Growth of Functions

	Methods of Proof
	Computational Models
	Logic Circuits
	Finite-State Machines
	Random-Access Machine
	Other Models
	Formal Languages

	Computational Complexity
	A Computational Inequality
	Tradeoffs in Space, Time, and I/O Operations
	Complexity Classes
	Circuit Complexity

	Parallel Computation
	Problems
	Chapter Notes

	II General Computational Models
	Logic Circuits
	Designing Circuits
	Straight-Line Programs and Circuits
	Functions Computed by Circuits
	Circuits That Compute Functions
	Circuit Complexity Measures
	Algebraic Properties of Boolean Functions

	Normal-Form Expansions of Boolean Functions
	Disjunctive Normal Form
	Conjunctive Normal Form
	SOPE and POSE Normal Forms
	Ring-Sum Expansion
	Comparison of Normal Forms

	Reductions Between Functions
	Specialized Circuits
	Logical Operations
	Shifting Functions
	Encoder
	Decoder
	Multiplexer
	Demultiplexer

	Prefix Computations
	An Efficient Parallel Prefix Circuit

	Addition
	Carry-Lookahead Addition

	Subtraction
	Multiplication
	Carry-Save Multiplication
	Divide-and-Conquer Multiplication
	Fast Multiplication
	Very Fast Multiplication
	Reductions to Multiplication

	Reciprocal and Division
	Reductions to the Reciprocal

	Symmetric Functions
	Most Boolean Functions Are Complex
	Upper Bounds on Circuit Size
	Problems
	Chapter Notes

	Machines with Memory
	Finite-State Machines
	Functions Computed by FSMs
	Computational Inequalities for the FSM
	Circuits Are Universal for Bounded FSM Computations
	Interconnections of Finite-State Machines
	Nondeterministic Finite-State Machines

	Simulating FSMs with Shallow Circuits*
	A Shallow Circuit Simulating Addition

	Designing Sequential Circuits
	Binary Memory Devices

	Random-Access Machines
	The RAM Architecture
	The Bounded-Memory RAM as FSM
	Unbounded-Memory RAM Programs
	Universality of the Unbounded-Memory RAM

	Random-Access Memory Design
	Computational Inequalities for the RAM
	Turing Machines
	Nondeterministic Turing Machines

	Universality of the Turing Machine
	Turing Machine Circuit Simulations
	A Simple Circuit Simulation of TM Computations
	Computational Inequalities for Turing Machines
	Reductions from Turing to Circuit Computations
	Definitions of P-Complete and NP-Complete Languages
	Reductions to P-Complete Languages
	Reductions to NP-Complete Languages
	An Efficient Circuit Simulation of TM Computations*

	Design of a Simple CPU
	The Register Set
	The Fetch-and-Execute Cycle
	The Instruction Set
	Assembly-Language Programming
	Timing and Control
	CPU Circuit Size and Depth
	Emulation

	Problems
	Chapter Notes

	Finite-State Machines and Pushdown Automata
	Finite-State Machine Models
	Equivalence of DFSMs and NFSMs
	Regular Expressions
	Regular Expressions and FSMs
	Recognition of Regular Expressions by FSMs
	Regular Expressions Describing FSM Languages
	grep---Searching for Strings in Files

	The Pumping Lemma for FSMs
	Properties of Regular Languages
	State Minimization*
	Equivalence Relations on Languages and States
	The Myhill-Nerode Theorem
	A State Minimization Algorithm

	Pushdown Automata
	Formal Languages
	Phrase-Structure Languages
	Context-Sensitive Languages
	Context-Free Languages
	Regular Languages

	Regular Language Recognition
	Parsing Context-Free Languages
	CFL Acceptance with Pushdown Automata*
	Properties of Context-Free Languages
	CFL Pumping Lemma
	CFL Closure Properties

	Problems
	Chapter Notes

	Computability
	The Standard Turing Machine Model
	Programming the Turing Machine

	Extensions to the Standard Turing Machine Model
	Multi-Tape Turing Machines
	Nondeterministic Turing Machines
	Oracle Turing Machines
	Representing Restricted Models of Computation

	Configuration Graphs
	Phrase-Structure Languages and Turing Machines
	Universal Turing Machines
	Encodings of Strings and Turing Machines
	Limits on Language Acceptance
	Decidable Languages
	A Language That Is Not Recursively Enumerable
	Recursively Enumerable but Not Decidable Languages

	Reducibility and Unsolvability
	Reducibility
	Unsolvable Problems

	Functions Computed by Turing Machines
	Primitive Recursive Functions
	Partial Recursive Functions
	Partial Recursive Functions are RAM-Computable

	Problems
	Chapter Notes

	Algebraic and Combinatorial Circuits
	Straight-Line Programs
	Mathematical Preliminaries
	Rings and Fields
	Matrices

	Matrix Multiplication
	Strassen's Algorithm

	Transitive Closure
	Matrix Inversion
	Symmetric Positive Definite Matrices
	Schur Factorization
	Inversion of Triangular Matrices
	LDLT Factorization of SPD Matrices
	Fast Matrix Inversion*

	Solving Linear Systems
	Convolution and the FFT Algorithm
	Commutative Rings*
	The Discrete Fourier Transform
	Fast Fourier Transform
	Convolution Theorem

	Merging and Sorting Networks
	Sorting Via Bitonic Merging
	Fast Sorting Networks

	Problems
	Chapter Notes

	Parallel Computation
	Parallel Computational Models
	Memoryless Parallel Computers
	Parallel Computers with Memory
	Flynn's Taxonomy
	The Data-Parallel Model
	Networked Computers

	The Performance of Parallel Algorithms
	Amdahl's Law
	Brent's Principle

	Multidimensional Meshes
	Matrix-Vector Multiplication on a Linear Array
	Sorting on Linear Arrays
	Matrix Multiplication on a 2D Mesh
	Embedding of 1D Arrays in 2D Meshes

	Hypercube-Based Machines
	Embedding Arrays in Hypercubes
	Cube-Connected Cycles

	Normal Algorithms
	Summing on the Hypercube
	Broadcasting on the Hypercube
	Shifting on the Hypercube
	Shuffle and Unshuffle Permutations on Linear Arrays
	Fully Normal Algorithms on Two-Dimensional Arrays
	Normal Algorithms on Cube-Connected Cycles
	Fast Matrix Multiplication on the Hypercube

	Routing in Networks
	Local Routing Networks
	Global Routing Networks

	The PRAM Model
	Simulating Trees, Arrays, and Hypercubes on the PRAM
	The Power of Concurrency
	Simulating the PRAM on a Hypercube Network
	Circuits and the CREW PRAM

	The BSP and LogP Models
	Problems
	Chapter Notes

	III Computational Complexity
	Complexity Classes
	Introduction
	Languages and Problems
	Complements of Languages and Decision Problems

	Resource Bounds
	Serial Computational Models
	The Random-Access Machine
	Turing Machine Models

	Classification of Decision Problems
	Space and Time Hierarchies
	Time-Bounded Complexity Classes
	Space-Bounded Complexity Classes
	Relations Between Time- and Space-Bounded Classes
	Space-Bounded Functions

	Complements of Complexity Classes
	The Complement of NP

	Reductions
	Hard and Complete Problems
	P-Complete Problems
	NP-Complete Problems
	NP-Complete Satisfiability Problems
	Other NP-Complete Problems

	The Boundary Between P and NP
	PSPACE-Complete Problems
	A First PSPACE-Complete Problem
	Other PSPACE-Complete Problems

	The Circuit Model of Computation
	Uniform Families of Circuits
	Uniform Circuits Are Equivalent to Turing Machines

	The Parallel Random-Access Machine Model
	Equivalence of the CREW PRAM and Circuits
	The Parallel Computation Thesis

	Circuit Complexity Classes
	Efficiently Parallelizable Languages
	Circuits of Polynomial Size

	Problems
	Chapter Notes

	Circuit Complexity
	Circuit Models and Measures
	Circuit Models
	Complexity Measures

	Relationships Among Complexity Measures
	Effect of Fan-Out on Circuit Size
	Effect of Basis Change on Circuit Size and Depth
	Formula Size Versus Circuit Depth

	Lower-Bound Methods for General Circuits
	Simple Lower Bounds
	The Gate-Elimination Method for Circuit Size

	Lower-Bound Methods for Formula Size
	The Neciporuk Lower Bound
	The Krapchenko Lower Bound

	The Power of Negation
	Lower-Bound Methods for Monotone Circuits
	The Path-Elimination Method
	The Function Replacement Method
	The Approximation Method
	Slice Functions

	Circuit Depth
	Communication Complexity
	General Depth and Communication Complexity
	Monotone Depth and Communication Complexity
	The Monotone Depth of the Clique Function
	Bounded-Depth Circuits

	Problems
	Chapter Notes

	Space--Time Tradeoffs
	The Pebble Game
	The Pebble Game Versus the Branching Program
	Playing the Pebble Game

	Space Lower Bounds
	Extreme Tradeoffs
	Grigoriev's Lower-Bound Method
	Flow Properties of Functions
	The Lower-Bound Method in the Basic Pebble Game
	First Matrix Multiplication Bound

	Applications of Grigoriev's Method
	Convolution
	Cyclic Shifting
	Integer Multiplication
	Matrix Multiplication
	Discrete Fourier Transform
	Merging Networks

	Worst-Case Tradeoffs for Pebble Games*
	Upper Bounds on Space*
	Lower Bound on Space for General Graphs*
	Branching Programs
	Branching Programs and Other Models

	Straight-Line Versus Branching Programs
	Efficient Branching Programs for Cyclic Shift
	Efficient Branching Programs for Merging

	The Borodin-Cook Lower-Bound Method
	Properties of ``nice'' and ``ok'' Matrices*
	Applications of the Borodin-Cook Method
	Convolution
	Integer Multiplication
	Matrix-Vector Product
	Matrix Multiplication*
	Matrix Inversion
	Discrete Fourier Transform
	Unique Elements
	Sorting

	Problems
	Chapter Notes

	Memory-Hierarchy Tradeoffs
	The Red-Blue Pebble Game
	Playing the Red-Blue Pebble Game
	Balanced Computer Systems

	The Memory-Hierarchy Pebble Game
	Playing the MHG

	I/O-Time Relationships
	The Hong-Kung Lower-Bound Method
	Tradeoffs Between Space and I/O Time
	Matrix-Vector Product
	Matrix-Matrix Multiplication
	The Fast Fourier Transform
	Convolution

	Block I/O in the MHG
	Simulating a Fast Memory in the MHG
	RAM-Based I/O Models
	The Block-Transfer Model

	The Hierarchical Memory Model
	Lower Bounds for the HMM
	Upper Bounds for the HMM

	Competitive Memory Management
	Two-Level Memory-Management Algorithms

	Problems
	Chapter Notes

	VLSI Models of Computation
	The VSLI Challenge
	Chip Fabrication
	Design and Layout

	VLSI Physical Models
	VLSI Computational Models
	VLSI Performance Criteria
	Chip Layout
	The H-Tree Layout
	Multi-dimensional Mesh Layouts
	Layout of the CCC Network

	Area--Time Tradeoffs
	Planar Circuit Size
	Computational Inequalities
	The Planar Separator Theorem

	The Performance of VLSI Algorithms
	The Performance of VLSI Algorithms on Functions
	The Performance of VLSI Algorithms on Predicates

	Area Bounds
	Problems
	Chapter Notes

	Bibliography

	Index

