4.10 Regular Language Recognition

Theorem 4.10.1 The languages \(L(G) \) and \(L(G) \cup \{ \epsilon \} \) generated by regular grammars \(G \) and recognized by finite-state machines are the same.

Proof Given a regular grammar \(G \), we construct a corresponding NFSM \(M \) that accepts exactly the strings generated by \(G \). Similarly, given a DFSM \(M \) we construct a regular grammar \(G \) that generates the strings recognized by \(M \).

From a regular grammar \(G = (N, T, R, S) \) with rules \(R \) of the form \(A \rightarrow a \) and \(A \rightarrow bC \) we create a grammar \(G' \) generating the same language by replacing a rule \(A \rightarrow a \) with rules \(A \rightarrow aB \) and \(B \rightarrow \epsilon \) where \(B \) is a new non-terminal unique to \(A \rightarrow a \). Thus, every derivation \(S \Rightarrow^*_G w, w \in T^* \), now corresponds to a derivation \(S \Rightarrow^*_{G'} wB \) where \(B \rightarrow \epsilon \). Hence, the strings generated by \(G \) and \(G' \) are the same.

Now construct an NFSM \(M_{G'} \) whose states correspond to the non-terminals of this new regular grammar and whose input alphabet is its set of terminals. Let the start state of \(M_{G'} \) be labeled \(S \). Let there be a transition from state \(A \) to state \(B \) on input \(a \) if there is a rule \(A \rightarrow aB \) in \(G' \). If state \(q \) is a final state of \(M \), add the rule \(q \rightarrow \epsilon \). Thus, if a string \(w \) is accepted by \(M_{G'} \), given the one-to-one correspondence between edges and rules, there is a derivation of \(w \) from \(S \) in \(G' \). Thus, the strings generated by \(G \) and the strings accepted by \(M_{G'} \) are the same.

Now assume we are given a DFSM \(M \) that accepts a language \(L_M \). Create a grammar \(G_M \) whose non-terminals are the states of \(M \) and whose start symbol is the start state of \(M \). \(G_M \) has a rule of the form \(q_1 \rightarrow aq_2 \) if \(M \) makes a transition from state \(q_1 \) to \(q_2 \) on input \(a \). If state \(q \) is a final state of \(M \), add the rule \(q \rightarrow \epsilon \). If a string is accepted by \(M \), that is, it causes \(M \) to move to a final state, then \(G_M \) generates the same string. Since \(G_M \) generates only strings of this kind, the language accepted by \(M \) is \(L(G_M) \). Now convert \(G_M \) to a regular grammar \(\bar{G}_M \) by replacing each pair of rules \(q_1 \rightarrow aq_2, q_2 \rightarrow \epsilon \) by the pair \(q_1 \rightarrow aq_2, q_1 \rightarrow a \), deleting all rules \(q \rightarrow \epsilon \) corresponding to unreachable final states \(q \), and deleting the rule \(S \rightarrow \epsilon \) if \(\epsilon \in L_M \). Then, \(L_M - \{ \epsilon \} = L(G_M) - \{ \epsilon \} = L(\bar{G}_M) \).

![Figure 4.27](image-url) A nondeterministic FSM that accepts a language generated by a regular language in which all rules are of the form \(A \rightarrow bC \) or \(A \rightarrow \epsilon \). A state is associated with each non-terminal, the start symbol \(S \) is associated with the start state, and final states are associated with non-terminals \(A \) such that \(A \rightarrow \epsilon \). This particular NFSM accepts the language \(L(G_4) \) of Example 4.9.4.