2DFQ: Two-Dimensional Fair Queuing for Multi-Tenant Cloud Services

Jonathan Mace Brown University Peter Bodik *Microsoft* Madanlal Musuvathi *Microsoft*

Rodrigo Fonseca Brown University Krishnan Varadarajan *Microsoft*

Containers / VMs

Shared Process

Shared Process
Threads

...

Ideal:

------- time -------

------- time ------

7

------ time ------

------- time -------

------- time --------

D

size =10

D

size =10

------ time ------

_____ time _____►

------ time ------

------ time ------

------- time -------

_____ time _____

_____ time _____►

Ideal:

More threads \rightarrow Opportunity to reduce burstiness

More threads \rightarrow Opportunity to reduce burstiness

More threads \rightarrow Opportunity to reduce burstiness

Challenges

Burstiness is proportional to size of large requests

Burstiness is proportional to size of large requests

Cloud services:

4+ orders of magnitude variation in cost

Durstiness is proportional to size of large re

Cloud services:

4+ orders of magnitude variation in cost

Cloud services:

4+ orders of magnitude variation in cost

Burstiness is proportional to size of large requests

Cloud services:

4+ orders of magnitude variation in cost

Cloud services:

Estimation using model or moving averages 10

Cost Variation

Two-Dimensional Fair Queueing

Unknown Costs

Pessimistic cost estimation

Evaluation

Compare 2DFQ to WFQ and WF²Q

Discrete event simulator with Azure Storage workloads

More experiment results in the paper, evaluating:

- Burstiness
- Fairness
- Tail latency

50 tenants with size \approx 1

50 tenants with size ≈ 1 50 tenants with size ≈ 1000

50 tenants with size ≈ 1

50 tenants with size \approx 1000

16 threads 1000 units/second Costs known by scheduler

50 tenants with size ≈ 1

50 tenants with size \approx 1000

16 threads 1000 units/second Costs known by scheduler

50 tenants with size ≈ 1

50 tenants with size \approx 1000

16 threads 1000 units/second Costs known by scheduler

50 tenants with size ≈ 1

50 tenants with size \approx 1000

16 threads 1000 units/second Costs known by scheduler

50 tenants with size ≈ 1

50 tenants with size \approx 1000

16 threads 1000 units/second Costs known by scheduler

250 Azure Storage tenants 32 threads 1 million units/second Costs known by scheduler

250 Azure Storage tenants 32 threads 1 million units/second Costs known by scheduler

250 Azure Storage tenants 32 threads 1 million units/second Costs known by scheduler

250 Azure Storage workloads 32 threads 1 million units/second Costs known by scheduler

250 Azure Storage workloads 32 threads 1 million units/second Costs known by scheduler

250 Azure Storage workloads 32 threads 1 million units/second Costs known by scheduler

2DFQ^E —

1/3 predictable2/3 unpredictable

1/3 predictable 2/3 unpredictable

More threads \rightarrow Opportunity to reduce burstiness

More threads \rightarrow Opportunity to reduce burstiness

Partitions requests across threads by size

More threads \rightarrow Opportunity to reduce burstiness

Partitions requests across threads by size

Co-locates unpredictable and expensive workloads

More threads \rightarrow Opportunity to reduce burstiness

Partitions requests across threads by size

Co-locates unpredictable and expensive workloads

More threads \rightarrow Opportunity to reduce burstiness

Partitions requests across threads by size

Co-locates unpredictable and expensive workloads

Reduced tail latency

Less burstiness