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Shared Systems:
Storage, Database,
Queueing, etc.
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Monitors resource usage of each tenant in near real-time

Actively schedules tenants and activities

High-level, centralized policies:
Encapsulates resource management logic
Abstractions — not specific to resource type, system
Achieve different goals: guarantee average latencies, fair share
a resource, etc.
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MapReduce
Shuffler

Hadoop YARN
Container
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Co-ordinated control across processes, machines, and
services

Handle system and application level resources
Principals: tenants, background tasks
Real-time and reactive

Efficient: Only control what is needed
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o—s Workflows

Purpose: identify requests from different users, background activities
eg, all requests from a tenant over time
eg, data balancing in HDFS

Unit of resource measurement, attribution, and enforcement

Tracks a request across varying levels of granularity
Orthogonal to threads, processes, network flows, etc.
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Slowdown (queue time + execute time) / execute time

eg. 100ms queue, 10ms execute
=>slowdown 11

Load time spent executing
eg. 10ms execute
=>load 10

* Resources

Purpose: cope with diversity of resources

What we need:

1. Identify overloaded resources
Slowdown Ratio of how slow the resource is now compared to
its baseline performance with no contention.
2. ldentify culprit workflows

Load Fraction of current utilization that we can attribute
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Distributed Enforcement

Workflows ‘ Resources o Control Points

Pervasive Measurement
Aggregated locally then reported centrally once per second

Centralized Controller
Global, abstracted view of the system
Policies run in continuous control loop

Distributed Enforcement
Co-ordinates enforcement using distributed token bucket

Retro Controller API

Policy IPolicx ][Polic




“Control Plane” for resource management

Global, abstracted view of the system
Easier to write
Reusable
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H High Priority Workflows L Low Priority Workflows

foreach candidate in H
miss[candidate] = latency(candidate) / guarantee[candidate]
W = candidate in H with max miss[candidate]

foreach rsrc in resources() // calculate importance of each resource for hipri
importance[rsrc] = latency(W, rsrc) * log(slowdown(rsrc))

foreach lopri in L // calculate low priority workflow interference
interference[lopri] = Z. .. importance[rsrc] * load(lopri, rsrc) / load(rsrc)

foreach lopri in L // normalize interference
interference[lopri] /= Z, interference[k]

foreach lopri in L
if miss[W] > 1 // throttle
scalefactor = 1 - a * (miss[W] - 1) * interference[lopri]
else // release
scalefactor =1 + B

foreach cpoint in controlpoints() // apply new rates

set_rate(cpoint, lopri, scalefactor * get rate(cpoint, lopri)
23
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Other types of policy...

[Policy | Bottleneck Fairness

Detect most overloaded resource
Fair-share resource between tenants using it

[Pelicy | Dominant Resource Fairness

Estimate demands and capacities from
measurements

Concise

Any resources can be bottleneck (policy doesn’t care)
Not system specific
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Instrumentation

Retro implementation in Java

Instrumentation Library
Central controller implementation

To enable Retro

&= Propagate Workflow ID within application (like X-Trace, Dapper)
Instrument resources with wrapper classes

Overheads
Resource instrumentation automatic using AspectJ
Overall 50-200 lines per system to modify RPCs
Retro overhead: max 1-2% on throughput, latency
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