Targeted Resource Management in
Multi-tenant Distributed Systems

Jonathan Mace Peter Bodik Rodrigo Fonseca Madanlal Musuvathi
Brown University MSR Redmond Brown University MSR Redmond

Microsoft

Research

Resource Management in Multi-Tenant Systems

Resource Management in Multi-Tenant Systems

plane, causes thread pool starvation for all zones

D Failure in availability zone cascades to shared control
e April 2011 - Amazon EBS Failure

Resource Management in Multi-Tenant Systems

Failure in availability zone cascades to shared control

plane, causes thread pool starvation for all zones
e April 2011 - Amazon EBS Failure

Aggressive background task responds to increased

hardware capacity with deluge of warnings and logging
* Aug.2012 - Azure Storage Outage

Resource Management in Multi-Tenant Systems

Failure in availability zone cascades to shared control

plane, causes thread pool starvation for all zones
e April 2011 - Amazon EBS Failure

Aggressive background task responds to increased

hardware capacity with deluge of warnings and logging
* Aug.2012 - Azure Storage Outage

Code change increases database usage, shifts

bottleneck to unmanaged application-level lock
* Nov. 2014 - Visual Studio Online outage

Resource Management in Multi-Tenant Systems

Failure in availability zone cascades to shared control

plane, causes thread pool starvation for all zones
e April 2011 - Amazon EBS Failure

Aggressive background task responds to increased

hardware capacity with deluge of warnings and logging
* Aug.2012 - Azure Storage Outage

Code change increases database usage, shifts

bottleneck to unmanaged application-level lock
* Nov. 2014 - Visual Studio Online outage

Shared storage layer bottlenecks circumvent

resource management layer
e 2014 - Communication with Cloudera

Resource Management in Multi-Tenant Systems

Failure in availability zone cascades to shared control

plane, causes thread pool starvation for all zones
e April 2011 - Amazon EBS Failure

Aggressive background task responds to increased

hardware capacity with deluge of warnings and logging
* Aug.2012 - Azure Storage Outage

Code change increases database usage, shifts

bottleneck to unmanaged application-level lock
* Nov. 2014 - Visual Studio Online outage

Shared storage layer bottlenecks circumvent

resource management layer
e 2014 - Communication with Cloudera

Degraded performance, Violated SLOs, system outages

Resource Management in Multi-Tenant Systems

Degraded performance, Violated SLOs, system outages

Resource Management in Multi-Tenant Systems

Degraded performance, Violated SLOs, system outages

Resource Management in Multi-Tenant Systems

Degraded performance, Violated SLOs, system outages

Containers / VMs &

Containers /VMs

Shared Systems:
Storage, Database,
Queueing, etc.

Monitors resource usage of each tenant in near real-time
Actively schedules tenants and activities

Monitors resource usage of each tenant in near real-time
Actively schedules tenants and activities

High-level, centralized policies:
Encapsulates resource management logic

Monitors resource usage of each tenant in near real-time

Actively schedules tenants and activities

High-level, centralized policies:
Encapsulates resource management logic
Abstractions — not specific to resource type, system
Achieve different goals: guarantee average latencies, fair share
a resource, etc.

” Hadoop Distributed File System (HDFS)

" Hadoop Distributed File System (HDFS)

(HDFS NameNode) h

\

Filesystem metadata

” Hadoop Distributed File System (HDFS)

) HDFS DataNode)
(ADIES Memelhosle) HDFS DataNode)
HDFS DataNode
_ y,

Filesystem metadata Replicated block storage

” Hadoop Distributed File System (HDFS)

Rename
6
HDFS DataNode)
(ADIES Memelhosle HDFS DataNode)

HDFS DataNode

Filesystem metadata Replicated block storage

6

” Hadoop Distributed File System (HDFS)

Read
Rename

a HDFS DataNode)
[(_HDFS NameNode HDES DataNode \
HDES DataNode ‘}

Filesystem metadata Replicated block storage

6

” Hadoop Distributed File System (HDFS)

Read

Rename

HDFS DataNode
HDES DataNode
HDES DataNode [—j}

\

Filesystem metadata Replicated block storage

6

(HDFS NameNode T=T

HDES DataNode
HDFS DataNode
_ u)

HDES DataNode [—j}

500
request
latency [ms] 0

time

(HDFS NameNode T=T

HDES DataNode
HDFS DataNode
_ u)

HDES DataNode [—j}

a m m m
500
request
latency [ms] 0
time

(HDFS NameNode T=T

HDFS DataNode \
HDFS DataNode
_ u)

HDES DataNode [—j}

\o)

500
request
latency [ms] 0

HDES DataNod¥

500-
request -
atency [ms] W
| 33— M
disk op]
latency [ms] O: _/M\’W

O
®—

HDES DataNod¥
HDES DataNo
HDES Data

le

500-
request -
Iatency [ms] : M
. 133
disk op]
latency [ms] O: __/M\»W - — ~ D

(HDFS NameNode T=T

HDFS DataNode \
HDFS DataNode
_ uj

HDES DataNode [—j}

a
500+
request i
latency [ms] i
| 133
disk op]
latency [ms] O: - . — -

(HDFS NameNode

HDFS DataNode \
HDFS DataNode
HDES DataNode [—j}

, (
‘ \ ‘e
500- °
request i
latency [ms] i
| 133 D
disk op]
latency [ms]] JM) — N
5003 _
queue i
latency [ms] O: M

HDES DataNode
HDFS DataNode

HDFS Datal\nde [—

(HDFS NameNode

, (
‘ \ ¢
500- °

request i
latency [ms] i

| 133
disk op]
latency [ms]] - . — -
queue i
latency [ms] O:

(HDFS NameNode T=T

HDFS DataNode \
HDFS DataNode
_ uj

HDES DataNode [—j}

; .
T\ paf®
500- °

request i
latency [ms] i

| 133
disk op]
latency [ms]] - . — -
queue i
latency [ms] O:

(HDFS NameNode [-

HDFS DataNode \
HDFS DataNode
HDES DataNode [—j}

.

request
latency [ms]

disk op
latency [ms]

queue
latency [ms]

lock
latency [ms]

500+
19

5o

508

0]

(HDFS NameNode 5==T

HDFS DataNode \
HDFS DataNode
HDFS DataNode [—j}

(HDFS DataNode)

11

FS DataNo

11

(H Base RegionServer)

11

11

MapReduce
Shuffler

Hadoop YARN
Container

I

MapReduce Tasks)

11

12

Co-ordinated control across processes, machines, and

services

12

Co-ordinated control across processes, machines, and

services

Handle system and application level resources

12

Co-ordinated control across processes, machines, and
services

Handle system and application level resources
Principals: tenants, background tasks

Co-ordinated control across processes, machines, and
services

Handle system and application level resources
Principals: tenants, background tasks
Real-time and reactive

Co-ordinated control across processes, machines, and
services

Handle system and application level resources
Principals: tenants, background tasks
Real-time and reactive

Efficient: Only control what is needed

itecture

Arch

13

E Tenant Requests

o—s Workflows

Purpose: identify requests from different users, background activities
eg, all requests from a tenant over time

eg, data balancing in HDFS

15

o—s Workflows

Purpose: identify requests from different users, background activities
eg, all requests from a tenant over time
eg, data balancing in HDFS

Unit of resource measurement, attribution, and enforcement

15

o—s Workflows

Purpose: identify requests from different users, background activities
eg, all requests from a tenant over time
eg, data balancing in HDFS

Unit of resource measurement, attribution, and enforcement

Tracks a request across varying levels of granularity
Orthogonal to threads, processes, network flows, etc.

15

&==8 Workflows

16

16

Gl
o—s Workflows * Resources

Purpose: cope with diversity of resources

16

Gl
o—s Workflows * Resources

Purpose: cope with diversity of resources
What we need:

1. Identify overloaded resources

16

Gl
o—s Workflows * Resources

Purpose: cope with diversity of resources
What we need:

1. Identify overloaded resources

2. Identify culprit workflows

16

Gl
o—s Workflows * Resources

Purpose: cope with diversity of resources
What we need:

1. Identify overloaded resources

Slowdown Ratio of how slow the resource is now compared to
its baseline performance with no contention.

2. Identify culprit workflows

16

Gl
o—s Workflows * Resources

Purpose: cope with diversity of resources
What we need:
1. Identify overloaded resources

Slowdown Ratio of how slow the resource is now compared to
its baseline performance with no contention.

2. Identify culprit workflows

Load Fraction of current utilization that we can attribute
to each workflow

16

* Resources

Purpose: cope with diversity of resources
What we need:
1. Identify overloaded resources

Slowdown Ratio of how slow the resource is now compared to
its baseline performance with no contention.

2. Identify culprit workflows

Load Fraction of current utilization that we can attribute
to each workflow

(=]

* Resources

Purpose: cope with diversity of resources
What we need:
1. Identify overloaded resources

Slowdown Ratio of how slow the resource is now compared to
its baseline performance with no contention.

2. Identify culprit workflows

Load Fraction of current utilization that we can attribute
to each workflow

Slowdown (queue time + execute time) / execute time

eg. 100ms queue, 10ms execute
=>slowdown 11

Load time spent executing
eg. 10ms execute
=>load 10

* Resources

Purpose: cope with diversity of resources

What we need:

1. Identify overloaded resources
Slowdown Ratio of how slow the resource is now compared to
its baseline performance with no contention.
2. ldentify culprit workflows

Load Fraction of current utilization that we can attribute
to each workflow

o—s Workflows

* Resources

17

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions

18

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

18

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

19

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

19

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

19

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

19

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

o—s Workflows * Resources o Control Points

Goal: enforce resource management decisions
Decoupled from resources

Rate-limits workflows, agnostic to underlying implementation e.g.,
token bucket
priority queue

19

o Control Points

20

Pervasive Measurement

lll CTILLL] Illlllllllll)
B Bk B DR IS AT e
R DA * @ e 0 e

o—s Workflows * Resources o Control Points

1. Pervasive Measurement
Aggregated locally then reported centrally once per second

20

Pervasive Measurement

lll CTILLL] Illlllllllll)
B Bk B DR IS AT e
R DA * @ e 0 e

o—s Workflows * Resources o Control Points

1. Pervasive Measurement
Aggregated locally then reported centrally once per second

2. Centralized Controller
Global, abstracted view of the system

o
<
} -
9
©
p -
)
c
o
&)
o
| -
)
v
(a4

20

Pervasive Measurement

lll CTILLL] Illlllllllll)
B Bk B DR IS AT e
R DA * @ e 0 e

o
<
} -
9
©
p -
)
c
o
&)
o
| -
)
v
(a4

o—s Workflows * Resources o Control Points

1. Pervasive Measurement
Aggregated locally then reported centrally once per second

2. Centralized Controller
Global, abstracted view of the system
Policies run in continuous control loop

Ol
[—]

1.

Pervasive Measurement

lll CTILLL] Illlllllllll)
B Bk B DR IS AT e
R DA * @ e 0 e

Distributed Enforcement

Workflows ‘ Resources o Control Points

Pervasive Measurement
Aggregated locally then reported centrally once per second

Centralized Controller
Global, abstracted view of the system
Policies run in continuous control loop

Distributed Enforcement
Co-ordinates enforcement using distributed token bucket

Retro Controller API

Policy IPolicx][Polic

“Control Plane” for resource management

Global, abstracted view of the system
Easier to write
Reusable

o
<
} -
9
©
p -
)
c
o
&)
o
| -
)
v
(a4

[Policy] Example: LatencySLO

[Policy] Example: LatencySLO

H High Priority Workflows

P

1} “200ms average request latency”

& &

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

.

1} “200ms average request latency”
& &

3

l l (use spare capacity)

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

P

I “200ms average request latency”

3

1 (use spare capacity)
monitor latencies l

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

P

| “200ms average request latency”

Se spare capacity)
monitor latencies

attribute interference

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

P

| “200ms average request latency”

3

(use spare capacity)

l

monitor latencies

throttle interfering workflows

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

foreach candidate in H
miss[candidate] = latency(candidate) / guarantee[candidate]
W = candidate in H with max miss[candidate]

foreach rsrc in resources() // calculate importance of each resource for hipri
importance[rsrc] = latency(W, rsrc) * log(slowdown(rsrc))

foreach lopri in L // calculate low priority workflow interference
interference[lopri] = Z. .. importance[rsrc] * load(lopri, rsrc) / load(rsrc)

foreach lopri in L // normalize interference
interference[lopri] /= Z, interference[k]

foreach lopri in L
if miss[W] > 1 // throttle
scalefactor = 1 - a * (miss[W] - 1) * interference[lopri]
else // release
scalefactor =1 + B

foreach cpoint in controlpoints() // apply new rates

set_rate(cpoint, lopri, scalefactor * get rate(cpoint, lopri)
23

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

[Select the high priority workflow W with worst performance }

4)

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

[Select the high priority workflow W with worst performance }

-

Weight low priority workflows by their interference with W

~

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

[Select the high priority workflow W with worst performance }

4)

Weight low priority workflows by their interference with W

Throttle low priority workflows proportionally to their weight

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows
Select the high priority workflow W with worst performance

foreach candidate in H
miss[candidate] = latency(candidate) / guarantee[candidate]
W = candidate in H with max miss[candidate]

Weight low priority workflows by their interference with W

Throttle low priority workflows proportionally to their weight

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows

Select the high priority workflow W with worst performance

foreach candidate in H
miss[candidate] = latency(candidate) / guarantee[candidate]
W = candidate in H with max miss[candidate]

Weight low priority workflows by their interference with W

foreach rsrc in resources()
importance[rsrc] = latency(W, rsrc) * log(slowdown(rsrc))

foreach lopri in L
interference[lopri] = Z... importance[rsrc] * load(lopri, rsrc) / load(rsrc)

Throttle low priority workflows proportionally to their weight

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows
Select the high priority workflow W with worst performance

foreach candidate in H
miss[candidate] = latency(candidate) / guarantee[candidate]
W = candidate in H with max miss[candidate]

Weight low priority workflows by their interference with W

foreach rsrc in resources() // calculate importance of each resource for hipri\
importance[rsrc] = latency(W, rsrc) * log(slowdown(rsrc))

foreach lopri in L // calculate low priority workflow interference
interference[lopri] = Z... importance[rsrc] * load(lopri, rsrc) / load(rsrc)

Throttle low priority workflows proportionally to their weight

foreach lopri in L // normalize interference
interference[lopri] /= Z, interference[k]

foreach lopri in L
if miss[W] > 1 // throttle

scalefactor = 1 - a * (miss[W] - 1) * interference[lopri]
else // release
scalefactor =1 + B

foreach cpoint in controlpoints() // apply new rates
set_rate(cpoint, lopri, scalefactor * get rate(cpoint, lopri)

27 /

[Policy] Example: LatencySLO

H High Priority Workflows L Low Priority Workflows
Select the hi i

foreach candidate in H
miss[candidate] = latency(candidate) / guarantee[candidate]
W = candidate in H with max miss[candidate]

Weight low priority workflows by their interference with W

foreach rsrc in resources() // calculate importance of each resource for hipri\
importance[rsrc] = latency(W, rsrc) * log(slowdown(rsrc))

foreach lopri in L // calculate low priority workflow interference
interference[lopri] = Z... importance[rsrc] * load(lopri, rsrc) / load(rsrc)

Throttle low priority workflows proportionally to their weight

foreach lopri in L // normalize interference
interference[lopri] /= Z, interference[k]

foreach lopri in L
if miss[W] > 1 // throttle

scalefactor =1 o (miss[W] - 1) * interference[lopri]
else = Nelease
scalefactor =1 @

foreach cpoint in controlpoints() // apply new rates
set_rate(cpoint, lopri, scalefactor * get rate(cpoint, lopri)

27 /

Other types of policy...

Other types of policy...

[Policy | Bottleneck Fairness
Detect most overloaded resource
Fair-share resource between tenants using it

Other types of policy...

[Policy | Bottleneck Fairness
Detect most overloaded resource
Fair-share resource between tenants using it

[Pelicy | Dominant Resource Fairness

Estimate demands and capacities from
measurements

Other types of policy...

[Policy | Bottleneck Fairness

Detect most overloaded resource
Fair-share resource between tenants using it

[Pelicy | Dominant Resource Fairness

Estimate demands and capacities from
measurements

Concise

Any resources can be bottleneck (policy doesn’t care)
Not system specific

tion

valua

29

Instrumentation

Instrumentation

Retro implementation in Java

Instrumentation Library
Central controller implementation

Instrumentation

Retro implementation in Java

Instrumentation Library
Central controller implementation

To enable Retro

g8 Propagate Workflow ID within application (like X-Trace, Dapper)

[Instrument resources with wrapper classes

Instrumentation

Retro implementation in Java

Instrumentation Library
Central controller implementation

To enable Retro

&= Propagate Workflow ID within application (like X-Trace, Dapper)
Instrument resources with wrapper classes

Overheads

Instrumentation

Retro implementation in Java

Instrumentation Library
Central controller implementation

To enable Retro

&= Propagate Workflow ID within application (like X-Trace, Dapper)
Instrument resources with wrapper classes

Overheads
Resource instrumentation automatic using AspectJ

Instrumentation

Retro implementation in Java

Instrumentation Library
Central controller implementation

To enable Retro

&= Propagate Workflow ID within application (like X-Trace, Dapper)
Instrument resources with wrapper classes

Overheads
Resource instrumentation automatic using AspectJ
Overall 50-200 lines per system to modify RPCs

Instrumentation

Retro implementation in Java

Instrumentation Library
Central controller implementation

To enable Retro

&= Propagate Workflow ID within application (like X-Trace, Dapper)
Instrument resources with wrapper classes

Overheads
Resource instrumentation automatic using AspectJ
Overall 50-200 lines per system to modify RPCs
Retro overhead: max 1-2% on throughput, latency

Experiments

Experiments Systems

ZooKkeeper |— HBase

Experiments Systems

ZooKkeeper |— HBase

MapReduce Jobs (HiBench)
WO rkﬂOWS HBase (YCSB)

‘ HDFS clients
Background Data Replication
O Background Heartbeats

Experiments Systems

ZooKkeeper |— HBase

MapReduce Jobs (HiBench)
WO rkﬂOWS HBase (YCSB)

‘ HDFS clients
Background Data Replication
O Background Heartbeats
Resources
@ D CPU, Disk, Network (All systems)
Locks, Queues (HDFS, HBase)

&)

EXperimentS Systems

YARN | MapReduce

MapReduce Jobs (HiBench)
Workflows 0 s Fooreoner — HBase
e HDFS clients HDFS
@ -
Background Data Replication
O Background Heartbeats
POIICIeS [Bottleneck]
Fairness
[LatencySLO]
Resources
@ D CPU, Disk, Network (All systems) [,'_?gi"!‘riggs“t Resource]
Locks, Queues (HDFS, HBase)

&)

Experiments Systems

ZooKkeeper |— HBase

MapReduce Jobs (HiBench)
WO rkﬂOWS HBase (YCSB)

‘ HDFS clients
Background Data Replication
O Background Heartbeats
Policies ()
[LatencySLO] —
Resources
@ D CPU, Disk, Network (All systems) [,'_?gi"!‘riggs“t Resource]
Locks, Queues (HDFS, HBase)

&)

Policies for a mixture of systems, workflows, and resources

Results on clusters up to 200 nodes
See paper for full experiment results

Experiments Systems

ZooKkeeper |— HBase

MapReduce Jobs (HiBench)
WO rkﬂOWS HBase (YCSB)

‘ HDFS clients
Background Data Replication
O Background Heartbeats
Policies ()
[LatencySLO] —
Resources
@ D CPU, Disk, Network (All systems) [,'_?gi"!‘riggs“t Resource]
Locks, Queues (HDFS, HBase)

&)

Policies for a mixture of systems, workflows, and resources

Results on clusters up to 200 nodes
See paper for full experiment results

This talk LatencySLO policy results

Experiments

WorkﬂOWS HBase (YCSB)
‘ HDFS clients
@
@
Resources
@ D CPU, Disk, Network (All systems)
Locks, Queues (HDFS, HBase)

&)

This talk LatencySLO policy results

Systems

(o=

Policies
[LatencySLO]

HDFS read 8k

HBase read 1 row

HBaseread 1
cached row

33

J HBase JHDFs J HBase 1

Table Scan mkdir Cached
Table Scan HDFS read 8k

HBase read 1 row

HBaseread 1
cached row

33

lHBase lHDFS 1H Base {T

0 5 10 15 20 25 30 cached row
Time [minutes]

Table Scan mkdir Cached
5‘ Table Scan HDFS read 8k
c
Q
® 1009 . eft. ..
§ 100 HBase read 1 row
= 10
1
Z 01 1 HBaseread 1
S .
—
(0p)

33

SLO-Normalized Latency

5 8 8

o
=

lHBase

Table Scan

lHDFS

mkdir

RN

J HBase 1

15
Time [minutes]

Cached
able Scan HDFS read 8k
&
HBase read 1 row
@
: HBaseread 1
20 25 30 cached row

33

lHBase lHDFs lHBase ﬂ

Table Scan mkdir Cached

? % &able Scan HDFS read 8k

Q

® 100y ot

E 100 HBase read 1 row
= 10

E 4

% 01 4 : HBaseread 1

O 0 5 10 15 20 25 30 cached row

n Time [minutes]

33

SLO-Normalized Latency

5 8 8

o
=

lHBase

Table Scan

lHDFS

mkdir

RN

HBase
lCached 1}— -

able Scan HDFS read 8k

HBaseread 1

Time [minutes]

cached row

33

J HBase JHDFS J HBase |
Table Scan mkdir Cached 1}— =

% %able Scan HDFS read 8k

8 8

10

HBaseread 1
cached row

o
=

SLO-Normalized Latency

Time [minutes]

33

SLO-Normalized Latency

Slowdown

0 5 10 15 20 25 30
Time [minutes]

lHBase
Table Scan

lHDFS

HBase
mkdir l ﬂ

Cached

Table Scan HDFS read 8k

HBaseread 1
cached row

(I) 5 10 15 20 25 30
Time [minutes]

34

SLO-Normalized Latency

Slowdown

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

HBaseread 1

0 5 10 15 20 25 30 cached row
Time [minutes]
Disk
[/~ ~A
[\
0 5 10 15 20 25 30

Time [minutes]

34

SLO-Normalized Latency

Slowdown

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

HBaseread 1
cached row

Time [minutes]

15

10

5 /[~ =N

O 1 1 1 1 1 1 1
0 5 10 15 20 25 30

Time [minutes]

34

SLO-Normalized Latency

Slowdown

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

HBaseread 1
cached row

Time [minutes]

15
e W o N,
10 S © — - ® WS ¢ T e W
5 R - ¢ “HDFS NN Lock
0 - T T T T T T
0 5 10 15 20 25 30

Time [minutes]

34

SLO-Normalized Latency

Slowdown

lHBase lHDFS 1H Base 1}

Table Scan mkdir Cached
Table Scan HDFS read 8k

HBaseread 1

10 15 20 25 30 cached row
Time [minutes]

OWQN.
ammse © - esmms © WD O g, ¢ wumm

0
5 o;\.\A e®e0®000o%00

~
o A Commang
CaBe @l &8 50> e anemn m’—— asnne caves @l s ®%ufe® Wh ® Gl ©Walef Sufabals

0 - T T T T T T
0 5 10 15 20 25 30 HDFS NN Queue

Time [minutes]

34

SLO-Normalized Latency

Slowdown

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

HBaseread 1

5 10 15 20 25 30 cached row

Time [minutes] @
HBase Queue

34

SLO-Normalized Latency

SLO-Normalized Latency

8 8

lHBase lHDFS 1H Base 1}

Table Scan mkdir Cached
Table Scan HDFS read 8k

HBaseread 1
cached row

Time [minutes]

+ SLO Policy Enabled

SLO target

(X XXX ALAYT Y XX
1

0.1 1 1 1 T T 1
0 5 10 15 20 25 30
Time [minutes]

35

lHBase lHDFS 1H Base

Table Scan mkdir Cached —
Table Scan HDFS read 8k

3

3

HBaseread 1
cached row

SLO-Normalized Latency

Time [minutes]

+ SLO Policy Enabled

SLO target

SLO-Normalized Latency

Time [minutes]

35

lHBase lHDFS 1H Base 1}

Table Scan mkdir Cached
Table Scan HDFS read 8k

10

- e, = Al — — — P AYA — — — — -

.i-/mv.

-

® o

T HBaseread 1
0 5 10 15 20 25 30 cached row
Time [minutes]

SLO-Normalized Latency
H

36

SLO-Normalized Latency

0.2

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

T HBaseread 1

15 2'0 2'5 3:0 cached row
Time [minutes]

HBase
Table Scan

36

SLO-Normalized Latency

0.2

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

T HBaseread 1

15 2'0 2'5 3:0 cached row
Time [minutes]

HBase
Table Scan

36

SLO-Normalized Latency

0.2

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

T HBaseread 1

15 2'0 2'5 3:0 cached row
Time [minutes]

HBase
@ Table Scan

36

SLO-Normalized Latency

lHBase lHDFS 1H Base [I

Table Scan mkdir Cached
Table Scan HDFS read 8k

T HBaseread 1

15 2'0 2'5 3:0 cached row
Time [minutes]

HBase
@ Table Scan

mkdir

36

SLO-Normalized Latency

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

T HBaseread 1

15 2'0 2'5 3:0 cached row
Time [minutes]

HBase
@ Table Scan

U HDFS

mkdir

36

SLO-Normalized Latency

lHBase lHDFS 1H Base {T

Table Scan mkdir Cached
Table Scan HDFS read 8k

T HBaseread 1

15 2'0 2'5 3:0 cached row
Time [minutes]

HBase
@ Table Scan

HDFS

mkdir

36

SLO-Normalized Latency

lHBase 1HDFS 1H Base
Table Scan mkdir Cached
Table Scan

X XX XX LAY YT LX)
1

15 20 25 30
Time [minutes]

HDFS read 8k

HBaseread 1
cached row

HBase
Table Scan

HDFS
mkdir

HBase
Cached
Table Scan

36

SLO-Normalized Latency

lHBase lHDFS 1H Base
Table Scan mkdir Cached
Table Scan

X XX XX LAY YT LX)
1

15 20 25 30
Time [minutes]

HDFS read 8k

HBaseread 1
cached row

HBase
Table Scan

HDFS
mkdir

HBase
Cached
Table Scan

36

SLO-Normalized Latency

lHBase 1HDFS 1H Base
Table Scan mkdir Cached
Table Scan

X XX XX LAY YT LX)
1

15 20 25 30
Time [minutes]

HDFS read 8k

HBaseread 1
cached row

HBase
Table Scan

HDFS
mkdir

HBase
Cached
Table Scan

36

-
.
(7))
-
—
S
-
>
&

37

“Conclusion

Resource management for shared
distributed systems

37

Conclusion

Resource management for shared
distributed systems

Centralized resource management

Retro Controller API
Policy][Policy][Policy

_ _ _

Distributed Enforcement

._." Workflows ‘ Resources o Control Points

37

Conclusion

Resource management for shared
distributed systems

=13 Comprehensive: resources,

— ; S5l processes, tenants, background

% ' Y ool
famt o[tasks

e L ‘g =
[{ : S lal
Sz
\ \ _ &) E

Distributed Enforcement

._." Workflows ‘ Resources o Control Points

37

Conclusion

Resource management for shared
distributed systems

Pervasive Measurement .
P . E N ComprehenSIve: resou rceS,
g processes, tenants, background
g lal
< o[tasks
: 5% e
L #0 glz] Abstractions for writing concise,
L . l=[8] general-purpose policies:
Distributed Enforcement | Workflows
=% Workflows ‘ Resources o Control Points Resources (SlOWdOWﬂ, load)

Control points
37

Conclusion

Resource management for shared
distributed systems

Pervasive Measurement .
,._...I - =1 ComprehenSIVe: resou rces’
SB[l processes,tenants, background
= =
ol o[y tasks
: 5% i
L #0 LL 23] Abstractions for writing concise,
U L\ l=[8] general-purpose policies:
Distributed Enforcement | Workflows
=3 Workflows ‘ Resources o Control Points Resources (SlOWdOWﬂ, load)

Control points .
Microsoft

@fo] BROWN UNIVERSITY http://cs.brown.edu/~jcmace Resea rch

http://cs.brown.edu/~jcmace

