
We are Losing Track: a Case for Causal Metadata in Distributed Systems

Rodrigo Fonseca Jonathan Mace
Brown University

As our systems move to more concurrent and dis-
tributed execution patterns, the tools and abstractions we
have to understand, monitor, schedule, and enforce their
behavior become progressively less e�ective or adequate.
In sequential and simple multi-threaded programs, the

execution stack contains valuable information about the
recent history of the execution, which we readily use to, for
example, debug and pro�le programs. In addition, thread
IDs are useful identi�ers to add to log messages and use
for resource accounting, and thread-local variables can
store useful information about the execution that is more
persistent than the stack. ¿ese tools, however, become a
lot less useful when we introduce patterns such as event
loops and continuations, or architectures based on queues
and threadpools such as SEDA. Further, important context
about the execution in a distributed system is lost when we
cross boundaries of so ware components and machines,
making it hard to reason about the execution in a coher-
ent way throughout the system. Inevitably, though, one
eventually needs the ability to, at one point of the system,
correlate the current context with events that are mean-
ingful at other parts of the system, even when crossing
component or machine boundaries.
Of course, this is anything but a new observation, and it

has been directly or indirectly addressed in a vast body of
existing work, by maintaining a notion of context that fol-
lows the execution patterns of applications through events,
queues, thread pools, �les, caches, and messages between
distributed system components.
For example, the node.js community has introduced

continuation-local storage (CLS) to address the growing
frustration with debugging event-based javascript server
code. Taint tracking and DIFC maintain and propagate se-
curity labels as the system executes, warning of or prohibit-
ing policy violations; work on data provenance propagates
information about the lineage of data as di�erent system
components manipulate it; work on consistent updates
and snapshots uses vector clocks which are maintained
and updated throughout concurrent executions and mes-
sage exchanges. Many systems propagate an activity ID
following execution patterns for debugging and pro�ling,
anomaly detection, resource accounting, or resource man-
agement, while others stitch existing identi�ers for part
of this task. Paraphrasing Greenspun’s tenth rule of pro-
gramming,1 any su�ciently complicated distributed system

1http://philip.greenspun.com/research/

Causality tracking Resource Tracing

Causal Metadata propagation Instrumented Queues,
Thread, Messaging libs

Taint Tracking
DIFC

Performance Guarantees
Distributed QoS
AccountingEnd-to-end tracing

Debugging
Dependency Tracking
Anomaly Detection
MonitoringData Provenance

Consistent updates
Consistent snapshots

Vector Clocks
Predecessors

...Security

Figure 1: Causal metadata propagation base layer
contains an ad hoc, informally speci�ed, siloed implementa-
tion of causal metadata propagation.We can, and should,
do better.
In our experience examining many of these solutions

and building some of them, the most intrusive portion
of instrumenting a system to propagate and manipulate
context is the propagation itself. Not because it is concep-
tually hard (although correctly dealing with concurrency
is sometimes subtle), but because it requires intervention
in key points of the application, libraries, or the OS. Due
to this, it is also the hardest to change later, and is usually
the focus of criticism against adoption of these approaches.
More importantly, however, this e�ort currently has to be
duplicated for each of the examples above.
We argue that systems should be built with causal prop-

agation of generic metadata as a �rst class primitive, to
serve as the narrow waist upon which all of the above
use cases could be built, in an analogy to the role of the
IP layer in networking. Figure 1 shows some of the tools
that could use such a propagation abstraction. ¿is layer
should be generic, pervasive, incrementally deployable,
and interoperable across system components. With a sim-
ple and common API it could use language, library, and
OS support, and reuse mechanisms that do propagate con-
text in limited scopes, such as thread-local variables or
continuation-local storage. Many systems have part of this
built-in from necessity, such as HTTP servers that propa-
gate request IDs across modules, or applications servers
that share session IDs among components. With Dapper,
Google has shown that a similar service can be widely de-
ployed, by instrumenting all of their internal RPCs with
causal propagation of IDs for tracing.
We are not the �rst to propose similar ideas. In this talk

we will describe one possible implementation of this meta-
data propagation layer, many of the existing challenges,
and why, even if we haven’t done this pervasively enough
before, we should address this problem now.

bb

1



About

Rodrigo Fonseca, the corresponding author, is an assis-
tant professor at Brown University’s Computer Science
department, interested in networking, distributed systems
and operating systems. Of particular relevance to this
submission, he has been working on a number of sys-
tems and frameworks that use causal metadata propa-
gation. X-Trace [2] instruments distributed systems and
produces a distributed call graphs of concurrent system
executions spanning multiple layers, components, and ma-
chines. Quanto [1] used similar techniques to propagate
activity IDs on a sensornet application, for energy account-
ing across the network. More recently, with his PhD stu-
dent Jonathan Mace, they have used the propagation of
tenant IDs on the entire Hadoop stack to provide near-real-
time resourcemonitoring and accounting in Retro [3], and
are currently working on a system that combines dynamic
instrumentation with causality tracking to allow for �ex-
ible, runtime-de�ned monitoring of distributed systems
(in submission).
More details at http://www.cs.brown.edu/

people/rfonseca.

References

[1] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto: Tracking
energy in networked embedded systems. In Proceedings of
the 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’08), pages 323–338, December
2008.

[2] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-
trace: A pervasive network tracing framework. InProceedings
of the 4th USENIX Conference on Networked Systems Design
&#38; Implementation, NSDI’07, Berkeley, CA, USA, 2007.
USENIX Association.

[3] J. Mace, P. Bodik, M. Musuvathi, and R. Fonseca. Retro:
Targeted resource management in multi-tenant distributed
systems. In NSDI ’15: Proceedings of the 12th USENIX Sym-
posium on Networked Systems Design and Implementation.
USENIX Association, May 2015.

2

http://www.cs.brown.edu/people/rfonseca
http://www.cs.brown.edu/people/rfonseca

