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Pivot Tracing is a monitoring framework for distributed systems that 
can seamlessly correlate statistics across applications, components, 
and machines at runtime without needing to change or redeploy 

system code. Users can define and install monitoring queries on-the-fly to 
collect arbitrary statistics from one point in the system while being able to 
select, filter, and group by events meaningful at other points in the system. 
Pivot Tracing does not correlate cross-component events using expensive 
global aggregations, nor does it perform offline analysis. Instead, Pivot 
Tracing directly correlates events as they happen by piggybacking metadata 
alongside requests as they execute—even across component and machine 
boundaries. This gives Pivot Tracing a very low runtime overhead—less than 
1% for many cross-component monitoring queries. 

Monitoring and Troubleshooting Distributed Systems
Problems in distributed systems are many and varied: component failures due to hardware 
errors, software bugs, and misconfiguration; unexpected overload behavior due to hot spots 
and aggressive tenants; or simply unrealistic user expectations. Due to designs such as 
fault-tolerance and load balancing, the root cause of an issue may not be immediately appar-
ent from its symptoms. However, while troubleshooting distributed systems is inherently 
challenging, many of the monitoring and diagnosis tools used today share two fundamental 
limitations that further exacerbate the challenge. 

One Size Does Not Fit All
First, many tools only record information that is selected a priori at development or deploy-
ment time. Even though there has been great progress in using machine-learning tech-
niques and static analysis to improve the quality of logs, they still carry an inherent tradeoff 
between recall and overhead. The choice of what to record must be made a priori, so inevita-
bly the information needed to diagnose an issue might not be reported by the system. Even if 
a relevant event is captured in a log message, it can still contain too little information; simi-
larly, performance counters may be too coarse grained or lack the desired filters or groupings.

On the other hand, if a system does expose information relevant to a problem, it is often 
buried under a mountain of other irrelevant information, presenting a “needle in a haystack” 
problem to users. Any time a user or developer patches a system to add more instrumenta-
tion, they contribute to this information overload. They also potentially add performance 
overheads for any monitoring that is enabled by default. Unsurprisingly, developers are resis-
tant to adding additional metrics or groupings, as can be observed in a plethora of unresolved 
and rejected issues on Apache’s issue trackers.

Crossing Boundaries
Second, many tools record information in a component- or machine-centric way, making it 
difficult to correlate events across these boundaries. Since today’s datacenters typically host 
a wide variety of interoperating components and systems, the root cause and symptoms of an 
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issue often appear in different processes, machines, and applica-
tion tiers. A user of one application may need to relate informa-
tion from some other dependent application in order to diagnose 
problems that span multiple systems. To do this manually is 
cumbersome, and in many cases impossible, because it depends 
on sufficient execution context having been propagated across 
software component and machine boundaries.

Dynamic Instrumentation and Causal Tracing
Pivot Tracing overcomes these challenges by combining two 
key techniques: dynamic instrumentation and causal tracing. 
Dynamic instrumentation systems, such as DTrace [1], Fay [2], 
and SystemTap [6], let users defer until runtime their selec-
tion of information reported by the system. They allow almost 
arbitrary instrumentation to be added dynamically at runtime 
as needed, and have proven extremely useful in diagnosing 
complex and unanticipated system problems. Pivot Tracing 
also uses dynamic instrumentation, enabling users to specify 
new monitoring queries at runtime. Pivot Tracing queries are 
dynamically installed without the need to change or redeploy 
code.

Dynamic instrumentation alone does not address the challenge 
of correlating events from multiple components. To address 
this challenge, Pivot Tracing adapts techniques presented in 
the causal tracing literature by systems such as X-Trace [3] and 
Dapper [7]. These systems maintain a notion of context that 
follows an execution through events, queues, thread pools, files, 
caches, and messages between distributed system components. 
Likewise, Pivot Tracing propagates a tracing context alongside 
requests. Unlike end-to-end tracing, Pivot Tracing does not 
record or reconstruct traces of executions for offline analysis. 
Instead, its tracing context is a means for propagating a small 
amount of state directly along the execution path of requests, 
including when they cross component and machine boundaries.

Pivot Tracing
Pivot Tracing exposes these two features by modeling system 
events as the tuples of a streaming, distributed data set. Users 
can write relational queries about system events using Pivot 
Tracing’s LINQ-like query language. Pivot Tracing compiles 
queries into instrumentation code and dynamically installs 
the code at the sources of events specified in the query. Each 
time one of the events occurs, the instrumentation code is also 
invoked.

Happened-Before Join
In order to reason about causality between events, Pivot Tracing 
introduces a new relational operator, the “happened-before join,” 
m  ⋈, for joining tuples based on Lamport’s happened-before rela-
tion [4]. For events a and b occurring anywhere in the system, we 
say that a happened before b and write a m b if the occurrence 
of event a causally preceded the occurrence of event b and they 
occurred as part of the execution of the same request. Using the 
happened-before join, users can write queries that group and 
filter events based on properties of events that causally precede 
them in an execution. Pivot Tracing evaluates the happened-
before join by putting partial query state into the tracing contexts 
propagated alongside requests. This is an efficient way to evalu-
ate the happened-before join, because it explicitly follows the 
happened-before relation. It drastically mitigates the overhead 
and scalability issues that would otherwise be required for cor-
relating events globally.

Pivot Tracing in Action
To motivate Pivot Tracing’s design and implementation, we 
present a brief example of Pivot Tracing with a monitoring task 
in the Hadoop stack. Suppose we are managing a cluster of eight 
machines and want to know how disk bandwidth is being used 
across the cluster. On these machines, we are simultaneously 
running several clients with workloads in HBase, MapReduce, 

Figure 1: Six client workloads access the disks on eight cluster machines indirectly via HBase, a distributed database; HDFS, a distributed file system; and 
MapReduce, a data processing framework.

Hget 10 kB row lookups in a large HBase table

Hscan 4 MB table scans of a large HBase table

FSread4m Random closed-loop 4 MB HDFS reads

FSread64m Random closed-loop 64 MB HDFS reads 

MRsort10g MapReduce sort job on 10 GB of input data

MRsort100g MapReduce sort job on 100 GB of input data
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and HDFS. It suffices to know that HBase is a distributed data-
base that accesses data through HDFS, a distributed file system. 
MapReduce, in addition to accessing data through HDFS, also 
accesses the disk directly to perform external sorts and to 
shuffle data between tasks. Figure 1 depicts this scenario.

By default, our distributed file system HDFS already tracks 
some disk consumption metrics, including disk read throughput 
aggregated on each of its DataNodes. To reproduce this metric 
with Pivot Tracing, we can define a tracepoint for the method 
incrBytesRead(int delta) in the DataNodeMetrics class in 
HDFS. A tracepoint is a location in the application source code 
where instrumentation can run. We then run the following query 
in Pivot Tracing’s LINQ-like query language:

Q1: From incr In DataNodeMetrics.incrBytesRead

GroupBy incr.host

Select incr.host, SUM(incr.delta)

This query causes each machine to aggregate the delta argument 
each time incrBytesRead is invoked, grouping by the host name. 
Each machine reports its local aggregate every second, from 
which we produce the time series in Figure 2a.

Things get more interesting if we wish to measure the HDFS 
usage of each of our client applications. HDFS only has visibility 
of its direct clients, and thus it only has an aggregate view of all 
HBase and all MapReduce clients. At best, applications must 
estimate throughput client side. With Pivot Tracing, we define 
tracepoints for the client protocols of HDFS (DataTransferProto-

col), HBase (ClientService), and MapReduce (ApplicationClient-

Protocol), and use the name of the client process as the group-by 
key for the query. Figure 2b shows the global HDFS read through-
put of each client application, produced by the following query:

Q2: From incr In DataNodeMetrics.incrBytesRead

Join cl In First(ClientProtocols) On cl -> incr

GroupBy cl.procName

Select cl.procName, SUM(incr.delta)

The -> symbol indicates a happened-before join. Pivot Trac-
ing’s implementation will record the process name the first 
time the request passes through any client protocol method and 
propagate it along the execution. Then, whenever the execution 
reaches incrBytesRead on a DataNode, Pivot Tracing will emit 
the bytes read or written, grouped by the recorded name. This 
query exposes information about client disk throughput that 
cannot currently be exposed by HDFS.

Design and Implementation
We opted to implement our Pivot Tracing prototype in Java 
in order to easily instrument the aforementioned open source 
distributed systems. However, the components of Pivot Tracing 
generalize and are not restricted to Java—a query can even span 
multiple systems written in different programming languages. 
Full support for Pivot Tracing in a system requires two basic 
mechanisms: dynamic code injection and causal metadata propa-
gation. For full details of Pivot Tracing’s design and implementa-
tion, we refer the reader to the full paper [5] and project Web site, 
http://pivottracing.io/.

Figure 3 presents a high-level overview of how Pivot Tracing 
enables queries such as Q2. We will refer to the numbers in the 
figure (e.g., ➀) in our description.

Writing Queries
Queries in Pivot Tracing refer to variables exposed by one or 
more tracepoints (➀)—places in the system where Pivot Trac-
ing can insert instrumentation. Tracepoints export named 
variables that can be accessed by instrumentation. However, 
the definitions of tracepoints are not part of the system code 
but, rather, instructions on where and how Pivot Tracing can 
add instrumentation. Tracepoints in Pivot Tracing are similar 
to pointcuts from aspect-oriented programming and can refer 
to arbitrary interface/method signature combinations. Pivot 
Tracing’s LINQ-like query language supports several typical 
operations including projection, selection, grouping, aggregation, 
and happened-before join.

Figure 2: In this example, Pivot Tracing dynamically instruments HDFS to expose read throughput grouped by client identifiers from other applications.
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Compiling Queries
Users submit queries to the Pivot Tracing front-end (➁), which 
is responsible for optimizing queries using some simple static 
rewriting rules, pushing projection, selection, and aggregation 
as close as possible to the source tracepoints. The front-end then 
compiles queries into advice, an intermediate representation of 
the system-level instrumentation needed to evaluate the query. 
Advice specifies the operations to perform at each tracepoint 
used in a query.

Installing Queries
The Pivot Tracing front-end distributes advice to local Pivot 
Tracing agents running in each process (③). Pivot Tracing 
agents are responsible for dynamically instrumenting the run-
ning system so that advice is invoked at tracepoints. The agents 
weave advice into tracepoints (➃) by: (1) generating code that 
implements the advice operations; (2) configuring the tracepoint 
to execute that code and pass its exported variables; (3) activat-
ing the necessary tracepoint at all locations in the system. Later, 
requests executing in the system will invoke the installed advice 
every time their execution reaches the tracepoint.

Crossing Boundaries
In order to implement the happened-before join, advice invoked 
at one tracepoint needs to make information available to advice 
invoked at other tracepoints later in a request’s execution. For 
example, in Q2, advice at the ClientProtocols tracepoint needs 
to make its procName available to later advice invoked at the 
DataNodeMetrics tracepoint. This is done through Pivot Trac-
ing’s baggage abstraction, which uses causal metadata propaga-
tion (⑤). Baggage is a per-request container for tuples that is 
propagated alongside a request as it traverses thread, applica-
tion, and machine boundaries. At any point in time, advice can 
put tuples in the baggage of the current request, and retrieve 
tuples that were previously placed in the baggage by other advice.

Evaluating Queries
Advice uses a small instruction set to evaluate queries and maps 
directly to the code that local Pivot Tracing agents generate. 
Advice operations are as follows: advice can create a tuple from 
tracepoint-exported variables (Observe); filter tuples by a predi-
cate (Filter); and output tuples for global aggregation (Emit). 
Advice can put tuples in the baggage (Pack) and retrieve tuples 
from the baggage (Unpack). Unpacked tuples are joined to the 
observed tuples (i.e., if t0 is observed and tu1 and tu2 are unpacked, 
then the resulting tuples are t0tu1 and t0tu2). Both Pack and Emit 
can group tuples based on matching fields and perform simple 
aggregations such as SUM and COUNT.

Query Results 
Advice can emit tuples as output of a query using the Emit 
instruction (➅). Pivot Tracing first aggregates emitted tuples 
locally within each process, then reports results globally at 
a regular interval, e.g., once per second (➆). The Pivot Trac-
ing front-end collects and forwards query results to the user 
(➇). Process-level aggregation substantially reduces traffic for 
emitted tuples; Q2 is reduced from approximately 600 tuples per 
second to six tuples per second from host.

Pivot Tracing Example
Recall query Q2 from our earlier Hadoop example:

Q2: 	From incr In DataNodeMetrics.incrBytesRead

	 Join cl In First(ClientProtocols) On cl -> incr

	 GroupBy cl.procName

	 Select cl.procName, SUM(incr.delta)

Q2 compiles to two advice specifications, A1 and A2, to be 
invoked at the ClientProtocols and DataNodeMetrics trace-
points, respectively:

A1:	 OBSERVE procName	 A2:	 UNPACK procName

	 PACK procName		  OBSERVE delta

			   EMIT procName, SUM(delta)

When a request invokes any of the ClientProtocols methods, 
the instrumented code will invoke advice A1. The advice will 
observe the value of the procName variable and pack a tuple into 
the request’s baggage, e.g., <procName=“HGet”>. The request 
will continue execution, carrying this tuple in its baggage. If the 
request subsequently invokes the DataNodeMetrics.incrBytes-

Read method, the instrumented code will invoke advice A2. 
The advice will unpack the previously packed procName and 
observe the local value of the delta variable, e.g.,  <delta=10>. The 
advice will then join the unpacked procName with the observed 
delta and emit the result as output, e.g., <procName=“HGet”, 

delta=10>. The output tuple will be aggregated with other tuples 
in the process’s Pivot Tracing agent and included in the next 
interval’s query results.

Figure 3: Pivot Tracing overview
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Figure 4 gives a final demonstration of how Pivot Tracing can 
group metrics along arbitrary dimensions. It is generated by two 
queries similar to Q2 that instrument Java’s FileInputStream 
and FileOutputStream, still joining with the client process name. 
We show the per-machine, per-application disk read and write 
throughput of MRsort10g from the same experiment. This figure 
resembles a pivot table, where summing across rows yields 
per-machine totals, summing across columns yields per-system 
totals, and the bottom-right corner shows the global totals. In 
this example, the client application presents a further dimension 
along which we could present statistics.

Summary
In this article we gave an overview of how Pivot Tracing can 
evaluate cross-component monitoring queries dynamically at 
runtime using a combination of dynamic instrumentation and 
causal tracing. For full details of Pivot Tracing’s design and 
implementation, we refer the reader to the full paper [5] and 
project Web site. In our full evaluation, we present several case 
studies where we used Pivot Tracing to successfully diagnose 
root causes, including real-world issues we encountered in our 
cluster. We also evaluate the overheads imposed by Pivot Trac-
ing, including the additional costs of invoking advice and the 
overheads of propagating tuples alongside requests at runtime. 
Of the examples presented in this article, Q2 only required the 
propagation of a single tuple per request, and imposed less than 
1% overhead in terms of end-to-end latency on several applica-
tion-level HDFS benchmarks.

Pivot Tracing is the first monitoring system to combine dynamic 
instrumentation with causal tracing. Its novel happened-before 
join operator fundamentally increases the expressive power 
of dynamic instrumentation and the applicability of causal 
tracing. Pivot Tracing enables cross-tier analysis between any 
interoperating applications, and the overheads of evaluating the 
happened-before join are sufficiently low that we believe Pivot 
Tracing is suitable for production systems, both for high-level 
standing queries and for digging deeper when necessary. Ulti-
mately, its power lies in the uniform and ubiquitous way in which 
it integrates monitoring of a heterogeneous distributed system.
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total.
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