
20    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

PROGRAMMINGPivot Tracing
Dynamic Causal Monitoring for Distributed Systems

J O N A T H A N M A C E , R Y A N R O E L K E , A N D R O D R I G O F O N S E C A

Jonathan Mace is a PhD student
in computer science at Brown
University, advised by Rodrigo
Fonseca. His research interests
include end-to-end tracing,

runtime debugging, and resource management
in distributed systems. jcmace@cs.brown.edu

Ryan Roelke received a master’s
degree in computer science
from Brown University in 2015
and is currently a Software
Engineer at HP Vertica.

rroelke@cs.brown.edu

Rodrigo Fonseca is an
Assistant Professor at Brown
University’s Computer Science
Department. He holds a
PhD from UC Berkeley, and

prior to Brown was a visiting researcher at
Yahoo! Research. He is broadly interested in
networking, distributed systems, and operating
systems. His research involves seeking
better ways to build, operate, and diagnose
distributed systems, including large-scale
Internet systems, cloud computing, and
mobile computing. He is currently working
on dynamic tracing infrastructures for these
systems, on new ways to leverage network
programmability, and on better ways to
manage energy usage in mobile devices.
rfonseca@cs.brown.edu

Pivot Tracing is a monitoring framework for distributed systems that
can seamlessly correlate statistics across applications, components,
and machines at runtime without needing to change or redeploy

system code. Users can define and install monitoring queries on-the-fly to
collect arbitrary statistics from one point in the system while being able to
select, filter, and group by events meaningful at other points in the system.
Pivot Tracing does not correlate cross-component events using expensive
global aggregations, nor does it perform offline analysis. Instead, Pivot
Tracing directly correlates events as they happen by piggybacking metadata
alongside requests as they execute—even across component and machine
boundaries. This gives Pivot Tracing a very low runtime overhead—less than
1% for many cross-component monitoring queries.

Monitoring and Troubleshooting Distributed Systems
Problems in distributed systems are many and varied: component failures due to hardware
errors, software bugs, and misconfiguration; unexpected overload behavior due to hot spots
and aggressive tenants; or simply unrealistic user expectations. Due to designs such as
fault-tolerance and load balancing, the root cause of an issue may not be immediately appar-
ent from its symptoms. However, while troubleshooting distributed systems is inherently
challenging, many of the monitoring and diagnosis tools used today share two fundamental
limitations that further exacerbate the challenge.

One Size Does Not Fit All
First, many tools only record information that is selected a priori at development or deploy-
ment time. Even though there has been great progress in using machine-learning tech-
niques and static analysis to improve the quality of logs, they still carry an inherent tradeoff
between recall and overhead. The choice of what to record must be made a priori, so inevita-
bly the information needed to diagnose an issue might not be reported by the system. Even if
a relevant event is captured in a log message, it can still contain too little information; simi-
larly, performance counters may be too coarse grained or lack the desired filters or groupings.

On the other hand, if a system does expose information relevant to a problem, it is often
buried under a mountain of other irrelevant information, presenting a “needle in a haystack”
problem to users. Any time a user or developer patches a system to add more instrumenta-
tion, they contribute to this information overload. They also potentially add performance
overheads for any monitoring that is enabled by default. Unsurprisingly, developers are resis-
tant to adding additional metrics or groupings, as can be observed in a plethora of unresolved
and rejected issues on Apache’s issue trackers.

Crossing Boundaries
Second, many tools record information in a component- or machine-centric way, making it
difficult to correlate events across these boundaries. Since today’s datacenters typically host
a wide variety of interoperating components and systems, the root cause and symptoms of an

mailto:jcmace@cs.brown.edu

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  21

PROGRAMMING PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

issue often appear in different processes, machines, and applica-
tion tiers. A user of one application may need to relate informa-
tion from some other dependent application in order to diagnose
problems that span multiple systems. To do this manually is
cumbersome, and in many cases impossible, because it depends
on sufficient execution context having been propagated across
software component and machine boundaries.

Dynamic Instrumentation and Causal Tracing
Pivot Tracing overcomes these challenges by combining two
key techniques: dynamic instrumentation and causal tracing.
Dynamic instrumentation systems, such as DTrace [1], Fay [2],
and SystemTap [6], let users defer until runtime their selec-
tion of information reported by the system. They allow almost
arbitrary instrumentation to be added dynamically at runtime
as needed, and have proven extremely useful in diagnosing
complex and unanticipated system problems. Pivot Tracing
also uses dynamic instrumentation, enabling users to specify
new monitoring queries at runtime. Pivot Tracing queries are
dynamically installed without the need to change or redeploy
code.

Dynamic instrumentation alone does not address the challenge
of correlating events from multiple components. To address
this challenge, Pivot Tracing adapts techniques presented in
the causal tracing literature by systems such as X-Trace [3] and
Dapper [7]. These systems maintain a notion of context that
follows an execution through events, queues, thread pools, files,
caches, and messages between distributed system components.
Likewise, Pivot Tracing propagates a tracing context alongside
requests. Unlike end-to-end tracing, Pivot Tracing does not
record or reconstruct traces of executions for offline analysis.
Instead, its tracing context is a means for propagating a small
amount of state directly along the execution path of requests,
including when they cross component and machine boundaries.

Pivot Tracing
Pivot Tracing exposes these two features by modeling system
events as the tuples of a streaming, distributed data set. Users
can write relational queries about system events using Pivot
Tracing’s LINQ-like query language. Pivot Tracing compiles
queries into instrumentation code and dynamically installs
the code at the sources of events specified in the query. Each
time one of the events occurs, the instrumentation code is also
invoked.

Happened-Before Join
In order to reason about causality between events, Pivot Tracing
introduces a new relational operator, the “happened-before join,”
m ⋈, for joining tuples based on Lamport’s happened-before rela-
tion [4]. For events a and b occurring anywhere in the system, we
say that a happened before b and write a m b if the occurrence
of event a causally preceded the occurrence of event b and they
occurred as part of the execution of the same request. Using the
happened-before join, users can write queries that group and
filter events based on properties of events that causally precede
them in an execution. Pivot Tracing evaluates the happened-
before join by putting partial query state into the tracing contexts
propagated alongside requests. This is an efficient way to evalu-
ate the happened-before join, because it explicitly follows the
happened-before relation. It drastically mitigates the overhead
and scalability issues that would otherwise be required for cor-
relating events globally.

Pivot Tracing in Action
To motivate Pivot Tracing’s design and implementation, we
present a brief example of Pivot Tracing with a monitoring task
in the Hadoop stack. Suppose we are managing a cluster of eight
machines and want to know how disk bandwidth is being used
across the cluster. On these machines, we are simultaneously
running several clients with workloads in HBase, MapReduce,

Figure 1: Six client workloads access the disks on eight cluster machines indirectly via HBase, a distributed database; HDFS, a distributed file system; and
MapReduce, a data processing framework.

Hget 10 kB row lookups in a large HBase table

Hscan 4 MB table scans of a large HBase table

FSread4m Random closed-loop 4 MB HDFS reads

FSread64m Random closed-loop 64 MB HDFS reads

MRsort10g MapReduce sort job on 10 GB of input data

MRsort100g MapReduce sort job on 100 GB of input data

22    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

and HDFS. It suffices to know that HBase is a distributed data-
base that accesses data through HDFS, a distributed file system.
MapReduce, in addition to accessing data through HDFS, also
accesses the disk directly to perform external sorts and to
shuffle data between tasks. Figure 1 depicts this scenario.

By default, our distributed file system HDFS already tracks
some disk consumption metrics, including disk read throughput
aggregated on each of its DataNodes. To reproduce this metric
with Pivot Tracing, we can define a tracepoint for the method
incrBytesRead(int delta) in the DataNodeMetrics class in
HDFS. A tracepoint is a location in the application source code
where instrumentation can run. We then run the following query
in Pivot Tracing’s LINQ-like query language:

Q1: From incr In DataNodeMetrics.incrBytesRead

GroupBy incr.host

Select incr.host, SUM(incr.delta)

This query causes each machine to aggregate the delta argument
each time incrBytesRead is invoked, grouping by the host name.
Each machine reports its local aggregate every second, from
which we produce the time series in Figure 2a.

Things get more interesting if we wish to measure the HDFS
usage of each of our client applications. HDFS only has visibility
of its direct clients, and thus it only has an aggregate view of all
HBase and all MapReduce clients. At best, applications must
estimate throughput client side. With Pivot Tracing, we define
tracepoints for the client protocols of HDFS (DataTransferProto-

col), HBase (ClientService), and MapReduce (ApplicationClient-

Protocol), and use the name of the client process as the group-by
key for the query. Figure 2b shows the global HDFS read through-
put of each client application, produced by the following query:

Q2: From incr In DataNodeMetrics.incrBytesRead

Join cl In First(ClientProtocols) On cl -> incr

GroupBy cl.procName

Select cl.procName, SUM(incr.delta)

The -> symbol indicates a happened-before join. Pivot Trac-
ing’s implementation will record the process name the first
time the request passes through any client protocol method and
propagate it along the execution. Then, whenever the execution
reaches incrBytesRead on a DataNode, Pivot Tracing will emit
the bytes read or written, grouped by the recorded name. This
query exposes information about client disk throughput that
cannot currently be exposed by HDFS.

Design and Implementation
We opted to implement our Pivot Tracing prototype in Java
in order to easily instrument the aforementioned open source
distributed systems. However, the components of Pivot Tracing
generalize and are not restricted to Java—a query can even span
multiple systems written in different programming languages.
Full support for Pivot Tracing in a system requires two basic
mechanisms: dynamic code injection and causal metadata propa-
gation. For full details of Pivot Tracing’s design and implementa-
tion, we refer the reader to the full paper [5] and project Web site,
http://pivottracing.io/.

Figure 3 presents a high-level overview of how Pivot Tracing
enables queries such as Q2. We will refer to the numbers in the
figure (e.g., ➀) in our description.

Writing Queries
Queries in Pivot Tracing refer to variables exposed by one or
more tracepoints (➀)—places in the system where Pivot Trac-
ing can insert instrumentation. Tracepoints export named
variables that can be accessed by instrumentation. However,
the definitions of tracepoints are not part of the system code
but, rather, instructions on where and how Pivot Tracing can
add instrumentation. Tracepoints in Pivot Tracing are similar
to pointcuts from aspect-oriented programming and can refer
to arbitrary interface/method signature combinations. Pivot
Tracing’s LINQ-like query language supports several typical
operations including projection, selection, grouping, aggregation,
and happened-before join.

Figure 2: In this example, Pivot Tracing dynamically instruments HDFS to expose read throughput grouped by client identifiers from other applications.

www.usenix.org	   S P R I N G 20 16  VO L . 41 , N O. 1  23

PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

Compiling Queries
Users submit queries to the Pivot Tracing front-end (➁), which
is responsible for optimizing queries using some simple static
rewriting rules, pushing projection, selection, and aggregation
as close as possible to the source tracepoints. The front-end then
compiles queries into advice, an intermediate representation of
the system-level instrumentation needed to evaluate the query.
Advice specifies the operations to perform at each tracepoint
used in a query.

Installing Queries
The Pivot Tracing front-end distributes advice to local Pivot
Tracing agents running in each process (③). Pivot Tracing
agents are responsible for dynamically instrumenting the run-
ning system so that advice is invoked at tracepoints. The agents
weave advice into tracepoints (➃) by: (1) generating code that
implements the advice operations; (2) configuring the tracepoint
to execute that code and pass its exported variables; (3) activat-
ing the necessary tracepoint at all locations in the system. Later,
requests executing in the system will invoke the installed advice
every time their execution reaches the tracepoint.

Crossing Boundaries
In order to implement the happened-before join, advice invoked
at one tracepoint needs to make information available to advice
invoked at other tracepoints later in a request’s execution. For
example, in Q2, advice at the ClientProtocols tracepoint needs
to make its procName available to later advice invoked at the
DataNodeMetrics tracepoint. This is done through Pivot Trac-
ing’s baggage abstraction, which uses causal metadata propaga-
tion (⑤). Baggage is a per-request container for tuples that is
propagated alongside a request as it traverses thread, applica-
tion, and machine boundaries. At any point in time, advice can
put tuples in the baggage of the current request, and retrieve
tuples that were previously placed in the baggage by other advice.

Evaluating Queries
Advice uses a small instruction set to evaluate queries and maps
directly to the code that local Pivot Tracing agents generate.
Advice operations are as follows: advice can create a tuple from
tracepoint-exported variables (Observe); filter tuples by a predi-
cate (Filter); and output tuples for global aggregation (Emit).
Advice can put tuples in the baggage (Pack) and retrieve tuples
from the baggage (Unpack). Unpacked tuples are joined to the
observed tuples (i.e., if t0 is observed and tu1 and tu2 are unpacked,
then the resulting tuples are t0tu1 and t0tu2). Both Pack and Emit
can group tuples based on matching fields and perform simple
aggregations such as SUM and COUNT.

Query Results
Advice can emit tuples as output of a query using the Emit
instruction (➅). Pivot Tracing first aggregates emitted tuples
locally within each process, then reports results globally at
a regular interval, e.g., once per second (➆). The Pivot Trac-
ing front-end collects and forwards query results to the user
(➇). Process-level aggregation substantially reduces traffic for
emitted tuples; Q2 is reduced from approximately 600 tuples per
second to six tuples per second from host.

Pivot Tracing Example
Recall query Q2 from our earlier Hadoop example:

Q2: 	From incr In DataNodeMetrics.incrBytesRead

	 Join cl In First(ClientProtocols) On cl -> incr

	 GroupBy cl.procName

	 Select cl.procName, SUM(incr.delta)

Q2 compiles to two advice specifications, A1 and A2, to be
invoked at the ClientProtocols and DataNodeMetrics trace-
points, respectively:

A1:	 OBSERVE procName	 A2:	 UNPACK procName

	 PACK procName		 OBSERVE delta

			 EMIT procName, SUM(delta)

When a request invokes any of the ClientProtocols methods,
the instrumented code will invoke advice A1. The advice will
observe the value of the procName variable and pack a tuple into
the request’s baggage, e.g., <procName=“HGet”>. The request
will continue execution, carrying this tuple in its baggage. If the
request subsequently invokes the DataNodeMetrics.incrBytes-

Read method, the instrumented code will invoke advice A2.
The advice will unpack the previously packed procName and
observe the local value of the delta variable, e.g., <delta=10>. The
advice will then join the unpacked procName with the observed
delta and emit the result as output, e.g., <procName=“HGet”,

delta=10>. The output tuple will be aggregated with other tuples
in the process’s Pivot Tracing agent and included in the next
interval’s query results.

Figure 3: Pivot Tracing overview

24    S P R I N G 20 16  VO L . 41 , N O. 1 	 www.usenix.org

PROGRAMMING
Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

Figure 4 gives a final demonstration of how Pivot Tracing can
group metrics along arbitrary dimensions. It is generated by two
queries similar to Q2 that instrument Java’s FileInputStream
and FileOutputStream, still joining with the client process name.
We show the per-machine, per-application disk read and write
throughput of MRsort10g from the same experiment. This figure
resembles a pivot table, where summing across rows yields
per-machine totals, summing across columns yields per-system
totals, and the bottom-right corner shows the global totals. In
this example, the client application presents a further dimension
along which we could present statistics.

Summary
In this article we gave an overview of how Pivot Tracing can
evaluate cross-component monitoring queries dynamically at
runtime using a combination of dynamic instrumentation and
causal tracing. For full details of Pivot Tracing’s design and
implementation, we refer the reader to the full paper [5] and
project Web site. In our full evaluation, we present several case
studies where we used Pivot Tracing to successfully diagnose
root causes, including real-world issues we encountered in our
cluster. We also evaluate the overheads imposed by Pivot Trac-
ing, including the additional costs of invoking advice and the
overheads of propagating tuples alongside requests at runtime.
Of the examples presented in this article, Q2 only required the
propagation of a single tuple per request, and imposed less than
1% overhead in terms of end-to-end latency on several applica-
tion-level HDFS benchmarks.

Pivot Tracing is the first monitoring system to combine dynamic
instrumentation with causal tracing. Its novel happened-before
join operator fundamentally increases the expressive power
of dynamic instrumentation and the applicability of causal
tracing. Pivot Tracing enables cross-tier analysis between any
interoperating applications, and the overheads of evaluating the
happened-before join are sufficiently low that we believe Pivot
Tracing is suitable for production systems, both for high-level
standing queries and for digging deeper when necessary. Ulti-
mately, its power lies in the uniform and ubiquitous way in which
it integrates monitoring of a heterogeneous distributed system.

References
[1] Bryan Cantrill, Michael W Shapiro, and Adam H Leven-
thal, “Dynamic Instrumentation of Production Systems,” in
Proceedings of the 2004 USENIX Annual Technical Conference
(ATC), 2004, pp. 15–28.

[2] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai
Budiu, and Gloria Mainar-Ruiz, “Fay: Extensible Distributed
Tracing from Kernels to Clusters,” ACM Transactions on
Computer Systems (TOCS), vol. 30, no. 4, 2012.

[3] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott
Shenker, and Ion Stoica, “X-Trace: A Pervasive Network
Tracing Framework,” in Proceedings of the 4th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2007.

[4] Leslie Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System,” Communications of the ACM, vol. 21,
no. 7, 1978, pp. 558–565.

[5] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca, “Pivot
Tracing: Dynamic Causal Monitoring for Distributed Sys-
tems,” in Proceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), 2015.

[6] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt, J. Keniston, and
B. Chen, “Locating System Problems Using Dynamic Instru-
mentation,” in Proceedings of the Ottawa Linux Symposium
(OLS), 2005.

[7] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows,
Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,
and Chandan Shanbhag, “Dapper, a Large-Scale Distributed
Systems Tracing Infrastructure,” Google Research, 2010.

Figure 4: Pivot table showing disk read and write sparklines for MRsort10g.
Rows group by host machine; columns group by source process. Bottom
row and right column show totals, and bottom-right corner shows grand
total.

ASE ’16: 2016 USENIX Workshop on Advances in
Security Education
August 9, 2016, Austin, TX
Paper submissions due: May 3, 2016
www.usenix.org/ase16

The 2016 USENIX Advances in Security Education Workshop
(ASE ’16) is a new workshop, co-located with the 25th USENIX
Security Symposium, designed to be a top-tier venue for cutting-
edge research, best practices, and experimental curricula in com-
puter security education.

CSET ’16: 9th Workshop on Cyber Security
Experimentation and Test
August 8, 2016, Austin, TX
Submissions due: May 3, 2016
www.usenix.org/cset16

The CSET workshop invites submissions on cyber security evalu-
ation, experimentation, measurement, metrics, data, simulations,
and testbeds.

SOUPS 2016: Twelfth Symposium on Usable Privacy
and Security
June 22-24, 2016, Denver, CO
Poster submissions due: May 16, 2016
Lightning Talks and Demos early submissions due: May 16
www.usenix.org/soups2016

Posters: High-quality poster presentations are an integral part
of SOUPS. We seek poster abstracts describing recent or ongo-
ing research related to usable privacy and security. SOUPS will
include a poster session in which authors will exhibit their post-
ers. Accepted poster abstracts will be distributed to symposium
participants and made available on the symposium Web site. In-
teractive demos alongside posters are welcome and encouraged.
We also welcome authors of recent papers on usable privacy and
security (2015 to 2016) to present their work at the SOUPS poster
session.

Lightning Talks: A continuing feature of SOUPS is a session of
5-minute talks and 5- to 10-minute demos. These could include
emerging hot topics, preliminary research results, practical prob-
lems encountered by end users or industry practitioners, a lesson
learned, a research challenge that could benefit from feedback, a
war story, ongoing research, a success, a failure, a future experi-
ment, tips and tricks, a pitfall to avoid, exciting visualization, new
user interface or interaction paradigm related to security and
privacy. etc. Demo presentations should convey the main idea
of the interface and one or more scenarios or use cases.

WOOT ’16: 10th USENIX Workshop on Offensive
Technologies
August 8-9, 2016, Austin, TX
Submissions due: May 17, 2016
www.usenix.org/woot16

The USENIX Workshop on Offensive Technologies (WOOT) aims
to present a broad picture of offense and its contributions,
bringing together researchers and practitioners in all areas of
computer security. Offensive security has changed from a hobby
to an industry. No longer an exercise for isolated enthusiasts,
offensive security is today a large-scale operation managed by
organized, capitalized actors. Meanwhile, the landscape has
shifted: software used by millions is built by startups less than a
year old, delivered on mobile phones and surveilled by national
signals intelligence agencies.

FOCI ’16: 6th USENIX Workshop on Free and Open
Communications on the Internet
August 10, 2016, Austin, TX
Submissions due: May 19, 2016
www.usenix.org/foci16

The 6th USENIX Workshop on Free and Open Communications
on the Internet (FOCI ’16), to be held on August 8, 2016, seeks to
bring together researchers and practitioners working on means
to study, detect, or circumvent practices that inhibit free and
open communication on the Internet.

www.usenix.org/cfp

Doing research in the security field?
Consider submitting your work to these upcoming events.

