
Jonathan Mace - Research Statement

November 2017

Distributed systems represent some of the most interesting and successful computing applications in use today,
from web search and social networks, to data analytics and large-scale machine learning, to loosely-coupled
microservices, serverless lambdas, and the public cloud. However, it is notoriously diõcult to understand,
troubleshoot, and enforce distributed systems behaviors, because unlike standalone programs they lack a central
point of visibility and control: each component only performs a narrow slice of work, and to execute a high-level
task (such as a search query or an analytics job) entails a complex �ow across multiple processes, machines,
and the network. When problems occur in a distributed system, their symptoms are o�en far removed from
the root cause, transient factors are o�en to blame, and instead of an outright crash, systems experience more
pernicious symptoms like sustained degraded performance. When they materialize in production systems (as
they have with all major cloud providers) it leads to high-proûle outages and a massive loss of revenue.

My research focuses on improving our ability to observe, reason about, and enforce end-to-end behaviors
in distributed systems. _e main approach I have taken is to develop cross-cutting tools that co-ordinate across
system components and layers at runtime, re-establishing end-to-end visibility and control over diòerent
system behaviors. My work includes tools for co-ordinating scheduler parameters across shared systems
to give users real-time performance guarantees (NSDI ’15) [9]; for monitoring metrics and properties to
answer ad-hoc queries from users at runtime (SOSP ’15, Best Paper Award) [12]; and for recording structured
performance traces and analyzing them in aggregate (SOSP ’17) [2]. A recurring theme of my work is to seek
a global understanding of complex so�ware stacks, peering through abstractions and layers to observe, and
exploit, the end-to-end �ow of execution. In practical terms this ranges from the underlying mechanisms for
communicating information and orchestrating actions across component boundaries, to high-level abstractions
that align the user’s perspective with the cross-cutting task, hiding system-level communication and co-
ordination concerns.

_roughoutmy research I have beenmotivated by real problems experienced by developers andoperators in
practice, and one ofmy primary goals is to design and implement practical tools that can feasibly be deployed in
production systems. _is is especially delicate for cross-cutting tasks, which are diõcult to establish in practice
because of ampliûed logistical costs – they require coherent developer choices and pervasive deployment
across all inter-operating systems and components [11]. _is leads me to gravitate towards simple, elegant
solutions to these otherwise messy problems, and I seek abstractions that minimize the eòort required to
develop and deploy cross-cutting tools. I am also heavily involved with the distributed tracing workgroup, the
main industry group for this topic, and I sit on the OpenTracing industrial advisory board. All of my research
artifacts have been open-sourced; concepts introduced by my work have received mainstream adoption and
are deployed in production at numerous companies. I will continue to collaborate with these groups, and other
partners in industry, to identify challenges, validate solutions, and help advance the state-of-the-art

In what follows I will present four areas of my current research, which paint a broad picture of the themes
and overarching challenges in performing cross-cutting distributed systems tasks. Finally, I will outline future
directions for my research that I intend to pursue in the next stage of my research career.

Page 1 of 6



Jonathan Mace - Research Statement November 2017

Current Research

Real-Time End-To-End Resource Management
My initial thesis work focused on the management of resources – e.g. CPU, disk and network bandwidth, lock
and threadpool usage – in multi-tenant distributed systems such as the Hadoop stack, where the workloads of
diòerent tenants execute within shared system processes. It is hard to apply global resource policies because
there is no co-ordination between local mechanisms within each process [8].

To address this I built Retro (NSDI’15) [9] a framework for co-ordinated per-tenant resource policies.
Retro measures the resources used by each tenant across all components, then co-ordinates local schedulers
on a per-tenant granularity, to achieve global policies. For example, if tenant A is not getting their desired
end-to-end latency, Retro can (i) ûnd out which resource is to blame (e.g., an overutilized disk); (ii) ûnd which
other tenants are using that resource; and (iii) throttle only those oòending tenants to restore tenant A’s latency.
Retro makes these decisions in a logically centralized controller, similar in spirit to so�ware deûned networking.
_e centralized controller receives incoming resource measurements in real-time to paint a global picture
of each tenant’s resource demands. With this visibility, a policy can converge towards its goal by continually
reallocating resources to tenants and adjusting scheduler weights across the system.

A key design principle of Retro is to separate policies from the mechanisms to enforce them. Retro
introduces abstractions for reasoning about resources and tenants that make it easy to write concise resource
policies that run on the controller; I demonstratedRetro with policies for bottleneck fairness, latency guarantees,
and dominant-resource fairness, each in less than 20 lines of code. Policies are easy to understand andmaintain,
and the separation allows them to be reused across diòerent systems or extended with more resources.

In general, Retro’s design is well suited for cross-cutting tasks that are coarse-grained and long-lived. For
example, Retro converges to aggregate workload goals for each tenant over time; this permits an out-of-band
feedback loop with a ~1 second delay between reporting measurements and updating scheduler parameters.
At the system level, Retro’s mechanisms generalize more broadly. To attribute measurements and schedule
requests per-tenant, Retro propagates a tenant ID alongside requests and across system components; this
establishes a tenant context that otherwise does not exist. In general, propagating metadata between tool
invocations is a pattern that applies to many cross-cutting tasks, and one that I revisit in my later work.

Monitoring and Correlating Metrics on the Fly
Retro achieves end-to-endvisibility by including tenant IDswith executions as they traverse system components.
My subsequent work on Pivot Tracing (SOSP’15, Best Paper Award) [12] extends this approach to monitoring
and correlating arbitrary metrics at runtime. Pivot Tracing generalizes the metadata propagation of previous
causal tracing work (e.g. Retro’s tenant ID) and combines it with dynamic instrumentation of running systems.
Users issue SQL-like queries about properties of the system, to collect arbitrary metrics from one point, while
being able to select, ûlter, and group by concepts meaningful at other parts of the system. For example, a
possible query could count database accesses across all processes, grouped by the ‘web user’ — even if the ‘web
user’ is only known brie�y while the request passes through the front end, and the database is only accessed
later a�er several indirect calls through backend services. Using Pivot Tracing, we were able to interactively
diagnose multiple obtuse bugs in the Hadoop stack that were not re�ected in any existing monitoring.

Pivot Tracing’s strength lies in its happened-before join query operator, which provides an intuitive way for
users to relate inputs from multiple sources (including across component boundaries). For any two inputs
(e.g. metrics, attributes, events), a happened-before join combines them if (i) they occur as part of the same
execution (e.g. the same search request or analytics job); and (ii) the ûrst input causally precedes the second.
Pivot Tracing eõciently evaluates happened-before join in-band by carrying partial query results alongside
execution from the ûrst join input to the second, using a dynamic version of the metadata propagated in
previous tracing work (e.g. Retro’s tenant ID). Dynamic instrumentation lets users deûne and install queries
into live systems on the �y, and means queries incur zero overhead until they are actually installed.

Page 2 of 6



Jonathan Mace - Research Statement November 2017

Pivot Tracing demonstrates a compelling approach to the design of cross-cutting tools. Dynamic instru-
mentation is useful for adding and removing monitoring and enforcement code on the �y. Dynamic metadata
provides a �exible mechanism for passing information with the �ow of execution, eschewing expensive and
imprecise alternatives such as out-of-band joins or dependency inference. Pivot Tracing has attracted signiû-
cant interest from the community and from industry; versions of the SOSP paper and talk were invited to
appear at the USENIX ATC conference, in the USENIX ;login: magazine, in the Research Highlights of the
Communications of the ACM, and in the ACM Transactions on Computer Systems journal.

Monitoring and Tracing Systems at Scale
Pivot Tracing enables ad-hoc monitoring of metrics and correlations, but it inherently does not support
historical analysis. At large internet companies like Facebook, historical analysis is important for exploring
trends and correlations in metrics over time. During my research collaboration with Facebook I helped
to design and develop Canopy (SOSP’17) [2], a system for ad-hoc exploratory analysis of causally-related
performance metrics across the entire Facebook so�ware stack. Canopy’s design addresses an important
scalability question – how do you collect, store, and interactively query billions of performance traces? Today,
Canopy is deployed in production at Facebook and collects over 1.1 billion traces per day.

_e main entry point for Canopy users is through high-level datasets, in which each row represents one
execution (e.g. a request to load facebook.com) and each column is a feature of the request, e.g.

Request ID Device Network Country Latency Net Bytes CSS Bytes DB Queries ...
4af9b72f Galaxy S3 4G LTE USA 2356ms 300kB 80kB 8 ...
01e1ae00 Pixel 3G GB 4156ms 310kB 85kB 9 ...

Canopy datasets comprise hundreds of features and billions of requests; they are stored in an in-memory time
series database, enabling Facebook engineers to query and analyze aggregate performance data in real-time.
Datasets derive from end-to-end traces, which capture performance data and the causal ordering of events in
each execution. Canopy relates data across components by propagating ‘breadcrumbs’ with executions and
attaching them to recorded data; this enables Canopy’s backend to collect events relating to the same execution
and reconstruct their causality. Canopy’s backend then turns the data into a higher-level representation of an
execution that is easier to reason about, and ûnally evaluates user-deûned feature extraction functions that
populate the output datasets. Canopy only materializes features speciûed a priori by Facebook engineers; traces
are rich objects comprising thousands of events plus their causal relationships, so the number of potentially
interesting features is enormous. To oòset this, Canopy makes it is easy for engineers to specify and deploy new
features, update datasets, and revisit old traces should the need arise; it is also easy to extend instrumentation
and incorporate new performance data into future traces.

To develop Canopy we had to address several logistical issues in deploying a cross-cutting tool at scale, such
as tolerating a wide range of data types and execution models, and incorporating data across heterogeneous
systems, products, and developers. We made sure that engineers would have the right data representations,
abstractions, and APIs for diòerent tasks, from instrumenting systems, to extracting features from traces, to
querying and visualizing custom datasets.

Canopy addresses the question of how to collect and expose end-to-end traces at large scale. Looking
forward however, Canopy effectively provides an umbrella of visibility across different systems and performance
data. It not only enables direct monitoring and analysis of end-to-end performance data, but it also opens the
door to experimentation using statistics, datamining, and other techniques, to derive higher-level understanding
of system behaviors. Canopy is a useful aid when designing other cross-cutting tools, e.g. new tools for online
enforcement tasks like Retro, as it provides a way to explore potential data sources for the new tool.

Page 3 of 6



Jonathan Mace - Research Statement November 2017

Universal Abstractions for Tracing
A recurring theme with the tools I have described is that they propagate metadata alongside executions
at runtime: Retro propagates a tenant ID; Pivot Tracing propagates partial query state; Canopy propagates
breadcrumbs. In general, metadata propagation enables downstream components to observe, and react to,
events that occurred previously during an execution. It is a compelling mechanism for any tool that wants
to observe and enforce behaviors at the granularity of end-to-end executions [1]. However, instrumenting a
system to propagate metadata is time consuming and labor intensive, as it entails modiûcations to source code
that touch nearly every component of a distributed system.

Mymost recent work on baggage contexts [11] exploits a simple observation that cross-cutting tools all share
how metadata is propagated with the execution, and only differ in what metadata gets propagated. Baggage is a
general underlying format for cross-cutting metadata that enables instrumentation to be shared and reused by
different tools, essentially making it a ‘one-time’ task. System components propagate baggage in an opaque way,
oblivious to the semantics and metadata of the cross-cutting tools that may use it. _e main challenge in doing
this – which baggage solves – is how to maintain correctness under arbitrary concurrency; specifically, merging
metadata when concurrent execution branches join, without interpreting the metadata’s meaning. Baggage
specifies a simple binary merge operation that is idempotent and order-preserving; these properties provide
generality and enable efficient encodings for many data types, including primitives, IDs, sets, maps, counters,
nested data structures, and several more based on conflict-free replicated data types. Baggage also enables the
multiplexing of different tracing tools. I developed and open-sourced baggage libraries in several languages [5];
to demonstrate baggage, I implemented revised and extended versions of seven cross-cutting tools (including
Retro and Pivot Tracing) [4] and deployed them side-by-side in several baggage-instrumented systems.

Baggage is a step forward towards truly pervasive instrumentation of distributed systems, addressing
important roadblocks. At the system level, it increases the value of instrumenting a system as such instru-
mentation can be re-used by many tools. It also makes the work of tool developers much easier, as they can
focus on tool logic and data types, and ignore details of serialization, deserialization, propagation, and all of
the subtleties of keeping data consistent in face of concurrency. Baggage brings in all the standard beneûts
of a strong separation of concerns, reuse, and independent evolution around a simple yet expressive narrow
waist. In industry, practitioners have seized upon the notion of baggage and incorporated it into popular
open-source tracing frameworks like OpenTracing, Zipkin, and Jaeger. Baggage has enabled organizations
to rapidly prototype new features; for example in its deployment over the past year at Uber, engineers have
deployed tools for black-box probing, capacity planning, authorization and claims, cost accounting, chaos
engineering, and contextualized metrics, that previously would have been infeasible.

Future Research
Cloud and distributed systems are still a rapidly changing area. I believe that the fundamental themes of my
work will only grow in importance as the area matures, and I intend to continue exploring these topics in my
future work. Looking further forward, my interests extend to how some of these ideas might be established in
practice, and the common designs and conventions that might emerge over time.

Reusable Abstractions Deploying cross-cutting tools inherently requires coherent choices and participation
across all system components. However, today there is little consensus on which tools, abstractions, and
approaches to use. Developers of diòerent components are o�en isolated from one another, causing them to
make incompatible or con�icting choices about the cross-cutting tools to embed. Ideally it is not developers
who should make these choices, but the operators who deploy the systems at runtime. I am interested in
pursuing general-purpose mechanisms that developers can embed in the system at development time, to
enable operators to dynamically deploy any cross-cutting tool at runtime. My initial work on baggage is a
step towards this broader goal. A compelling way to explore this question is to take inspiration from so�ware
deûned networking, and consider how cross-cutting tools can decouple system-wide enforcement mechanisms

Page 4 of 6



Jonathan Mace - Research Statement November 2017

from tool-speciûc control logic. By disentangling control logic from enforcement, we can expose and exploit
commonalities in the way diòerent tools observe and manipulate system behaviors.

Large-Scale Performance Analytics With systems like Canopy, we have eòectively addressed many of the
challenges of capturing rich end-to-end performance traces in large-scale systems. For the intrepid systems
researcher, this presents a conundrum — we have been so focused on how to collect performance data
from systems, that we don’t know what to do with it once we have it. I am interested in deriving high-level
understanding of the way systems behave by applying techniques from statistics, data mining, and machine
learning to large volumes of performance traces. _ere are a wide range of potential use cases, and they extend
beyond just analysis. For example, traces can be used to ûnd features early in an execution that are highly
predictive of later performance; this insight can then be exploited by cross-cutting tools at runtime to make
better scheduling decisions. One of the key challenges of analyzing performance traces is incorporating their
structure, as a trace is conceptually a directed, acyclic graph (DAG) of events, with annotations (e.g. labels and
metrics) on events and on edges; the most interesting features are o�en the structural relationships between
events, such as their ordering and timing. _is structure makes many oò-the-shelf techniques computationally
intractable given the number of potential features; it demands new approaches to visualizing, querying, and
exploring traces based on structure; and at scale, it imposes new storage and processing constraints.

Automatic Instrumentation Instrumentation has long been the biggest pain point of deploying tracing tools.
My work on baggage reduces, but does not fully remove, the instrumentation burden associated with deploying
cross-cutting tools. In the distributed tracing community, as well as the broader application performance
monitoring (APM) industry, fully automatic instrumentation is a panacea: if the instrumentation burden can be
completely removed, then it potentially enables black-box deployment ofmany cross-cutting tools. I believe that
fully automatic instrumentation is possible, based on the observation that instrumentation is about capturing
the �ow of execution, andmost programs adhere to a very small set of execution models — e.g. threads, queues,
RPCs, etc. Instrumentation is challenging not because it is complex, but because it must be pervasive; most
instrumentation is simple, repetitive, and characterized by only a handful of diòerent techniques for capturing
diòerent models. In my future work, I intend to explore methods for observing or inferring execution models
in systems, with the goal of reducing or eliminating the need for manual instrumentation. If successful, this
would represent a signiûcant advance for both the research community and industry.

Management Tools My work so far has explored several promising avenues for improving our visibility and
control over distributed systems. However, as we discover new designs for distributed systems, new use cases,
and new requirements, we will also encounter new and interesting dimensions along which they can fail. I will
continue to explore cross-cutting tools for production systems, and I am also interested in revisiting tools and
techniques that are well understood for standalone programs but may lack distributed systems analogues. For
example, are there equivalents to stop the world or time-traveling debuggers that can work on a production
distributed system?

Page 5 of 6



Jonathan Mace - Research Statement November 2017

References

[1] Rodrigo Fonseca and Jonathan Mace. We are Losing Track: a Case for Causal Metadata in Distributed
Systems. In Proceedings of the 15th International Workshop on High Performance Transaction Systems
(HPTS), October 2015.

[2] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win
Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod Vekataraman, Kaushik Veeraraghavan, and
Yee Jiun Song. Canopy: An End-to-End Performance Tracing And Analysis System. In Proceedings of the
26th ACM Symposium on Operating Systems Principles (SOSP), October 2017.

[3] Raja R Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H Sigelman, Rodrigo Fonseca, and Gregory R
Ganger. Principled Work�ow-Centric Tracing of Distributed Systems. In Proceedings of the 7th ACM
Symposium on Cloud Computing (SoCC), October 2016.

[4] JonathanMace. BrownUniversity Tracing Framework. RetrievedNovember 2017 from https://github.
com/brownsys/tracing-framework.

[5] JonathanMace. _e Tracing Plane GitHub Repository. Retrieved November 2017 from https://github.
com/tracingplane.

[6] Jonathan Mace. Revisiting End-to-End Trace Comparison with Graph Kernels. M.Sc. Project, Brown
University, 2013.

[7] Jonathan Mace. End-to-End Tracing: Adoption and Use Cases. Survey, Brown University, 2017.

[8] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. Towards General-Purpose
Resource Management in Shared Cloud Services. In Proceedings of the 10th Workshop on Hot Topics in
System Dependability (HotDep), October 2014.

[9] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. Retro: Targeted Resource
Management in Multi-tenant Distributed Systems. In Proceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), May 2015.

[10] Jonathan Mace, Peter Bodik, Madanlal Musuvathi, Rodrigo Fonseca, and Krishnan Varadarajan. 2DFQ:
Two-Dimensional Fair Queuing for Multi-Tenant Cloud Services. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM), August 2016.

[11] Jonathan Mace and Rodrigo Fonseca. Universal Context Propagation for Distributed System Instrumen-
tation. In Submission.

[12] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot Tracing: Dynamic Causal Monitoring for
Distributed Systems. In Proceedings of the 25th ACM Symposium on Operating Systems Principles (SOSP),
October 2015. Best Paper Award. Also to appear in Communications of the ACM (CACM) and ACM
Transactions on Computer Systems (TOCS).

Page 6 of 6

https://github.com/brownsys/tracing-framework
https://github.com/brownsys/tracing-framework
https://github.com/tracingplane
https://github.com/tracingplane

