
1

Edge-TM: Exploiting Transactional Memory for Error Tolerance
and Energy Efficiency

DIMITRA PAPAGIANNOPOULOU, University of Massachusetts Lowell
ANDREA MARONGIU, ETH Zurich
TALI MORESHET, Boston University
MAURICE HERLIHY, Brown University
IRIS BAHAR, Brown University

Scaling of semiconductor devices has enabled higher levels of integration and performance improve-
ments at the price of making devices more susceptible to the effects of static and dynamic variability.
Adding safety margins (guardbands) on the operating frequency or supply voltage prevents timing
errors, but has a negative impact on performance and energy consumption. We propose Edge-TM,
an adaptive hardware/software error management policy that (i) optimistically scales the voltage
beyond the edge of safe operation for better energy savings and (ii) works in combination with
a Hardware Transactional Memory (HTM)-based error recovery mechanism. The policy applies
dynamic voltage scaling (DVS) (while keeping frequency fixed) based on the feedback provided by
HTM, which makes it simple and generally applicable. Experiments on an embedded platform show
our technique capable of 57% energy improvement compared to using voltage guardbands and an
extra 21-24% improvement over existing state-of-the-art error tolerance solutions, at a nominal area
and time overhead.

Additional Key Words and Phrases: Energy efficiency, Error Tolerance, Reliability, Variability,
Transactional Memory

ACM Reference format:
Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar.
2017. Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency. 1, 1,
Article 1 (July 2017), 19 pages.
DOI: 0000001.0000001

This article was presented in the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue.

This work is supported in part by NSF under Grants CSR-1319095 and CSR-1519576.
Authors’ addresses: D. Papagiannopoulou, Department of Electrical and Computer Engineering, University
of Massachusetts Lowell, Lowell, MA 01854, A. Marongiu, Department of Information Technology and
Electrical Engineering, ETH Zurich, Zurich, Switzerland 8092, T. Moreshet, College of Engineering, Boston
University, Boston, MA 02215, M. Herlihy, Department of Computer Science, Brown University, Providence,
RI 02912, R. I. Bahar, School of Engineering, Brown University, Providence, RI 02912.
Authors’ e-mail addresses: dimitra_papagiannopoulou@alumni.brown.edu, a.marongiu@iis.ee.ethz.ch,
talim@bu.edu, maurice_herlihy@brown.edu, iris_bahar@brown.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. XXXX-XXXX/2017/7-
ART1 $15.00
DOI: 0000001.0000001

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:2Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

0%

20%

40%

60%

80%

100%

0.7 0.8 0.9

Point of First
Failure

Supply Voltage

Pe
rc

en
ta

ge
 E

rr
or

 R
at

e

a) Intermittent Timing Errors

0%

20%

40%

60%

80%

100%

0.7 0.8 0.9
Supply Voltage

Pe
rc

en
ta

ge
 E

rr
or

 R
at

e

b) Critical Operating Point (COP)

Fig. 1. Error rate (%) vs. supply voltage for intermittent timing errors and the COP.

1 INTRODUCTION
The continuing ability to shrink transistor sizes has led to extensive benefits in integrated
circuit designs, including faster processors, more complex designs, and higher levels of
integration. However, at the same time, devices have become more susceptible to static and
dynamic variability [1]. Static variability derives from imperfect manufacturing processes
and causes nominally identical elements (such as cores in a multi-core system) to behave
differently, consuming different levels of power, and providing different levels of performance.
Dynamic variability from wearout and temperature and voltage fluctuations combined with
aggressive voltage/frequency scaling can cause timing violations on processors’ critical paths
leading to logic errors in the computation [5], [31], [27].

Errors begin to appear when the operating conditions (Frequency, Voltage, and Temperature)
approach the point of first failure (PoFF). Beyond that point (e.g., decreasing the voltage
further), errors become gradually more frequent and the system’s behavior can be coarsely
modeled with a probability (frequency) of errors as a function of (F,V,T) [10]. In some
well-optimized designs, where timing violations can happen simultaneously on multiple
critical paths (e.g.,) [15], [18], [17]), the range of operating conditions between the PoFF
and a massive number of errors narrows down to a single Critical Operating Point (COP)
[22] (see Figure 1).

Traditionally, to protect devices against timing errors, designers have conservatively added
guardbands to the system’s operating frequency and/or voltage, which results in wasted
energy and degraded performance. To mitigate the pessimism of guardbands, many works
have proposed circuit-level error detection and correction (EDAC) techniques [2, 6, 7, 9, 10,
29]. These techniques introduce significant energy and delay overheads for error correction
and while they can handle sporadic errors, they cannot deal with massive errors such as
those from COP-induced violations [28].

Software techniques offer higher flexibility and/or better capability to adapt to dynamically
changing operating conditions. Most prior work targets intermittent timing errors and
proposes solutions to prevent errors via careful workload allocation [4, 8, 16, 23, 24]. A
combined hardware/software approach by Papagiannopoulou et al.[20] proposes a reactive
technique that leverages hardware transactional memory (HTM) to rollback a processor’s
state to a prior safe point if errors are encountered. Specifically, the processor’s voltage is
scaled down while keeping frequency constant, up to the PoFF, at which time the processor

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:3

core enters a recovery mode that restores the core to a safe voltage level. However, since the
authors of [20] focus on a COP model, there is no advantage in scaling down the voltage
beyond the PoFF. Other works proposing transactional memory (TM)-based fault tolerance
(e.g., [30, 32, 34]) do not evaluate energy consumption (our major goal) and consider transient
and permanent faults rather than intermittent timing errors.
In this paper we present Edge-TM, a HW/SW technique that relies on HTM rollback

mechanisms for error correction in errant transactions. Different from traditional HTM,
Edge-TM is not aimed at protecting shared data in concurrent programming, thus it replaces
traditional conflict detection logic with simpler architectural support for error detection.
Further, Edge-TM features error management policies that aggressively apply dynamic
voltage scaling (DVS) beyond the point of first failure for better energy savings. The policy
monitors transaction aborts and commits to estimate the experienced error rate and decides
whether to lower, maintain or raise the voltage level. This feature makes our policy capable
of dealing with COP systems as well as those experiencing intermittent timing errors.

Through a set of simulations using power/performance numbers extracted from a silicon
implementation of the target embedded platform, we show that our proposed scheme can
achieve up to 57% improvement in energy compared to using voltage guardbands. Moreover, it
can achieve a 21% improvement compared to a policy that increases the voltage immediately
after the first failure and a 21%-24% improvement over other state-of-the-art error-tolerance
solutions. An overhead characterization of our proposed scheme shows that it induces a
modest area and time overhead, comparable to existing techniques.

The rest of the paper is organized as follows. Section 2 provides a background discussion
on related work. Sections 3 and 4 describe the Edge-TM design. Section 5 presents our
simulation results and Section 6 concludes our paper.

2 BACKGROUND
Intermittent faults occur due to static and dynamic variability and can be activated or
de-activated by voltage, frequency or temperature fluctuations. These faults manifest as
timing violations on the processor’s critical paths; as the voltage is scaled down, intermittent
timing errors initially emerge at low rates that later increase exponentially as the voltage is
lowered further (Figure 1a). According to the “COP hypothesis" [22], in large CMOS circuits
there exists a critical operating frequency fc and a critical voltage Vc for a fixed ambient
temperature T such that any frequency above fc or voltage below Vc causes massive errors
(Figure 1b). This behavior may be especially prevalent in well-optimized designs, where
timing violations can happen simultaneously on multiple critical paths [15] [18] [17].

Error detection can be done at the circuit level using techniques that continuously monitor
path delay variations. Examples include Razor flip-flops [6, 7, 9, 10], error detection sequential
circuits (EDS) [2] or tunable replica circuits (TRC) [29]. Among error-correction circuits,
Razor [9] employs counterflow pipelining, a recovery mechanism that uses a bi-directional
pipeline to flush errant instructions, but incurs high energy/power overhead and requires
modifications to the processor’s pipeline. Other works [3, 7] proposed techniques such
as instruction replay at half clock frequency or multiple-issue instruction replay. These
techniques introduce significant energy and delay overheads for error correction and while
they can handle sporadic errors, they cannot deal with massive errors such as those from
COP-induced violations [28].

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:4Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

Several software techniques have been proposed to provide robustness to timing errors
due to dynamic variations. Early proposals lacked generality and online adaptation capabili-
ties [4][16], or offered costly recovery mechanisms (overheads up to thousands of cycles) [8][23].
Rahimi et al. explored fine-grained mechanisms to outline the notion of software vulnerability
[24], and explored the use of OpenMP extensions to reduce the recovery cost incurred by
HW-based error-correction techniques. Compared to our proposal, their solution requires the
availability of hardware error correction. As an additional consequence, it can only deal with
sporadic timing errors, for which Razor-like correction circuitry is solely effective [14]. Our
approach, in contrast, fully relies on SW policies operating on top of minimal HTM-based
designs, and can deal with both sporadic timing errors as well as COP.

Most previous works proposing transactional memory (TM)-based fault tolerance (e.g., [30,
32–34]) do not focus on reducing energy consumption (our major goal) and focus on transient
and permanent faults rather than on intermittent timing errors. Yalcin et al. [32] consider
how TM-based error correction could potentially improve energy efficiency, but do not
provide an implementation. Papagiannopoulou et al. [20] study HTM-based recovery from
COP with an emphasis on energy savings. Compared to this prior work, we broaden the
scope of the studied effects to intermittent errors (besides COP), which allows us to follow a
less conservative approach that optimistically lowers the voltage beyond the PoFF for better
energy savings.

3 EDGE-TM ARCHITECTURE DESIGN
Edge-TM consists of an integrated HW-SW approach for energy-efficient program execution
on low-power, embedded shared memory SoCs. Application developers abstractly write
their programs based on the widespread OpenMP API [19]. At the boundaries of OpenMP
constructs for parallelism, a compiler transparently inserts function calls to mark the start
and end of a resilient transaction (RTx). These function calls are directed to an underlying
runtime system (RTS) which transparently manages RTxs in an error-resilient manner. Note
that this is equivalent to any standard software interface to HTM. Specifically, the RTS
maintains a core-level SW error-management policy which optimistically lowers the voltage
in small steps for energy savings.1 Lowering the voltage incrementally triggers timing errors.
While we could also scale down the frequency, as a countermeasure to reduce the error rate,
this would further impact system performance. Thus, in Edge-TM, we only focus on voltage
scaling.
To make the system resilient to timing errors, Edge-TM combines circuit-level error

detection techniques implemented in the pipelines of each processor with a modified HTM
infrastructure for error correction. A snapshot of the processor state is taken before each
transaction is started. If an error occurs during transaction execution, this safe state can
be restored through the underlying HTM mechanism that is described next. To limit the
overhead of this mechanism, its key functionalities are implemented in HW, as an extension
to the baseline platform.

We next describe the baseline parallel ultra-low-power platform (PULP) [25] targeted in
this work (Section 3.1), followed by a presentation of the extensions introduced to support
error tolerance, i.e., error-detection (Section 3.2) and error-correction (Section 3.3). The
software policies for error-aware voltage scaling are presented in Section 4.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:5

SoC domain
Cluster TCDM

...
bank
#0

bank
#1

bank
#M-1

low-latency interconnect

DMA

PE
#0

PE
#N-1I

$

I
$

P
e
r
i
p
h
e
r
a
l

i
n
t
e
r
c
o
n
n
e
c
t

c
l
u
s
t
e
r

b
u
s

instruction bus

L2
memory

S
y
s
t
e
m

b
u
s

P
e
r
i
p
h
e
r
a
l
s

Fig. 2. PULP System-on-Chip architecture.

3.1 The PULP Architecture
PULP is a scalable parallel computing fabric, organized as a set of clusters [26]. Figure 2
shows the main building blocks of a single-cluster PULP instantiation. A cluster includes a
parametric number of processing elements (PEs) – typically 8 – consisting of an optimized
RISC microarchitecture. PEs feature private instruction caches, while to avoid memory
coherency overheads private data caches are replaced by a shared, multi-banked tightly
coupled data memory (TCDM). The TCDM is configured as a 64KB, 16-bank explicitly
managed SRAM (a scratchpad). As the TCDM features as many R/W ports as the number
of memory banks, and the number of banks is twice the number of PEs, single-cycle access
latency is ensured for concurrent accesses to different banks. At the top level, a 256KB L2
memory and other peripherals for off-chip communication can be accessed via DMA.

Figure 3 shows the contributions of the hardware components to the total area of a PULP
cluster. Overall, the main contributors to the area and energy consumption are the cores
and their private instruction caches. For this reason, Edge-TM focuses on scaling the voltage
at the individual core level. The shared L1 TCDM is powered through a separate voltage
domain and it is always kept at a stable, safe level.

To explore our extensions to this baseline platform for energy-efficient error tolerance we
use the PULP simulator, which provides cycle-accurate modeling of the various architectural
blocks. The simulator has been extended with energy models derived from a 28nm UTBB
FDSOI (STMicroelectronics technology) implementation of the described platform, thus
enabling realistic power measurements.

In the following section we describe how the baseline PULP cluster has been extended in
the simulator to enable error tolerance. Figure 4 highlights the key extensions using colored
blocks.

1We assume 20 mV steps, well in line with modern voltage regulators [13].

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:6Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

PEs

43%

BUS+DMA

12%

TCDM

(SRAM)

21%

I$

24%

Cluster area breakdown

PEs BUS+DMA TCDM (SRAM) I$

Fig. 3. Breakdown analysis of the PULP SoC area.

3.2 Error detection
For error detection, we assume that each core is equipped with runtime error-detection
circuitry, such as error-detection sequential (EDS) [3] (Figure 4). EDS-based designs distin-
guish between critical and non-critical errors. Critical errors are those that happen on the
control part of the processor pipeline (e.g., write-back). Since a timing violation along one
of these critical paths makes the software flow unpredictable, we cannot handle such errors
at the OS, middleware or application level. For this reason, critical errors are prevented
by designing such pipeline stages with additional timing guardbands [3] [29]. This ensures
that dynamic-variation timing failures do not occur in these stages. Non-critical errors are
those that are protected by EDS circuits, as they only affect the result of computations (e.g.,
load/store, execute) and can then be safely corrected by the software. The programming
model disciplines those cases where control flow issues might be originated from the software
by disallowing patterns like pointer-based function calls.
To implement EDS in our simulator, we assume a probabilistic error model, similar to

other works [20] [24]. Our error model follows the probability curves reported by Fojtik et
al. [10], which we have adapted to the operating voltage and frequency range of our target
platform. These curves provide the expected error rate as a function of supply voltage levels,
assuming intermittent timing errors (Figure 1a). The supply voltage level where the point
of first failure is expected post-fabrication, for each frequency and temperature point is
extrapolated through exhaustive testing on the PULP chips.

When the EDS detects an error2, it generates an interrupt to the core. The core’s pipeline
is flushed and its program counter is set to jump to an interrupt service routine (ISR) where
we implement the HTM rollback mechanism (Section 3.3). Note that it must be ensured that
the ISR is executed in an error-free manner. In the PULP 28nm chip this can be done by
applying forward body biasing to achieve a temporary performance boost [26]. Our simulator
models the overhead cycles implied by this technique.

2That is, when the error model injects an error event in the simulated processor pipeline.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:7

Cluster TCDM

...
bank #0

data

low-latency interconnect

DMA

PE #0
PE #N-1

I
$ I
$

P
e
r
i
p
h
e
r
a
l

i
n
t
e
r
c
o
n
n
e
c
tc
l
u
s
t
e
r

b
u
s

(PE 0 log) 0

(PE 1 log) 0

(PE N-1 log) 0

bank #M-1

data

(PE 0 log) M-1

(PE 1 log) M-1

(PE N-1 log)M-1

D
V
M

D
V
M

Fig. 4. Extensions to the PULP cluster for error-tolerance.

3.3 Error Correction
Hardware transactional memory is a well known speculative execution mechanism for syn-
chronizing shared memory data access in multi-core environments [11]. HTM allows cores to
execute critical sections in parallel, as transactions. If a core’s transaction completes without
encountering data conflicts with other transactions, then it commits and its speculative
changes become permanent. If a conflict occurs, one or more of the conflicting transactions
is rolled back and restarted.

HTM designs are appearing in high-end, commercial processors (e.g., Intel’s Haswell, IBM’s
Blue Gene/Q), which shows the maturity of the technology3. The adoption of traditional
HTM in resource-constrained, low-power embedded designs is much more uncertain, as it
is hindered by the high area/energy cost and the poor scalability of underlying coherent
cache systems. The proposed approach relies on two key features to make HTM suitable for
embedded SoCs: (i) a state-of-the-art HTM design that is tailored to the characteristics of
such SoCs [21], where poorly-scalable data caches are replaced by a shared L1 scratchpad
memory, and (ii) a further simplified HTM design specifically tailored for managing error
correction. Our target architecture described in Section 3.1 can support both these features.
Traditionally, HTM is based on three key components: 1) a bookkeeping mechanism to

keep track of read/write data accesses and detect conflicts, 2) a data versioning technique
to keep track of original and speculative data versions for recovery in case of conflicts and
3If such systems provided HTM and error detection circuits, we could re-engineer our SW policy to operate
on top of memory synchronization management.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:8Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

3) a check-pointing and rollback mechanism to recover from data conflicts and retry failed
transactions.
Note that Edge-TM implements a modified version of HTM for error detection and

correction (i.e., data synchronization conflicts are not detected), and thus it does not require
the bookkeeping mechanism to detect conflicting accesses to shared data4. As we discuss in
Section 5.2, this also leads to a more lightweight design. We now describe the modifications
required for data versioning and check-pointing.

Data Versioning. We use a distributed logging scheme to enable data versioning. Logs are
distributed among the TCDM banks of the PULP cluster and each bank keeps a fixed-size
log space for each core in the system, as shown in Figure 4. The first time an address is
written in a transaction, its original value needs to be saved in the log. Since this requires a
buffering capability equivalent to the transaction’s write-set size, the logs are quite small
compared to traditional HTM.
The log saving and restoration process is done independently at each memory bank

through dedicated Data Versioning Modules (DVM). Each bank’s DVM is a control block
that monitors transactional accesses to the bank and manages the cores’ logs that reside
in that bank. It is also responsible for restoring the log data of the cores that abort their
transactions and cleaning the logs of the cores that commit their transactions. All DVMs
work in parallel and fully independently, which makes them very fast and efficient.

Checkpointing and Rollback. Since specification version 3.0, OpenMP has adopted a task-
centric execution model. Every program execution unit is explicitly or implicitly represented
as a task in the runtime system. We build upon this feature to transparently wrap each
OpenMP task within an error-resilient transaction. Transaction size regulation can be
easily achieved at the task level or within parallel loops (by grouping independent loop
iterations into a single transaction). When a core starts a transaction, its internal state (i.e.,
program counter, stack pointer, internal registers) is saved to be retrieved in case of errors
(check-pointing). This operation is done in software and consists of copying the register file
into a small region of the L1 TCDM (Note that the associated timing and energy overheads
are modeled by our simulator). If no errors are detected by the end of the transaction, the
transaction commits, i.e., the checkpointing information and the logs of the committing core
are discarded, and all speculative data changes become permanent. If an error is detected
during transaction execution, the transaction aborts, i.e., the speculative data changes are
discarded. The rollback mechanism restores the core’s state and the original data from the
core’s logs back to their original addresses (the transaction rollback and restoration process
is done at a safe voltage level, as discussed earlier). The core is then ready to retry the
transaction.

On top of the basic error detection and correction mechanisms described so far, Edge-TM
implements software error management policies, which apply dynamic voltage scaling (DVS)
appropriately before an aborted transaction is restarted. These software error management
policies are described next (Section 4).

4As our programming frontend is based on OpenMP, we employ traditional OpenMP critical sections and
locks to protect concurrent accesses from multiple threads to shared data.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:9

4 EDGE-TM DVS POLICIES

POFF policy. We first implement a simple, baseline error policy, that operates just above
the edge of failure. Starting from a safe reference level, the supply voltage is gradually scaled
down in small steps to save energy. When the first error occurs (i.e., the PoFF is reached),
the voltage is immediately increased by one step. This way the system operates just above
the edge of failure throughout the rest of the operation, without taking the risk of allowing
further timing errors. Might a new error emerge (e.g., due to temperature fluctuations), the
voltage is increased again by one step. This policy is similar to the technique proposed in [20],
but while those errors were handled in a lazy manner (i.e., error recovery was not triggered
until transaction commit time), here we treat them in an eager manner (i.e., immediately
upon detection). We use this simple transactional memory policy that operates just above
the PoFF (i.e., the POFF policy) as a reference to compare against [20].

Thrifty Uncle/Reckless Nephew (TURN) policy. Edge-TM offers an adaptive error policy
that optimistically lowers the voltage beyond the PoFF, tolerating timing errors and making
voltage adjustment decisions based on the feedback provided by the runtime characteristics of
the transaction. As the voltage is scaled down for energy savings, the transaction abort rate
grows due to increased rate of errors, which in turn leads to increased energy consumption
from transaction recovery and re-execution. To reflect these conflicting behaviors we call our
new adaptive approach the Thrifty Uncle/Reckless Nephew (TURN) policy5. The policy has
two parts:
• The reckless nephew optimistically scales the voltage down for better energy savings, based

on the number of consecutive successful transaction commits.
• The thrifty uncle moderates the energy loss from the increased number of transaction
aborts (due to over-aggressive voltage scaling), by setting up a threshold based on the
number of transaction aborts and commits.
Figure 5 shows a flowchart of how the proposed policy works. Starting from a safe reference

level, the voltage is scaled in small steps. When a transaction starts, the policy checks whether
this is a failed transaction that is re-starting or a new one. If this is a new transaction, the
nephew checks the number of consecutive successful transactions that have preceded this
one, (i.e., the number of consecutive commits). If this number is greater than a pre-defined
threshold C, then the voltage can be safely reduced by one step. Otherwise, no voltage
change is allowed. If this is a failed transaction that is being re-executed, then the uncle must
decide whether the transaction should be re-executed at the same voltage or the voltage
should be increased. If this transaction has a record of consecutive aborts that is greater
than a pre-defined threshold A, then the uncle increases the voltage by one step. Otherwise,
the transaction is re-executed at the same voltage level.
Every time the consecutive abort threshold A is exceeded the uncle realizes that the

current voltage level is likely dangerous and not only increases the voltage, but also doubles
C to make it more difficult for the nephew to later come back to that level. If the error rate is
reduced in the future, e.g., due to a temperature variations or because transactions become
smaller, then a lower voltage level might be sustainable. In that case, C must be reduced
again to allow for an easier transition to lower voltage levels. Such a case would manifest
with consecutive commits without any aborts in between. If the experienced number of
consecutive commits reaches twice the threshold C, i.e., the voltage is reduced twice in a
5A reference to the thrifty uncle Scrooge McDuck and reckless nephew Donald Duck of Disney’s Duck family.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:10Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

Consecutive
Commits > C ?

No Voltage
Change

Reduce
Voltage

C = C / 2 No change

New ?

Twice
w/o aborts ?

Start Transaction

No

No

No

Yes

Yes

Increase
Voltage

C = C x 2

No Voltage
Change

Consecutive
Aborts > A ?

NoYes

Yes

Fig. 5. The flowchart of the ‘Thrifty uncle/Reckless nephew’ policy.

row without any aborts in between, then the uncle divides threshold C by 2. Note that the
factor used to multiply and divide threshold C can be changed based on how fast or slow we
want our policy to react to the experienced error rate. As a starting point, we decided to set
this factor to 2.

To decide a convenient starting value for threshold C we use a simple heuristic based on
the potential energy savings (for a transaction) achieved by scaling voltage one step down.
Such savings can be approximated as:

Savings = 1 −
Pdyn,2
Pdyn,1

≈ 1 − V 2
2

V 2
1

,

where: V2 = V1 − VSTEP .

Since our policy works at the granularity of transactions, to save the energy consumed by
one transaction executed at V1, we need to run at least C transactions at V2 in a row with
no errors (i.e., if a single abort is experienced then the savings are lost). In other words,
C should be big enough to ensure that the cumulated savings achieved by voltage scaling
surpass the energy of one single, unscaled transaction. Thus, C can be chosen as:

C =
1

Savings =
V 2

1
V 2

1 − V 2
2

.

Within the operative voltage range and VST EP considered in our setup, C should be at
least 20. Thus, we set the initial value of C to the minimum value it must have in order to
guarantee that no energy will be wasted should we decide to scale down the voltage by one
step (in our case that is 20). Note that even though C evolves throughout the execution of
the TURN algorithm, it never assumes a value smaller than the minimum initial value.
Threshold A could be determined as the minimum number of aborts for which the

accumulated energy at the current voltage level exceeds the energy that would have been
spent at the next higher voltage level. However, in practice, we have noticed that accumulating

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:11

energy through online energy monitoring introduces non-negligible additional overhead and
the threshold does not vary within or among different programs. Consequently, we decided
to empirically set a value for threshold A. Through experimentation we observed that the
obtained results do not vary significantly based on the choice of threshold A, as long as
it is set to a relatively small, non-zero value. From a large number of offline profile runs,
we empirically set A to 3. Note that, unlike C, threshold A is static and does not change
throughout the simulation. However, this is something that can be explored in future work.

5 RESULTS
We next provide an evaluation of Edge-TM in terms of energy consumption as well as area
and performance overhead. Specifically, Section 5.2 presents an overhead characterization
of Edge-TM in terms of area and time, and compares it with previous works ([20, 24, 33]).
Section 5.3 provides an evaluation of the point-of-first-failure (POFF) and uncle/nephew
(TURN) policies of Edge-TM in terms of energy consumption. The policies are compared
with previous works using a conservative steady-voltage technique that relies on guardbands
(GDBS policy) as a baseline. In Section 5.4 we describe how parameter tuning in Edge-TM
can affect the obtained energy savings. Specifically, we study how transaction size and
various transaction workload patterns can affect the obtained energy savings.

5.1 Experimental setup
The PULP simulator consists of cycle-accurate SystemC models of all the main architectural
blocks described in Section 3.1 (cores, I$, TCDM banks, interconnect etc.). Power consump-
tion for every block has been characterized by extensive testing of the PULP chips, under
all the operating points (voltage/frequency for active and idle modes) considered in our
experiments. The power numbers are extrapolated from an implementation of the platform
in STMicroelectronics 28nm UTB FD-SOI technology and back-annotated in the simulator.
These numbers have been used to derive the energy models of the simulator, where energy
is accumulated at each cycle for every block. Error detection has been implemented in the
simulator as the probabilistic error model described in Section 3.2. Error correction is done
as described in Section 3.3. HTM extensions for error correction have been implemented as
SystemC modules, integrated in the simulator. To isolate the effects of running our various
error correction schemes, we run our experiments on a single-core instance of the PULP
platform6. Note that our technique can be applied to multiple cores simultaneously; if errors
are found in one core, recovery happens independently from other cores.
Since we expect the behavior of the system to be largely affected by transaction size

and memory footprint, to effectively explore various program configurations we use the
Eigenbench synthetic benchmark [12]. As Eigenbench was originally written for traditional
TM systems, we modify the original setup considering as fixed values all those parameters
aimed at exploring shared memory conflict detection (which are not relevant to our setup). In
addition to that, we also consider three real benchmarks from the image processing domain:
Rotate (image rotation), Strassen (matrix multiplication) and Mahalanobis-Distance (cluster
analysis and classification).

6https://github.com/pulp-platform/pulpino

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:12Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

ERROR DETECTION ERROR CORRECTION
Technique Area overhead

[%]
Time
overhead
[cycles]

Technique Area overhead
[%]

Time
overhead
[cycles]

Edge-TM HW (EDS) 2.2% (core);
<1% (cluster)

– HW (HTM rollback,
in-place updates)

12.5% (mem);
2.65% (clus-
ter)

sizeof(write-
set)×2

VOMP HW (EDS) 2.2% (core);
<1% (cluster)

– HW (Multiple-Issue
Replica Instructions

1.4% (core);
<1% (cluster)

3×<pipeline-
depth>

FaulTM HW (HTM conflict
detection, LAZY) +
SW (write-set com-
parison)

37.2% (mem);
8% (cluster)

WCET(RTx)+
sizeof(write-
set)×2

HW (HTM rollback,
LAZY)

12.5% mem;
2.65% (clus-
ter)

–

PWF HW (EDS) 2.2% (core);
<1% (cluster)

– HW (HTM rollback,
LAZY)

12.5% mem;
2.65% (clus-
ter)

sizeof(write-
set)×2

Table 1. Comparison of area and time overheads for various error detection and correction techniques.

5.2 Overhead characterization
Table 1 shows the area and time overheads implied by Edge-TM, compared to the three most
closely related approaches in literature: i) the work from Rahimi et al. on vulnerability-aware,
error-tolerant task scheduling (VOMP) [24]; ii) the work from Yalcin et al. on revisiting
transactional memory for fault tolerance (FaulTM) [33]; iii) the work from Papagiannopoulou
et al. on revisiting transactional memory for timing error-tolerance (PWF) [20].

Concerning error detection, all techniques except FaulTM rely on the use of EDS circuitry
at the core level. This circuitry is known to introduce low area overhead (≈ 2.2%) to each
core [3], which overall results in less than 1% area overhead for the whole cluster level.
The time overheads for detecting errors with EDS are also negligible. FaulTM implements
error detection by redundantly executing transactions on two threads and comparing the
write sets after a synchronization barrier upon commit. From the point of view of the
implied area overhead, this technique requires full-fledged transactional memory support for
data versioning and conflict detection (unlike Edge-TM and PWF, which only implement
transactional memory support for rollback). If we were to implement FaulTM on the cacheless
MPSoC that we are targeting for our work, it would require distributed data versioning across
the TCDM banks (as was proposed in [21]). This would imply an additional r×(1+N+log(N))
bits per TCDM bank, where r is the number of data lines (here, words) in each bank and
N is the number of cores. This results in a TCDM area increase of ≈ 37% and an overall
cluster area increase of ≈ 8%.

The time overheads for the FaulTM technique are also very relevant. Besides the redundant
execution of transactions, which is clearly not a viable path when energy minimization is
the target, FaulTM implies a lazy conflict detection scheme, which implies that errors that
might have occurred are only detected at commit time. As a consequence, the overhead of
this technique needs to factor in the worst case execution time of the transaction, plus the
overheads for the barrier. Finally, comparing the write sets of the two transactions requires
k × sizeof(write-set) cycles, where k is the number of cycles required for a single comparison
and has a minimum value of 3 (two reads, one compare).

Concerning error correction, all techniques except VOMP rely on log-based transactional
rollback to undo the effects of an errant transaction and restart it. State-of-the-art imple-
mentations for cache-less MPSoCs [21] implement this logging feature fully in the TCDM
banks, with an area overhead that is proportional to the size of the logs. Considering 1KB

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:13

logs per thread this implies 12.5% TCDM area increase, which translates in 2.65% cluster
area overhead.
Both Edge-TM and PWF rely on eager data versioning (transactions write in-place in

the shared memory and save the original values in the logs). This makes the common case
of a successful execution (commit) faster and the case of an errant execution (abort) a bit
slower, as the logs have to be restored in the memory. The time overhead for this operation
is k × sizeof(write-set) cycles, with k = 2 (one read, one write). FaulTM uses lazy data
versioning, buffering transactions updates which have to be published to shared memory
in case of a commit. While this makes the common case slower, it also speeds up error
correction, as it is sufficient to drop the content of the logs, with zero additional time
overheads.
Next, we discuss the overheads associated with the two Edge-TM policies (POFF and

TURN) and compare them with the GDBS policy. Based on measurements, TURN has an
8% execution time overhead over GDBS, while POFF introduces only a 1% overhead. These
overheads are due to the extra time needed to setup transactions (i.e., checkpointing/logging),
the time introduced by the policy (i.e., time to execute the policy and adjust the voltage),
and the delays associated with recovery and re-execution of failed transactions7. Each voltage
adjustment takes 10 clock cycles. TURN is on average 7% slower than POFF because (i) it
experiences more transaction aborts/re-executions since it operates at lower voltage levels,
and (ii) it makes more voltage adjustments. However, the TURN policy spends less than
2% of the total execution time making voltage adjustments (i.e., it quickly learns what is
the most sustainable voltage level).
This analysis shows us that our Edge-TM approach requires relatively modest area

overhead and is the same or less than that of comparable policies.

5.3 Energy consumption
Figure 6 compares the TURN and POFF policies, using as a baseline a conservative steady-
voltage technique which relies on guardbands (GDBS policy) to absorb the effects of static
and dynamic variations. For completeness, we also include in the comparison the three error-
tolerance techniques published in literature that are closest to ours, and that we introduced
in Section 5.2 (i.e., FaulTM, VOMP and PWF). Consistent with the setup described in the
original papers, for FaulTM and VOMP the voltage is not scaled, but it is kept stable at a
level where errors are sporadic (this level corresponds to the point of first failure in our setup).
PWF behaves exactly like our POFF policy, with the only difference that PWF employs
a lazy error detection scheme. We have enhanced our simulation infrastructure to capture
the time and energy overheads implied by the error detection and recovery mechanisms
discussed in Section 5.2.
For FaulTM, to correctly model error detection we execute transactions in lazy mode.

Then, upon commit, we run a software routine to compare the write-sets8. Regarding error
correction, we modify the logging mechanism to simply drop the logs in case of errors,
and to publish their contents to the TCDM in case of successful commit. For VOMP error
correction, we modify the simulator to inject replicas of the errant instruction whenever the
error model generates an interrupt.

7Note that variations in execution time between different policies are not affected by changes in frequency,
as we only scale the voltage.
8Note that we do not execute transactions redundantly, which would double the time and energy consumption
for the program.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:14Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ROTATE STRASSEN MD EIGENBENCH EIGENBENCH-RANDOM AVERAGE

Energy Consumption

GDBS POFF/PWF VOMP FaulTM TURN

57%21 - 24%

Fig. 6. Energy consumption of various policies normalized to the baseline GDBS configuration.

Note that for this set of experiments, we ran two different configurations for Eigenbench,
one with a fixed transaction size and one with random transaction sizes. The importance of
transaction size in the obtained results is discussed later in Section 5.4.

From Figure 6 we observe that both Edge-TM policies achieve significant energy savings
compared to GDBS. Results for the POFF policy are in line with those for PWF , confirming
that the conservative approach taken in [20] for the COP assumption is also valuable for
intermittent errors. PWF has nearly identical energy consumption to POFF, because both
policies disable further voltage scaling upon encountering the first (few) errant transactions,
which makes the additional overheads for lazy error detection in PWF negligible. VOMP
slightly decreases the energy consumption, as it permanently operates at a lower voltage
level by correcting the sporadic errors. A similar operating mode is valid for FaulTM as well.
Overall, TURN improves on average by 57% over GDBS, by 21% over POFF/PWF/VOMP
and by 24% over FaulTM. These experiments demonstrates that in presence of intermittent
errors optimistically lowering the voltage beyond the PoFF pays off, if the technique is
controlled to prevent wasteful transaction aborts.

5.4 Energy savings vs. transaction size
Transaction size has a significant impact on the TURN policy. Intuitively, large (i.e., long-
lived) transactions have higher probability to experience an error when operating at low
voltages, while several small transactions might successfully commit at the same operating
point.

To test the effect of transaction sizes on the opportunities for energy savings, we configure
the Eigenbench to operate with four different transaction sizes: small (500 cycles), medium
(5, 000 cycles), large (50, 000 cycles) and extra large (500, 000 cycles). Figure 7 shows the
energy consumption for GDBS, POFF and TURN normalized to GDBS for each transaction
size. The TURN policy achieves 58%, 53%, 46% and 37% improvement over GDBS for
small, medium, large and extra large transaction size respectively. The energy improvement
over the POFF policy is 30%, 20%, 8% and –3% respectively. The extra large transaction
size shows the point for which the optimistic TURN policy starts behaving worse than the
conservative POFF policy (energy consumption is increased by 3%). Here, the transaction

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Small (500c) Medium (5000c) Large (50000c) Xlarge (500000c)

Energy Consumption vs. Transaction Size

GDBS POFF TURN

3%

37%

8%30% 20%

58% 53% 46%

Fig. 7. Energy consumption (normalized to GDBS) for different transaction sizes.

size is too large for it to complete often enough without encountering errors past the point
of first failure. In this case, TURN and POFF both operate above the edge of failure, but
TURN has additional overheads because it takes extra iterations before the policy learns
that it should operate reliably at the higher safe voltage level.
These results roughly suggest which energy savings can be expected given a particular

transaction size. To further study this effect and to test the TURN policy for robustness
to dynamically varying transaction sizes, we conduct another experiment. Specifically, we
consider three patterns according to which transaction sizes change over time: Increasing,
Decreasing and Random. For the first two, transaction sizes are increased/decreased by one
thousand cycles at each iteration, while for the third, sizes are randomly determined at
each step within the considered range. We consider two transaction size ranges: narrow
and broad. Referring to Figure 7, the narrow range encompasses the sizes considered in the
two central groups of bars and it is representative of most of the practical real applications
in the embedded domain. The broad range spans the whole set of sizes considered in the
same figure and it accounts for scenarios where a big variance in transaction size has to be
expected.
Every run consists of 100000 transactions. To avoid being completely dominated by the

energy and time behavior of the larger transactions, we balance the workload by having more
small transactions than large transactions (balanced configuration). In essence, we make the
cycles spent on each transaction size approximately the same. This often results in changing
the transaction size after several executions with the current size, which has a beneficial
effect on the behavior of the TURN policy (more steady samples from which to adjust).
To remove this bias we thus also consider a configuration where transitions between one
transaction size and the other are abrupt (i.e., we change transaction size at every iteration).
Figure 8 shows the results for this experiment. We plot energy for POFF and TURN,

normalized to GBDS. Focusing on the Narrow range, when the workload distribution is
balanced we achieve the highest savings, around 50% compared to GBDS and around 18%

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:16Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Balanced Abrupt Balanced Abrupt

NARROW BROAD

Dynamically changing transaction size patterns POFF TURN
15%18% 7% 2%

Fig. 8. Energy consumption (normalized to GDBS) for various transaction size patterns.

compared to POFF. These results are in line with what was shown in Figure 7, as the
considered transaction sizes for these experiments lie in the central area of that plot. Note
that when changes in transaction size are abrupt, TURN experiences a higher number of
aborts, which reduce to 15% the savings compared to POFF.

A similar trend can be observed for the broad range, but the higher variance in transaction
size shrinks the margins for operating below the point of first failure, which brings us closer
to the POFF policy. Here, TURN achieves on average 7% improvement over POFF in
the balanced workload cases and 2% in the abrupt ones. Of the three patterns, Increasing
seems to consistently do slightly better than the others. To explain this, Figure 9 shows the
behavior of the TURN policy for the three patterns, considering the broad range and the
balanced workload. These plots show execution cycles (time) on the x-axis, voltage level on
the primary y-axis (left, blue curve) and number of aborts and commits on the secondary
y-axis (right, circular and triangular cloud points).

For the Increasing patterns transactions are initially very small, which leads the TURN
policy to quickly reach very low voltage levels. Aborts are mainly clustered towards the
initial phases of the program, when there is a first transition in transaction size that makes
them too lengthy to execute error-free at that voltage level. The system then operates
steadily without changes until a second transition brings the voltage one level up again; no
further adjustments are required from that point on. The Decreasing pattern experiences all
its aborts towards the late stages of the program (again, when the transactions are small).
From the point of view of the energy consumption this is less convenient, as (compared to
the Increasing patterns) the time it takes for the policy to stabilize is longer (note that
the x-axis is logarithmic) and while doing so it lingers at higher voltage levels. Note that
the number of aborts is always very small compared to the commits (right y-axis is also
logarithmic). The Random pattern, as expected, experiences aborts throughout the entire

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:17

1

4

16

64

256

1024

0

2

4

6

8

10

12

1 10 100 1000

EXEC CYCLES [x 100000]

Broad, Random, Balanced

Levels:

Aborts:

Commits:

1

4

16

64

256

0

2

4

6

8

10

12

1 10 100 1000

EXEC CYCLES [x 100000]

Broad, Increasing, Balanced

Levels:

Aborts:

Commits:

1

4

16

64

256

0

2

4

6

8

10

12

1 10 100 1000

EXEC CYCLES [x 100000]

Broad, Decreasing, Balanced

Levels:

Aborts:

Commits:

8%

0,42 0,52 0,62

POFF

TURN

ENERGY (NORMALIZED TO GDBS)

7%

0,42 0,52 0,62

POFF

TURN

ENERGY (NORMALIZED TO GDBS)

6%

0,42 0,52 0,62

POFF

TURN

ENERGY (NORMALIZED TO GDBS)

Fig. 9. Execution cycles (x-axis), voltage level (primary y-axis/blue curve), number of aborts and commits
(secondary y-axis/circular and triangular cloud points) for different transaction size patterns.

program life. However, the policy is capable of reacting timely to workloads variations, which
in the end leads to no relevant difference in energy savings compared to the other patterns.
We conclude that even though it is best to keep transactions as small as possible, our

technique is capable of energy savings for various transaction sizes and access patterns.
Adding the capability to dynamically adjust transaction size at runtime would provide an
extra level of freedom in designing runtime policies for online selection of the most suitable
transaction granularity. We leave this exploration for future work.

6 CONCLUSIONS
In this paper we propose Edge-TM, an adaptive HW/SW error management scheme that is
based on HTM for error recovery that is capable of dealing with intermittent timing errors
and the COP. Edge-TM encompasses two SW error management policies. The first, called
POFF, is a simple policy that scales down the voltage for energy savings while allowing
operation just above the edge of failure. The second, called the ‘Thrifty uncle/Reckless
nephew’ (TURN), is a more risky, adaptive policy that optimistically scales the voltage
beyond the edge of failure and adjusts it using the feedback provided by HTM, with the goal
to achieve better energy savings. Experiments on an embedded platform show that Edge-TM
can achieve significant energy savings compared to existing techniques, with a nominal area
and time overhead. Specifically, POFF and TURN achieve a 45% and 57% improvement
over conservative guard-banding, respectively. TURN is also capable of an extra 21-24%
improvement over existing state-of-the-art error tolerance solutions. Our findings indicate
that the obtained energy savings are affected by transaction size and different workload
patterns. We conclude that the combination of carefully tuned SW error management policies
and HTM-based error recovery can provide significant energy savings compared to existing
solutions.

REFERENCES
[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. 2003. Parameter variations

and impact on circuits and microarchitecture. In DAC. 338–342. DOI:https://doi.org/10.1109/DAC.
2003.1219020

[2] K.A. Bowman, J.W. Tschanz, Nam Sung Kim, J.C. Lee, C.B. Wilkerson, S.L. Lu, T. Karnik, and
V.K. De. 2009. Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation
Tolerance. IEEE JSSC 44, 1 (Jan 2009), 49–63. DOI:https://doi.org/10.1109/JSSC.2008.2007148

[3] K.A. Bowman, J.W. Tschanz, S.L. Lu, P.A. Aseron, M.M. Khellah, A. Raychowdhury, B.M. Geuskens,
C. Tokunaga, C.B. Wilkerson, T. Karnik, and V.K. De. 2011. A 45nm Resilient Microprocessor Core

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:18Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Maurice Herlihy, and Iris Bahar

for Dynamic Variation Tolerance. IEEE JSSC 46, 1 (Jan 2011), 194–208. DOI:https://doi.org/10.1109/
JSSC.2010.2089657

[4] F. Chaix, G. Bizot, M. Nicolaidis, and N. E. Zergainoh. 2011. Variability-aware task mapping strategies
for many-cores processor chips. In IOLTS. 55–60. DOI:https://doi.org/10.1109/IOLTS.2011.5993811

[5] Cristian Constantinescu. 2008. Intermittent Faults and Effects on Reliability of Integrated Circuits. In
RAMS. 370–374. DOI:https://doi.org/10.1109/RAMS.2008.4925824

[6] S. Das, D. Roberts, Seokwoo Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. 2006. A
self-tuning DVS processor using delay-error detection and correction. IEEE JSSC 41, 4 (April 2006),
792–804. DOI:https://doi.org/10.1109/JSSC.2006.870912

[7] S. Das, C. Tokunaga, S. Pant, W. H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and D. T. Blaauw. 2009.
RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance. IEEE JSSC 44, 1 (Jan
2009), 32–48. DOI:https://doi.org/10.1109/JSSC.2008.2007145

[8] S. Dighe, S.R. Vangal, P. Aseron, S. Kumar, T. Jacob, K.A. Bowman, J. Howard, J. Tschanz, V.
Erraguntla, N. Borkar, V.K. De, and S. Borkar. 2011. Within-Die Variation-Aware Dynamic-Voltage-
Frequency-Scaling With Optimal Core Allocation and Thread Hopping for the 80-Core TeraFLOPS
Processor. JSSC 46, 1 (Jan 2011), 184–193. DOI:https://doi.org/10.1109/JSSC.2010.2080550

[9] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad Ziesler,
David Blaauw, Todd Austin, Krisztian Flautner, and Trevor Mudge. 2003. Razor: A Low-Power Pipeline
Based on Circuit-Level Timing Speculation. In MICRO. 7–. http://dl.acm.org/citation.cfm?id=956417.
956571

[10] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D.M. Harris, D. Blaauw, and D. Sylvester. 2013. Bubble Razor:
Eliminating Timing Margins in an ARM Cortex-M3 Processor in 45 nm CMOS Using Architecturally
Independent Error Detection and Correction. IEEE JSSC 48, 1 (Jan 2013), 66–81. DOI:https:
//doi.org/10.1109/JSSC.2012.2220912

[11] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: architectural support for lock-free
data structures. In ISCA. 289–300.

[12] Sungpack Hong, Tayo Oguntebi, Jared Casper, Nathan Bronson, Christos Kozyrakis, and Kunle
Olukotun. 2010. Eigenbench: A Simple Exploration Tool for Orthogonal TM Characteristics. In IISWC.
1–11. DOI:https://doi.org/10.1109/IISWC.2010.5648812

[13] Intel. 2009. Voltage Regulator Module and Enterprise Voltage Regulator-Down 11.1. (2009).
http://www.intel.com/Assets/en_US/PDF/designguide/321736.pdf.

[14] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori. 2010. Slack redistribution for graceful degradation under
voltage overscaling. In 2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC).
825–831. DOI:https://doi.org/10.1109/ASPDAC.2010.5419690

[15] Veit B. Kleeberger, Petra R. Maier, and Ulf Schlichtmann. 2014. Workload- and Instruction-Aware
Timing Analysis: The Missing Link Between Technology and System-level Resilience. In DAC. DOI:
https://doi.org/10.1145/2593069.2596694

[16] L. Leem, Hyungmin Cho, J. Bau, Q.A. Jacobson, and S. Mitra. 2010. ERSA: Error Resilient System
Architecture for probabilistic applications. In DATE. 1560–1565. DOI:https://doi.org/10.1109/DATE.
2010.5457059

[17] Lai Liangzhen and Puneet Gupta. 2014. A Case Study of Logic Delay Fault Behaviors on General-
Purpose Embedded Processor Under Voltage Overscaling. Technical Report. University of California.
Retrieved from http://escholarship.org/uc/item/3967v8hw.

[18] S. Narayanan, G. Lyle, R. Kumar, and D. Jones. 2009. Testing the critical operating point (COP)
hypothesis using FPGA emulation of timing errors in over-scaled soft-processors. In SELSE.

[19] OpenMP. 2017. The OpenMP Application Program Interface v.3.0. available through www.openmp.org.
(2017).

[20] Dimitra Papagiannopoulou, Andrea Marongiu, Tali Moreshet, Luca Benini, Maurice Herlihy, and Iris
Bahar. 2015. Playing with Fire: Transactional Memory Revisited for Error-Resilient and Energy-Efficient
MPSoC Execution. In GLSVLSI. 9–14. DOI:https://doi.org/10.1145/2742060.2742090

[21] D. Papagiannopoulou, T. Moreshet, A. Marongiu, L. Benini, M. Herlihy, and R. Iris Bahar. 2014.
Speculative synchronization for coherence-free embedded NUMA architectures. In SAMOS. 99–106.
DOI:https://doi.org/10.1109/SAMOS.2014.6893200

[22] J. Patel. 2008. CMOS process variations: A critical operation point hypothesis. web.stanford.edu/
class/ee380/Abstracts/080402-jhpatel.pdf. (2008). http://web.stanford.edu/class/ee380/Abstracts/
080402-jhpatel.pdf

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Edge-TM: Exploiting Transactional Memory for Error Tolerance and Energy Efficiency 1:19

[23] Francesco Paterna, Andrea Acquaviva, Alberto Caprara, Francesco Papariello, Giuseppe Desoli, and
Luca Benini. 2012. Variability-Aware Task Allocation for Energy-Efficient Quality of Service Provisioning
in Embedded Streaming Multimedia Applications. IEEE TOC 61, 7 (2012), 939–953. DOI:https:
//doi.org/10.1109/TC.2011.127

[24] Abbas Rahimi, Daniele Cesarini, Andrea Marongiu, Rajesh K. Gupta, and Luca Benini. 2014. Improving
Resilience to Timing Errors by Exposing Variability Effects to Software in Tightly-Coupled Processor
Clusters. JETCAS 4, 2 (2014), 216–229. DOI:https://doi.org/10.1109/JETCAS.2014.2315883

[25] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G. Tagliavini, A. Capotondi, P.
Flatresse, and L. Benini. 2015. PULP: A parallel ultra low power platform for next generation IoT
applications. In Hot Chips. DOI:https://doi.org/10.1109/HOTCHIPS.2015.7477325

[26] Davide Rossi, Antonio Pullini, Igor Loi, Michael Gautschi, Frank Kagan Gurkaynak, Adam Teman,
Jeremy Constantin, Andreas Burg, Ivan Miro-Panades, Edith BeignÃĺ, Fabien Clermidy, Fady Abouzeid,
Philippe Flatresse, and Luca Benini. 2016. 193 MOPS/mW @ 162 MOPS, 0.32V to 1.15V voltage range
multi-core accelerator for energy efficient parallel and sequential digital processing. In COOL CHIPS.

[27] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas. 2008. VARIUS: A
Model of Process Variation and Resulting Timing Errors for Microarchitects. IEEE TSM 21, 1 (Feb
2008), 3–13. DOI:https://doi.org/10.1109/TSM.2007.913186

[28] John Sartori and Rakesh Kumar. 2010. Overscaling-friendly Timing Speculation Architectures. In
GLSVLSI. 209–214. DOI:https://doi.org/10.1145/1785481.1785533

[29] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and Vivek De. 2009. Tunable replica
circuits and adaptive voltage-frequency techniques for dynamic voltage, temperature, and aging variation
tolerance. In SVC. 112–113.

[30] Jons-Tobias Wamhoff, Mario Schwalbe, Rasha Faqeh, Christof Fetzer, and Pascal Felber. 2013. Trans-
actional Encoding for Tolerating Transient Hardware Errors. In Stabilization, Safety, and Security of
Distributed Systems. Vol. 8255. Springer Intl. Pub., 1–16.

[31] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. 2008. Adapting to Intermittent Faults in
Multicore Systems. In ASPLOS. DOI:https://doi.org/10.1145/1346281.1346314

[32] G. Yalcin, A. Cristal, O. Unsal, A. Sobe, D. Harmanci, P. Felber, A. Voronin, J.-T. Wamhoff, and C.
Fetzer. 2014. Combining Error Detection and Transactional Memory for Energy-Efficient Computing
below Safe Operation Margins. In PDP. 248–255. DOI:https://doi.org/10.1109/PDP.2014.61

[33] Gulay Yalcin, Osman Unsal, and Adrian Cristal. 2013. FaulTM: Error Detection and Recovery Using
Hardware Transactional Memory. In DATE. 220–225. http://dl.acm.org/citation.cfm?id=2485288.
2485344

[34] Gulay Yalcin, Osman Sabri Unsal, and Adrian Cristal. 2013. Fault Tolerance for Multi-threaded
Applications by Leveraging Hardware Transactional Memory. In Computing Frontiers. Article 4, 9 pages.
DOI:https://doi.org/10.1145/2482767.2482773

Received March 2017; revised May 2017; accepted July 2017

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

