
Evaluating Critical Bits in Arithmetic Operations
due to Timing Violations

Sungseob Whang†, Tymani Rachford†, Dimitra Papagiannopoulou†, Tali Moreshet∗, R. Iris Bahar†
†School of Engineering, ECE group, Brown University, Providence, RI 02912

∗Dept. of Electrical and Computer Engineering, Boston University, Boston, MA 02215

Abstract—Various error models are being used in simulation of
voltage-scaled arithmetic units to examine application-level toler-
ance of timing violations. The selection of an error model needs
further consideration, as differences in error models drastically
affect the performance of the application. Specifically, floating
point arithmetic units (FPUs) have architectural characteristics
that characterize its behavior. We examine the architecture of
FPUs and design a new error model, which we call Critical
Bit. We run selected benchmark applications with Critical Bit
and other widely used error injection models to demonstrate the
differences.

I. INTRODUCTION

Transistor scaling has left devices more susceptible to the
effects of static and dynamic variability. To ensure reliable
operation designers have conservatively added safety margins
(guardbands) to the system’s operating frequency or voltage,
which results in wasted energy and degraded performance. On
the other hand, removing guardbands can lead to intermittent
timing errors (i.e. signal values due to signals not meeting
their timing constraints). Intermittent timing errors begin to
appear when the operating conditions (Frequency, Voltage,
and Temperature) approach the point of first failure (PoFF).
Beyond that point (e.g., decreasing the voltage further), errors
become gradually more frequent and the system’s behavior can
be coarsely modeled with a probability (frequency) of errors as
a function of (F,V,T) [12]. To endure reliable operation many
works have proposed error detection and correction techniques
at the software and the hardware level [10], [4], [16], [8], [22],
[20], [6], [12], [5]. However, maintaining fault-free operation
without adding considerable overheads on performance and
energy is not trivial.

Approximate computing has emerged as a promising solu-
tion to these dilemmas. Approximate computing is based on
the observation that exact computation and perfect accuracy
are not always necessary. Thus, intentionally ignoring a small
percentage of timing errors in specific application regions,
would allow for voltage scaling and consequently to energy
savings. Indeed, while some application domains require al-
ways correct computation and any loss of accuracy can be
damaging and cause catastrophic failure (e.g., security appli-
cations), there are many other applications (e.g. machine learn-
ing, signal processing, image processing, scientific computing,
data mining and data analysis) that have an inherent tolerance
to inaccuracy and errors. For those applications, trading accu-
racy with inexact computation can prove beneficial in terms
of both performance and energy consumption. Nevertheless,
approximate computing poses some key challenges since it
requires very careful selection of the code and data portions
that can be approximated. A poor choice of the application
portions for approximation can lead to unacceptable quality
loss on the output result.

Various techniques have been proposed for approximation
both in the hardware and the software level [25], [18], [3],
[7], [11], [2], [1], [24]. However, many of these works follow
simplistic error models such as single bit-flip probabilities,

uniform distribution models or random values [11], [25], [26]
that are not able to fully capture the error behavior of func-
tional units (FUs). These error models do not cover important
families of FUs, such as Floating Point Units (FPUs) and bit-
wise logic operation units, which have different behavior than
integer adders. Moreover, most existing error models ignore
three important factors: i) value correlation, ii) computation
history and iii) bit-wise error variability [27]. The authors of
b-HiVE constructed an error model that considers these three
factors and showed that the bit-wise error rate of a functional
unit’s operation can be predicted more accurately when taking
these factors into account.

In this paper, we introduce a new error model, called
Critical Bit model. Fully acknowledging the importance of
computation history and value correlation from b-HiVE’s
approach, this new error model integrates bit-wise dependency
by identifying the critical bit for each FU architecture. The
critical bit corresponds to a signal that is along the critical
path of a particular arithmetic operation. We explore the error
tolerance of various applications under voltage overscaling,
testing various timing error models (including the Critical Bit
model) across a range of error rates and voltage levels, and
evaluate the degradation and accuracy loss that is experienced
in the output.

Our results indicate that the Critical Bit model and other
selected error models produce significantly different behavior
on tested applications. This is important since it can lead
to very different assumptions about error tolerance of a
particular application. These results motivate future use of
this model to manage voltage scaling of floating point units
to more reliably exploit error tolerance.

II. BACKGROUND

Static and dynamic variability lead to intermittent timing er-
rors that can be activated or de-activated by voltage, frequency
or temperature fluctuations. Intermittent timing errors manifest
as timing violations on the processor’s critical paths; as the
voltage is scaled down, errors initially emerge at low rates that
later increase exponentially as the voltage is lowered further.
For applications that require 100% accuracy, these types of
errors would be unacceptable. However, many application do-
mains, including video, signal and image processing, machine
learning, computer vision, data mining/analysis and gaming,
are inherently tolerant to inaccuracy and have an intrinsic
resilience to errors. In such types of applications, we can
identify code regions where intermittent timing errors could
be acceptable, if that allows for voltage scaling and energy
savings. However, an accurate error model is needed to explore
the trade-off between loss of accuracy and energy savings.

While other works have considered approximation through
voltage scaling, they employ simplistic error models that are
not highly accurate and do not provide details on how these
models where produced [14], [28], [25], [11]. Samson et

al. [25] proposed EnerJ, an approximate programming model
that extends Java with approximate data types that allow
approximate variables to be mapped to low-power storage and
operations. They introduce approximate-aware ISA extensions
to support approximate instructions that are executed on spe-
cial, voltage-scaled function units (FUs). The error models
considered in this work are basic fault injection error models
with single bit flips at the output using uniform distribution,
or select random or previously seen values for the output. Es-
maeilzadeh et al. [11] introduce an ISA extension that allows
the compiler to convey what can be approximated and propose
a microarchitecture design that supports these extensions and
allows dual voltage operation on its components: high voltage
for precise operations and low voltage for approximates ones.
However, this work relies on uniform bit-error models with set
error probabilities per component. Krimer et al. [15] develop
a model for the expected probability of errors due to timing
violations when the supply voltage is reduced in integer adders
and multipliers, but this model does not take into account bit
location and history of computation.

However, in real applications, consecutive operations often
have similar values, thus missing timing does not necessarily
result in an incorrect result. At the same time, the history
of prior computations often affects the current computation
results, since switching a signal is more likely to result in
an timing error than keeping the value constant. Finally,
the error behavior can vary among different bit locations
significantly. Current error models ignore this variability and
apply uniform single error probabilities to all bit locations.
Tziantzioulis et al. [27] introduced b-HiVE, an error model
that achieves 6-10x higher accuracy compared to existing error
models, by taking into account these important factors in
modeling the error probability of different FUs versus supply
voltage: the effect of value correlation between consecutive
operations, the impact of computation history and the error
rate variation among different bit locations. Liu [17] provided
an experimental behavior of arithmetic units under below-
nominal supply voltages, using this error model.

In this paper, we introduce a new model, the Critical Bit
model. Our model still considers computation history and
value correlation as b-HiVe does, but it has an important
difference. While b-HiVe relies on the independence of
bit-wise error rate, the Critical Bit model integrates bit-
wise dependency by identifying the critical bit for each
FU architecture, i.e., an intermediate bit/wire that requires
significantly longer delay than other intermediate bits. We
believe that this model is capable of better capturing the
delay behavior of different FPU architectures.

III. IMPLEMENTATION

A. Simulated Error Models of FP Units
To test our benchmarks tolerance to errors, we consider a

variety of error models from earlier work [25], [26], [15],
[27], as well as our Critical Bit model. These models are
presented in more detail next.

1) Random model: EnerJ [25] introduced 3 widely used
error injection models: Random, Previous and Single [26],
[27]. Each model assumes an error rate p, and when the error
occurs, the result is switched to a random value, the previous
operations’ result, or a randomly selected single-bit-flipped
value, respectively. For our testing purposes, we consider the
random value model to compare with other error models.

2) Uniform model: b-HiVE’s interpretation of Lane-
Decouple’s model [15], [27] used a uniform error model,
where each bit of the result is independently flipped for a bit-
wise uniform error rate p. Rahimi [23] added a bit-boundary,
assuming only bits between a range from bit location a to
bit location b have probability of flipping with a bit-wise
uniform error rate, while the remaining bit locations do not
flip. The bit-boundary is implemented in OpenMP on an
FPU architecture by removing the fault detection circuitry of
certain result bit locations.

3) b-HiVE model: b-HiVE (bit-level History-based Error
model with Value Correlation) runs a trace on a functional
unit under a low-voltage environment and for each bit,
observes the previous computational result, the previous
latched result, the current computational result and the current
latched result, and classifies the 4-tuple into 5 categories:
Correct, Previous Observed, Previous Correct, Glitch, and
Ambiguous. Using this model, [27] and [17] compute the
bit-wise flip rates of integer addition and floating point
addition and multiplication. We use these results to model
the behavior of floating point multiplication and addition by
specifying bit-wise error rates for each voltage level, without
taking history into account.

4) Critical Bit model: In this paper, we also introduce a
new bit-wise dependent error model of floating point opera-
tions, called ‘Critical bit flip’ model, where the flip rate at
each bit location is dependent on the current and the previous
computation of the critical bit. We assume that, based on
the architecture of floating point arithmetic units, bit flips
should be dependent on some intermediate bit/wire that is on
the critical path of the computation. The critical bits of an
arithmetic unit are responsible for the simultaneous bit flips in
the result when the voltage is gradually scaled down. Next, we
explain in detail how we choose these critical bits in different
arithmetic units and how we construct an error model based
on that choice.

B. FPU architecture and Critical bits selection
We construct our error models using the following process:

1) We assume a specific architecture for each arithmetic
operation,

2) We determine the critical paths of the architecture,
3) We determine sensitive critical paths with similar delays,

and the intermediate bits (i.e., ‘critical bits’) responsible
for those paths,

4) We assume that the critical bit is the only possible
destination of the timing error, thus if unchanged from
the previous operation, it would latch the correct result,

5) We assume that the critical bit changed from the
previous operation would latch the result computed with
the critical bit flipped.

In order to design error models for each arithmetic
operation, we next define the critical bit paths for each
arithmetic unit, i.e. for FP ADD (floating-point addition) and
FP MUL (floating-point multiplication).

1) Floating point multiplication (FP MUL): A 32-bit
floating point number is represented with 3 parts: a 1-bit sign
(1 for negative, 0 for positive), an 8-bit exponent (00000000
for –127, 11111111 for +128, biased by –127), and a 23-bit
mantissa. A 32-bit floating point multiplier appends a 1 to
the 23-bit mantissa and multiplies the two 24-bit mantissas

Fig. 1. Floating-point multiplication architecture [9]

treating them as fixed point integers. The result becomes the
mantissa of the output. The exponents are separately added to
determine the result’s exponent (Fig 1).

Each operand of the 24-bit fixed point multiplier belongs
in the range [223, 224), as the hidden 1 always exists on both
operands. Hence, the result of the multiplier belongs in the
range [246, 248), a 48-bit fixed point integer. The result is
treated as a fraction with a decimal point between bit 45 and bit
46. The value of bit 47 determines whether the multiplication
of the two fractions being greater than 2 or not. If the result
is greater than 2 (i.e., bit 47 is 1) then the mantissa and the
exponent of the result are normalized, such that the mantissa
is bit 46 to bit 24 of the multiplication. The exponent addition
result is increased by 1. From this characterization of the
floating point multiplier, we assume that voltage scaling would
result in a timing error on the 24-bit multiplication, specifically
in the most significant bit of the result, the 47-th bit. Since this
critical bit is added to the sum of the two operands’ exponent
part, if the critical bit is flipped, the result would differ from
the correct output by a factor of 2 (i.e., it would either be
multiplied or divided by 2).

Thus, we assume the following error model, for timing miss
rate p,

FP MUL : R = (!p)? C : 2±1C

where R denotes the latched result and C denotes the current
correct result of the computation. The selection of the factor
being 2 or 0.5 is determined whether the critical bit was
flipped from 0 to 1, or 1 to 0, as the critical bit being flipped
propagates to the result’s exponent being added by 1 when
it should remain the same, or remained the same when it
should be added by 1.

2) Floating point addition (FP ADD) : A 32-bit floating
point adder consists of normalization of the operands, so that
the mantissa with smaller exponent is aligned with the man-
tissa with the larger exponent by shifting right the difference
of the exponents. The exponent of the result is selected to be
the larger exponent of the two operands, and the normalized
mantissas is inputted into the 24-bit fixed point adder. The
result of the 24-bit fixed point addition is also normalized
again such that the result has 1 in its most significant bit,
either shifting right or left. (Fig 2).

Since a variable length right/left shifter (a barrel shifter)
is costly in terms of performance, the process is divided
into cases to designate which operands use the first variable-
length right shifter for normalization, and which operands use
the second variable-length left shifter for normalization. This
differentiation is possible as the variable-length left shift at the

Fig. 2. Floating-point addition architecture [9]

end of the addition only occurs when the two operands are
subtracted in a close range, and these ‘close range’ operands
need not go through a variable-length right shifter before the
addition, as the normaliztion is bounded by either 0 or 1
difference of the operand. We consider three cases: (i) ADD :
The signs of the two operands are the same, (ii) SUB-FAR :
The signs are different and the exponent difference of the two
operands is bigger than 1, (iii) SUB-CLOSE : The signs are
different and the exponent difference is either 0 or 1.

In the first case, the larger operand’s mantissa (appended
with the hidden bit 1) would be a 24-bit fixed point number
ranging from [223, 224), and the smaller mantissa would also
be a 24-bit long normalized fixed point number in the range
[0, 224). Therefore, the result of the mantissa addition would
be a 24-bit long fixed point number, with a carry-out bit,
belonging in range [223, 225). In this case, we assume the
critical path is the computation of the carry out bit of the result,
which similarly to the floating point multiplier architecture, is
added to the larger exponent of the two operands. Therefore, if
there is a timing miss, we assume that the latched exponent is
diverging by 1 from the correct exponent, where the direction
is dependent on whether the carry out bit has flipped from 0
to 1 or from 1 to 0.

In the second case where the exponent difference is bigger
than 1, the less normalized operand of the mantissa subtraction
belongs in range: [0, 222), and the result of the 24-bit mantissa
subtraction belongs in range: [222, 224). We assume the critical
path is the computation of the 23-rd bit, which is the most
significant bit of the subtraction result. If this bit is 1, the
result exponent would be the same as the larger exponent, but
if the bit is 0, the result exponent would be smaller from the
larger exponent by 1.

In the last case, the number of normalization (right shifts)
after the subtraction is computed in the LZA (Leading Zero
Anticipation) unit, and NLZ (Number of Leading Zeroes) in
range [0, 24) shifts the mantissa and subtracts to the larger
exponent of operands. We assume the simultaneous critical
path is computing the 5 bits consisting of the NLZ, and the
divergence of the result is 2NLZ multiplied or divided.

Thus, we assume the following error model, for some timing

miss rate p,

FP ADD : R =(!p)? C :
(S1 = S2 or |E1 − E2| > 1)? 2±1C :
2∆NLZC

where R denotes the latched result, C denotes the current
correct result of the computation, S and E denotes the
operands’ sign and exponent and NLZ denotes the number
of leading zeros of the result of mantissa subtraction.

3) The Critical Bit model behavior: By using the Critical
Bit model, we can explain the bit-wise error behavior of a
random trace of FP ADD and FP MUL, obtained by b-HiVE
and Liu and can characterize the bit-wise error behavior as
follows:
• The mantissa bits (bit 0 to bit 51) have uniform proba-

bility, increasing from 0% to 50% as voltage decreases.
• The exponent bits (bit 52 to 62) show an exponential

decrease as the bit location increases, with a peak at the
most significant bit.

• The sign (bit 63) is always correct.
For floating point multiplication, the mantissa’s bit-wise

uniform error rate can be explained through the critical bit,
the most significant bit of the mantissa multiplication, being
delayed and flipped. The probability of the critical bit being
flipped here would increase as the supply voltage decreases, as
different operands would exhibit slightly different delay in the
computation of the critical bit, and the flip would propagate
to both the exponent being added or subtracted by 1 and the
mantissa being shifted left or right by 1. The mantissa being
shifted left or right by 1 would result in a bit-wise random
mantissa, as there is no bit-wise correlation between the bit
values before the shift and after the shift. This also explains the
exponential decrease of the exponent bit-wise error rate. As
for a higher order bit to flip from an addition or subtraction
of 1, all bits before the bit has to be respectively 11..1 or
00..0. Hence, adding or subtracting 1 from a timing error of
the critical bit would have have exponentially less impact on
the bit-flip rate of higher order bits of the exponent. The peak
in the most significant bit of the exponent can be explained
by the timing error of the exponent adder fitting inside a
single pipeline stage of the floating point addition. We do not
consider the timing violation of the addition of the operands’
exponents in our Critical Bit model, as the adder can be
stretched out multiple stages which the mantissa multiplier
inevitably goes through.

For floating point addition, the mantissa’s bit-wise uniform
error rate can be similarly explained as above, except that
floating point addition shows more discrepancy between the
mantissa’s error rate and the exponent’s error rate. As a
result, the mantissa’s uniform error rate increases to 50%
while the exponent stays accurate. Since the exponent is
accurate, we can infer from Fig 2 that the adder works fast
enough and correctly, but the L1/R1 shifter, the rounding
circuitry, and the multiplexer of the mantissa has a critical path
that results to a uniform bit-wise error rate. The exponents
exponential decrease of bit-wise error rate can be explained
with the critical bit being flipped, equivalent to floating point
multiplication. The peak in the most significant bit of the
exponent can be explained by the comparator of the operands’
exponents, and selecting the larger exponent as a result of the
comparison. If the compare result of the exponent is flipped,
the smaller exponent would be selected as the result. While
this timing error adds bit-wise randomness in the other bits

Fig. 3. Approximate region of Gaussian-filter and Sobel-operator

of the exponent, the most significant bit is biased such that
the larger exponent has higher probability of 1 and the less
exponent has higher probability of 0, which indicates that the
most significant bit has higher chance to flip due to value
anti-correlation of the most significant bit.

From the above observations, we conclude that Critical Bit
error model can explain the error behavior of each arithmetic
operation in a small, specific range of voltages, i.e. from 0.7V
to 0.8V for floating point multiplication and addition.

C. Benchmark applications and approximate regions
For any application to benefit from approximation, the

selection of approximate regions in the source code is critical,
as most code regions require accurate computation for the
application to function correctly. For each application we
ran, we explain next, how the runtime is divided based on
profiling and how we select the approximate regions.

1) Gaussian-filter: Gaussian filtering takes in an image,
defined by a 2-dimensional matrix containing pixel values
(usually in range [0, 255]), and outputs a smoothed image.
The smoothed image has an inherent tolerance to inaccuracy.
This is because the Gaussian function has fractions of code
computing the exponent coefficients of the filter and hence
the output image. Also, the application is usually used to
reduce the noise of an input image, which is inherently an
approximation.

2) Sobel-operator: Sobel operator takes in an image, and
outputs a (x- or y-)derivative of the image by convolving a
derivative filter matrix, usually [-1,-2,-1; 0,0,0; +1,+2,+1] for
y-derivative and the transpose for the x-derivative. To test the
error models we used the Gaussian filter and Sobel operator
from OpenCV [19]. We observed that both applications take
up to 99% of the runtime on functions RowFilter and Colum-
nFilter.

Fig 3 describes how both the Gaussian filer and Sobel
operator applications call RowFilter and ColumnFilter, and
which parts in these functions are selected to be approximated.
RowFilter and ColumnFilter convolves a pre-computed 1-D
filter matrix onto a image matrix. The convolution is first done
on the input image structure on each row, and the intermediate
result is convolved on each column. The convolution traverses
the input matrix, and for each pixel position, sums the
multiplication of the coefficient of the filter matrix and the
pixel offsetted from the current pixel. The resulting sum is

Fig. 4. Approximate region of Fast Fourier Transform

saved in the output. Hence, the multiplication of coefficients
and the addition of the multiplication results are the two
operations selected for approximation.

3) Fast Fourier Transform: FFT takes signals mapped in
the time domain and transforms them into frequency domain
by using the Discrete Fourier Transform (DFT) function:

Xn =

N−1∑
n=0

xNe−i2πkn/N (k = 0, 1...N − 1)

To test the error models we used Fast Fourier Transform
from KissFFT [13]. In Fig 4 we show the complex multiply,
CMUL, which is where we inject errors, and the two main
functions, kf bly4 and kf bly5, where CMUL is used. When
we profiled our program we found that 77.9% of the runtime is
used for allocating memory, and that 16.8% is used for kf bly4
and kf bly5 and similar functions, which indicated that the
majority of the computation is being done in the complex
multiplies with CMUL.

We select complex multiplication from computing
e−i2πkn/N and xn as approximate regions, which consists
of both floating point addition and multiplication, since this
complex multiplication is responsible for the computation of
the amplitudes for the set range of frequencies.

IV. RESULTS

Each benchmark application needs a standard measurement
of how the result differs from the anticipated (correct) result.
We select PSNR (Peak Signal to Noise Ratio) of the error
propagated output compared to the sanitary output to deter-
mine the difference.

PSNR = 10 · log2(
Peak Signal2

MSE
)

PSNR is measured in decibels (dB), and larger PSNR indicates
higher accuracy.

We test the benchmark applications by running a sample
image or signal with 6 error models and various injection
rates. The error models include Critical Bit (Critical), b-
HiVE (b-Hive), and Random error bit injection (Random).
We implement the Uniform model on 3 different boundaries:
only the mantissa (UniformM), only the exponent (UniformE)
and all bit locations (UniformA), and examine the different
impact on PSNR. We count how many times each operation
of the annotated approximate region returned a different output
to calculate the observed error rate. We expect UniformM to
be close to b-HiVE (and the actual processor behavior under

Fig. 5. Observed bit-wise error rate of Critical Bit model injected Gaussian-
filter

voltage closer to nominal voltage) for small error rates, Uni-
formE to be very pessimistic as the exponent being different
drastically changes the output, and UniformA somewhere in
the middle. The output image or signal of each benchmark is
collected and compared to the accurate output with the above
measurements, and projected with the observed error rate.

Fig 5 shows the observed bit-wise error rate of Critical Bit
model injected Gaussian-filter with different injection rates p,
where p ranged from 3.1% to 50%. We observe that the error
model produces an exponential decrease of the exponent bits,
and the effective error rate is smaller than the injection rate
due to consideration of previous critical bit’s correlation. Fig 6
shows the PSNR and error rate of 3 benchmark applications
injected with 6 different error models. The defining charac-
teristic of all error models is that PSNR (accuracy) decreases
as the error rate increases from 0, which validates each error
model as the lower the voltage should have higher error rate
and thus less accurate results. Fig 7 shows sample outputs
of Gaussian-filter injected with each error model when PSNR
of 20dB is selected. While the difference from the original
Gaussian-filter output is significant, we can also acknowledge
that while CriticalBit, b-HiVE and UniformM (top) produce
similar images, Random, UniformA and UniformE (bottom)
produce different kind of images, where the glitches are very
clear.

We also note that from Fig 6, for FFT, the 3 models
Random, UniformE and UniformA are excluded from the
graph due to all having outputs of PSNR = −∞ for any
error injection rate. This shows that while FFT has a strictly
lower error tolerance than Gaussian-filter or Sobel-operator,
these 3 error models Random, UniformE and UniformA that
change bits outside of the mantissa show significantly different
behavior from the other 3 models CriticalBit, b-HiVE and
UniformM. The FFT algorithm differs from the Gaussian
filter and Sobel in its error tolerance because each of its
computations is non-discrete; so errors, if catastrophic, will
propagate to all of the output values.

Fig 6 shows that of the 6 error models, UniformM and the b-
HiVE model project the highest accuracy, followed by Critical-
Bit, UniformA, and then UniformE and Random, both project-
ing lowest accuracy. The order of accuracy is predictable, since
UniformM and b-HiVE are bit-wise mantissa-only (for low
error injection rates) independent error models which include
the case where the less significant bits of the mantissa are
flipped as errors, while other models handle timing violations
in the exponent. The CriticalBit is the most accurate from the
remaining models, while CriticalBit is bounded to change the
output by a ratio of 2, UniformE, Random and UniformA have

Fig. 6. PSNR(dB) vs. Error Rate of Gaussian filter(top), Sobel operator
(middle), FFT (bottom)

no limits on changing the exponent, even up to 2256 ratios. The
UniformA produces more accurate outputs than Random and
UniromE as UniformA counts errors that happen only in the
mantissa.

While the b-HiVE model is close to a UniformM model, it
is clearly different from CriticalBit. b-HiVE and UniformM
both assume a low bit-wise independent error rate, while
CriticalBit assumes a single critical bit flip error rate. Hence,
as explained in Section III-B3, the discrepancy of the models
comes from the assumption of the rounding hardware being
the critical path, while CriticalBit assumes that the 24-bit adder
and multiplier’s result is the critical path. Therefore from
the architectural explorations, an adequate FPU architecture
that supports fast rounding can assume that the exponent and
mantissa shift should be correlated to the critical bit.

We see that each error model shows largely different
behavior in each application. For example, when we assume
a 0.01 error rate due to voltage scaling, Gaussian-filter can
output images of PSNR from 10dB (the lowest) to 50dB

Fig. 7. Gaussian-filter output with 6 error models, each image PSNR=20dB

(the highest), depending on which error model is applied;
when we assume we can only tolerate 30dB PSNR outputs
from timing errors due to voltage scaling, the Sobel-operator
can tolerate error rates from 0.0001 to 0.3. Since these
differences lead to great divergence in estimation of both
power savings and performance enhancements from voltage
scaling, the selection of error injection model is crucial for
correct analysis.

V. CONCLUSIONS

Allowing timing-induced errors to go uncorrected in floating
point applications relies on having accurate knowledge of the
application’s inherent error tolerance. The selection of the
error model is therefore critically important in evaluating the
behavior of such applications. In this paper, we presented
the Critical Bit error model, which can be derived from ar-
chitectural implementations of floating point arithmetic units,
and can be used to further explain prior work’s experimental
results. We believe this new model more accurately captures
erroneous output behavior compared to prior models.

For future work, we plan to synthesis the FP unit in
hardware in order to further verify the accuracy of our
Critical Bit error model. The hardware implementation may
also be extended to a pipelined unit to evaluate its affect on
timing errors. In addition, we intend to incorporate this error
model into a multi-core architectural-level simulator and use
it for managing voltage scaling in order to optimally trade
off power savings and accuracy of the application. More
specifically, for the system to have controlled approximate
behavior, error detection and correction mechanisms such
as [20], and [21] will be considered.

VI. ACKNOWLEDGEMENTS

This work is supported in part by NSF under Grants
CSR-1319095 and CSR-1519576. We are thankful to our
colleagues Andrea Marongiu, Maurice Herlihy, and Jiwon
Choe who provided expertise that greatly assisted the research.

REFERENCES

[1] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoffmann.
Using code perforation to improve performance, reduce energy con-
sumption, and respond to failures. Technical Report MIT-CSAIL-TR-
2009-042, MIT, Mar. 2009.

[2] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for floating-
point multimedia applications. IEEE Transactions on Computers,
54(7):922–927, July 2005.

[3] W. Baek and T. M. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. SIGPLAN Not.,
45(6):198–209, June 2010.

[4] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah, A. Raychowd-
hury, B. Geuskens, C. Tokunaga, C. Wilkerson, T. Karnik, and V. De.
A 45nm resilient microprocessor core for dynamic variation tolerance.
JSSC, 46(1):194–208, Jan 2011.

[5] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge. A self-tuning DVS processor using delay-error detection
and correction. IEEE JSSC, 41(4):792–804, April 2006.

[6] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull,
and D. Blaauw. RazorII: In situ error detection and correction for PVT
and SER tolerance. Solid-State Circuits, IEEE Journal of, 44(1):32–48,
Jan 2009.

[7] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architectural
framework for software recovery of hardware faults. In Proceedings of
the 37th Annual International Symposium on Computer Architecture,
ISCA ’10, pages 497–508, New York, NY, USA, 2010. ACM.

[8] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman,
J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. De, and S. Borkar.
Within-die variation-aware dynamic-voltage-frequency-scaling with op-
timal core allocation and thread hopping for the 80-core TeraFLOPS
processor. JSSC, 46(1):184–193, Jan 2011.

[9] M. Ercegovac and T.Lang. Digital Arithmetic. Morgan Kaufmann, 2003.
[10] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,

D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-
power pipeline based on circuit-level timing speculation. In IEEE/ACM
MICRO, pages 7–, 2003.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. SIGPLAN Not.,
47(4):301–312, Mar. 2012.

[12] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, and
D. Sylvester. Bubble Razor: Eliminating timing margins in an ARM
Cortex-M3 processor in 45 nm CMOS using architecturally independent
error detection and correction. Solid-State Circuits, IEEE Journal of,
48(1):66–81, Jan 2013.

[13] KissFFT API for ”keep it simple, stupid” fast fourier transform. https:
//sourceforge.net/projects/kissfft/.

[14] P. Krause and I. Polian. Adaptive voltage over-scaling for resilient ap-
plications. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, pages 1–6, March 2011.

[15] E. Krimer, P. Chiang, and M. Erez. Lane decoupling for improving the
timing-error resiliency of wide-SIMD architectures. SIGARCH Comput.
Archit. News, 40(3):237–248, June 2012.

[16] L. Leem, H. Cho, J. Bau, Q. Jacobson, and S. Mitra. ERSA: Error
resilient system architecture for probabilistic applications. In DATE,
pages 1560–1565, March 2010.

[17] K. Liu. Hardware error rate characterization with below-nominal supply
voltages. MS thesis, Northwestern University, 2012.

[18] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn. Flikker: Saving
DRAM refresh-power through critical data partitioning. SIGPLAN Not.,
46(3):213–224, Mar. 2011.

[19] OpenCV API for computer vision and machine learning, version 2.4.13.
http://www.opencv.org.

[20] D. Papagiannopoulou, A. Marongiu, T. Moreshet, L. Benini, M. Herlihy,
and I. Bahar. Playing with fire: Transactional memory revisited for error-
resilient and energy-efficient MPSoC execution. In Proceedings of the
25th Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15, pages
9–14, New York, NY, USA, 2015. ACM.

[21] D. Papagiannopoulou, A. Marongiu, T. Moreshet, M. Herlihy, and R. I.
Bahar. Edge-tm: Exploiting transactional memory for error tolerance and
energy efficiency. In Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2017 International Conference on, pages 1–19, July
2017.

[22] A. Rahimi, D. Cesarini, A. Marongiu, R. K. Gupta, and L. Benini.
Improving resilience to timing errors by exposing variability effects to
software in tightly-coupled processor clusters. JETCAS, 4(2):216–229,
2014.

[23] A. Rahimi, A. Marongiu, R. K. Gupta, and L. Benini. A variability-
aware openmp environment for efficient execution of accuracy-
configurable computation on shared-fpu processor clusters. In Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2013
International Conference on, pages 1–10, Sept 2013.

[24] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations
that discard tasks. In Proceedings of the 20th Annual International
Conference on Supercomputing, ICS ’06, pages 324–334, New York,
NY, USA, 2006. ACM.

[25] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, pages 164–174, New York, NY, USA, 2011. ACM.

[26] J. Sartori, J. Sloan, and R. Kumar. Stochastic computing: Embracing
errors in architecture and design of processors and applications. In
2011 Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), pages 135–
144, Oct 2011.

[27] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Ogrenci-
Memik, and S. Parthasarathy. b-HiVE: A bit-level history-based error
model with value correlation for voltage-scaled integer and floating point
units. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, June 2015.

[28] G. Varatkar and N. Shanbhag. Error-resilient motion estimation archi-
tecture. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 16(10):1399–1412, Oct 2008.

