
IgnoreTM: Opportunistically Ignoring Timing
Violations for Energy Savings using HTM

Dimitra Papagiannopoulou∗, Sungseob Whang†, Tali Moreshet‡, R. Iris Bahar†
∗Dept. of Electrical and Computer Engineering, University of Massachusetts, Lowell, MA 01854

†School of Engineering, Brown University, Providence, RI 02912
‡Dept. of Electrical and Computer Engineering, Boston University, Boston, MA 02215

Abstract—Energy consumption is the dominant factor in many
computing systems. Voltage scaling is a widely used technique to
lower energy consumption, which exploits supply voltage margins
to ensure reliable circuit operation. Aggressive voltage scaling will
slow signal propagation; without coherent frequency relaxation,
timing violations may be generated. Hardware Transactional
Memory (HTM) offers an error recovery mechanism that allows
reliable execution and power savings with modest overhead. We
propose IgnoreTM, an adaptive error management framework,
that tolerates (i.e., opportunistically ignores) timing violations,
allowing for more aggressive voltage scaling. Our experimental
results show that IgnoreTM allows up to 47% total energy savings
with negligible impact on runtime.

I. INTRODUCTION

Combining high performance with reduced energy con-
sumption remains critically important for computing systems
at all levels, from improving the battery life of embedded sys-
tems to reducing the power demands of servers. However, in
recent years, the rapid growth of information that needs to be
processed and the evolution of cloud computing, big-data, and
always-on connectivity have increased the computational de-
mands, making high performance along with energy efficient
computing a pressing challenge. At the same time, transistor
scaling has left devices more susceptible to the effects of static
and dynamic variability [2], making fault-free computation
more challenging. Maintaining fault-free operation without
adding considerable overheads on performance and energy is
difficult. Approximate computing has emerged as a promising
solution to these dilemmas for applications that can sustain
a slightly reduced accuracy for increases in performance
and energy efficiency. Examples include machine learning,
signal processing, image processing, scientific computing, data
mining and analysis.

This paper proposes IgnoreTM, a new framework for ap-
proximate computation. IgnoreTM provides a novel error
management scheme that utilizes aggressive voltage scaling
to improve energy efficiency. The key insight is that recovery
from critical errors, ones that cannot be tolerated, can be
facilitated by lightweight mechanisms adapted from hardware
transactional memory (HTM) [7]. We show that IgnoreTM
achieves up to 47% total energy savings without impacting
runtime. Moreover, it allows for an additional 13-18% energy
savings compared to existing voltage scaling techniques that
do not apply approximation but always correct timing errors,
while either improving or having a negligible impact on
runtime.

II. BACKGROUND

Various approximate computing techniques have been pro-
posed in literature. At the software level, early approaches
focused on coarse-grained tasks [5], [10], but came with a

high recovery cycle overhead, and lacked generality. Other
software approaches (e.g. Green [1], Paraprox [14]) propose
approximate programming models. Rahimi et al. [12] reuses
the result of an error-free instruction to spatially correct errant
instructions and thus avoid the high timing error recovery
overhead. Such software-based approaches focus on code
modifications for approximation, which is orthogonal to what
we are proposing.

At the hardware level, there have been proposals employing
voltage scaling for approximation [9], [16]. ISA extensions
are used in [15] and [6] to support approximate instructions
that are executed on approximate functional units and storage.
All above approaches require special approximate hardware
versions for the actual computation and are again orthogonal
to what we are proposing. Rather, in this paper we propose an
opportunistic way of dealing with errors that arise at runtime
such that some errors may pass through without the need
to waste runtime and energy to correct them. The hardware
implementation itself remains exact; however, error recovery,
when needed, is handled through our HTM-based scheme.

Other works borrow the recovery mechanism from trans-
actional memory to manage runtime errors, but do not pro-
pose solutions that target energy savings ([17]-[20]). In addi-
tion, [11] proposes a HTM technique for error recovery from
timing errors, but does not consider approximation by ignoring
timing errors. By contrast, our goal is to provide a detailed
HTM-based implementation for approximate execution that
specifically targets energy savings.

III. ARCHITECTURE
A. Target Platform

Our target architecture is based on PULP (Parallel Ultra
Low Power platform), a scalable computing platform that
leverages tightly-coupled shared-memory clusters as a main
building block [13]. Each cluster features multiple cores
(Processing Elements, PEs) that share a single instruction
cache (I$ ). The cores do not have private data caches; they
all share a multi-banked tightly coupled data memory (TCDM)
configured as a shared data scratchpad. Each core is composed
of the main data path that handles all fixed point instructions
and a Floating Point Unit (FPU) that handles floating point
operations. The main data path and the FPU are decoupled
and have separate voltage islands, so their voltage can be
adjusted independently. Each PE has a its own private FPU.
Intra-cluster communication is based on a high bandwidth low-
latency interconnect, implementing a word-level interleaving
scheme to reduce access contention to the TCDM.
B. HTM Infrastructure

An underlying runtime system (RTS) transparently manages
the transactions with a core-level policy that optimistically



lowers the voltage in small steps. A snapshot of the system
state is taken before each transaction is started so that if the al-
lowed error threshold is exceeded during transaction execution,
this safe state can be restored. For timing error detection, we
assume that each core is equipped with runtime error-detection
circuitry, such as error-detection sequential (EDS) [3]. We
handle these timing errors at the granularity of a transaction.
If the acceptable error threshold is exceeded while executing
a transaction, the system aborts that transaction, takes the
required countermeasures in terms of voltage settings, and
restarts the transaction.

Our HTM design is based on two key components: (1) a
check-pointing and rollback mechanism to recover from errors
and retry aborted transactions when necessary and (2) a data
versioning technique to keep track of original data versions to
recover them when needed.

a) Checkpointing and Rollback: We enclose within a
transaction each program block containing instructions to be
monitored for timing errors, thereby protecting all sections of
a program where voltage scaling will be applied, regardless
of whether it will be approximated or not. At the beginning
of each transaction, we save the core’s internal state. If
the error threshold is not exceeded, the transaction commits,
the checkpoint is discarded, and speculative changes to the
data become permanent. If the error threshold is exceeded,
the transaction aborts, and a rollback mechanism restores
the internal core state. In addition, data are restored to their
original values and speculative copies are discarded.

b) Data Versioning: We use a distributed logging scheme
to enable data versioning [11]. Logs are distributed among the
TCDM banks and each bank keeps a fixed-size log space for
each core in the system. Note that only the first time an address
is written does its original value need to be saved in the log,
so the log size is quite modest. The log saving and restoration
process is done independently at each memory bank and does
not require interaction with other banks, which makes it very
fast and efficient.

IV. IMPLEMENTATION

Next, we describe IgnoreTM, an approximation-aware error
management Dynamic Voltage Scaling (DVS) policy built on
top of the above HTM infrastructure, which opportunistically
ignores errors as a result of timing violations in order to save
energy. Our approach works by allowing a certain rate of errors
to be left uncorrected and aborting only when the acceptable
error threshold has been reached.

For a DVS policy to be able to approximate instructions by
ignoring timing errors, first it is necessary to consider which
instructions can be approximated. We place instructions into
two categories: ”approximatable” and ”non-approximatable”.
For our experiments, we define approximatable instructions as
floating point add, multiply, copy, negate (but not load/store,
CPU to/from FPU register moves), and non-approximatable in-
structions as any other instructions that if approximated would
result in significant loss in output quality, hence they must be
kept accurate. In general, users may annotate approximatable
instructions. We use HTM transaction boundaries over all parts
of the program. The program regions that are not approximated
must have HTM protection so that if a timing violation
occurs there, the HTM support mechanism can correct it. The
instructions that are annotated as approximatable and cause

Fig. 1: Flow diagrams showing voltage adjustment policy on
commit (top) and adjustment for timing violations (bottom).

timing violations are potentially ignored and left uncorrected.
But, if the error threshold tolerance is exceeded, recovery and
voltage level adjustment is possible.

Voltage adjustments are determined based on the number
of completed transactions between aborts, i.e., the number
of consecutive commits. In our IgnoreTM policy, we take
into account the frequency of a timing violation during a
transaction that has to be corrected, and its effect on the
total system energy consumption (analyzed in Section V-B).
When the frequency of a timing violation is too high (thus
increasing the number of aborts and total energy consumption),
we increase our operating voltage in order to save energy
by lowering the abort rate. The IgnoreTM policy balances
ignoring timing violations, correcting timing violations, and
changing voltage levels to optimize energy savings while
maintaining acceptable program output accuracy.

Fig. 1 shows the execution flow of our proposed policy. The
supply voltage is gradually scaled down in steps until errors
start to occur. A non-approximate policy would immediately
abort the ongoing transaction where the error occurred and
would re-execute it at a higher voltage, in order to correct it.
Instead, IgnoreTM does not abort the ongoing transaction, but
ignores the error if it has occurred within an approximatable
instruction. A transaction is aborted only if i) the error
occurred in a non-approximatable instruction, or ii) the error
occurred in an approximatable instruction consecutively for a
number of times exceeding a certain threshold. We call this
the error threshold E, or the maximum number of ignored
timing errors in a single run of a transaction.

The policy makes decisions on voltage adjustment on two
occasions, i) when a transaction successfully commits, and ii)
when a transaction aborts, before it is re-executed. A voltage
adjustment decision is based on the number of consecutive



commits that are experienced. We set two thresholds for
consecutive commits, Chigh and Clow, which are the decision
factors for decreasing or increasing the voltage, respectively.
The Chigh threshold determines how many consecutive com-
mits are necessary in order to safely scale down the operating
voltage by one step. The Clow threshold determines how
many consecutive commits must at least happen between two
aborts. If the Clow threshold is not reached, then the policy
realizes that the current operating voltage is dangerous and
increases the voltage by one step. The choice of Chigh and
Clow threshold values is discussed in Section V-B.

The error threshold E (i.e., the maximum number of ignored
timing errors in a single run of a transaction), determines
the level of approximation the transaction will tolerate. Since
every benchmark and every use case can have different error
thresholds, we implement E as a user input: a parameter set by
a specially encoded instruction. The user can set a threshold
for the number of ignored timing errors per each transaction.
While running each transaction, IgnoreTM will accumulate the
number of ignored timing errors, and abort to retry when the
threshold E is crossed. We assume that compilers never mark
system calls as approximatable, so any timing violation in a
system call will be caught and reverted via the HTM recovery
mechanism explained below. The E threshold value choice is
based on the target output quality and is discussed in detail in
Section V-B.

V. RESULTS

A. Experimental Setup

We use a cycle-level SystemC simulator of the PULP
architecture described in Section III. To isolate the benefits
of IgnoreTM, we run all experiments with one processor core
since all cores operate independently from each other with
regards to our policy, and as we will see, the total possible
energy savings are heavily dependent on the benchmark we
are running. We target the processor, including its paired
Floating Point Unit (FPU), to be voltage-scaled. The main
data path and the FPU in each processor are decoupled and
have different voltage islands, hence their voltage can be
scaled independently. This allows for more aggressive voltage
scaling in the FPU, where approximations are applied. We
use a voltage scaling step of 20 mV, which is in line with
modern voltage regulators [23]. The dynamic and static power
consumption of each module is characterized by extrapolation
from an implementation of the platform in STMicroelectron-
ics 28nm UTB FD-SOI technology under operating points
considered in our experiments, and back-annotated in the
simulator. Timing errors are generated on a cycle-basis, with
exponentially increasing probability as voltage is scaled down.
That is, for every step reduction in voltage (20mV), the error
rate is increased by 10X. Specific behavior of FPUs under
timing violations is implemented using the FPU error model
proposed in [21]. Support for error correction is done through
the HTM infrastructure (as described in Section III-B). As
benchmarks, we consider floating point implementations of
Gaussian Filter [4], Fast Fourier Transform (FFT) [22] and
Matrix Multiplication [8]. We analyze their energy savings,
runtime overhead, and quality of output loss from various DVS
policies. For Gaussian Filter and Matrix Multiplication, we
define quality of output as the Peak Signal to Noise Ratio

(PSNR). For FFT, we define quality of output as the Average
Relative Error (ARE).

To evaluate the capability of our approximation-aware Ig-
noreTM policy to save energy and improve performance, we
compare it to two existing error-management policies that are
also based on HTM but do not apply approximations and
instead correct all occurring errors. These are the Point of First
Failure (POFF) and Thrifty Uncle/Reckless Nephew (TURN)
policies proposed in [11]. The POFF policy is a pessimistic
approach where the supply voltage is gradually scaled down
until the first failure occurs, in which case the voltage is imme-
diately scaled up a step. Hence, with POFF any detected timing
error results in the ongoing transaction being immediately
aborted and re-executed after the voltage is increased. The
Thrifty Uncle-Reckless Nephew or TURN policy optimistically
scales the voltage beyond the point of first failure with the goal
of achieving better energy savings. If a number of consecutive
successful commits is reached, the voltage is scaled down
further. However, if the number of aborts exceeds a certain
threshold, the voltage is increased again to avoid further errors
and wasted energy due to excessive re-execution.

B. Tuning Error Threshold and Commit Parameters
Here we discuss how we tune the Error Threshold E and the

Commit Parameters, Chigh and Clow that were introduced in
Section IV. We set Chigh to 100 and Clow to 10. This choice
was based on an empirical analysis in which this setup yielded
the best energy savings. As discussed in Section IV, E is a
user-determined threshold of how many timing violations and
approximations each transaction can tolerate. We performed
a set of experiments for all benchmarks to characterize how
E correlates with the output accuracy in each case and
extract the value of E that yields this level of accuracy. The
accuracy ranges and the average E values to which they
corresponded are summarized in Table I. Depending on the
application, different levels of accuracy might be acceptable.
Elow, Emedium and Ehigh correspond to low, medium and
high level of accuracy respectively. We next use these values
in our experiments to see how IgnoreTM performs in terms of
energy and runtime compared to POFF and TURN.

C. Overhead, Runtime and Energy Consumption
The area overhead of the error detection and the HTM-

based error correction hardware is small. The EDS circuitry
is known to introduce low area overhead (≈ 2.2%) to each
core [3], which overall results in less than 1% area overhead
for the whole cluster level. The bulk of the hardware overhead
is therefore due to the data versioning scheme (i.e., logging),
which accounts for a 2.65% area overhead. The runtime
overhead introduced by HTM is also very small (1.1% to 1.8%
relative to no voltage scaling).

We carried out a set of experiments to see how IgnoreTM
performs in terms of energy consumption and runtime com-
pared to POFF and TURN policies for different levels of
target accuracy. In Figure 2 we show the runtime and energy
consumption results for our simulations, all compared to the
more conservative POFF policy. Specifically, in Figure 2(a)
we see that with IgnoreTM the runtime improves over the
TURN policy for all benchmarks and all levels of accuracy. We
observe on average 7% improvement in runtime for Gaussian
and FFT and 4% for Matrix Multiplication. This improvement



Gaussian Filter Elow = 1 , PSNR = 33.6 dB Emedium = 5 , PSNR = 23.4 dB Ehigh = 255 , PSNR = 8.7 dB
FFT Elow = 1 , ARE = 0.088 % Emedium = 5 , ARE = 0.77 % Ehigh = 25 , ARE = 9.53 %
Matrix Multiplication Elow = 1 , PSNR = 75.6 dB Emedium = 10 , PSNR = 63.7 dB Ehigh = 25 , PSNR = 59.4 dB

TABLE I: Error threshold E and output accuracy correlation.

Fig. 2: (a) Runtime, (b) FPU and (c) System Energy Consumption for different DVS policies (results shown relative to POFF).

is due to our new policy of opportunistically ignoring timing
errors in approximate regions while for TURN errors are
always being corrected, thus wasting time for transaction
recovery and re-execution. The POFF policy shows slightly
better runtime than IgnoreTM since it operates at a safer
voltage level just above the edge of failure, hence it does not
encounter timing errors; however the difference is negligible
(1-2%). Also, while not shown in the figure, note that our
IgnoreTM policy has negligible impact on runtime compared
to a baseline configuration that never applies voltage scaling
(and thereby never encounters timing errors).

Figure 2(b) shows the energy consumption of the FPU for
TURN, POFF and IgnoreTM policies. The FPU is where
approximations are applied in IgnoreTM, so this is where
we expect the most significant energy savings. Indeed, we
observe that compared to POFF, IgnoreTM improves energy
consumption by 30%-58% for Gaussian, 29%-44% for FFT
and 33%-52% for Matrix Multiplication. The energy savings
of IgnoreTM over TURN range between 8%-45% for Gaus-
sian, 9%-29% for FFT and 4%-32% for Matrix Multiplication.
Comparing IgnoreTM with a baseline policy that never applies
voltage scaling, the respective savings are 66%-80% for Gaus-
sian, 65%-72% for FFT and 71%-80% for Matrix Multiplica-
tion (not shown in the figure). As expected, IgnoreTM achieves
significant energy savings where approximations are applied
and these savings depend heavily on the target accuracy level.
We get better energy savings as we increase the error threshold
E from low to high, hence decreasing the level of accuracy.
The overall system energy, including system components that
are not voltage scaled, follows similar trends (Figure 2(c)).
As expected, when looking into the total system energy that
includes components that operate at 100% accuracy, the energy
savings diminish compared to the FPU savings; however, they
are still significant. IgnoreTM yields energy savings up to 18%
over POFF and up to 13% over TURN. Compared to a baseline
policy which does not apply voltage scaling, IgnoreTM yields
system energy savings up to 47%.

VI. CONCLUSIONS
In this paper, we propose IgnoreTM, an adaptive error

management scheme that allows bounded approximate com-
putation through aggressive voltage scaling, using a HTM-
based infrastructure to recover from errors when necessary.
Our results show that IgnoreTM can yield up to 47% system
energy savings while incurring only a 1% overhead in runtime

compared to no voltage scaling. Moreover, it yields up to 18%
additional system energy savings compared to other prominent
voltage scaling policies that exist in literature due to its ability
to opportunistically ignore some timing errors.

REFERENCES
[1] W. Baek and T. Chilimbi. Green: A Framework for Supporting Energy-

conscious Programming Using Controlled Approximation. SIGPLAN
Not. 2010.

[2] S. Borkar, et al., Parameter variations and impact on circuits and
microarchitecture. DAC 2003.

[3] K. Bowman, et al., A 45nm resilient microprocessor core for dynamic
variation tolerance. JSSC 2011.

[4] G. Bradski, et al., The OpenCV Library. Dr. Dobb’s Journal of Software
Tools 2000.

[5] S. Dighe, et al., Within-die variation-aware dynamic-voltage-frequency-
scaling with optimal core allocation and thread hopping for the 80-core
teraflops processor. JSSC 2011.

[6] H. Esmaeilzadeh, et al., Architecture Support for Disciplined Approxi-
mate Programming. SIGPLAN Not. 2012.

[7] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
support for lock-free data structures. ISCA 1993.

[8] S. Hong, et al., Eigenbench: A simple exploration tool for orthogonal
TM characteristics. IISWC 2010.

[9] P. K. Krause, et al., Adaptive voltage over-scaling for resilient applica-
tions. DATE 2011.

[10] L. Leem, et al., ERSA: Error resilient system architecture for proba-
bilistic applications. In DATE, March 2010.

[11] D. Papagiannopoulou, et al., Edge-TM: Exploiting Transactional Mem-
ory for Error Tolerance and Energy Efficiency. TECS 2017.

[12] A. Rahimi, et al., Spatial Memoization: Concurrent Instruction Reuse to
Correct Timing Errors in SIMD Architectures. TCAS-II 2013.

[13] D. Rossi, et al., PULP: A parallel ultra low power platform for next
generation IoT applications. HCS 2015.

[14] M. Samadi, et al., PARAPROX: Pattern-based Approximation for Data
Parallel Applications. ASPLOS 2014.

[15] A. Sampson, et al., EnerJ: Approximate Data Types for Safe and General
Low-power Computation. PLDI 2011.

[16] G. V. Varatkar, et al., Error-Resilient Motion Estimation Architecture.
TVLSI 2008.

[17] H. Q. Le, et al., Transactional Memory support in the IBM POWER8
processor. IBM Journal of Research and Development 2015.

[18] J.-T. Wamhoff, et al., Transactional encoding for tolerating transient
hardware errors. SSS, volume 8255 of LNCS 2013.

[19] G. Yalcin, et al., Fault tolerance for multi-threaded applications by
leveraging hardware transactional memory. Computing Frontiers 2013.

[20] G. Yalcin, et al., Combining error detection and transactional memory
for energy-efficient computing below safe operation margins. PDP 2014.

[21] S. Whang, et al., Evaluating Critical Bits in Arithmetic Operations due
to Timing Violations. HPEC 2017.

[22] A. Yazdanbakhsh, et al., AxBench: A Multiplatform Benchmark Suite
for Approximate Computing. IEEE Design & Test 2017.

[23] Intel Corporation, Voltage Regulator Module and Enterprise Voltage
Regulator-Down 11.1. http://www.intel.com/Assets/en US/PDF/design-
guide/321736.pdf 2009.


