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NUMA

➔ Interconnect is growing most slowly of all interfaces

➔ Critical bottleneck on large systems 

➔ Classic NUMA programming :

 Avoid cold & capacity misses served from remote node

 Concern : home node of memory vs node of thread 
accessing that memory
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NUMA

➔ Our concern : contended locks

 Coherence misses & communication 

 Minimize cache-to-cache coherence transfers

 Location of thread accessing a line 
● Caches that have that line & states 
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Background : cohort locks

➔ Non-FIFO : trade short-term fairness for aggregate 
throughput

➔ [PPoPP 2012]
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Reader-Writer Locks
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Reader-Writer Locks
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Reader-Writer Locks

➔ Maximize size of R-groups

➔ Minimize R-W alternation

➔ Used in : databases, operating systems, STM

➔ Alternative roles : Stop-the-world Garbage collection 
 “read” confers RW access to heap
 “write” confers ability of collector to move 
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Admission Policy - Variations

➔ Include Read/Write in scheduling decision 

➔ Reader-preference
  

➔ Writer-preference

➔ FIFO : R-groups form from ambient order 
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Thread placement:
   Node 0 : w1, w2, w3, r1, r2, r3
   Node 1 : w4, w5, w6, r4, r5, r6
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Problems with existing RW locks

➔ Path length
 Longer relative to a mutex

➔ Lock meta-data accesses 
 Centralized : NUMA-oblivious
 Coherency communication costs

➔ Simple mutex often yields better results
 For relatively short critical sections
 Despite lack of R-R parallelism

➔ RW lock : benefits of R-R parallelism don't overcome 
additional overhead
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Our design

➔ Trade short-term fairness for throughput
 Similar to Cohort Locks

➔ Presume reads dominate
 Shift burden of work from reader lock path to writer path
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Our design: Writers

➔ Single centralized write lock (WL)
 Abstraction : Lock;  Unlock;  IsLocked
 W-vs-W conflicts
 Best implementation
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Our design: Readers

➔ Reader indicators (RI)

 Publish intent to read to writers

 Abstraction : Arrive; Depart; IsZero

 Conceptually : counter
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Reader Indicators

➔ Global counter 
 Atomic increment and decrement
 OK uniprocessor, horrible on NUMA

➔ SNZI

16

NUMA node 0 NUMA node 1



Copyright © 2013, Oracle and/or its affiliates.  All rights reserved.

Reader Indicators

➔ Per-node distributed counters :
 Local writes only 

➔ Per-node pairs : ingress and egress fields
 Arrive : increment ingress
 Depart : increment egress
 Reduces intra-node fetch-and-add contention
 Preferred implementation
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Our design: Readers and Writers

➔ IsLocked and IsZero :

 Detect and resolve R-vs-W conflicts
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Reader:
   start:
       RI.Arrive()
       // Check for writers
       if WL.isLocked():
           RI.Depart()
           while WL.isLocked(): 

     Pause()
goto start

<read-critical-section>
  RI.Depart()

Writer: 
    WL.Acquire() 
    // Check for readers
    while not RI.isZero():
           Pause()
   <write-critical-section>
   WL.release()
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Impatience (I)

➔ Adaptive RP-WP policy

➔ Start with writer-preference lock – C-RW-WP

➔ Writers acquire WL and wait for RI to reach 0

➔ Readers increment RI and check WL
 If locked, decrement and defer to writers
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Impatience (II)

➔ Readers initially patient but can become impatient 
 block inflow of newly arriving writers – erect barrier
 avoids reader starvation

➔ Bounded bypass : writers can bypass patient readers
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Impatience (III)

➔ Effectively : toggling preference policy to avoid starvation

➔ Promotes large R-groups

➔ Long chains of writers leverage cohort locks

➔ Adaptive admission policy
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98% reads, 2% writes

Better
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Observations

➔ Distributed RIs beat SNZI
 Flat array of RI better, at least for 4 or 8 node systems
 SNZI expected to win at some N

➔ NUMA-like behavior on-chip 
 Core-local L2 caches
 Treat each core as if a NUMA node

➔ Fixed thread roles vs variable
 Variable : models use of thread pools
 Fixed : our lock family still yields best results
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Summary (I)

➔ Family NUMA-friendly RW locks

➔ Trivial to substitute RI or WL implementations

➔ High aggregate throughput

➔ Fair over long-term for : threads; R/W roles; NUMA nodes
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Summary (II)

➔ Long critical sections
 Quality of scheduling is critical
 R-group formation

➔ Short critical sections
 Lock overheads can dominate
 Consider a NUMA-friendly mutex

➔ Fixed preference policies can be problematic
 Adaptive to avoid starvation
 Non-preferred role can become impatient
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Thank you!

➔ http://cs.brown.edu/~irina

➔ http://blogs.oracle.com/dave

 

http://cs.brown.edu/~irina
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98% reads, 2% writes
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