
NUMA-Aware Reader-Writer Locks
PPoPP 2013

Irina Calciu
Brown University

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Authors

➔ Irina Calciu @ Brown University
➔ Dave Dice
➔ Yossi Lev
➔ Victor Luchangco
➔ Virendra J. Marathe
➔ Nir Shavit @ MIT

2

Shared Bus - interconnect

Chip (node) Cores

w1 w2

r2 r1 w3

r3

Threads

r4 r6

w5w4 w6 r5

L1 L1

L1L1 L1 L1

L1L1

L2 L2

Typical NUMA system

Local DRAMLocal DRAM Local DRAM

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

NUMA

➔ Interconnect is growing most slowly of all interfaces

➔ Critical bottleneck on large systems

➔ Classic NUMA programming :

 Avoid cold & capacity misses served from remote node

 Concern : home node of memory vs node of thread
accessing that memory

4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

NUMA

➔ Our concern : contended locks

 Coherence misses & communication

 Minimize cache-to-cache coherence transfers

 Location of thread accessing a line
● Caches that have that line & states

5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Background : cohort locks

➔ Non-FIFO : trade short-term fairness for aggregate
throughput

➔ [PPoPP 2012]

6

NUMA node 0

Thread 0Thread 1Thread 5Thread 8

Thread 9Thread 12Thread 13

NUMA node 1

Thread 2Thread 3Thread 4Thread 6

Thread 7
Thread 10

Thread 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Reader-Writer Locks

7

Write Mode

Critical Section

W

W

W

R

R

R

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Reader-Writer Locks

8

Read Mode

Critical Section

W

W

W

R

R
R

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Reader-Writer Locks

➔ Maximize size of R-groups

➔ Minimize R-W alternation

➔ Used in : databases, operating systems, STM

➔ Alternative roles : Stop-the-world Garbage collection
 “read” confers RW access to heap
 “write” confers ability of collector to move

9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Admission Policy - Variations

➔ Include Read/Write in scheduling decision

➔ Reader-preference

➔ Writer-preference

➔ FIFO : R-groups form from ambient order

10

#t
hr

ea
ds

 in
 C

S

Time

r3w1 w4 r4 r1 r6

(a) Naïve reader-writer lock schedule

#t
hr

ea
ds

 in
 C

S

(b) Lock schedule with aggressive reader batching

#t
hr

ea
ds

 in
 C

S

(c) Lock schedule with aggressive reader and writer batching

r5r2

w1

w1 w2 r3 w4w3 w6 w5
r2
r4
r1
r6
r5

r3
r2
r4
r1
r6
r5

w2 w5 w3 w6

w4 w2 w5 w3 w6

Thread placement:
 Node 0 : w1, w2, w3, r1, r2, r3
 Node 1 : w4, w5, w6, r4, r5, r6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Problems with existing RW locks

➔ Path length
 Longer relative to a mutex

➔ Lock meta-data accesses
 Centralized : NUMA-oblivious
 Coherency communication costs

➔ Simple mutex often yields better results
 For relatively short critical sections
 Despite lack of R-R parallelism

➔ RW lock : benefits of R-R parallelism don't overcome
additional overhead

12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Our design

➔ Trade short-term fairness for throughput
 Similar to Cohort Locks

➔ Presume reads dominate
 Shift burden of work from reader lock path to writer path

13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Our design: Writers

➔ Single centralized write lock (WL)
 Abstraction : Lock; Unlock; IsLocked
 W-vs-W conflicts
 Best implementation

14

NUMA node 0

Thread 0Thread 1Thread 5Thread 8

Thread 9Thread 12Thread 13

NUMA node 1

Thread 2Thread 3Thread 4Thread 6

Thread 7
Thread 10

Thread 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Our design: Readers

➔ Reader indicators (RI)

 Publish intent to read to writers

 Abstraction : Arrive; Depart; IsZero

 Conceptually : counter

15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Reader Indicators

➔ Global counter
 Atomic increment and decrement
 OK uniprocessor, horrible on NUMA

➔ SNZI

16

NUMA node 0 NUMA node 1

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Reader Indicators

➔ Per-node distributed counters :
 Local writes only

➔ Per-node pairs : ingress and egress fields
 Arrive : increment ingress
 Depart : increment egress
 Reduces intra-node fetch-and-add contention
 Preferred implementation

17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Our design: Readers and Writers

➔ IsLocked and IsZero :

 Detect and resolve R-vs-W conflicts

18

Reader:
 start:
 RI.Arrive()
 // Check for writers
 if WL.isLocked():
 RI.Depart()
 while WL.isLocked():

 Pause()
goto start

<read-critical-section>
 RI.Depart()

Writer:
 WL.Acquire()
 // Check for readers
 while not RI.isZero():
 Pause()
 <write-critical-section>
 WL.release()

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Impatience (I)

➔ Adaptive RP-WP policy

➔ Start with writer-preference lock – C-RW-WP

➔ Writers acquire WL and wait for RI to reach 0

➔ Readers increment RI and check WL
 If locked, decrement and defer to writers

19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Impatience (II)

➔ Readers initially patient but can become impatient
 block inflow of newly arriving writers – erect barrier
 avoids reader starvation

➔ Bounded bypass : writers can bypass patient readers

20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Impatience (III)

➔ Effectively : toggling preference policy to avoid starvation

➔ Promotes large R-groups

➔ Long chains of writers leverage cohort locks

➔ Adaptive admission policy

21

98% reads, 2% writes

Better

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Observations

➔ Distributed RIs beat SNZI
 Flat array of RI better, at least for 4 or 8 node systems
 SNZI expected to win at some N

➔ NUMA-like behavior on-chip
 Core-local L2 caches
 Treat each core as if a NUMA node

➔ Fixed thread roles vs variable
 Variable : models use of thread pools
 Fixed : our lock family still yields best results

23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary (I)

➔ Family NUMA-friendly RW locks

➔ Trivial to substitute RI or WL implementations

➔ High aggregate throughput

➔ Fair over long-term for : threads; R/W roles; NUMA nodes

24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary (II)

➔ Long critical sections
 Quality of scheduling is critical
 R-group formation

➔ Short critical sections
 Lock overheads can dominate
 Consider a NUMA-friendly mutex

➔ Fixed preference policies can be problematic
 Adaptive to avoid starvation
 Non-preferred role can become impatient

25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Thank you!

➔ http://cs.brown.edu/~irina

➔ http://blogs.oracle.com/dave

http://cs.brown.edu/~irina
http://blogs.oracle.com/dave

98% reads, 2% writes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

