
NUMA-Friendly Stack
(using Delegation and Elimination)

Irina Calciu

 Justin Gottschlich

Maurice Herlihy

HotPar ‘13

1

Trends for Future Architectures

2

Uniform Memory Access (UMA)

3

Non-Uniform Memory Access (NUMA)

(interconnect)

NUMA NODE (multiple cores, shared
Last Level Cache)

NUMA NODE (multiple cores, shared
Last Level Cache)

NUMA NODE (multiple cores, shared
Last Level Cache)

NUMA NODE (multiple cores, shared
Last Level Cache)

Cache coherency maintained between caches on different NUMA nodes

4

Overview

• Motivation

• Algorithms

• Results

• Conclusions

5

Delegation

NUMA node 0 NUMA node 1

Clients Clients

SEQ STACK

Server

6

Delegation

NUMA node 0 NUMA node 1

Server

Client 5

Client 6

Client 7

Client 8

Slots
Client 1
Client 2

Client 3
Client 4

Slots

Loops through
all slots

SEQ STACK

7

Elimination, Rendezvous

8

Local Rendezvous

NUMA node 0 NUMA node 1

STACK

9

Delegation + Elimination

NUMA node 0 NUMA node 1

Clients Clients

SEQ STACK

Server

10

Delegation + LOCAL Elimination

NUMA node 0 NUMA node 1

Clients

Clients

SEQ STACK

Server

11

Effect of Elimination

Throughput (Better)

50% push 50% pop

90% push 10% pop

12

Effect of Delegation

Throughput (Better)

50% push 50% pop

90% push 10% pop

13

Number of Slots

Throughput (Better)

50% push 50% pop

90% push 10% pop

14

Workloads: Balanced vs. Unbalanced

Throughput (Better)

50% push 50% pop

70% push 30% pop

15

Advantages

• Memory and cache locality

• Reduced bus traffic

• Increased parallelism through elimination

16

Drawbacks

• Communication cost between clients and
server thread

o Insignificant compared to the benefits

• Serializing otherwise parallel data structures

o Parallelism through elimination

• Elimination opportunities decrease as
workload more unbalanced

17

Open Questions

• Are there other data structures where we can use
delegation and elimination?

• Are there data structures where direct access is
much better?

• What can we do for those data structures?

18

Thank you! Questions?

19

References

• A Scalable Lock-free Stack Algorithm

http://www.inf.ufsc.br/~dovicchi/pos-ed/pos/artigos/p206-
hendler.pdf

• Flat Combining and the Synchronization-Parallelism Tradeoff

http://www.cs.bgu.ac.il/~hendlerd/papers/flat-combining.pdf

• Fast and Scalable Rendezvousing

http://www.cs.tau.ac.il/~afek/rendezvous.pdf

20

http://www.inf.ufsc.br/~dovicchi/pos-ed/pos/artigos/p206-hendler.pdf
http://www.inf.ufsc.br/~dovicchi/pos-ed/pos/artigos/p206-hendler.pdf
http://www.inf.ufsc.br/~dovicchi/pos-ed/pos/artigos/p206-hendler.pdf
http://www.inf.ufsc.br/~dovicchi/pos-ed/pos/artigos/p206-hendler.pdf
http://www.inf.ufsc.br/~dovicchi/pos-ed/pos/artigos/p206-hendler.pdf

Cache to Cache Traffic

Better

21

Coefficient of Variation

Better

22

Flat Combining

23

Delegation

CLIENT

Find corresponding slot
 (by NUMA node and cpuid)

 Post message
 Wait for response

 Get response

SERVER

Loop through all slots:
 If slot has message:

 Take message
 Process message
 Send response

Time

24

Delegation

CLIENT

Find corresponding slot
 (by NUMA node and cpuid)
try_elimination:
if (eliminate) return

 Post message
 Wait for response

 Get response

else try_elimination

SERVER

Loop through all slots:
 If slot has message:

 Take message
 Process message
 Send response

Time

25

Delegation

CLIENT

Find corresponding slot
 (by NUMA node and cpuid)
try_elimination:
if (eliminate) return
if (Acquire slot lock)
 Post message
 Wait for response

 Get response
 Release slot lock
else try_elimination

SERVER

Loop through all slots:
 If slot has message:

 Take message
 Process message
 Send response

Time

26

Open Questions

• Performance

• Scalability

• Power

27

