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Trends for Future Architectures 
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Uniform Memory Access (UMA) 
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Non-Uniform Memory Access (NUMA) 

(interconnect) 

NUMA NODE (multiple cores, shared 
Last Level Cache) 

NUMA NODE (multiple cores, shared 
Last Level Cache) 

NUMA NODE (multiple cores, shared 
Last Level Cache) 

NUMA NODE (multiple cores, shared 
Last Level Cache) 

Cache coherency maintained between caches on different NUMA nodes 
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Overview 

• Motivation 

 

• Algorithms 

 

• Results 

 

• Conclusions 
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Delegation 

NUMA node 0 NUMA node 1 

Clients Clients 

SEQ STACK 

Server 
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Delegation 
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Slots 
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Client 2 

Client 3 
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Slots 

Loops through  
all slots 
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Elimination, Rendezvous 
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Local Rendezvous 

NUMA node 0 NUMA node 1 

STACK 
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Delegation + Elimination 

NUMA node 0 NUMA node 1 

Clients Clients 

SEQ STACK 

Server 
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Delegation + LOCAL Elimination 

NUMA node 0 NUMA node 1 

Clients 

Clients 

SEQ STACK 

Server 
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Effect of Elimination 

Throughput (Better) 

50% push 50% pop 

90% push 10% pop 
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Effect of Delegation 

Throughput (Better) 

50% push 50% pop 

90% push 10% pop 
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Number of Slots 

Throughput (Better) 

50% push 50% pop 

90% push 10% pop 
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Workloads: Balanced vs. Unbalanced 

Throughput (Better) 

50% push 50% pop 

70% push 30% pop 
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Advantages 

• Memory and cache locality 

 

• Reduced bus traffic 

 

• Increased parallelism through elimination 
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Drawbacks 

• Communication cost between clients and 
server thread  

o Insignificant compared to the benefits 
 

• Serializing otherwise parallel data structures 

o Parallelism through elimination 
 

• Elimination opportunities decrease as 
workload more unbalanced 
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Open Questions 

• Are there other data structures where we can use 
delegation and elimination? 

 

• Are there data structures where direct access is 
much better? 

 

• What can we do for those data structures? 
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Thank you!           Questions? 
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Cache to Cache Traffic 

Better 
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Coefficient of Variation 

Better 
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Flat Combining 
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Delegation 

CLIENT 
 
Find corresponding slot 
      (by NUMA node and cpuid) 
 
 
 
  Post message 
  Wait for response 
 
 
 
  Get response 
 
 

SERVER 
 
Loop through all slots: 
     If slot has message: 
          
 
 
 
 

 Take message 
          Process message 
          Send response 

Time 
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Delegation 

CLIENT 
 
Find corresponding slot 
      (by NUMA node and cpuid) 
try_elimination: 
if (eliminate) return 
 
  Post message 
  Wait for response 
 
 
 
  Get response 
 
else try_elimination 
 
 

SERVER 
 
Loop through all slots: 
     If slot has message: 
          
 
 
 
 

 Take message 
          Process message 
          Send response 

Time 
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Delegation 

CLIENT 
 
Find corresponding slot 
      (by NUMA node and cpuid) 
try_elimination: 
if (eliminate) return 
if (Acquire slot lock) 
  Post message 
  Wait for response 
 
 
 
  Get response 
  Release slot lock 
else try_elimination 
 
 

SERVER 
 
Loop through all slots: 
     If slot has message: 
          
 
 
 
 

 Take message 
          Process message 
          Send response 

Time 
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Open Questions 

• Performance 

 

• Scalability 

 

• Power 
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