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ABSTRACT
The Intel Haswell processor includes restricted transactional
memory (RTM), which is the first commodity-based hard-
ware transactional memory (HTM) to become publicly avail-
able. However, like other real HTMs, such as IBM’s Blue
Gene/Q, Haswell’s RTM is best-effort, meaning it provides
no transactional forward progress guarantees. Because of
this, a software fallback system must be used in conjunction
with Haswell’s RTM to ensure transactional programs ex-
ecute to completion. To complicate matters, Haswell does
not provide escape actions. Without escape actions, non-
transactional instructions cannot be executed within the
context of a hardware transaction, thereby restricting the
ways in which a software fallback can interact with the
HTM. As such, the challenge of creating a scalable hybrid
TM (HyTM) that uses Haswell’s RTM and a software TM
(STM) fallback is exacerbated.

In this paper, we present Invyswell, a novel HyTM that ex-
ploits the benefits and manages the limitations of Haswell’s
RTM. After describing Invyswell’s design, we show that it
outperforms NOrec, a state-of-the-art STM, by 35%, Hy-
brid NOrec, NOrec’s hybrid implementation, by 18%, and
Haswell’s hardware-only lock elision by 25% across all STAMP
benchmarks.
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ming
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1. INTRODUCTION
Traditionally, locks have been the predominant mecha-

nism used to synchronize shared memory in multithreaded
programs [16]. Yet, developing software that correctly and
efficiently uses locks is notoriously challenging, even for the
most seasoned programmers. Transactional memory (TM)
has been proposed as an alternative to locks, where much
of the mechanical complexity of synchronization is managed
by the underlying system, not the programmer [15, 30].

Experience with software transactional memory (STM),
where transactions are implemented entirely in software,
has demonstrated the simplicity of transactional program-
ming, but has raised challenging performance issues. Mod-
ern STMs tend to be scalable at high thread counts [9],
meaning that beyond a certain point (and up to a limit),
adding more threads typically increases throughput for many
benchmarks, yielding performance that is often competitive
with fine-grained locking. Unfortunately, these STMs tend
to perform poorly at low or medium thread counts, because
of non-amortized transactional overhead, resulting in per-
formance that is not competitive with fine-grained locking.

To improve the performance of transactions, hardware
vendors such as Intel and IBM have included support for
hardware transactional memory (HTM). One such example
is Intel’s Haswell processor [18], which includes restricted
transactional memory (RTM), a cache-based HTM design
that uses the microarchitecture’s existing cache coherence
protocol to manage transactional conflicts. Yet, it is unclear
how RTM can be most effectively used by software. One
cannot simply substitute hardware transactions for software
transactions, because RTM, like other HTMs, such as IBM’s
Blue Gene/Q [31] and System z [19], is best-effort, providing
no progress guarantees. 1 Whether a transaction succeeds
depends on whether its data set fits in the processor’s cache,
whether the transaction finishes without interruption, and
a myriad of other architectural and platform-specific limita-
tions best hidden from the programmer.

It has been recognized that effectively integrating best-
effort HTM with the software that uses it requires an inter-
mediate software fallback when hardware transactions fail.
Such a system is called hybrid transactional memory (HyTM) [6,

1
Although System z supports constrained transactions, which are

guaranteed to commit, we believe this does not present a generalized
mechanism for HTM forward progress as constrained transactions are
size-restricted.



4, 7, 22], where hardware and software transactions execute
under the umbrella of a single TM system. In this paper,
we present a novel HyTM, called Invyswell, that uses hard-
ware transactions from Haswell’s RTM in conjunction with
software transactions from a heavily modified design of In-
valSTM [11], an STM designed to provide scalability and
performance for large transactions with notable contention.

Invyswell enables the concurrent execution of both hard-
ware and software transactions with the aim of being per-
formant for all transaction sizes and degrees of contentions.
Haswell’s RTM performs best for small transactions with low
contention, as it imposes no instrumentation overhead, but
is limited to a “requester-wins” contention policy. InvalSTM
performs best for large transactions with high contention,
because it can make highly informed contention manage-
ment decisions through its commit-time invalidation process.
Yet, challenges remain in finding an efficient solution for the
“transactional twilight zone” - midsize transactions that are
small enough to successfully execute in hardware but have
a non-trivial degree of contention. Furthermore, even after
designing a TM that addresses the unique challenges of each
of these categories, that system must ensure that each in-
dividual component does not negatively impact the overall
performance by mismanaging transactions for which it was
not intended. Invyswell addresses this by using a sophis-
ticated design that employs several hardware and software
modes of execution. This gives the system the flexibility to
trade execution overhead for precision in conflict detection.

Haswell’s RTM does not support escape actions, non-trans-
actional instructions executed within transactions [24]. This
limitation complicated our design, especially with respect to
opacity [12], a correctness conditions that guarantees con-
sistency of eventually-aborted transactions. Another chal-
lenge we encountered was designing Invyswell’s contention
manager (CM), a decision-making process aimed at improv-
ing throughput, due to the different isolation properties for
hardware and software transactions. The lack of escape ac-
tions further complicated this issue, as well, as it restricts
the way a hardware transaction can abort a software trans-
action before the hardware transaction itself commits.

We evaluate Invyswell’s performance using the STAMP
benchmark suite. Invyswell’s performance compares favor-
ably to that of pure software, pure hardware, and hybrid so-
lutions. Invyswell is 35% faster than NOrecSTM [5], a state-
of-the-art software transactional memory, and 18% faster
than NOrecHy [4], a state-of-the-art hybrid transactional
memory, as shown in Figure 1. It also outperforms Haswell’s
native hardware lock elision (HLE) [17, 25], a hardware
mechanism that attempts to elide locks by executing crit-
ical sections as transactions and supports transactional re-
execution with single global lock fallback implemented purely
in hardware. Although on the average Invyswell is only 25%
faster than HLE, the performance difference is significant for
some benchmarks with large transactions, where Invyswell
outperforms HLE by 2× to 5.4×.

This paper makes the following contributions:
1. We present a hybrid transactional memory for Haswell

RTM, called Invyswell, which features a novel design
based on InvalSTM and an adaptive system supporting
five transaction types.

2. We propose a novel method for precise conflict detec-
tion between hardware and software transactions using
Bloom filters, which works well even for HTMs without
support of escape actions.

Figure 1: STAMP Performance Differential by Geometric
Mean. *Hyperthreading is enabled for 8 threads. (Note:
NOrec and Hybrid NOrec are abbreviated as NorecSTM and
NorecHy, respectively, in the legend)

3. We demonstrate that achieving the best performance
requires HyTM even in presence of HLE. Our evalu-
ation on the STAMP benchmark suite shows that In-
vyswell outperforms HLE by up to 3.5× (25% on aver-
age) and state-of-the-art software and hybrid solutions
by more than 18%.

4. We describe challenges and design tradeoffs for a Haswell
HyTM, paving the way for even better systems in the
future.

2. RELATED WORK
TM systems [13] fall into three rough categories: software

(STM), hardware (HTM), and hybrid (HyTM). Most of the
research literature concerns STM systems [1, 8, 11, 14, 23,
26, 29]. There are too many such systems to discuss them
individually, but in this paper, we compare our HyTM to
NOrec [5], a state-of-the-art STM that uses value-based val-
idation, deferred update and lazy conflict detection.

Recently, Intel [18] and IBM [31, 19] announced new pro-
cessors with hardware support for transactions, and it seems
likely that others will follow. Like Herlihy and Moss’s origi-
nal TM proposal [15], these systems rely on modified cache
coherence protocols to achieve atomicity and isolation. Has-
well also supports hardware lock elision [25], a scheme where
annotated lock-based critical sections are executed specula-
tively, but are retried pessimistically if speculation fails.

HyTM schemes promise to provide the best of both worlds:
the efficiency of HTM with the scalability of STM. The
first papers to articulate this point are from Damron et
al. [6] and Kumar et al. [21]. Later work in this area in-
cludes PhTM [22], intended for Sun’s Rock architecture and
Riegel et al.’s work [27] intended for AMD’s proposed Ad-
vanced Synchronization Facility (ASF). More recently, Wang
et al. [31] proposed a HyTM for IBM Blue Gene/Q’s best-
effort HTM, based on a Single-Global-Lock fallback. In this
paper, we compare Invyswell to Hybrid NOrec [4], a state-
of-the-art hybrid transactional memory.

3. OVERVIEW OF INVALSTM
One of the key differences between InvalSTM and other

STMs is that it performs commit-time invalidation [11]. This
approach requires that a transaction identify and resolve



(a) SpecSW and LiteHW Events. (b) BFHW, IrrevocSW, and SglSW Events.

Figure 2: Transactional Events for Invyswell’s Five Different Transaction Types.

conflicts with all other in-flight (i.e., concurrently executing)
transactions during its commit phase. InvalSTM achieves
this by storing read and write sets in transaction-specific
Bloom filters so it can perform conflict detection using constant-
time set intersection. With commit-time invalidation, Inval-
STM has complete knowledge of all conflicts between a com-
mitting transaction and other in-flight transactions, allow-
ing it to make informed decisions on how to best mitigate
contention. All InvalSTM transactions perform validation
to achieve opacity in O(N) total computational complexity,
where N is the number of read elements, which is notably
faster than the O(N2) overhead incurred by incremental val-
idation and can drastically reduce the opacity cost for large
transactions. Additionally, read-only transactions commit
without incurring any commit-time serialization overhead.

For these reasons, InvalSTM naturally complements Has-
well’s RTM. Haswell’s RTM can be used for small transac-
tions and low thread counts, while InvalSTM can be used
for large transactions and high thread counts. Moreover,
Haswell’s RTM can leverage InvalSTM’s use of Bloom fil-
ters for conflict detection by augmenting Haswell’s hardware
transactions with Bloom filters to enable many hardware
transactions to execute concurrently with many software
transactions. These Bloom filters are a good fit for Haswell’s
cache-based HTM design because they can be structured for
constant-sized cache line alignment, thereby minimizing the
negative impact of introducing hardware-to-software conflict
detection into an already restricted HTM space. Finally, be-
cause InvalSTM’s read-only transactions do not introduce
any serialization in their execution, the performance over-
head for transactions is transparent to Haswell RTM’s faster
executing hardware transactions. This enables Haswell’s
RTM to perform without interference when read-only soft-
ware transactions are executing within InvalSTM, regardless
of their size.

4. INVYSWELL’S DESIGN
In this section, we describe Invyswell, a HyTM that sup-

ports the concurrent execution of multiple hardware and
multiple software transactions while guaranteeing forward
progress. Invyswell uses Haswell’s RTM [18] and a modified
version of InvalSTM [11]. In InvalSTM, when a transaction
is ready to commit, it marks conflicting in-flight transactions
as invalid. InvalSTM uses Bloom filters for fast conflict de-

tection between software transactions. Invyswell also uses
Bloom filters at times, but not always, for conflict detection
between hardware and software transactions.

Because Haswell’s RTM does not support escape actions,
the communication between in-flight hardware and software
transactions is essentially impossible without introducing
conflicts between them. For example, if a software trans-
action writes to memory shared by a hardware transaction,
the latter will abort. Yet, communication between hard-
ware and software transactions might be useful to improve
the precision of conflict detection between them, thereby in-
creasing throughput in cases when conflicts do not occur.

To manage this space, Invyswell generally performs con-
flict detection between a hardware and a software transac-
tion after the hardware transaction has committed. This en-
ables increased throughput in cases where no conflicts exist
while minimizing the chance of aborting a hardware transac-
tion because of communication with in-flight software trans-
actions.

Furthermore, Invyswell exploits the observation that hard-
ware transactions do not need to check for conflicts with
software transactions until just before committing, a mech-
anism called lazy subscription, which was introduced by Da-
lessandro et al. in their NOrec HyTM system [4]. By using
lazy subscription, Invyswell reduces the “window of vulner-
ability” in which a write to a software transaction’s conflict
detection metadata (e.g., its read set, its execution lock, etc.)
will abort a non-conflicting, in-flight hardware transaction.

Invyswell supports five transactions types, motivated by
the need for progress guarantees and adaptability to different
types of workloads. Two types are in hardware, lightweight
(LiteHW) and bloom filter-based (BFHW), and three types
are in software, speculative (SpecSW), irrevocable (IrrevocSW),
and single global lock (SglSW). The pseudocode for these
transaction is shown in Figure 2. Invyswell’s state transi-
tions between them are shown in Figure 3.

4.1 SpecSW: An HTM-Friendly InvalSTM
Invyswell’s first type of transaction is the speculative soft-

ware transaction (SpecSW), which is similar to an InvalSTM
transaction, and is shown in Figure 4. It tracks its read
and write locations in transaction-specific Bloom filters and
stores its write set’s values in a hash table for deferred up-
date during its commit phase. Note that a memory barrier is
necessary after inserting a memory location in a read bloom



Figure 3: Invyswell’s State Machine Describing the Transi-
tions Between the Different Transaction Types.

filter and before reading the value from memory. At commit-
time, a SpecSW performs invalidation, where it compares its
write Bloom filter against all other in-flight SpecSWs’ read
Bloom filters. If a conflict is found, it consults the con-
tention manager (CM) on how to proceed. The CM then
either aborts the committing transaction or permits it to
commit. If permitted to commit, the SpecSW transaction
updates all write locations and then marks all conflicting
in-flight transactions as invalid. During a SpecSW’s execu-
tion, it checks to see if it has been marked as invalid prior
to each read and write and prior to committing. If it has, it
aborts and it retries again as a SpecSW or another type as
illustrated in Figure 3.

A key difference between Invyswell and InvalSTM is that
SpecSWs perform invalidation after committing changes to
memory, unlike InvalSTM, which performs invalidation be-
fore. The reason for doing this is the following. In In-
valSTM, new transactions acquire an in-flight lock to in-
sert their transaction ID into an in-flight linked list. If In-
vyswell did the same, hardware transactions would have to
read this lock before committing, to ensure correctness in
their conflict detection. However, reading such a lock could
subsequently cause many unnecessary hardware transaction
aborts because whenever a new SpecSW was added to the
list the in-flight lock would be acquired, automatically abort-
ing all hardware transactions that previously read it.

To avoid this behavior, Invyswell performs invalidation
after committing SpecSW’s changes to memory and uses a
slotted array for the in-flight SpecSWs, rather than a linked
list. The combination of these changes results in Invyswell’s
elimination of the InvalSTM in-flight lock, thereby reducing
the likelihood of unnecessary hardware transaction aborts.
Instead, if a new transaction starts while the committing
transaction is updating memory, it will be detected by the
invalidation phase of the committing transaction, which will
follow the memory update phase. Alternatively, if the new
transaction starts after the memory was already updated,
it could be missed by the invalidation phase. However, this
new transaction is guaranteed to only read consistent states
because the committing transaction has finished updating
the memory, making the bloom filter check unnecessary for
this transaction.

Initially, this modification results in the loss of opacity
for SpecSWs, however, we restore opacity for SpecSWs by
adding inexpensive validation to each read as described in
Section 4.7. This change makes SpecSWs compatible with
hardware transactions that can invalidate in-flight SpecSWs
and it permits Invyswell to eliminate the need for an in-
flight lock and the per-transaction locks that are required
by InvalSTM.

Figure 4: Speculative Software Transaction (SpecSW).

4.2 BFHW: Hardware-Software Conflict
Detection

Invyswell’s second type of transaction is the Bloom filter
hardware transaction (BFHW). BFHWs execute in hard-
ware and, like SpecSWs, record the memory locations they
read and write in transaction-specific software Bloom filters.

At commit time, if a BFHW sees the software commit_lock
is free, it increments the hw_post_commit counter, which
subsequently prevents SpecSWs from committing or read-
ing new values while its value is non-zero, and then com-
mits its speculative writes to memory and performs post-
commit invalidation on all in-flight SpecSWs, where all con-
flicting transactions are marked as invalid. The BFHW then
decrements the hw_post_commit counter to indicate its post-
commit phase has completed, allowing software transactions
to again commit, as shown in Figure 5.

The hw_post_commit counter is necessary because there
is a window of vulnerability after a BFHW has committed,
but before it has finished executing the invalidation phase,
when SpecSWs can read inconsistent values written by the
BFHW. Without the hw_post_commit counter these Spec-
SWs will be marked as invalid by the BFHW during its
invalidation phase, but they could still execute momentarily
returning inconsistent reads, causing SpecSWs to lose their
opacity.

Alternatively, if the commit_lock is taken when a BFHW
enters its commit phase, this means a SpecSW is commit-
ting. In this scenario, the simplest option is for the BFHW
to abort, because there may be a conflict with the commit-
ting SpecSW. However, because BFHWs track their read
and write accesses, Invyswell can instead perform conflict
detection between the committing BFHW and the commit-
ting SpecSW via Bloom filter set intersection. If an over-
lap is found, the BFHW is aborted. Otherwise, no conflict
exists between the BFHW and the SpecSW, and, because
their respective read and write sets are immutable during
their commit phases, the BFHW is permitted to commit.



When a SpecSW commits, it releases the commit_lock

before clearing its read and write sets. This ensures that
if the SpecSW commits before a committing BFHW per-
forms conflict detection against the committing SpecSW,
that the BFHW is automatically aborted because the write
performed by the SpecSW to the commit_lock would trigger
a hardware conflict with the BFHW from its prior read.

Note that if a BFHW transaction aborts, its hw_post_commit
counter increment never becomes visible, because it is part of
its speculative write set. Moreover, the new counter value
becomes visible only when the hardware transaction com-
mits. If a SpecSW reads this counter after it has been writ-
ten to by a BFHW, but before the BFHW has committed,
the BFHW will be automatically aborted by Haswell RTM’s
strong isolation property, thereby avoiding a race.

Figure 5: Bloom Filter Hardware Transaction (BFHW).

4.3 LiteHW: Optimizing for Small
Transactions

Although BFHWs enable the concurrent execution of hard-
ware and software transactions, they come with added over-
head because each load and store requires an associated
Bloom filter insert operation. Invyswell addresses this limi-
tation with its third type of transaction, the LiteHW.

LiteHWs are lightweight hardware transactions, which ex-
ecute without read or write annotations. They can only com-
mit if there are no in-flight software transactions when they
begin their commit phase. Unfortunately, because LiteHWs
do not maintain read or write set metadata, if a software
transaction is in-flight when a LiteHW enters its commit
phase, Invyswell must assume a conflict exists between the
LiteHW and the software transaction and, therefore, must
abort the LiteHW. LiteHWs determine if there is an in-flight
software transaction by reading the commit_lock and the
software transaction counter, sw_cnt, prior to committing.
Because LiteHWs do not perform conflict detection against
software transactions, they require no post-commit phase.

4.4 IrrevocSW: Progress Guarantees
InvalSTM guarantees forward progress by using transaction-

specific priorities that are incremented each time a trans-
action is aborted. Using this mechanism, a continuously
aborted transaction will eventually yield the highest prior-
ity and is guaranteed to commit. Invyswell’s BFHWs, how-
ever, deviate from this model and instead commit memory
changes first and perform invalidation second, at which point
all conflicting software transactions are aborted. Because of

this change, there is a danger that BFHWs could repeatedly
abort high-priority SpecSWs, resulting in their starvation.

To address this problem, Invyswell introduces a fourth
transaction type, the IrrevocSW, a direct update irrevocable
transaction type that cannot be aborted. To ensure irrevoca-
bility, IrrevocSWs acquire the commit_lock as soon as they
begin their execution and hold it until they have commit-
ted. To enable conflict detection with other transactions, an
IrrevocSW transactions records its read and write locations
in Bloom filters. An IrrevocSW needs no commit phase,
because its writes are in-place. Its post-commit phase inval-
idates conflicting in-flight SpecSWs. While an IrrevocSW
is executing, SpecSWs are required to perform validation
and are disallowed from committing. Furthermore, LiteHW
transactions must abort if their commit phase overlaps with
any part of an IrrevocSW’s execution. However, BFHWs
can execute concurrently with an IrrevocSW. Yet, to ensure
correctness, a BFHW needs to check for conflicts with the
IrrevocSW transaction prior to committing its changes to
memory and it must abort itself if a conflict is found.

4.5 SglSW: Progress Guarantees with
Reduced Overhead

Small transactions that execute instructions not supported
by Haswell’s RTM need to be executed in software. However,
both SpecSWs and IrrevocSWs add transactional metadata
that may be too expensive for transactions that only access
a few memory elements. To address this need, Invyswell em-
ploys a final transaction type that uses a single global lock
without any associated transactional metadata.

This transaction type, SglSW, uses direct update and is
irrevocable. SglSW is fast, but it does not allow the con-
current execution of other software transactions. Because
SglSW does not track its reads or writes, it cannot per-
form conflict detection. Instead, it uses a sequence lock
to force all in-flight SpecSWs to abort and acquires the
commit_lock when it begins its execution to prevent Irrevoc-
SWs from starting. BFHW and LiteHW transactions abort
if an SglSW is executing when they try to commit. However,
SglSWs allows for some overlap in execution with BFHWs
and LiteHWs, as long as the executing SglSW commits be-
fore the hardware transactions do, thereby ensuring that the
hardware’s strong isolation property aborts any BFHWs and
LiteHWs that conflict with the SglSW.

4.6 Transitioning Between Transaction Types
Transactions are scheduled opportunistically, first as fast,

high-risk hardware transactions, then as slower, low-risk soft-
ware transactions as shown in Figure 3. Each transaction
is first tried in hardware, as LiteHW or BFHW, depending
on whether other software transactions are present. If the
hardware abort status suggests that a transaction is unlikely
to succeed in hardware, then it is retried as a SpecSW. If it
fails again, it is either retried as a SpecSW or it is escalated
to irrevocable status, preventing it from aborting and en-
suring progress. The transitions between the different types
are decided automatically at runtime based on a heuristic
that is application-independent. 2

2
Due to limitations in Intel’s first generation HTM (e.g., imprecision

on a transaction’s abort status and limitations of only four concurrent
hardware threads, eight with hyperthreading) Invyswell’s state tran-
sitions deviate slightly from that shown in Figure 3. In particular, we
use a modified design that transitions to SglSW when SpecSWs fail.



4.7 SpecSW Validation
InvalSTM performs invalidation before committing a trans-

action’s writes to memory. It uses a per-transaction invalid

flag which is set to true when a committing transaction in-
validates a conflicting in-flight transaction. For reasons de-
scribed in Section 4.1, Invyswell departs from this design and
performs invalidation after committing a SpecSW’s writes to
memory. Unfortunately, this change makes InvalSTM’s ap-
proach to ensure opacity – using the transaction’s invalid

flag – insufficient for SpecSWs. Instead, on every new read
that is not present in a SpecSW’s write set, Invyswell in-
serts the new read location into the SpecSW’s Bloom filter
and only then is the SpecSW permitted to read the value.
This ensures that a potential conflict will not be missed by
another transaction’s invalidation phase. Next, the SpecSW
performs the validation process shown in Figure 6. This
validation process is necessary because of the interactions
SpecSWs can have with different transactions and the in-
consistent reads they might cause, as we explain next.

SglSW.
First, a SpecSW read could be inconsistent due to a con-

currently executing SglSW. Because SglSWs do not store
reads and writes using Bloom filters, conflict detection can-
not be performed between them and a SpecSW. Thus, the
SpecSW must abort if the commit_sequence has changed
(Line 1 in Figure 6) after it was read at tx_begin (Figure 2).

IrrevocSw.
Second, a concurrently executing IrrevocSW or a com-

mitting SpecSW could cause an inconsistent read. Thus, the
SpecSW read must check if the read location is in the Bloom
filter of the transaction holding the commit_lock (Line 2 in
Figure 6). If so, it must abort. If commit_lock changes
during the read validation, the conflict may go unnoticed
by the validation code. However, if the lock has changed,
it means the transaction that released it must have finished
the invalidation phase. Therefore, it is sufficient to check if
the SpecSW has been invalidated in the meantime (Line 4
in Figure 6).

BFHW.
Finally, a SpecSW must wait for all committed BFHWs

to finish invalidation (hw_post_commit to reach zero) before
using a new read value (Line 3 in Figure 6). If the SpecSW
is not marked as invalid, the read is safe (Line 4 in Figure 6).

Figure 6: Overview of Invyswell’s SpecSW Validation Pro-
cess.

4.8 Contention Manager (CM)
SpecSWs consult the CM during the commit phase to ac-

quire permission to commit. As in InvalSTM, the CM con-
siders all in-flight transactions that would be aborted if the
committing transaction was allowed to commit. Any CM
policy can be used. Invyswell uses iBalanced [10], which
makes decisions based on priority, read and write set sizes,
and other factors.

Invyswell has trade-offs that the original InvalSTM design
does not have. For example, InvalSTM’s ability to make
decisions based on complete knowledge of in-flight trans-
actions is lost. Essentially, there is no CM for Invyswell’s
hardware transactions because Haswell’s RTM does not sup-
port escape actions, and thus a hardware transaction has to
abort all conflicting software transactions after the hard-
ware transaction has committed. The side-effect of this ap-
proach is that, conceptually, hardware transactions are likely
to scale to high thread counts only when there is little to no
contention, even if mitigation of that contention could be
possible with an intelligent CM. On the other hand, soft-
ware transactions retain a complete knowledge of the CM
decision-making process, enabling them to scale for high
thread counts amidst high contention when the contention
can be managed to provide wide transactional throughput.

5. CORRECTNESS
Figures 2 and 3 show the five types of Invyswell trans-

actions and the transitions between them, respectively. In
this section, we give an informal explanation why these five
transaction types can run concurrently with one another
without violating atomicity, as shown in Figure 7. However,
atomicity by itself does not guarantee that aborted transac-
tions are opaque; that is, that they only observe consistent
states, a topic we discuss in Section 5.1.

Figure 7: Invyswell’s Concurrent Execution Matrix.

LiteHW and BFHW vs. LiteHW and BFHW.
Haswell’s hardware transactions are strongly isolated, mean-

ing that their changes to memory become visible to other
threads only on commit, whether those threads are execut-
ing a transaction or not. The hardware automatically de-
tects conflicts between these types of transactions, and any
conflict will abort at least one transaction. There is no need
for additional mechanisms to synchronize concurrently exe-
cuting LiteHWs and BFHWs with respect to each other.

LiteHW vs. Software Transactions.
LiteHWs can execute concurrently with Invyswell’s soft-

ware transactions, but they cannot commit while such soft-
ware transactions are executing. A LiteHW that overlaps
execution with a software transaction (SpecSW, IrrevocSW,
or SglSW) can commit only after the software transaction
has committed, otherwise the resulting execution may be
not serializable. A LiteHW that tries to commit while a
software transaction is executing will abort. Such behavior
is detected by the sw_cnt counter and the commit lock (see
Figure 2).

BFHW vs. SpecSW or IrrevocSW.
Unlike LiteHWs, BFHWs use software Bloom filters to

keep track of the memory locations they access. By per-
forming explicit conflict detection with these Bloom filters,
BFHWs can commit in the presence of software transac-



tions. If a committing SpecSW conflicts with an in-flight
BFHW, then the BFHW will automatically be aborted by
the hardware when the SpecSW writes its speculative data
to memory. If a committing BFHW conflicts with an in-
flight SpecSW, the SpecSW will be aborted during the BF-
HW’s post-commit invalidation phase. Moreover, BFHWs’
use of lazy subscription means it is sufficient to compare the
Bloom filters of BFHWs and SpecSWs at the end of the
hardware transaction.

Postponing conflict detection to the end of the BFHW’s
execution narrows the window in which it will be aborted
by false conflicts. Moreover, SpecSWs’ Bloom filters do not
change while it is committing, so a BFHW can read them
without being aborted due to metadata interference (i.e.,
non-transactional interference). Note that SpecSWs that are
doomed to abort after a BFHW invalidates them could read
inconsistent memory before they notice they were aborted,
generating faulty behavior. For this reason, atomicity by
itself is not the only TM correctness property that Invyswell
guarantees, an issue we discuss in Section 5.1.

SpecSW vs. SpecSW.
Conflict detection between multiple SpecSWs uses inval-

idation. A committing SpecSW checks for conflicts with
other in-flight SpecSWs and, if conflicts are found, the com-
mitting SpecSW either aborts itself or invalidates the Spec-
SWs it conflicts with. No SpecSW can commit during an-
other SpecSW’s invalidation process because the committing
SpecSW holds the commit lock.

IrrevocSW vs. Software Transactions.
An IrrevocSW acquires the commit lock as soon as it be-

comes active, ensuring that no other software transaction
can become irrevocable (i.e., other IrrevocSWs and SglSWs
cannot start) or commit. When an IrrevocSW commits, it
invalidates in-flight conflicting SpecSWs.

SglSW vs. Everything.
When an SglSW begins, it acquires the commit lock and

aborts all other concurrently executing transactions. While
it holds that lock, SglSWs and IrrevocSWs are prevented
from starting, and LiteHWs and BFHWs cannot commit.
The SglSW also updates the commit_sequence lock at the
transaction’s start and end, aborting all concurrently exe-
cuting SpecSWs and BFHWs.

5.1 Opacity and Sandboxing
Opacity is a correctness property that ensures that aborted

transactions do not observe inconsistent states [12]. The
principal challenge to achieving opacity for Invyswell occurs
when a hardware transaction and a software transaction con-
flict. Haswell’s hardware transactions are strongly isolated,
but InvalSTM’s software transactions are not, so care must
be taken when managing their interaction.

Invyswell’s initial modification to InvalSTM’s design per-
mits doomed SpecSWs, i.e. SpecSWs that are guaranteed
to abort, to observe inconsistent states because committing
SpecSWs perform invalidation after writing their changes to
memory. To prevent these transactions from observing in-
consistent states, Invyswell performs validation at commit-
time and before each new read as described in Section 4.7.

Unlike SpecSWs, Invyswell’s IrrevocSWs and SglSWs can-
not observe inconsistent states because these transactions
are never aborted and are, therefore, never doomed. Fi-

nally, Haswell’s shared memory writes executed by a hard-
ware transaction become visible only when the transaction
commits, and writes by aborted transactions never become
visible. Moreover, Haswell’s transactions are (mostly) sand-
boxed, meaning that faulty behavior caused by inconsistent
reads will cause the transaction to abort. Unfortunately,
however, there is one leak in the Haswell sandbox, described
in detail in the next section.

5.2 Hardware Sandboxing Limitations
For the most part, hardware sandboxing ensures that no

consistency violation within a hardware transaction can af-
fect other transactions. There is, however, one vexing “loop-
hole”, an unlikely sequence of events in which (1) mutually
inconsistent reads cause a spurious memory write, (2) which
overwrite an address later used as the target of an indirect
jump in that same transaction, (3) thereby causing a jump
to a location that happens to contain either an _xend (com-
mit transaction) instruction, or immediate data that looks
like one. Executing this instruction without the final com-
mit lock check could prematurely commit an inconsistent set
of changes.

This hazard, however unlikely, presents a challenge for
any HyTM system implemented in an unmanaged language.
Broadly speaking, without escape actions, hardware trans-
actions cannot guarantee transactional consistency if they
execute concurrently with either in-place update software
transactions or with the commit phase of a deferred update
software transaction.

To address this hazard, Invyswell’s hardware transactions
check the commit_lock before doing an indirect jump using
function pointers. Simple optimizations can reduce the cost
of such a policy. For example, there is no need to check the
lock if the transaction has an empty write set, because it
could not have corrupted the jump address. If a transaction
makes multiple indirect jumps, it suffices to check the lock
before the first jump, because once read, the commit_lock

remains in the transaction’s read set, and the transaction
will be aborted if the lock is changed externally.

In the results presented in Section 7, we performed these
optimizations by hand. For some benchmarks, we found
that early checking slightly improved performance, probably
because transactions with indirect jumps are often longer,
hence less likely to succeed in hardware, and more likely to
benefit from a quicker fallback to software.

In the long term, there is a trend toward compiler sup-
port to help with this issue. The danger posed by indi-
rect jumps in transactions is similar to the danger posed by
common security threats such as buffer overflow in general-
purpose programs. The security literature has many exam-
ples of compiler techniques to protect jump addresses, such
as moving vtables and return addresses in a separate mem-
ory space [2] marked as read-only. The latest GCC supports
security functionality to check vtable integrity.

Static validity checking for function pointers is difficult,
in general, but feasible for common special cases, such as
initializers. GCC uses devirtualization and inlining for the
most likely target for indirect pointers for optimization levels
-O2 or higher. When inlining is possible, GCC can make in-
direct jumps direct. A transactional compiler could be more
aggressive about eliminating or protecting indirect jumps.



6. OPTIMIZATIONS
In this section, we describe the modifications that we

made to Invyswell’s original design to improve its perfor-
mance. We found these optimizations to be effective for
the first-generation Intel Haswell RTM processor, however,
some optimizations are designed specifically for performance
of low thread counts (as indicated by the * below) and may
degrade performance as thread counts increase. As a result,
when Intel’s RTM scales to higher thread counts, these “low
thread count” changes should be eliminated.

Hardware Transactions.
Hardware transactions are retried with exponential back-

off. Before starting a hardware transaction, the commit_lock
and the software transaction counter, sw_cnt, are read non-
transactionally to increase the likelihood of finding these
data cached, and to optimize for the case when only hard-
ware transactions are active.

Validation.
Consider two SpecSWs, TA and TB . Assume that TA has

entered its commit phase and TB is about to validate a read.
Furthermore, assume that TB has higher priority than TA

and that they conflict with one another. When TB performs
its validation, it could notice that TA has acquired the com-
mit lock and abort because of the conflict it identifies. At the
same time, TA could consult the CM and abort because TB

has a higher priority, resulting in both transactions aborting
because of each other. A similar situation could also occur
between a committing SpecSW and a committing BFHW.

To avoid such scenarios, we introduce two global flags,
hw_check and sw_check, in addition to the commit_lock, to
indicate the different phases of a SpecSW’s commit phase.
At the highest level, these flags are used to ensure that Spec-
SWs and BFHWs are only aborted by a SpecSW that is
guaranteed to commit. These flags change the SpecSW and
BFHW commit process in the following way.

At commit, a SpecSW, called TC , acquires the commit_lock
and then consults the CM to receive permission to commit.
If permitted to commit, TC sets the hw_check = true to sig-
nal to BFHWs that it is committing its writes to memory.
With this approach, BFHWs only read the hw_check flag
at commit-time, instead of the commit_lock, which ensures
that a BFHW can only be aborted by a SpecSW that will
eventually commit, rather than reading the commit_lock,
where a BFHW could be aborted by a SpecSW that has only
started its commit phase but may eventually be aborted by
the CM.

Next, TC waits for the hw_post_commit counter to reach
zero and, once it has, it checks if it was invalidated by a
concurrently committing BFHW. If still valid, TC sets the
sw_check = true, which informs other SpecSWs about to
read new memory to perform conflict detection against TC ’s
Bloom filters. At this point, TC and many concurrently
reading SpecSWs may perform simultaneous conflict detec-
tion on each other. If conflicts are found, the reading Spec-
SWs are aborted. If no conflicts are found between read-
ing SpecSWs and TC , the reading SpecSWs subsequently
check their valid flag to ensure they were not invalidated
by TC , which may have performed conflict detection be-
fore the reading SpecSWs had, and subsequently cleared
its Bloom filters before the reading SpecSWs could iden-
tify conflicts with them. Any reading SpecSWs that are still
valid are permitted to continue their execution. Without

the sw_check flag, the scenario of conflicting transactions TA

and TB might occur. With it, a reading SpecSW’s valida-
tion can only fail if it conflicts with a concurrently executing
SpecSW that is guaranteed to commit.

*Bloom Filters.
In principle BFHWs and IrrevocSWs enable more concur-

rency than LiteHWs or SglSWs, yet, in practice the overhead
associated with BFHWs’ and IrrevocSWs’ Bloom filters can
negate their concurrency benefits. This is especially true at
low thread counts where there is not enough concurrency
to justify such overhead. Because of this, we use SglSWs,
rather than IrrevocSWs, as the fallback from SpecSWs for
our experiments (see Figure 3), as SglSWs do not employ
Bloom filters. However, once RTM becomes available with
higher core counts, we plan to reinstate IrrevocSWs as the
fallback for SpecSWs because they enable SpecSWs to exe-
cute alongside them, while SglSWs do not.

To reduce the overhead of BFHWs, we optimize away
their read set Bloom filters. This optimization is possi-
ble because BFHWs only invalidate SpecSWs – SpecSWs
never invalidate BFHWs – thereby only requiring write-
write and write-read conflict detection for BFHWs invali-
dation phase. 3 However, this change prohibits BFHWs and
SpecSWs from committing concurrently, which the original
Invyswell design permitted. For low thread counts, however,
we have found this change to only positively impact perfor-
mance. Yet, for higher thread counts, this change will likely
degrade performance and, therefore, it would be advisable
to revert back to Invyswell’s original Bloom filter design.

*Fail-Fast.
When there is contention, many SpecSWs will repeatedly

abort before reaching their retry threshold and falling back
to SglSWs. The amount of wasted work that this process
can incur could be substantial if contention is consistent, or
even bursty, throughout the entire benchmark.

To address this, we add a counter to count the number
of high-priority software transactions aborted during the in-
validation phase. Whenever a thread notices that this num-
ber is over a threshold, it increments a racy shared counter.
Once this counter reaches a pre-defined threshold, our op-
timized system switches to Fail-Fast mode, which only uses
LiteHWs and SglSWs. We have found this optimization to
be efficient because it identifies the cases when STMs are
wasting work with too many retries, which eventually fail to
irrevocable mode. In these cases, we have found it is better
to use irrevocable software transactions immediately.

Read-Only.
We employed optimizations for both read-only SpecSWs

and BFHWs. Read-only SpecSWs can commit when they
reach commit phase without acquiring the commit lock, even
if they were invalidated. First, the validation process in the
read annotations ensures that the transaction’s read set was
consistent at the time of the last read. Second, read-only
SpecSWs, as well as read-only BFHWs do not need to per-
form invalidation, as they can be serialized before conflicting
in-flight software transactions.

3BFHWs can be aborted by other hardware transactions,
but that is handled automatically by the hardware.



7. EXPERIMENTAL RESULTS
Our experimental results were gathered on an Intel Haswell

four-core processor (Core i7-4770) with RTM and HLE sup-
port, running at 3.40GHz. Each core has a 32KB L1 cache,
and a total of 8GB RAM shared across all cores. We en-
abled hyperthreading to collect data for up to eight threads.
Because of L1 cache sharing due to hyperthreading, we no-
ticed that at eight threads some hardware transactions that
previously executed without failure began to abort due to
overflow, thereby degrading performance. We used the GCC
4.8 compiler with -O3 optimizations for all benchmarks.

We used the STAMP benchmark suite [3] to measure the
speedup that Invyswell provides relative to sequential ex-
ecution. We compare this speedup against NOrec, which
we call NorecSTM, Hybrid NOrec, which we abbreviate as
NorecHy, and Haswell’s HLE. For each of these systems, we
executed each STAMP benchmark five times and present the
median result as shown in Figure 8. Variance was generally
low, except for Bayes.

Invyswell Details.
We instrumented the STAMP code using its macros to

use a thread-local transaction type indicator for choosing
which code path to execute. This instrumentation incurs
a run-time performance penalty. A compiler could generate
different code paths for these transaction types, but it would
not need to generate a code path for each type. In particular,
LiteHW and SglSW have similar read/write annotations, as
do BFHW and IrrevocSW. Moreover, the overhead incurred
for manual instrumentation is higher than the overhead in-
curred by compiler instrumentation.

Hardware transactions are retried N times, where N =
10 for our experiments, unless the abort status indicates
that the transaction is unlikely to succeed in hardware, in
which case the transaction is immediately retried in soft-
ware. SpecSWs are retried M times, where M = 4, and used
SglSW as a fallback if the number of retries is exceeded. In-
vyswell was configured to use 1024 bits and the spooky-hash
function [20] for its Bloom filters. Outside of normal Bloom
filter trade-offs of precision versus size, there is an additional
trade-off with Bloom filters for Invyswell’s hardware trans-
actions between their precision and the aborts they cause by
overflow. 4 We found 1024 bits to be a good balance across
all benchmarks. For example, the Yada benchmark emits
many Bloom filter false positives and makes this tradeoff ap-
parent. Increasing the Bloom filters’ size improves SpecSW
performance but degrades BFHW, as it causes more aborts.

Hybrid NOrec and Invyswell.
Hybrid NOrec has many variants, many of which require

nonspeculative loads. [27] requires both nonspeculative loads
and nonspeculative stores. These variants cannot be imple-
mented using TSX, and are not considered in this paper.
The version of NOrec evaluated in this paper uses the two
location variant and the sw exists filter described in [4]. 5

4The larger the Bloom filter, the better its precision, but
the more likely a hardware transaction using such a Bloom
filter will abort due to cache overflow, because the Bloom
filter must be part of the hardware transaction’s speculative
state stored, in this case, in Haswell’s L1D cache.
5Our implementation of Hybrid NOrec included all the opti-
mizations used in [4]. In addition, we tried a variant of this
algorithm that had hardware transactions lazily subscribe
to the software commit lock, which also used the indirect

Hybrid NOrec has two types of transactions, hardware and
software. Both types can execute at the same time. To en-
sure hardware transactions do not see inconsistent memory
states, they eagerly subscribe to the software transactions’
commit lock as soon as they begin their execution. When
a software transaction begins its commit phase, hardware
transactions are automatically aborted. When a hardware
transaction commits, it increments a shared counter, which
notifies software transactions that they must perform value-
based validation to ensure consistency. To perform valida-
tion, each software transaction maintains its own list of read
memory locations. To reduce list insert computational over-
head, each software transaction inserts new read element
directly to the list’s tail, even if the item is already in the
list, resulting in O(1) insert time complexity. A disadvan-
tage of this approach is that the read list can become large
if a software transaction reads many locations, thereby in-
creasing the time it takes to perform validation, where the
entire list must be walked. Each software transaction per-
forms validation in O(N) time, where N is the size of the
read set, for every new read added to the transaction’s read
set after a software or hardware transaction has committed.

In contrast to Hybrid NOrec, Invyswell has two hard-
ware transaction types, three software transaction types,
and performs conflict detection using Bloom filters, not lists,
which house the memory accessed by both hardware trans-
actions (BFHW) and software transactions (SpecSW and Ir-
revocSW). With Bloom filters, Invyswell’s conflict detection
is performed in O(1) time, yet, because Invyswell uses inval-
idation, it has additional overhead that Hybrid NOrec does
not have, where invalidation is performed after committing
a transaction’s speculative writes to memory.

Invyswell’s LiteHWs are similar to Hybrid NOrec’s hard-
ware transactions, but Invyswell’s BFHWs have no Hybrid
NOrec counterpart. Although BFHWs incur overhead not
found in Hybrid NOrec’s hardware transactions – the storing
of read and write set data in Bloom filters – this overhead is
amortized on large transactions because of the finer grained
conflict detection that it enables. The improved precision
of conflict detection enables wider transactional throughput
between hardware and software transactions if they don’t
conflict (e.g., Figure 8f’s benchmark).

If Invyswell did not include BFHWs, nearly all of Labyrinth’s
transactions would execute as software transactions, because
Invyswell’s LiteHWs often get aborted by the long-running
software transactions. However, with BFHW, hardware and
speculative software transactions (SpecSWs) can execute con-
currently and both types of transactions can commit, as
there are not many conflicts. NOrec hardware transactions
do not exhibit Bloom filter overhead but, instead, incur over-
head on its software transactions, which must do value based
validation, re-validating the entire read set after each trans-
actional commit. As 50% of the transactions in Labyrinth
cannot succeed in hardware, the performance of both HyTMs
is similar to that of NOrec STM.

Another important difference between Invyswell and Hy-
brid NOrec is how fast software transactions execute for dif-
ferent transaction sizes. Invyswell’s SpecSW transactions,
which are similar to InvalSTM’s transactions, are fast for
large transactions, while NOrec’s software transactions are

jump annotations that we used for Invyswell. This version
performed similarly to Hybrid NOrec’s normal eager sub-
scription, so we omitted the results for clarity.



(a) Bayes. (b) Genome.

(c) Intruder. (d) kmeans low.

(e) kmeans high. (f) Labyrinth.

(g) ssca2. (h) Vacation low.

(i) Vacation high. (j) Yada.

Figure 8: Speedup on STAMP Benchmarks (Note: 8 threads using hyperthreading).



(a) Invyswell Transaction Types: 1-threaded execu-
tion.

(b) Invyswell Transaction Types: 8-threaded execu-
tion.

Figure 9: Percentage of Transaction Types for Invyswell for 1-Threaded and 8-Threaded Executions.

fast for small transactions without many reads to re-validate.
Yet, because Haswell’s RTM can successfully execute most
smaller size transactions (those without unsupported instruc-
tions), we believe SpecSWs are the natural choice as a fall-
back mechanism for hardware transactions.

Nevertheless, there is an interesting effect that occurs
in the presence of hyperthreading, where hardware trans-
actions overflow at smaller sizes than they would without
hyperthreading because of cache sharing between two hy-
perthreads on the same core. For example, in Genome (Fig-
ure 8b), at eight threads about 50% of hardware transac-
tions spill to software, for both HyTMs, because of over-
flow. Because of this, Hybrid NOrec performs better than
Invyswell for Genome at eight threads. However, we believe
this is an artifact of hyperthreading, as Invyswell is notably
faster than Hybrid NOrec for Genome at four threads, where
significantly fewer hardware transactions spill to software.
With this in mind, we expect Invywell to perform better
as HTMs scale in core count, as only large transactions will
overflow the cache, resulting in the use of Invysell’s SpecSWs
only in the cases in which they were intended.

NOrec and HyTMs.
STMs typically scale at higher thread counts, but often

perform poorly at low thread counts, especially for small and
mid-sized transactions. NOrec, referred to as NorecSTM in
our figures, like any STM, incurs instrumentation overhead
that limits performance for small (Ssca2, Kmeans) and mid-
sized (Intruder, Vacation, Genome) transactions. For such
benchmarks, Invyswell can outperform NOrec by a factor of
3.5× (8g). Hybrid NOrec also outperforms NOrec on these
benchmarks, indicating that a hybrid is necessary over an
STM. However, Invyswell can be twice as fast as Hybrid
NOrec (8c) because of its more lightweight SglSWs, in which
Hybrid NOrec has no software equivalent.

As expected, NOrec performs best for benchmarks with
longer transactions, and bigger read and write sets, such
as Bayes, Labyrinth and Yada (Figures 8a, 8f, and 8j,
respectively). Hybrid NOrec closely approaches the NOrec’s
speedup, as most of the benefit in these cases comes from
the software transactions. In Figure 8a, NOrec is 2.1× faster
than sequential execution, while Invyswell is 1.6× faster. For
completeness, we included results for Bayes, but its high
variance suggests that these results should be interpreted
with caution [28].

Labyrinth (Figure 8f) has long transactions, where the
first portion of the transaction manipulates non-shared mem-
ory. For this benchmark, 50% of the transactions cannot
complete in hardware, so HLE’s performance degrades to
that of a lock. In contrast, NOrec yields high throughput
because it enables concurrency between its transactions. Be-
cause Haswell does not support non-transactional loads and
stores, all local operations performed inside a transaction are
also transactional, putting pressure on the cache. Therefore,
both Hybrid NOrec and Invyswell are negatively affected,
resulting in performance similar to NOrec.

Hardware Lock Elision (HLE).
HLE is implemented entirely in hardware and has no in-

strumentation overhead, but uses a non-scalable single global
lock fallback when transactions fail. For large benchmarks,
such as Bayes or Labyrinth, even at small thread counts,
Invyswell outperforms HLE by a notable margin. This is
because many transactions overflow the cache and fall back
to software, being serialized by the lock used in HLE. For
medium sized benchmarks, Invyswell also outperforms HLE.
However, for small transactions, HLE benefits most from the
lack of overhead, so it is faster than Invyswell on benchmarks
such as Kmeans Low and Kmeans High. Ssca2 is also a
benchmark with small transactions, but Invyswell and HLE
perform similarly.

Figure 10: Percentage of Committed Hardware Transac-
tions.

Figure 10 shows the percentage of committed hardware
transactions for one thread and four threads for both In-



vyswell and HLE. The one-threaded execution indicates, in
general, the percentage of transactions that fail in hard-
ware because of unsupported instructions or overflow. This
provides a baseline of the maximum number of hardware
transaction commits that are possible for each benchmark.
We also found that the number of HLE hardware transac-
tions that begin is higher than the total number of commit-
ted transactions. This suggests that HLE also retries failed
transactions before falling back to its global lock.

Invyswell’s percentage of committed hardware transac-
tions at four threads is similar to its percentage at one
thread, and it is higher than HLE’s percentage at four threads.
This makes the argument that Invyswell generally makes
more efficient use of hardware resources than the hardware
(i.e., HLE) itself. Figures 9a and 9b show the breakdown
of Invyswell’s transaction types for one thread and eight
threads executions. The eight-threaded execution suffers
from the effects of hyperthreading, so the number of hard-
ware transactions successfully committed is lower than for
the one thread execution.

Overall, Invyswell outperforms HLE. For Yada, however,
HLE is faster than Invyswell despite using fewer hardware
transactions. This benchmark has large transactions and
high contention, causing a lot of conflicts between transac-
tions. In this case, Invyswell suffers from many false pos-
itives in its Bloom filter set intersection. We noticed an
increase in performance for SpecSWs as we increase the size
of the Bloom filters. However, as we previously explained,
larger Bloom filters negatively impact BFHWs. Therefore,
the size of the Bloom filters represents a tradeoff to balance
the performance of SpecSWs and BFHWs.

Discussion.
In general, Invyswell outperforms prior methods across all

STAMP benchmarks. Not only does Invyswell outperform
HLE for all but the smallest transactions, it is inherently
more flexible, because the programmer has explicit control
over CM and failover policies. Although Invyswell is adapted
from the earlier InvalSTM design, the existence of hardware
transactions that bypass the CM means that the two systems
are divergent, in terms of design and behavior.

Hardware transactions can fail for a variety of reasons,
including resource exhaustion, timing anomalies, or illegal
instructions. For future work, there is a need for better
adaptive CM to identify when a particular approach is not
working well, and when to switch to a more effective alter-
native.

8. CONCLUSIONS
We described Invyswell, a HyTM that combines Haswell’s

RTM transactions with software transactions from a heavily
modified version of InvalSTM. We evaluated Invyswell on a
3.4 GHz 4-core Haswell processor capable of supporting up
to eight hardware threads and compared it to to Haswell’s
native hardware lock elision (HLE), a state-of-the-art STM
(NOrec), and a state-of-the-art HyTM (Hybrid NOrec).

Our main goals with Invyswell were to (i) improve per-
formance for small- to medium-sized transactions, configu-
rations where the instrumentation costs of STMs typically
cause them to perform poorly and (ii) to extend InvalSTM’s
design to support the concurrent execution of both hard-
ware and software transactions. We found that very small
transactions are handled well by a simple combination of

hardware transactions with fallback to a single global lock.
The most interesting challenges were (i) modifying Inval-
STM to provide some degree of precision in its conflict de-
tection between concurrently executing hardware and soft-
ware transactions and (ii) improving mid-size transaction
performance, transactions that are small enough to benefit
from hardware transactions, but too large to work well with
a single global lock.

We evaluated a variety of transactional mechanisms, both
hardware and software, on a range of STAMP benchmarks.
As one might expect for such heterogeneous benchmarks, no
single mechanism was best for every benchmark, but overall,
Invyswell outperformed prior methods by more than 18%.

Haswell supports hardware lock elision (HLE), which al-
lows an annotated critical section to be first executed specu-
latively as a hardware transaction, and then, if that transac-
tion fails, to be re-executed non-speculatively using the orig-
inal lock. HLE already provides some of the functionality of
HyTM, so it is natural to ask whether Haswell needs HyTM
at all. We find that HyTM is indeed needed: on average, In-
vyswell is about 25% faster than HLE across all benchmarks.
Moreover, for benchmarks with large transactions, such as
Bayes and Labyrinth, HLE does not scale and it is 2×-5.4×
slower than Invyswell. The principal reason HLE does not
eliminate the need for HyTM is that HyTM allows for better
contention management. HLE follows a hard-wired policy
of falling back to a lock after failure, but HyTM can make
more intelligent and flexible decisions about resolving con-
flicts, taking advantage of software-based transactions, and
making more effective transitions between speculative and
various non-speculative synchronization mechanisms.

We tested alternative software mechanisms that trade over-
head for precision. Conflict detection can be coarse and
fast (SglSW) or more precise and slower (IrrevocSW and
SpecSW). In the thread-count range supported by our plat-
form, coarse-and-fast usually slightly outperforms precise-
and-slower. We conjecture that precise conflict detection
will become more attractive in future hardware platforms
with more cores, where Invyswell is likely to perform well.

Any HyTM faces the challenge of providing opacity, which
ensures that all transactions only observe consistent states.
This is more difficult than it may seem, because the com-
position of two opaque mechanisms (for example, Haswell’s
RTM and InvalSTM) is not necessarily opaque. RTM’s lack
of escape actions complicated our task. Escape actions could
make it substantially easier to ensure opacity, and to pro-
vide more effective conflict management. For example, a
hardware transaction could invalidate software transactions
during its commit phase, rather than after it, allowing, in
some cases, for it to abort itself to improve overall through-
put, as was the case in InvalSTM’s original design.

Our experience suggests that hybrid mechanisms can im-
prove the performance of small to mid-size transactions that
can execute in hardware, compared to software-only or hard-
ware lock-elision mechanisms. We conjecture that this dif-
ference will become even more pronounced when Haswell
platforms with more cores become available.
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