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ABSTRACT
The problem of ε-approximate agreement in Byzantine asyn-
chronous systems is well-understood when all values lie on
the real line. In this paper, we generalize the problem to
consider values that lie in Rm, for m ≥ 1, and present an
optimal protocol in regard to fault tolerance.

Our scenario is the following. Processes start with values
in Rm, for m ≥ 1, and communicate via message-passing.
The system is asynchronous: there is no upper bound on
processes’ relative speeds or on message delay. Some faulty
processes can display arbitrarily malicious (i.e. Byzantine)
behavior. Non-faulty processes must decide on values that
are: (1) in Rm; (2) within distance ε of each other; and
(3) in the convex hull of the non-faulty processes’ inputs.
We give an algorithm with a matching lower bound on fault
tolerance: we require n > t(m + 2), where n is the number
of processes, t is the number of Byzantine processes, and
input and output values reside in Rm. Non-faulty processes
send O(n2d log(m/εmax{δ(d) : 1 ≤ d ≤ m})) messages in
total, where δ(d) is the range of non-faulty inputs projected
at coordinate d. The Byzantine processes do not affect the
algorithm’s running time.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; F.1.2 [Computation by Abstract Devices]: Modes
of Computation – parallelism and concurrency

Keywords
approximate agreement; higher dimension; Byzantine pro-
tocols; asynchronous systems

1. INTRODUCTION
Consider a system comprised of n processes that commu-

nicate by message-passing. Scheduling and communication
are asynchronous: there is no bound on processes’ relative
speeds or on message delivery time. At most t processes
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may be faulty, displaying Byzantine (arbitrary, even mali-
cious) behavior. The combination of asynchrony and failures
means that it is impossible to distinguish between a faulty
process that has halted and a non-faulty process that is sim-
ply slow to respond.

In our multidimensional ε-approximate agreement task, for
arbitrary ε > 0 and m ≥ 1, each process starts with an input
value in Rm, and all non-faulty processes must choose output
values, also in Rm, such that (1) all outputs lie within ε of
one another, and (2) all outputs lie in the convex hull of the
inputs of the non-faulty processes. A t-resilient protocol for
this task is an algorithm guaranteeing that each non-faulty
process decides on a correct output, despite the presence of
up to t Byzantine processes.

Our problem has a long background. In the consensus task
[9], processes start with values from an arbitrary domain,
and must choose values such that: (1) all processes decide on
the same value and (2) that value is some process’ input. It
is well-known that asynchronous consensus is impossible in
the presence of even a single crash failure [9]. However, there
are many ways to circumvent this impossibility1, and one is
to settle for (unidimensional) ε-approximate agreement [6].
In this case, non-faulty processes start with input values in
R, and must also finish with output values in R, satisfying:

Agreement: all non-faulty processes decide on values that
are within an arbitrary distance ε ≥ 0 of each other;

Validity: all non-faulty processes decide on values in the
range of the non-faulty process inputs.

In contrast to consensus, the unidimensional asynchronous
ε-approximate agreement is possible, even with (a limited
number of) Byzantine failures. We can think of the proto-
col geometrically: non-faulty processes start on points in R,
and then converge to arbitrarily close values in the range
of their inputs, despite difficulties presented by asynchrony
and malicious behavior of participants.

Specifically, let n be the number of participating pro-
cesses, and t an upper bound on the number of Byzantine
processes. For asynchronous message-passing systems, early
protocols required n > 5t [6, 7], improved later to n > 3t
[1], which is optimal in terms of resilience [8]. The optimal
protocol uses reliable broadcast [2, 13, 4] to force Byzantine
processes to communicate consistently (avoiding the situa-
tion where they tell different things to different processes),
as well as the witness technique [1] to improve data collection
under failures.

1Synchrony, randomization, weaker agreement, and others.



1.1 Our Contributions
As mentioned before, we present a non-trivial generaliza-

tion for the ε-approximate agreement, allowing inputs and
outputs to lie within Rm, for m ≥ 1. We provide an optimal
protocol for asynchronous Byzantine systems. The protocol
centers around the safe area concept, permitting processes
to converge in Euclidean space of arbitrary dimension.

As we have inputs and outputs in Rm, with m ≥ 1, we now
require that all non-faulty processes halt with close values
in the convex hull of the non-faulty process inputs. We call
this requirement convexity.

The convexity requirement is the natural generalization
of the 1-dimensional validity condition, and it is essential
to some applications, as discussed later. The convex hull of
the non-faulty process inputs is independent of the choice of
coordinate system. Convexity guarantees that if such inputs
lie in a linear subspace of Rm (say, along a line), so do the
non-faulty process outputs.

We also require that the protocol performance, measured
in the number of messages required to be sent, depends only
on the inputs of the non-faulty processes, and is unaffected
by any malicious behavior of the Byzantine processes.

While we converge values dimension-by-dimension in our
protocol, we cannot simply reuse the 1-dimensional protocol
for that goal. Fig. 1 shows the problem, taking m = 2: with
the 1-dimensional algorithm used in consecutive dimensions,
we may output any point in the highlighted rectangle, but
the actual allowed convex hull is strictly smaller. With the
safe area concept, however, we can make sure that all the
individual convergence steps maintain convexity (see Sec. 4).
A matching lower bound for fault tolerance confirms that
the safe area concept, which is fundamental for correctness,
permits an optimally-resilient protocol (see Sec. 5).
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Figure 1: Performing traditional approximate agree-
ment in separate dimensions breaks convexity.

Our contributions are the following. We generalize the
ε-approximate agreement to higher dimensions (Sec. 1.1.1),
and discuss its applicability (Sec. 1.1.2). Using the safe area
concept (Sec. 3), we develop a protocol for Byzantine
asynchronous systems (Sec. 4), that we prove as optimal
(Sec. 5) in terms of resilience: we require n > t(m+ 2), for
n processes, up to t Byzantine ones, with values taken from
Rm. We use some geometric arguments, as Helly’s Theorem,
to prove the correctness of the protocol. We learned

recently that similar results were discovered independently
and concurrently by Vaidya and Garg [14].

1.1.1 Formal Definition
Consider a set of n participating processes P , including

no more than t Byzantine processes. The set of non-faulty
(good) processes is called G, and the set of Byzantine (bad)
processes is called B.

Every process pi ∈ G has an input Ii ∈ Rm and an out-
put Oi ∈ Rm. The set IG = {Ii : pi ∈ G} is henceforth
called non-faulty inputs. After we run the multidimensional
ε-approximate agreement protocol, we require the following:

Agreement: for any non-faulty processes pi and pj , the
Euclidean distance between their outputs Oi and Oj
is ≤ ε, an error tolerance fixed a priori.

Convexity: for any non-faulty process pi, its output Oi is
in the convex hull of the non-faulty inputs IG.

Processes communicate asynchronously via message pass-
ing. Communication channels are point-to-point reliable (all
messages are eventually delivered), complete (any pairwise
communication is possible), and FIFO. The processes can
reliably identify the sender of any message2.

1.1.2 Applications
Applications of our protocol include:

Robot convergence: Consider autonomous mobile enti-
ties, such as robots, that must converge to nearby lo-
cations in the 2 or 3-dimensional space. They must
do so despite arbitrary behavior of a subset of robots
(Byzantine failures), and unbounded communication
delays (asynchronous communication). In other words,
they cannot discern between benign and malicious ro-
bots, likewise between failed or slowly responsive ones.
Finally, non-faulty robots must respect convexity, and
only move within their original convex region – or they
would wander through unsafe territory, say. Byzantine
robots must not have the power to influence benign
robots to move outside their original convex region.

Previous results in the robot network literature relate
approximate agreement with robot convergence in the
real line [3, 11]. Our protocol is applicable as long as
entities agree on a coordinate system, and the number
of faulty robots, t, compared to the number of existent
robots, n, is t < n/4 for the 2-dimensional case, and
t < n/5 for the 3-dimensional case. In the terminol-
ogy of Potop-Butucaru et al. [11], our model is a fully
asynchronous, cautious variant of the CORDA model.

Distributed voting: Say distributed voters must choose
from a number of options. Each voter gives its relative
preferences by assigning weights to options, where the
weights sum to one. For example, for three options, a
voter may give 0.3 option a, 0.6 to option b, and 0.1 to
option c. A preference can be viewed as the barycentric
coordinates of a point in the triangle of Fig. 2.

As the result of the voting, each process receives a new
assignment of weights to options, and all assignments
agree to within ε, and all lie within the convex hull of

2If unavailable, these assumptions could be implemented on
top of regular channels – see Sec. 4.
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Figure 2: Respecting convexity means respecting
unanimity in voting systems.

the original votes. The convexity requirement impli-
cates that the voting respects unanimity: if all voters
prefer c over a and b (as in Fig. 2), then every voter’s
final assignment also reflects that. Here, our protocol
is applicable, and respects convexity and unanimity in
Byzantine asynchronous systems. Other related inter-
pretations for convexity exist – see Saari [12].

In the introduction we presented motivation, formaliza-
tion, and application examples for our problem. In Sec. 2,
we discuss background material. In Sec. 3, we present the
key concept in our protocol: the safe area. We formalize
the protocol for multidimensional approximate agreement
in Sec. 4, which is proved as optimal in terms of fault tol-
erance in Sec. 5. We analyze message complexity in Sec. 6,
and other computational costs in Sec. 7. Our concluding re-
marks, in Sec. 8, include discussion on possible future work.

2. BACKGROUND
In this section, we review two existing communication

primitives, namely the reliable broadcast and the witness
technique. Those primitives support our main algorithmic
procedure, which is basically as follows. In multiple discrete
rounds, any non-faulty processes will:

1. Broadcast its current value;

2. Receive multiple process values (including its own),
never waiting for more than n− t process values, since
t processes might have crashed;

3. Update its current value to a particular point inside a
“safe area” in Rm, guaranteed to be in the convex hull
of the non-faulty inputs.

The insight of our protocol lies in step (3), which, despite
seemingly simplicity, curtains elaborate combinatorial and
geometric arguments for correctness and optimality. Here,
we discuss the primitives corresponding to (1) and (2).

2.1 Reliable Broadcast
The reliable broadcast technique avoids the situation when

Byzantine processes convey different contents to different

processes in a single round of communication. This tech-
nique is thoroughly discussed in [2], with original ideas due
to Srikanth and Toueg [13] and Bracha [4].

In each round, the messages are decorated with the sender
identification, say p, and the current round, say r. So, a
message with contents c will look like M = (p, r, c). The
reliable broadcast technique has the following properties:

Non-faulty integrity: If a non-faulty process p never re-
liably broadcasts (p, r, c), no other non-faulty process
will ever receive (p, r, c).

Non-faulty liveness: If a non-faulty process p does reli-
ably broadcast (p, r, c), all other non-faulty processes
eventually receive (p, r, c).

Global uniqueness: If two non-faulty processes reliably
receive (p, r, c) and (p, r, c′), the messages are equal
(c = c′), even when the sender, p, is Byzantine.

Global liveness: For two non-faulty processes p1 and p2,
if p1 reliably receives (p, r, c), p2 also reliably receives
(p, r, c), even when the sender, p, is Byzantine.

Algorithms 1 to 3 illustrate the technique for sender p,
round r, and contents c. In summary, (1) p broadcasts a
decorated message M = (p, r, c); (2) when other processes
receive M , they echo it; (3) when processes receive n−t echo
messages for M , they send ready messages for M ; (4) when
processes see t + 1 ready messages for M , meaning that a
non-faulty process necessarily advocates the existence of M ,
they also send ready messages; (5) finally, when a process
receives at least n−t ready messages, the original message is
accepted. For formal proofs of the properties above, please
refer to [2].

Algorithm 1 p.RBSend((p, r, c))

send(p, r, c) to all processes

Algorithm 2 p.RBEcho()

upon recv(q, r, c) from q do
if never sent (p, r{echo}, ·) then

send(p, r{echo}, c) to all processes

upon recv(·, r{echo}, c) from ≥ n− t processes do
if never sent (p, r{ready}, ·) then

send(p, r{ready}, c) to all processes

upon recv(·, r{ready}, c) from ≥ t+ 1 processes do
if never sent (p, r{ready}, ·) then

send(p, r{ready}, c) to all processes

Algorithm 3 p.RBRecv((p,r,c))

recv(·, r{ready}, c) from n− t processes
return (p, r, c)

2.2 Witness Technique
To promote agreement, we want, in every round, that

the collected values of any two non-faulty processes suitably
overlap. However, non-faulty processes cannot wait indef-
initely for more than n − t messages, as t processes might



be crashed. If we use reliable broadcast, which indeed never
waits for more than n− t processes, any two non-faulty pro-
cesses will have n − 2t values in common after one round
of communication. With the witness technique, originally
presented by Abraham et al. [1], we can make non-faulty
processes have n − t common values, which is essential for
our correctness and optimality arguments (Secs. 4.1 and 5,
respectively). The witness technique will only wait for mes-
sages certain to be delivered.

Algorithm 4 overviews the technique for process p and
round r. First, p reliably receives n− t messages from other
processes, storing them into Val . Then, p reliably transmits
its report, which contains the n − t messages first collected
in Val , and reliably receives reports from other processes,
storing them into Rep.

A witness to p is a process whose report consists of mes-
sages received by p, either in Line 4 or 8. We note that p
collects reports in Rep until n− t witnesses are identified in
Wit . This eventually happens since we are certain to receive
n− t non-faulty process reports, and, by the global liveness
of reliable broadcast, we are also certain to receive the values
received by each of them.

As witnesses are obtained via reliable broadcast, any two
non-faulty processes obtain ≥ n − 2t ≥ t + 1 witnesses in
common, of which at least one is non-faulty. So, they receive
at least n− t values in common. As formally shown in [1]:

Fact 2.1. If n > 3t, any two non-faulty processes that
obtain messages through the witness technique in a single
round r obtain n− t messages in common.

Algorithm 4 p.RBReceiveWitness(r)

Val ,Rep,Wit ← ∅
while |Val | < n− t do

upon RBRecv((px, r, cx)) do
4: Val ← Val ∪ {(px, r, cx)}

RBSend((p, r,Val))
while |Wit | < n− t do

upon RBRecv((px, r, cx)) do
8: Val ← Val ∪ {(px, r, cx)}

upon RBRecv((px, r,Valx)) do
Rep ← Rep ∪ {(px, r,Valx)}

Wit ← {(px, r,Valx) ∈ Rep : Valx ⊆ Val}
12: return Val

3. THE SAFE AREA
As we discussed, non-faulty processes collect messages in

multiple discrete rounds. They collect these messages via
reliable broadcast and witness technique. We now formalize
this scenario, over which we define the safe area concept.

Formally, in every round r, non-faulty processes obtain
a message set, which contains messages (pi, r, ci). For any
message set, each message contains the sending process pi,
the current round r, and the message contents ci (normally
values in Rm). No process appears twice, because we use
reliable broadcast. So, for any (pi, r, ci) and (pj , r, cj) in an
arbitrary message set, we have that pi 6= pj .

Consider any message set X. We note that any X ′ ⊆ X is
similarly a message set. We define the non-faulty messages
of X as XG = {(pi, r, ci) ∈ X : pi ∈ G}, and the faulty

messages of X as XB = {(pi, r, ci) ∈ X : pi ∈ B}. We
always assume that |X| > t and that |XB | ≤ t, as we have
no more than t Byzantine processes.

A restriction of X is a subset X ′ ⊂ X containing exactly
|X|−t elements. The set of all possible restrictions is written
Restrictt(X). The contents of X is the multiset Cont(X)
such that c ∈ Cont(X) only when (p, r, c) ∈ X, for any
process p and round r. If c ∈ Cont(X), we can also say that
X contains c.

Definition 3.1. For any message set X, if Cont(X) is
comprised of values ∈ Rm, X is a valued message set; if
not, X is an unrestricted message set.

Valued message sets contain only values in Rm. The con-
vex hull of any multiset of values C is denoted by Poly(C).
If X is a valued message set, the polytope of X, written
Poly(X), is defined as Poly(Cont(X)). The safe area of X,
written Safet(X), is the intersection of the polytopes of all
possible restrictions of X (see Fig. 3, and the following def-
inition).

Definition 3.2. For any valued message set X, the safe
area of X is

Safet(X) =
⋂

X′∈Restrictt(X)

Poly(X ′).

3RO\(X ′),
X ′ ∈ 5HVWULFWt(X)
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Figure 3: For Cont(X) = {v1, . . . , v5} and t = 1, we
highlight Poly(X ′), for one X ′ ∈ Restrictt(X), and also
show Safet(X). Values are in R2.

The safe area is a convex polytope, as it is an intersec-
tion of other convex polytopes. Also, Safet(X) ⊆ Poly(XG),
which follows from the lemma below, taking C = Cont(XG).

Lemma 3.3. If X is a valued message set, C ⊆ Cont(X),
and |C| ≥ |X| − t, then Safet(X) ⊆ Poly(C).

Proof. As defined before, Safet(X) ⊆ Poly(XC), taking
a particular restriction XC of X such that Cont(XC) ⊆ C.
In this case,

Safet(X) ⊆ Poly(XC) = Poly(Cont(XC)) ⊆ Poly(C),

proving the lemma.

In the following lemmas, we relate t and |X| in order to
ensure the existence of the safe area. We use the following
theorem from discrete geometry [5]:



Theorem 3.4 (Helly’s Theorem). Consider a finite
collection of closed convex sets P = {P1, . . . , Px} on Rm,
with x ≥ m + 1. If every subset of m + 1 members of P
intersect, then ⋂

Pi∈P
Pi 6= ∅.

The relationship between t and |X|, guaranteeing the ex-
istence of the safe area, follows in Lemmas 3.6 and 3.10. The
next lemma applies to unrestricted message sets; the follow-
ing lemmas in the current section apply to valued message
sets only. In this paper, unless otherwise noted, we presume
valued message sets.

Lemma 3.5. For any X1, . . . , Xj ∈ Restrictt(X), where
X is an unrestricted message set,∣∣∣∣∣∣

⋂
1≤i≤j

Xi

∣∣∣∣∣∣ ≥ |X| − jt,
for any j ≤ m+ 1.

Proof. We prove the lemma by induction on j.
Base. For j = 1, we have that∣∣∣∣∣∣

⋂
1≤i≤1

Xi

∣∣∣∣∣∣ = |X1| = |X| − t = |X| − 1t,

since X1 ∈ Restrictt(X).
Induction Hypothesis. Assume valid∣∣∣∣∣∣

⋂
1≤i≤k

Xi

∣∣∣∣∣∣ ≥ |X| − kt,
for k < m+ 1.∣∣∣∣∣∣

⋂
1≤i≤k+1

Xi

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 ⋂

1≤i≤k
Xi

 ∩Xk+1

∣∣∣∣∣∣ (?)

≥ |X| − kt− t = |X| − (k + 1)t (??).

(?) happens by associativity of ∩; (??) happens since ≤ t
values in ∩1≤i≤kCont(Xi) are not in Cont(Xk+1).

Lemma 3.6. In Rm, if |X| > t(m+1), then Safet(X) 6= ∅.
Proof. As |X| > t(m+ 1), by definition of Restrictt(X),

we know that |Restrictt(X)| ≥ m + 1. Therefore, consider
any X1, . . . , Xm+1 ∈ Restrictt(X). By Lemma 3.5,∣∣∣∣∣∣

⋂
1≤i≤m+1

Xi

∣∣∣∣∣∣ ≥ |X|−(m+1)t ≥ (m+1)t+1−(m+1)t = 1.

So, any X1, . . . , Xm+1 from Restrictt(X) will have a non-
empty intersection, therefore any Poly(X1), . . . ,Poly(Xm+1)
from P = {Poly(X ′) : X ′ ∈ Restrictt(X)} will also have a
non-empty intersection. By our first observation, we know
that |P | ≥ m+ 1.

Finally, as all message contents are in Rm, all subsets
of P = {Poly(X ′) : X ′ ∈ Restrictt(X)} will also have a
non-empty intersection, by Helly’s Theorem, and therefore
Safet(X) 6= ∅.

For v ∈ Rm, its projection in coordinate 1 ≤ d ≤ m is
denoted by v(d). Now, we characterize special arrangements
of values in Rm, used in further discussions and proofs.

Definition 3.7. A standard basic value ed ∈ Rm is such
that ed(d) = 2ε and ed(d

′) = 0, considering 1 ≤ d ≤ m and
d′ 6= d. Additionally, e0 = 0m.

Note that the distance between any different standard basic
values exceeds our threshold ε. These special values might
be arranged as follows:

Definition 3.8. In Rm, X configures a (k, t)-simplicial
state, for k ≤ m+1, if X solely contains k different standard
basic values, but, for any chosen ed, 0 ≤ d ≤ m, ed appears
≤ t times in Cont(X).

We illustrate the arrangement on Fig. 4. There, 4t values
are located in 4 different positions corresponding to standard
basic values, e0, . . . , e3, with ≤ t values in a single position.

e2 = {v2t, . . . , v3t−1}

e1 = {vt, . . . , v2t−1}

e3 = {v3t, . . . , v4t−1}

e0 = {v0, . . . , vt−1}

︸
︷︷

︸

� 2✏
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Figure 4: v0, . . . , v4t−1 ∈ Cont(X), which configures a
(4, t)-simplicial state.

Lemma 3.9. In Rm, if X configures some (k, t)-simplicial
state, for k ≤ m+ 1, then Safet(X) = ∅.

Proof. The arrangement is a geometric (k − 1)-simplex
σ = (x0, . . . , xk−1) 3, with x0 . . . xk−1 as different standard
basic values in Rm. As ≤ t members of Cont(X) are equal
to a particular standard basic value xi, for 0 ≤ i ≤ k − 1,
the safe area is the intersection of proper faces of σ, which
is empty.

Lemma 3.10. In Rm, there exists a message set X where
|X| ≤ t(m+ 1) and Safet(X) = ∅.

Proof. Say Cont(X) = {x0, . . . , xt(m+1)−1}, where xi =
e(i mod m+1). Note that X configures a (m+ 1, t)-simplicial
state, so, by the previous lemma, Safet(X) = ∅.

In this section, we formalized the concept of the safe area,
and now we know that, for any valued message set X, if
|X| > t(m+ 1) its safe area is necessarily nonempty, and if
|X| ≤ t(m + 1) its safe area might be empty. In the next
section we present our protocol and proofs of correctness.

4. PROTOCOL
We now present our protocol, in Alg. 5, which tolerates t

Byzantine failures in asynchronous systems. In our presenta-
tion, we assume FIFO point-to-point channels with reliable
message delivery and sender identification. We can simulate
FIFO on top of regular channels, if senders put sequential
numbers in their messages, and receivers queue messages,

3For basic definitions on simplicial topology, see [10].



considering only appropriately numbered ones. Sender iden-
tification is also viable using message authentication codes,
for instance.

The process input I ∈ Rm is passed as argument. On
Line 1, CalculateRounds takes the input and returns R, the
number of rounds needed to converge along each dimension
d. The procedure also provides the process a starting point
v ∈ Rm.

Note that although each process’ output value is com-
puted dimension-by-dimension, these computations are not
really independent. First, both the number of rounds and
the starting value are computed by CalculateRounds under
a holistic approach (see Sec. 4.1.3). Most importantly, the
safe area concept allows processes to choose values always
within Poly(IG), as we formally demonstrate later.

For each dimension, we execute a number of convergence
rounds, indexed by r, until we accept > t halt messages, ac-
cumulated in H. A non-faulty process sends a halt message
for the current dimension after R convergence rounds.

Algorithm 5 p.agree(I)

(R, v)← CalculateRounds(I)
for d→ 1, . . . ,m do

H ← ∅
r ← 1

5: while |H| ≤ t do
RBSend((p, d.r, v))
upon V ← RBReceiveWitness(d.r) do

S ← Safet(V )
v ← v ∈ S such that v(d) = Midpoint(S(d))

10: if r = R then
RBSend((p, d.r, {halt}))

r ← r + 1

upon RBRecv((p′, d.r′, {halt})), with r′ ≥ r do
H ← H ∪ {(p′, d.r′, {halt})}

15: return v

On Lines 6 and 7, the process transmits its current value
to other processes via reliable broadcast, and receives the
current values of other processes via the witness technique,
which updates V . In Line 8, the safe area is calculated. In
Line 9, the process computes the interval S(d), the projec-
tion of the safe area on coordinate d, then chooses a point
in S such that its d-th coordinate is in the midpoint of S(d),
which updates v (see Lemma 4.8). We discuss the relevant
properties of the safe area in Sec. 4.1.1.

Note that a non-faulty process accepts only halt messages
with an indexed round bigger or equal than the current
round. This is essential for convergence, as seen in Sec. 4.1.2
and Sec. 4.1.3. We show that v is well-defined at every
round, and correct after all rounds, in Sec. 4.1.4.

Assume we are executing our procedure for dimension d.
On process pi and round r, V ri denotes the updated message
set in Line 7, Sri the updated safe area in Line 8, and vri the
updated current value in Line 9. The projections of vri and
Sri over coordinate d are denoted respectively by v(d)ri and
S(d)ri . We omit subscripts or superscripts when they are
irrelevant or obvious.

4.1 Proof of Correctness
In this section, we show that the values of the processes

converge to a ball in Rm with radius ε.

4.1.1 Intersecting Safe Areas
Say we are executing our procedure for dimension d. For

any two non-faulty processes pi, pj ∈ G and convergence
round r, define the intersection of their received message
sets as Vri,j = V ri ∩ V rj , written simply as Vi,j = Vi ∩ Vj if r
is irrelevant or obvious. From fact 2.1:

Corollary 4.1. For any two non-faulty processes, say
pi, pj ∈ G, we have that |Vi,j | ≥ n− t.

As we show next, this implicates in intersecting safe areas
between any two non-faulty processes in every round. For-
mally, we show that, for any non-faulty processes pi, pj ∈ G,
Si ∩ Sj 6= ∅.

The reasoning is the following. Since Vi,j ≥ n− t, the safe
area, considering only values in Vi,j = Vi∩Vj , is non-empty.
We are interested, however, in the intersection of the safe
areas of Vi ⊇ Vi,j and Vj ⊇ Vi,j . We show that adding the
extra values to the safe area computation at pi and pj will
maintain a non-empty intersection between Si = Safet(Vi)
and Sj = Safet(Vj).

For that goal, we use the supporting Lemmas 4.2 and 4.3.
Consider a valued message set X, with |X| > t, and define
a valued message as a message containing a value ∈ Rm.

Lemma 4.2. Safet(X) ⊆ Safet−1(X).

Proof.

Safet(X) =
⋂

X′∈Restrictt(X)

Poly(X ′)

⊆
⋂

X′∈Restrictt(X)

 ⋂
M∈X\X′

Poly(X ′ ∪ {M})


=

⋂
X′∈Restrictt−1(X)

Poly(X ′) (?)

= Safet−1(X),

while (?) happens since ∩ is associative.

Lemma 4.3. For any valued message M 6∈ X, Safet(X) ⊆
Safet(X ∪ {M}).

Proof. First, we note that

Safet(X) =
⋂

X′∈Restrictt(X)

Poly(X ′)

⊆
⋂

X′∈Restrictt(X)

Poly(X ′ ∪ {M})

=
⋂

X′∈Restrictt(X∪{M}),M∈X′
Poly(X ′) = A,

calling A the intersection of convex polytopes of |X∪{M}|−t
members of X ∪ {M} that include M .

Second, by the previous lemma, we note that

Safet(X) ⊆ Safet−1(X)

=
⋂

X′∈Restrictt−1(X)

Poly(X ′)

=
⋂

X′∈Restrictt(X∪{M}),M 6∈X′
Poly(X ′) = B,



callingB the intersection of convex polytopes of |X∪{M}|−t
members of X ∪ {M} that exclude M . Therefore,

Safet(X) ⊆ A ∩B
=

⋂
X′∈Restrictt(X∪{M})

Poly(X ′)

= Safet(X ∪ {M}),
concluding our proof.

Now, we are ready to prove that, in every round, any two
non-faulty processes will have intersecting safe areas. Recall
that n > t(m+ 2).

Lemma 4.4. For any non-faulty processes pi, pj ∈ G, and
any round r, Sri ∩ Srj 6= ∅

Proof. In every round,

|Vi,j | ≥ n− t (corollary 4.1)

≥ t(m+ 2) + 1− t
≥ t(m+ 1) + 1.

By Lemma 3.6, we conclude that Safet(Vi,j) 6= ∅. By an
iterative application of Lemma 4.3, if we incorporate mes-
sages besides those of Vi ∩ Vj , then the safe area for pi’s
messages and the safe area for pj ’s messages can possibly
increase, but never decrease, which gives that Si ∩ Sj 6= ∅.
See Fig. 5.
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Figure 5: Say Vi,j contains {v1, . . . , v5}, but Vi also
contains {wi} and Vj also contains {wj}. The safe
area only grows when we also consider wi at pi and
wj at pj, therefore Si ∩ Sj 6= ∅.

4.1.2 Convergence
If Sri and Srj intersect, they intersect when projected in

any of the m coordinates. Say we are executing our proce-
dure for dimension d.

Definition 4.5. Within process px, for coordinate d
and round r, the lower limit of S(d)rx is denoted by lo(d)rx,
and the upper limit of S(d)rx is denoted by hi(d)rx.

Definition 4.6. Across non-faulty processes, for co-
ordinate d and round r, min(d)r = min{v(d)rx : px ∈ G} and
max(d)r = max{v(d)rx : px ∈ G}.

Definition 4.7. Across non-faulty processes, for co-
ordinate d and round r, the working range, written ∆(d)r,
is max(d)r −min(d)r.

We effectively consider CalculateRounds as being round
0, so v0i is v as returned by CalculateRounds at pi; the work-
ing range ∆(d)0 is max(d)0−min(d)0. Between consecutive
dimensions, however, consider the values at the end of the
previous dimension as being values of round 0.

Lemma 4.8. In Line 9, v is well-defined and v ∈ S.

Proof. As |V | ≥ n− t, we know that S = Safet(V ) 6= ∅,
by Lemma 3.6. The safe area is convex by definition.

Get two points v′ and v′′ in S with v′(d) = lo(d) and
v′′(d) = hi(d). Their barycenter is in S, because S is convex,
and also satisfies the requirement of the algorithm, since
(v′(d) + v′′(d))/2 = Midpoint(S(d)).

Lemma 4.9. The working range at the current dimension
is halved between consecutive rounds. So, for any 1 ≤ d ≤ m
and r ≥ 1, we have that ∆(d)r ≤ ∆(d)r−1/2.

Proof. Consider any two non-faulty processes pi and pj .
Without losing generality, say that v(d)ri ≥ v(d)rj . However,
since S(d)ri ∩ S(d)rj 6= ∅, there exists some real value ` ∈
S(d)ri ∩ S(d)rj . Therefore,

v(d)r+1
i − v(d)r+1

j

=
lo(d)ri + hi(d)ri

2
− lo(d)rj + hi(d)rj

2

≤ `+ max(d)r

2
− min(d)r + `

2

=
max(d)r −min(d)r

2
,

so ∆(d)r is halved between rounds.

If we want processes values to be within ε of each other, it
is sufficient that they be within ε/

√
m of each other in every

coordinate. We use the argument below.

Lemma 4.10. After

R ≥ log2

(√
m ·max{∆(d′)0 : 1 ≤ d′ ≤ m}

ε

)
,

rounds, the values of the processes are within distance ε/
√
m

of each other at the current dimension d.

Proof. Since

R ≥ log2

(√
m ·max{∆(d′)0 : 1 ≤ d′ ≤ m}

ε

)
,

we have that

2R ≥
√
m ·max{∆(d′)0 : 1 ≤ d′ ≤ m}

ε
⇒

ε√
m
≥ (1/2R) ·max{∆(d′)0 : 1 ≤ d′ ≤ m} ⇒

ε√
m
≥ max{(1/2R) ·∆(d′)0 : 1 ≤ d′ ≤ m} ⇒

ε√
m
≥ max{∆(d′)R : 1 ≤ d′ ≤ m} ⇒

ε√
m
≥ ∆(d)R,

which satisfies our agreement requirement.



Note that the number of rounds sufficient for convergence
depends only on ε and m (naturally), as well on ∆(d)0, for
all 1 ≤ d ≤ m. The initial working range ∆(d)0 is defined
to consider non-faulty process values only. Next, we see
why non-faulty processes run for ≥ R rounds, guaranteeing
convergence, while still preventing Byzantine influence.

4.1.3 Initial Estimation of R
In the initial estimation of R, shown in Alg. 6, we use our

notion of safe area extensively. We have to make sure that
Ri, the estimation of R by process pi ∈ G, depends only on
the non-faulty inputs, otherwise Byzantine processes could
influence the communication complexity of the protocol.

Algorithm 6 shows the strategy. We obtain n−t witnesses
using RBReceiveWitness, each surely containing ≤ t faulty
values. For every witness report, we calculate a safe area,
bound to be inside IG, and obtain its barycenter, defining
the multiset U . We calculate a safe area for U , and again
its barycenter, defining v. In the algorithm, V is the mes-
sage set received by RBReceiveWitness, and W is a multiset
containing witness reports.

The range of values for any multiset C, considering the
coordinate d, is defined as

δC(d) = max{|x(d)0 − y(d)0| : x, y ∈ C}. (1)

Algorithm 6 p.CalculateRounds(I)

RBSend((p, 0, I))
(V,W )← (Val ,Cont(Wit)) from RBReceiveWitness(0)

3: U ← {barycenter of Safet(W
′) : W ′ ∈W}

v ← barycenter of Safet(U)
R← dlog2(

√
m/ε ·max{δU (d) : 1 ≤ d ≤ m})e

6: return (R, v)

In the next two lemmas, we show that the initial values are
well-defined and inside the convex hull of non-faulty inputs.
We denote W and U within process px as Wx and Ux.

Lemma 4.11. For any pi ∈ G, Ui is well-defined and only
contains values ∈ Poly(IG).

Proof. Consider an arbitrary W ′ ∈ W . By definition,
any report contains exactly n− t values. Therefore,

|W ′| = n− t ≥ t(m+ 2) + 1− t = t(m+ 1) + 1,

which gives, by Lemma 3.6, that Safet(W
′) 6= ∅. We then

conclude that Ui is well-defined.
Note that W ′ ⊆ V (by definition of witness) and that V

contains ≤ t values outside IG. Then, W ′ also contains ≤ t
values outside IG, or, in other words, W ′ contains at least
|W ′| − t values inside IG.

Using Lemma 3.3 , we know that Safet(W
′) ∈ Poly(IG),

which proves that Ui only contains values in Poly(IG).

Lemma 4.12. For any non-faulty process pi ∈ G, we have
that v0i is well-defined and v0i ∈ Poly(IG).

Proof. Since |U | ≥ n − t, we use again Lemma 3.6 and
see that Safet(U) 6= ∅. Therefore, v0i is well-defined. Also,
since all values in U are in Poly(IG), then v0i ∈ Poly(IG).

In the remaining lemmas, we show that the estimation of
R in any non-faulty process guarantees convergence.

Definition 4.13. The minimum round estimation across
non-faulty processes is ρ = min{Ri : i ∈ G}.

Lemma 4.14. For any two non-faulty processes pi, pj ∈
G, we have that U j \ U i ≤ t.

Proof. Non-faulty processes collect n−t witness reports.
Moreover, reports are transmitted via reliable broadcast, so
≤ t reports in Wj are not in Wi. The result follows since pi
and pj calculate U identically based on W .

Lemma 4.15. Considering a dimension d, if all non-faulty
processes run for ≥ ρ rounds,

|v(d)ρi − v(d)ρj | ≤
ε√
m
,

for arbitrary non-faulty processes pi and pj.

Proof. Take pi ∈ G such that Ri = ρ, and consider
another arbitrary pj ∈ G. Defining Dj,i = (Uj\Ui), we know
that |Dj,i| ≤ t, by Lemma 4.14. Hence, |Uj \Dj,i| ≥ |Uj |− t.
Using Lemma 3.3:

v0j ∈ Safet(Uj) ⊆ Poly(Uj \Dj,i)
= Poly(Uj \ (Uj \ Ui))
⊆ Poly(Ui).

In conclusion, as pj was taken arbitrarily, all non-faulty val-
ues v0j are inside Poly(Ui). Noting the calculation of R in
Line 5 of CalculateRounds,

Ri = dlog2(
√
m/ε ·max{δU (d′) : 1 ≤ d′ ≤ m})e

≥ log2(
√
m/ε ·max{δU (d′) : 1 ≤ d′ ≤ m})

≥ log2(
√
m/ε ·max{∆(d′)0 : 1 ≤ d′ ≤ m}), (?)

where (?) happens since v0j ∈ Poly(Ui) for any arbitrary
pj ∈ G. Therefore, if all non-faulty processes run for at
least Ri = ρ rounds, we precisely satisfy the condition of
Lemma 4.10, and hence the result follows.

Lemma 4.16. Considering a dimension d, all non-faulty
processes run for ≥ ρ rounds.

Proof. Without losing generality, say ph ∈ G is a non-
faulty process sending (ph, d.rh, {halt}) with earliest round
rh. We know that ph executed ≥ rh ≥ ρ rounds.

Any other non-faulty process px ∈ G either: (1) executes
for Rx ≥ ρ rounds; or (2) sees |H| ≥ t + 1. If (2), the
interesting situation, we know that px must have received
one halt message from one non-faulty process py ∈ G, say
(py, d.ry, {halt}). By definition, ry ≥ rh ≥ ρ.

However, px ∈ G only accepts (py, d.ry, {halt}) if it ran
for more than ry rounds, which we showed to be ≥ ρ. Since
an arbitrary non-faulty process px either executes for Rx ≥ ρ
or for ry ≥ rh ≥ ρ rounds, we are done.

4.1.4 Putting all Together
In this section, we put previous lemmas together and prove

the correctness of our protocol. Define V rG = {vri : pi ∈ G},
the set of non-faulty current values at round r.

Lemma 4.17. For any pi ∈ G, it is always the case that
vi is well-defined and vi ∈ Poly(IG).

Proof. We proceed by induction on consecutive rounds.
Without losing generality, number all rounds, even the ones



across different dimensions, using consecutive numbers. Fix
any non-faulty process pi ∈ G.

Base. Lemma 4.12 shows that v0i is well-defined and is in
Poly(IG). As pi ∈ G is arbitrary, V 0

G ⊆ Poly(IG).
Induction Hypothesis. Assume that V xG ⊆ Poly(IG).

We know that vx+1
i is well-defined and vx+1

i ∈ Safet(V
x+1
i ),

by Lemma 4.8.
Additionally, V x+1

i contains ≤ t values outside V xG , since
≤ t Byzantine processes are assumed. In light of Lemma 3.3
and our inductive hypothesis, we have that

Safet(V
x+1
i ) ⊆ Poly(V xG) ⊆ Poly(IG).

As pi ∈ G is arbitrary, and vx+1
i ∈ Safet(V

x+1
i ), as discussed

before, we know that V x+1
G ∈ Poly(IG).

Theorem 4.18. After executing the protocol, all values in
VG are within a ball with radius ε in Rm and in Poly(IG).

Proof. For each dimension, non-faulty processes run for
≥ ρ rounds (Lemma 4.16), therefore, for any vi, vj ∈ VG, we
have that |v(d)ρi − v(d)ρj | ≤ ε/

√
m (Lemma 4.15). Since val-

ues are always maintained within Poly(IG), by the previous
lemma, the result follows.

5. LOWER BOUND ON RESILIENCE
In this section, we show that our requirement n > t(m+2)

is optimal in terms of fault tolerance

Theorem 5.1. When n ≤ t(m+2), the m-dimensional ε-
approximate agreement with Byzantine failures is impossible.

Proof. We provide a simple counterexample. Consider
an execution where all the t Byzantine processes crash before
sending messages, and the n − t non-faulty processes, say
p1, . . . , pn−t ∈ G, start with different standard basic values:
say pi starts with Ii = ei mod (m+1).

So, after any communication, a non-faulty process px can
only receive values of non-faulty processes. By hypothesis,
all received values are ∈ {e0, . . . , em}, and ≤ t received val-
ues are = ed, for a chosen 0 ≤ d ≤ m.

Therefore, px cannot verify that Poly(IG) includes any-
thing but Ix, so px cannot choose any other value ∈ Rm
besides its own Ix. For any 0 ≤ i 6= j ≤ m, the Euclidean
distance between Ii and Ij is > ε, since all non-faulty pro-
cesses start with standard basic values, so any protocol ei-
ther fails the problem requirements or never terminates.

This theorem also guarantees that the 1-dimensional ap-
proximate agreement, which requires only n > 3t, is not
enough to solve multidimensional approximate agreement.
In higher dimensions, we fundamentally tolerate a smaller
fraction of Byzantine processes in order to be solvable. Our
protocol, which centers around the safe area concept, solves
the problem with optimal fault tolerance.

6. MESSAGE COMPLEXITY
In [2], it is formally shown that a single process spends

O(n2) messages to reliably broadcast a message. In our
protocol, non-faulty process reliably broadcast their values
in every round, and the witness algorithm (Alg 4) has a
single extra reliable broadcast. Therefore, each round of
communication requires O(n2) messages for each non-faulty
process.

As the communication channels are FIFO, any non-faulty
process executes less than rmax = max{Ri : pi ∈ G} rounds
for each dimension: before accepting the last halt message
from round rmax, all others are received, making |H| ≥ t+1.

For any non-faulty process pi ∈ G,

Ri = dlog2(
√
m/ε ·max{δU (d) : 1 ≤ d ≤ m})e,

with Poly(Ui) ⊆ Poly(IG) (Lemma 4.11), which implies that

rmax ≤ log2(
√
m/ε ·max{δIG(d) : 1 ≤ d ≤ m}) + 1.

In conclusion, non-faulty processes run for

O(d log(m/εmax{δIG(d) : 1 ≤ d ≤ m}))
rounds, sending

O(n2d log(m/εmax{δIG(d) : 1 ≤ d ≤ m}))
messages in total.

7. SAFE AREA CALCULATION
The distributed computing literature traditionally focuses

on communication complexity (number and size of messages
exchanged) than on the number of steps of local computa-
tion. We believe, however, that the safe area computation
is practical for the following reasons.

First, we think of m as constant, and note that m ≤ 3
in many practical applications. Second, we observe that
Poly(V ) and Safet(V ) are the intersection of O(nm) halfs-
paces, as their facets in Rm may be defined through ≤ m
vertices, out of n possible points.

Therefore, when converging on dimension d, we can inter-
pret the halfspaces defining Safet(V ) as linear restrictions,
and solve two linear programs, one maximizing v(d), and
one minimizing v(d). These points are in the safe area, and
their barycenter, also in the safe area, could be taken as the
updated value v, in agreement with Lemma 4.8.

8. CONCLUSION
In this paper, we give an optimal protocol for multidimen-

sional approximate agreement in Byzantine asynchronous
systems. We require n > t(m + 2), where n is the num-
ber of participating processes, t is the limit on the number
of Byzantine processes, and m is the dimension the values
lie in, which is optimal, matching a lower bound in terms of
resilience. Our lower bound for the number of processes gen-
eralizes the previous unidimensional lower bound. In terms
of message complexity, non-faulty processes executing our
protocol send O(n2d log(m/εmax{δ(d) : 1 ≤ d ≤ m})) mes-
sages in total, where δ(d) is the range of non-faulty inputs,
when projected at coordinate d.

Previous results in the robot network community relate
approximate agreement with robotic convergence in the real
line [3, 11]. We formally defined and analyzed our prob-
lem in light of distributed computing, but our protocol is
suitable to robotic convergence as long as the autonomous
agents share a common coordinate system. The safe area
concept, however, is independent of common coordinates,
which is required in some robot networks. A different strat-
egy for updating v, just after calculating the safe area, could
eventually be as well independent of common coordinates,
thus being an interesting possibility for future work.

In regard to distributed computing, we particularly in-
dicate that the multidimensional approximate agreement is



a non-trivial generalization of the traditional approximate
agreement for Byzantine asynchronous systems, limiting the
fraction of Byzantine processes according to the dimension
the values lie in. Our protocol solves the problem optimally
in terms of fault tolerance, and the safe area concept seems
to capture very well the interdependence of dimensions, per-
mitting a systematic convergence of values.
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