
Locally Observable Markov Decision Processes
Max Merlin, Neev Parikh, Eric Rosen, George Konidaris

Abstract—Real-world robot task planning is computationally
intractable in part due to the complexity of dealing with partial
observability. One approach to reducing planning complexity is to
assume additional model structure such as mixed-observability,
factored state representations, or temporally-extended actions.
We introduce a novel structured formulation, the Locally Ob-
servable Markov Decision Process, which assumes that partial
observability stems from limited sensor range—objects outside
sensor range are unobserved, but become fully observed once
they are within sensor range. Plans solving tasks of this type have
a specific structure: they must necessarily go through localities
where objects transition from unobserved to fully observed. We
introduce a novel planner that reduces planning time via a
hierarchy that structures the plan around these localities, and
interleaves online and offline planning. We present preliminary
results in a challenging domain that shows that the locality
assumption enables robots to plan effectively in the presence
of this type of uncertainty.

I. INTRODUCTION

It is unreasonable to expect that a robot can, at every
moment, sense all of the aspects of its environment required
for decision-making. Task planners that hope to be useful in
the real world must therefore cope with the environmental
uncertainty caused by such partial observability. Unfortunately,
planning in the presence of generic environmental uncertainty
is NP-Hard [6], resulting in scalability and performance prob-
lems in practice [14].

One approach to avoiding this complexity is to assume
additional model structure that can be exploited to enable
efficient solutions. An important characteristic of real, physical
sensors is that they are range-limited; that is, they are only
able to sense—often very accurately—objects within a fixed
maximum distance. This limited range is a major source of
partial observability in real robot tasks. All of the objects the
robot wishes to interact with can be perceived directly, given
appropriate sensor placement. Moreover, the robot is typically
configured such that interaction with an object requires that
object to be within sensor range, and ensures that it remains
observed for the duration of the interaction.

We therefore introduce the Locally Observable Markov
Decision Process (LOMDP), a formalism for decision-making
under uncertainty that models partial observability stemming
from range-limited sensing. The core assumption behind
LOMDPs is that an object’s state is only uncertain because
it has never been within range of the robots sensors, but
navigating close enough to the object will bring it into sensor
range, thus making it fully observed. We formalize this notion
of “close enough” as a locality—the set of states from which
an object can be observed, which may depend on the object’s
own (unobserved) attributes. Any plan that solves a LOMDP
has a specific structure: it must necessarily navigate through

the localities of the objects relevant to the solution, which
transitions those objects from partially to fully observed.

We exploit this structure to design a hierarchical planner
called Planning to Find (P2F). It generates a plan offline to
interact with objects that have been observed, but defers offline
planning over unobserved objects. During online execution,
P2F will plan to observe certain unobserved objects and, once
they become observed, how to interact with them.

II. BACKGROUND AND RELATED WORK

A Partially Observable Markov Decision Process (or
POMDP) is a sequential decision-making problem where an
agent must choose an action to execute at every timestep, but
in which the agent cannot always observe all the information
necessary to make that decision. Formally, a POMDP is
defined as a tuple (S,A,Ω, O, T,R, γ) , where S is a set
of states, which the agent cannot observe but which govern
the dynamics of its environment; A is a set of actions, one
of which it must choose to execute at each timestep; Ω is
an observation space, describing the agent’s sensor space;
O(ω|s) is an observation function describing the probability
with which the agent obtains observation ω ∈ Ω when in
state s; T (s′|s, a) is the transition function, describing the
probability that the agent’s choice of action a in state s causes
the environment to transition to state s′; R(s, a, s′) is the
reward received by the agent for transitioning from state s to s′

by executing a; and γ is a discount factor, which describes the
agent’s preference for immediate over future reward. The agent
must choose actions at every timestep to maximize its expected
discounted sum of rewards, even though it never observes the
state s directly, and can only infer it using the information
returned by observation function O.

There has been significant work related to planning with
uncertainty [5, 8, 11, 2]. Here we review a few key works most
similar to our approach. Because generating optimal plans for
partially observable environments is intractable, previous work
has attempted to leverage modeling assumptions to reduce
complexity. We draw inspiration from the Mixed Observability
MDP (MOMDP) [9], where the state is partitioned into factors
(state variables) that are fully observable and factors that are
partially observable. While MOMDPs capture some of the
modeling aspects we propose by representing certain factors
as fully observable, each factor is always either fully or
partially observable and cannot change from one to the other.
In contrast, Petrick and Bacchus [10] provides a structure to
allow state variables to transition from unknown to known.
However, our LOMDP framework provides a more extensible
and accessible model rooted in the POMDP formulation.



Other approaches focus on developing specialized planners
to handle uncertainty. Weld [15] introduced Partial Order
Planner (POP), a least-commitment planning method that
introduces the concepts of partial ordering and causal link
protection. POP is a goal-regressive planner [12], working
from goal states to start states. There are extensions improving
on POP [13, 1, 3, 7] that handle stochastic state transitions and
partial observability. One particularly prominent work in this
line of research is Hierarchical Planning in the Know (HPK)
[4], which uses a form of goal regression to hierarchically
decompose a task. It makes optimistic assumptions about the
state of the world and the outcome of its actions, committing
to those assumptions to generate a full plan. Although the
optimistic nature of HPK allows it to aggressively commit
to high-level subgoals for quick planning and execution, it
potentially requires replanning when an optimistic assumption
is violated, which could be very costly.

III. LOCALLY OBSERVABLE MDPS

The POMDP formulation is can model very general hidden
state variables and complex observation functions. Since that
generality comes with a severe complexity penalty, a promis-
ing approach to designing efficient planners is to incorporate
structural assumptions specific to real-world robot systems.
We focus on the fact that robot sensors are typically range-
limited and line-of-sight, which means that their observations
can be modeled as highly accurate within a given fixed sensor
range, assuming that the object is not occluded, and effectively
uninformative beyond that range. Once observed, an object
transitions from an uncertain to a known state and, assuming
there are no other agents present, will remain in that known
state unless directly modified by the robot itself. Additionally,
manipulation requires observation: it is the case that a robot
can only manipulate an object it can directly observe, and can
observe the object for the duration of manipulation.

Consider a home service robot tasked with making a sand-
wich. Doing so requires the robot to gather the different
ingredients from closed cupboards, bring them to a countertop,
and then to construct the sandwich. The only source of partial
observability in the problem comes from the robot’s range-
limited, line-of-sight sensors. The robot does not know which
cupboard each ingredient is in, because the internal state of
each cupboard is occluded by the cupboard itself. Even if the
cupboard doors were open, only certain poses would allow the
robot to see inside.

Here, observing the ingredients from a nearby robot pose
would be sufficient to decisively establish their state; even if
the robot possesses noisy sensors, it is not difficult to gather
multiple views of an object of interest—once it is within
range—to reach practical certainty via active perception.

All the uncertainty in this problem has the structure that the
partially-observed states can be completely resolved by having
the robot enter certain states, specifically for the purpose
of observation. Consequently, rather than solving a general
POMDP, the robot should instead model unobserved quantities

that it can choose to observe by navigating to a pose from
which they are visible.

We formalize the LOMDP as a tuple:
(S,A,O,Ω, L, T,R, γ), where S is the set of states, A
is a set of actions, O is an observation function, Ω is an
observation space, T is a transition function, L is the locality
function, R is the reward function, and γ is the discount
factor. Most of the elements are the same as the standard
POMDP formalization, though state and observations have
a more object-oriented structure, and one element—L—is
novel to LOMDPs. We now consider each element in turn.

Since LOMDPs are inherently focused on objects and ob-
serving them, the state space S is factored into n independent
objects: S = f1× ...×fn. For ease of terminology, we assume
each factor represents an object with a single attribute or the
robot state, though our framework is by no means restricted
to this case, and we use the terms “objects” and “factors”
interchangeably.

At each timestep, an agent solving a LOMDP receives an
observation where each object is either accurately observed or
completely unobserved. The observation space for a LOMDP
is therefore Ω = {R ∪ φ}n, a vector of n elements where
n is the number of factors in S, and each element in Ω is
either a real number—that factor’s true value—or φ (i.e., not
observed). Therefore, when an observation O(s) gives accurate
information about factor i, the value at O(s)[i] is equal to the
value of fi in the current state s.

We next turn to the observation function, which in a
POMDP is of the form O(o | s′, a), returning a probability
distribution over observations given a state and action. In
LOMDPs observations are deterministic, so it is unnecessary
to return a probability distribution. Instead, the observation
function deterministically maps a given state and action to an
observation: O : (s′, a)→ ω ∈ Ω.

In addition to these standard POMDP elements, LOMDPs
have a new element, the locality function, which takes in
a state factor and outputs the set of states from which that
factor can be perfectly observed. This can be derived from the
observation function. If the robot is in the locality of a given
i, the observation it receives for that factor is that factor’s true
value v. If the robot is outside of the locality of i, it observes
φ, (i.e. no observation). We therefore define a locality as:

L(i, v) = {s ∈ S | O(s)[i] = s[i] ∧ s[i] = v} (1)
L(i) = {s | ∃v, s ∈ L(i, v)}, (2)

where L(i, v) is the locality from which state variable i can
be observed if it has value v (Fig. 1.A), and L(i) is the global
locality for state factor i (Fig. 1.B).

The locality function allows us to redefine the observation
function in a more structured way:

o[i] =

{
s[i] if s ∈ L(i)

φ otherwise.
(3)

The definition of the observation function is dependent on the
locality function, which is in turn dependent on the observation
function; for any specific domain one must be given.



Fig. 1. A domain where a red ball can be in several locations within one
of two boxes. (A) The larger red area shows the robot states L(i, v) of one
possible v for the ball i. (B) Shows the union of L(i, v) for all possible v.
This is the same as L(i). (C) L(i, v) for the 5 possible v for one box. The
darkest red shows the intersection, from which the ball could be seen if it is
any of those five values.

LOMDPs assume additional structure in the relationship
between actions and the observation function. We assume
that any object interaction requires observing the factor cor-
responding to that object, and that the robot can observe that
factor for the duration of the interaction.

Because interaction requires observation, a robot must nav-
igate to the locality of an object before interacting with it.
Unfortunately, we cannot simply navigate to any state in L(i)
to interact with object i, since the states from which we
can observe i depend on its unobserved value. We therefore
require a representation of localities that enables the robot
to navigate to the locality of a given factor even when its
value is unknown. To do so, it is helpful to identify discrete
sets of states (which we term locales) from which a range of
values of factor i can be observed, and to find the collection of
locales that collectively cover any setting of state factor i. The
object must be observable from at least one of these locales,
so navigating to all of the locales of a factor in any sequence
guarantees that it becomes known.

In order to construct the locales, we apply a mask(s, i) to
the states in L(i, v) to obtain the set of navigable states from
which we could observe i if the value of i is v: {mask(s, i) |
s ∈ L(i, v)}. The mask(s, i) takes the state s and outputs the
set of states where factor i can take on any value in range,
but all other factors remain the same value. This resulting
set of states represents all states which are identical to the
original state s except for the value of factor i. This allows
us to use the states in L(i, v) as subgoal states despite not
knowing the actual value of i. Doing this for all values of
i, however, we may find that the resulting masked states for
many different v’s have a significant number of shared states,
and hence certain states can confirm or deny many possibilities
at once. We can therefore use a subset of these states that fully
spans all possible values of i as our locales, which is sufficient
for planning.

This is illustrated in Fig. 1.C, where masking out the
factor for the ball location leaves us with the set of states
represented by the larger, translucent red circles. These circles
have significant overlap, and the subset represented by the

intersection (darkest red) can be used to observe the ball in
all five v values in this box. This is a perfect example of what
we would use as a locale. Since navigating to any of the other
states around the box would be redundant, we only ever need
to plan to a state within that locale (the darkest red area).

Our planner only requires a set of locales that give complete
coverage over all values for factor i, but the problem of
selecting an optimal spanning set is potentially NP-hard. For
the purposes of this paper, we provide the locales to the
planner as part of the domain.

IV. PLANNING

Now that we have a set of locales,the robot can reach the
localities of objects that we need to interact with. It need only
identify which localities it needs to enter over the course of
its plan. The hierarchical nature of goal regression planning
is a perfect fit for this, as it can determine which objects we
need for our plan before fully resolving how to interact with
them. Even though the robot has not fully completed the task
plan, it can compute which objects must be observed and can
execute the portion of its plan that transitions them to observed
(searching through their locales). Once the object has become
observed, the remainder of the plan regarding that object can
be calculated based on its true observed state and the current
state. This eliminates the need to reason about the possible
values that unobserved objects could take, and therefore it
only generates plans which interact with observed factors and
search for unobserved factors.

We contribute a novel planner as an extension to POP [15]
called P2F (Planning to Find), that exploits the properties of
LOMDPs to generate hierarchies that reduce planning time.
We extend a goal regression method because it allows the
robot to recursively evaluate actions that are required by its
goal state. If any action the plan requires has preconditions
that are unknown, a generic find action can be inserted into the
plan that will resolve that precondition online. After inserting
the find action, P2F considers that precondition suspended and
continues with plan resolution. While POP requires all precon-
ditions be satisfied before returning a plan, P2F only requires
that all unsuspended preconditions be satisfied, after which it
can begin executing the resulting incomplete plan. When a
find action comes up in plan execution, the find subroutine
extracts which object state the suspended precondition is over
and plans to navigate to one of the possible locales of that
object. If the object is not observed from that locale, another
locale is selected to plan towards. This continues until the
object is observed. Once the object state is known, a new
instance of P2F is recursively called within the find subroutine
to achieve the suspended precondition, after which can resume
the overall plan. P2F therefore interleaves online and offline
planning, since each subplan is resolved during execution.

V. RESULTS

Our test domain is the peanut butter and jam (PBJ) domain.
As in the example sandwich domain, the robot begins in
a kitchen and is given the goal of making a sandwich.



Fig. 2. Task completion time for PBJ domain using P2F over 1000 trials.
Left: With 100 obstructions, varying the number of cupboards. Right: With
10 cupboards, varying the number of obstructions.

Making the sandwich requires spreading peanut butter on
bread, spreading jam on bread, and then putting the two halves
together. In order to perform each spread action, the jelly or
peanut butter must be on the table along with the bread and
the knife. However, all of these ingredients are distributed in
closed cupboards and cannot be observed at the start of the
task. In order to see each objects the robot must be in one
of its locales, which we defined as the robot being in front
of the cupboard that the object is in and that cupboard door
being open. Additionally, there are some number of obstacle
objects that are randomly distributed within the cupboards, and
the robot may need to take obstacles out of the cupboard and
place them on the counter below the cupboard to reach an
object that it needs.

A forward planner would need to hypothesize about every
possible combination of objects in each cupboard, and what
it may need to do in order to make a specific item reachable
in each scenario. Instead, P2F suspends planning interactions
with unknown object until after the required object is actually
observed. As a direct consequence of locales, once a requisite
object is observed, the other objects in that same cupboard
are observed as well, allowing P2F to plan only over the true
locations of the relevant obstacles.

We are able to scale up the number of cupboards and
number of obstacles in our domain to observe the performance
of our planner (Fig. 2).

VI. CONCLUSION

LOMDPs are a compact model of environments that enables
agents to explicitly represent states while accounting for lim-
ited sensor range with accurate sensor outputs. While planning
in partially-observed environments is typically intractable,
LOMDPs provide the structure to plan to observe objects, after
which they are known and can be reasoned about as such. To
exploit the structure of LOMDPs we propose a novel planner,
P2F, which combines hierarchical goal regression with the
localities defined in our LOMDP framework to delay planning
over unknown factors. We plan to demonstrate the power of
our model and planner by comparing it to existing state-of-
the-art planners in a sandwich-making domain. Future work

will consist of implementing the planner on a real robot, and
extending to additional domains.

REFERENCES

[1] Patrick Bechon, Magali Barbier, Guillaume Infantes, Charles
Lesire, and Vincent Vidal. HIPOP: Hierarchical Partial-Order
Planning. In Proceedings of the 7th European Starting AI
Researcher Symposium, pages 51–60, 2014.

[2] Jilles Steeve Dibangoye, Guy Shani, Brahim Chaib-Draa, and
Abdell-Illah Mouaddib. Topological order planner for POMDPs.
In Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[3] Denise Draper, Steve Hanks, and Daniel Weld. A probabilistic
model of action for least-commitment planning with information
gathering. In Uncertainty Proceedings, pages 178–186. Elsevier,
1994.

[4] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Planning in the
know: Hierarchical belief-space task and motion planning. In
Workshop on Mobile Manipulation IEEE Intl. Conf. on Robotics
and Automation, 2011.

[5] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task
and motion planning in belief space. The International Journal
of Robotics Research, 32(9-10):1194–1227, 2013.

[6] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cas-
sandra. Planning and acting in partially observable stochastic
domains. Artificial intelligence, 101(1-2):99–134, 1998.

[7] Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An
algorithm for probabilistic least-commitment planning. In
AAAI-94: Proceedings of the Twelfth National Conference on
Artificial Intelligence, pages 1073–1078, 1994.

[8] Andrew Kachites McCallum. Reinforcement Learning with
Selective Perception and Hidden State. PhD thesis, University
of Rochester, 1996.

[9] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun
Lee. Planning under uncertainty for robotic tasks with mixed
observability. The International Journal of Robotics Research,
29(8):1053–1068, 2010.

[10] Ronald PA Petrick and Fahiem Bacchus. Extending the
knowledge-based approach to planning with incomplete infor-
mation and sensing. In International Conference on Automated
Planning and Scheduling, 2004.

[11] Joelle Pineau, Nicholas Roy, and Sebastian Thrun. A hier-
archical approach to pomdp planning and execution. In In
ICML Workshop on Hierarchy and Memory in Reinforcement
Learning, 2001.

[12] John L Pollock. The logical foundations of goal-regression
planning in autonomous agents. Artificial Intelligence, 106(2):
267–334, 1998.

[13] Oscar Sapena, Alejandro Torreño, and Eva Onaindı́a. Parallel
heuristic search in forward partial-order planning. The Knowl-
edge Engineering Review, 31(5):417–428, 2016.

[14] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilis-
tic Robotics. MIT Press, Cambridge, Mass., 2005.

[15] Daniel S Weld. An introduction to least commitment planning.
AI Magazine, 15(4):27–27, 1994.


	Introduction
	Background and Related Work
	Locally Observable MDPs
	Planning
	Results
	Conclusion

