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Abstract

My research interests center around the area of error-tolerant
cryptography. In cryptography, our goal is to design protocols that
withstand malicious behavior of an adversary. Traditionally, the focus
was on a setting where honest users followed their protocol exactly,
without fault. But what if an adversary can induce faults, for example
a physical attack that changes the state of a user’s computation, forcing
a user to accept when he should be rejecting; or tries to use a modified
secret key? Can any security guarantees still be given when such errors
occur? My PhD work studies the implications of various types of errors
and develops techniques that protect against them.

I have delved into the following topics for different scenarios of
errors: (1) cryptography with imperfect hardware, where the adversary
can cause the cryptographic device to leak some secret information
and tamper with the device’s memory; (2) secure delegation protocols,
where a user can delegate some computation to an untrusted server
that causes errors.

To highlight some of my results:

• I gave a generic construction to secure any cryptographic func-
tionality against continual memory tampering and leakage errors
in the split-state model [LL12]. My main tool is to construct a
non-malleable code that is also leakage resilient in this model,
which resolves one central open problem in the previous work of
Dziembowski et el. [DPW10].

• I developed new delegation protocols that allow a user, who only
stores a short certificate of his data (potentially very large), to
delegate the computation on the data to the cloud, and then
verify the outcome in time sub-linear in the data size [CKLR11].

I elaborate on my work exploring different types of errors in cryp-
tography in the following sections.
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1 Tampering and Leakage Resilient Cryptography

Imperfect implementations of a cryptographic functionality can cause se-
rious errors that may render the system totally insecure. Recently, the
cryptographic community has been extensively studying various flavors of
the following general problem. Suppose that we have a device that imple-
ments some cryptographic functionality (for example, a signature scheme
or a cryptosystem). Further, suppose that an adversary can, in addition to
input/output access to the device, get some side-channel information about
its secret state, potentially on a continual basis; for example, an adversary
can measure the power consumption of the device, timing of operations, or
even read part of the secret directly [Koc96, HSH+08]. Additionally, suppose
that the adversary can, also possibly on a continual basis, somehow alter the
secret state of the device through an additional physical attack such as mi-
crowaving the device or exposing to heat or EM radiation [BS97, AARR02].
What can be done about protecting the security of the functionality on the
device?

Unfortunately, strong negative results exist even for highly restricted
versions of this general problem. For example, if the device does not have
access to randomness, but is subject to arbitrary continual leakage, and so,
in each round i, can leak to the adversary just one bit bi(si) for a predicate bi
of the adversary’s choice, eventually it will leak its entire secret state. More-
over, jointly with Anna Lysyanskaya [LL10], I showed that even in a very
restricted leakage model where the adversary can continually learn a physi-
cal bit of the secret state si, if the adversary is also allowed to tamper with
the device and the device does not have access to randomness, the adversary
will eventually learn the entire secret state. Further, even with tampering
alone, Gennaro et al. [GLM+04] show that security from arbitrary tamper-
ing cannot be achieved unless the device can overwrite its memory; further,
they show that security can only be achieved in the common reference string
model.

Thus, positive results are only possible for restricted versions of this
problem. If we only allow leakage, but not tampering, and access to a
source of randomness that the device can use to update itself, devices for
signatures and decryption can be secured in this model under appropriate
assumptions [BKKV10, DHLAW10, LRW11, LLW11]. Devices that don’t
have access to randomness after initialization can still be secure in the more
restricted bounded-leakage model, introduced by Akavia, Goldwasser, and
Vaikuntanathan [AGV09], where the attacker can learn arbitrary informa-
tion about the secret, as long as the total amount is bounded by some prior
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parameter [AGV09, NS09, ADW09, KV09].
If only tampering is allowed, Gennaro et al. [GLM+04] gave a construc-

tion that secures a device in the model where the manufacturer has a public
key and signs the secret key of the device. Dziembowski et al. [DPW10] gen-
eralized their solution to the case where the contents of the device is encoded
with a non-malleable code; they consider the case where the class of tamper-
ing functions is restricted, and construct codes that are non-malleable with
respect to these restricted tampering functions. Specifically, they have non-
constructive results on existence of non-malleable codes for broad classes of
tampering functions; they construct, in the plain model, a non-malleable
code with respect to functions that tamper with individual physical bits; in
the random-oracle model, they give a construction for the so-called split-
state tampering functions, which we will discuss in detail below. improved
the construction (in the plain model) of non-malleable codes that can with-
stand block-by-block tampering functions for blocks of small (logarithmic)
sizes.

Finally, there are positive results for signature and encryption devices
when both continual tampering and leakage are possible, and the device
has access to a protected source of true randomness [KKS11]. One may be
tempted to infer from this positive result that it can be “derandomized” by
replacing true randomness with the continuous output of a pseudorandom
generator, but this approach is ruled out by myself and Lysyanskaya [LL10].
Yet, how does a device, while under a physical attack, access true ran-
domness? True randomness is a scarce resource even when a device is not
under attack; for example, the GPG implementations of public-key cryptog-
raphy ask the user to supply random keystrokes whenever true randomness
is needed, which leads to non-random bits should a device fall into the ad-
versary’s hands.

In a subsequent work with Anna Lysyanskaya [LL12], I investigate gen-
eral techniques for protecting cryptographic devices from continual leakage
and tampering attacks without requiring access to true randomness after
initialization. Since, as we explained above, this is impossible for general
classes of leakage and tampering functions, we can only solve this problem
for restricted classes of leakage and tampering functions. Which restrictions
are reasonable? Suppose that a device is designed such that its memory M is
split into two compartments, M1 and M2, that are physically separated. For
example, a laptop may have more than one hard drive. Then it is reasonable
to imagine that the adversary’s side channel that leaks information about
M1 does not have access to M2, and vice versa. Similarly, the adversary’s
tampering function tampers with M1 without access to M2, and vice versa.
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This is known as the split-state model, and it has been considered before in
the context of leakage-only [DP08, DLWW11] and tampering-only [DPW10]
attacks.

Results. Let G(·, ·) be any deterministic cryptographic functionality that,
on input some secret state s and user-provided input x, outputs to the user
the value y, and possibly updates its secret state to a new value s′; formally,
(y, s′) = G(s, x). For example, G can be a stateful pseudorandom generator
that, on input an integer m and a seed s, generates m + |s| pseudorandom
bits, and lets y be the first m of these bits, and updates its state to be the
next |s| bits. A signature scheme and a decryption functionality can also be
modeled this way. A participant in an interactive protocol, such as a zero-
knowledge proof, or an MPC protocol, can also be modeled as a stateful
cryptographic functionality; the initial state s would represent its input
and random tape; while the supplied input x would represent a message
received by this participant. A construction that secures such a general
stateful functionality G against tampering and leakage is therefore the most
general possible result. This is what we achieve: our construction works
for any efficient deterministic cryptographic functionality G and secures it
against tampering and leakage attacks in the split-state model, without
access to any randomness after initialization. Any randomized functionality
G can be securely derandomized using a pseudorandom generator whose seed
is chosen in the initialization phase; our construction also applies to such
a derandomized version of G. Quantitatively, our construction tolerates
continual leakage of as many as (1−o(1))n bits of the secret memory, where
n is the size of the secret memory.

Our construction works in the common reference string (CRS) model
(depending on the complexity assumptions, this can be weakened to the
common random string model); we assume that the adversary cannot alter
the CRS. Trusted access to a CRS is not a strong additional assumption. A
manufacturer of the device is already trusted to produce a correct device; it
is therefore reasonable to also trust the manufacturer to hard-wire a CRS
into the device. The CRS itself can potentially be generated in collaboration
with other manufacturers, using a secure multi-party protocol.

As an important additional result, I constructed non-malleable codes
for the split-state tampering functions in the CRS model. This improves
previous results of Dziembowski et al. [DPW10], which only give a random-
oracle-based construction of non-malleable codes for the split-state tamper-
ing functions; a central open problem from that paper was to construct
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these codes without relying on the random oracle. Then I use this result as
a building block for the main result; but it is of independent interest.

2 Secure Delegation Schemes

Delegation of computing becomes a fast growing scenario in the emergence of
cloud computing – organizations or individuals (referred to as the delegator),
instead of maintaining their own system, may outsource their computational
tasks to specialized providers (e.g., Amazon) or anonymous users on the
Internet (e.g., SETI@Home) (referred to as the cloud). In order to ensure
the cloud perform the computation correctly, we like the cloud to provide
a proof to the delegator, which allows the verification time significantly less
than the computation time. Recently, there have been several results to
this question, considering delegating general or specific functionalities, and
verifying the correctness in time almost linear in the data size.

Jointly with Kai-Min Chung, Yael Kalai, and Ran Raz [CKLR11], I
further consider a scenario where the data are so huge that the delegator
wants to delegate them to the cloud as well. Once the data are delegated,
the delegator only needs to keep a short certificate, and then can verify the
computation in time sub-linear in the data size. We call this task memory
delegation. A natural example is our email system: users store their mails
in the mail server (Gmail), and they can request some computations on the
mails, such as search, delete, label, etc. Another natural scenario is stream-
ing delegation where a stream of huge data comes by, and the delegator, who
cannot store them all, delegates the task to the cloud. Later on, the delega-
tor may ask for some computation on the data, and a proof of correctness
from the cloud. I elaborate these new two models in the following.

Memory delegation. Suppose that Alice would like to store all her mem-
ory in the cloud. The size of her memory may be huge (for example, may
include all the emails she ever received). Moreover, suppose she doesn’t
trust the cloud. Then, every time she asks the cloud to carry out some
computation (for example, compute how many emails she has received from
Bob during the last year), she would like the answer to be accompanied
by a proof that indeed the computation was done correctly. Note that the
input to these delegated functions may be her entire memory, which can
be huge. Therefore, it is highly undesirable that Alice runs in time that is
proportional to this input size. More importantly, Alice doesn’t even hold
on to this memory anymore, since she delegated it to the cloud.
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Thus, in a memory delegation scheme, a delegator delegates her entire
memory to the cloud, and then may ask the could to compute functions of
this memory, and expects the answers to be accompanied by a proof. Note
that in order to verify the correctness of these proofs, the delegator must
save some short certificate of her memory, say a certificate of size polylog(n),
where n is the memory size. The proofs should be verifiable very efficiently;
say, in time polylog(n, T ), where T is the time it takes to compute the
function. Moreover, Alice should be able to update her memory efficiently.
We refer the reader to my paper [CKLR11] for details, and for the formal
definition of a memory delegation scheme.

Streaming delegation. Suppose that there is some large amount of data
that is streaming by, and suppose that a user, Alice, wishes to save this
data, so that later on she will be able to compute statistics on this data.
However, Alice’s memory is bounded and she cannot store this data. In-
stead, she wishes to delegate this to the cloud. Namely, she asks the cloud
to store this streaming data for her, and then she asks the cloud to perform
computation on this data. As in the case of memory delegation, in order
to later verify the correctness of these computations, Alice must save some
short certificate of this streaming data. As opposed to the setting of mem-
ory delegation, here the certificate should be computed (and updated) in a
streaming manner.

The settings of memory delegation and streaming delegation are quite
similar. In both settings Alice asks the cloud to store a huge object (ei-
ther her memory or the streaming data). There are two main differences
between the two: (1) In the setting of streaming delegation, the certificates
and updates must be computed in a streaming manner. Thus, in this sense,
constructing streaming delegation schemes may be harder than construct-
ing memory delegation schemes. Indeed, our streaming delegation scheme is
more complicated than our memory delegation scheme, and proving sound-
ness in the streaming setting is significantly harder than proving soundness
in the memory setting. (2) In the setting of streaming delegation, the mem-
ory is updated by simply adding elements to it. This is in contrast to the
setting of memory delegation, where the memory can be updated in arbi-
trary ways, depending on the user’s needs. However, in the memory setting,
we allow the delegator to use the help of the worker when updating her
certificate (or secret state), whereas in the streaming setting we require that
the delegator updates her certificate on her own. The reason for this dis-
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crepancy, is that in the memory setting the delegator may not be able to
update her certificate on her own, since she may want to update her memory
in involved ways (such as, erase all emails from Bob). On the other hand,
in the streaming setting, it seems essential that the delegator updates her
certificate on her own, since in this setting the data may be streaming by
very quickly, and there may not be enough time for the delegator and worker
to interact during each update.

Results. I construct both memory delegation and streaming delegation
schemes. The memory delegation scheme consists of an offline phase, where
the delegator D delegates her memory x ∈ {0, 1}n to a worker W. This
phase is non-interactive, where the delegator sends a single message, which
includes her memory content x to the worker W. The runtime of both
the delegator and the worker in the offline phase is poly(n), where n is the
memory size. At the end of this phase, the delegator saves a short certificate
σ of her memory, which she will later use when verifying delegation proofs.

The streaming delegation scheme, on the other hand, doesn’t have such
an offline phase. In the streaming setting, we consider the scenario where at
each time unit t a bit xt is being streamed. The delegator starts with some
secret state (or certificate) σ0, and at time unit t + 1 she uses her secret
state σt and the current bit xt+1 being streamed, to efficiently update her
secret state from σt to σt+1.

In both settings, each time the delegator D wants the worker W to com-
pute a function f(x), they run a delegation protocol, which we denote by
Compute(f). The memory delegation scheme also has an Update protocol,
where the delegator D asks the worker W to update her memory and to
help her update her secret state σ. The latter can be thought of as a dele-
gation request, and the guarantees (in term of runtime and communication
complexity) are similar to the guarantees of the Compute protocol.

In the streaming setting, the delegator updates her secret state on her
own in time polylog(N), where N is an upper bound on the length of the
stream. Namely, the update function, that takes as input a certificate σt
and a bit xt+1, and outputs a new certificate σt+1, can be computed in time
polylog(N).

Our delegation protocol Compute(f) is non-interactive (i.e, consists of
two messages, the first sent by the delegator and the second sent by the
worker). It is based on the non-interactive version of the delegation pro-
tocol of Goldwasser et. al. [GKR08, KR09], denoted by GKR (though is
significantly more complicated than merely running GKR). In what follows
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I state the theorems formally, and refer the readers to my paper [CKLR11]
for the formal definitions and models.

Theorem 1 (Memory Delegation) Assume the existence of a poly-log
PIR scheme and assume the existence of a collision resistant hash family.
Then there exists a non-interactive (2-message) memory delegation scheme
mDel, for delegating any function computable by an L-uniform poly-size cir-
cuit. The delegation scheme, mDel has the following properties, for security
parameter k.

• The scheme has perfect completeness and negligible (reusable) sound-
ness error.

• The delegator and worker are efficient in the offline stage; i.e., both
the delegator and the worker run in time poly(k, n).

• The worker is efficient in the online phase. More specifically, it runs
in time poly(k, S) during each Compute(f) and Update(f) operation,
where S is the size of the L-uniform circuit computing f . The dele-
gator runs in time poly(k, d) during each Compute(f) and Update(f)
operation, where d is the depth of the L-uniform circuit computing f .1

In particular, assuming the existence of a poly-logarithmic PIR scheme, and
assuming the existence of a collision resistent hash family, we obtain a mem-
ory delegation scheme for L-uniform NC computations, where the delegator
D runs in time poly-logarithmic in the length the size of the memory.

Theorem 2 (Streaming Delegation) Let k be a security parameter, and
let N be a parameter (an upper bound on the length of the stream). Let F be
the class of all L-uniform poly-size boolean circuits. Assume the existence
of a fully-homomorphic encryption scheme secure against poly(N)-size ad-
versaries. Then there exists a streaming delegation scheme sDelF for F with
the following properties.

• sDelF has perfect completeness and negligible reusable soundness error.

• D updates her secret state in time polylog(N), per data item.

• In the delegation protocol, when delegating a function f ∈ F com-
putable by an L-uniform circuit of size S and depth d, the delega-
tor D runs in time poly(k, d, logN), and the worker W runs in time
poly(k, logN,S).

1Thus, for every constant c ∈ N, if we restrict the depth of f to be at most kc, then
the delegator is considered efficient.
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In particular, assuming the existence of a fully-homomorphic encryption
scheme secure against adversaries of size poly(N), we obtain a streaming
delegation scheme for L-uniform NC computations, where the delegator D
runs in time poly-logarithmic in the length of data stream.
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