
Secure PRNGs from Specialized Polynomial

Maps over Any Fq

Feng-Hao Liu1, Chi-Jen Lu2, and Bo-Yin Yang2

1 Department of Computer Science, Brown University, Providence RI, USA
fenghao@cs.brown.edu

2 Institute of Information Science, Academia Sinica, Taipei, Taiwan
{cjlu,byyang}@iis.sinica.edu.tw

Abstract. Berbain, Gilbert, and Patarin presented QUAD, a pseudo ran-
dom number generator (PRNG) at Eurocrypt 2006. QUAD (as PRNG and
stream cipher) may be proved secure based on an interesting hardness
assumption about the one-wayness of multivariate quadratic polynomial
systems over F2.

The original BGP proof only worked for F2 and left a gap to general
Fq. We show that the result can be generalized to any arbitrary finite
field Fq, and thus produces a stream cipher with alphabets in Fq.

Further, we generalize the underlying hardness assumption to special-
ized systems in Fq (including F2) that can be evaluated more efficiently.
Barring breakthroughs in the current state-of-the-art for system-solving,
a rough implementation of a provably secure instance of our new PRNG
is twice as fast and takes 1/10 the storage of an instance of QUAD with
the same level of provable security.

Recent results on specialization on security are also examined. And we
conclude that our ideas are consistent with these new developments and
complement them. This gives a clue that we may build secure primitives
based on specialized polynomial maps which are more efficient.

Keywords: sparse multivariate polynomial map, PRNG, hash function,
provable security.

1 Introduction

Cryptographers have used multivariate polynomial maps for primitives since
Matsumoto-Imai [26] but there is a dearth of results proving security based on
plausible hardness assumptions. Berbain, Gilbert and Patarin presented a break-
through in Eurocrypt 2006, when they proposed a PRNG/stream cipher that is
provably secure provided that the class of multivariate quadratic polynomials is
probabilistically one way:

Class MQ(q, n, m): For given q, n, m, the class MQ(q, n, m) consists of all
systems of m quadratic polynomials in Fq with n variables. To choose a
random system S from MQ(q, n, m), we write each polynomial Pk(x) as

J. Buchmann and J. Ding (Eds.): PQCrypto 2008, LNCS 5299, pp. 181–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

182 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

∑
1≤i≤j≤n aijkxixj +

∑
1≤i≤n bikxk + ck, where every aijk, bik, ck is chosen

uniformly in Fq.
Solving S(x) = b for any MQ system S is known as the “multivariate

quadratic” problem.
It is often claimed that the NP-completeness of this problem [19] is the

basis for multivariate public-key cryptosystems. We could take instead Pi’s
to be polynomials of degree d instead of quadratic and get the class of “mul-
tivariate polynomial systems” MP (q, d, n, m). This contains MQ(q, n, m)
as a subset, so solving arbitrary S(x) = b for any MP system S would be
no easier. However, it is not easy to base a proof on worst-case hardness; the
premise used in [7] is the following average-case hardness assumption:

Assumption MQ: Given any k and prime power q, for parameters n, m sat-
isfying m/n = k + o(1), no probabilistic polynomial-time algorithm can
solve (in poly(n)-time) any fixed ε > 0 proportion of systems S drawn from
MQ(q, n, m), and a vector b = (b1, b2, . . . , bm) drawn from S(Un), where Un

is uniform distribution over (Fq)n such that S(x) = b.

With this premise, [7, Theorem 4] proved the QUAD PRNG secure over F2.
However, a looseness factor in its security argument in the security proof means
that provably secure QUAD instances over F2 are not yet of practical speed. It also
does not work for fields larger than F2. A similar result over any Fq is non-trivial
to prove, which we do here with different and more involved techniques. However,
instances of QUAD with the same-size state over larger fields are significantly less
secure [33]. To increase the difficulty of solving a system of nonlinear polynomial
equations, we can plausibly change (a) the field size q, (b) the number of variables
n, or (c) the degree d of the system (cf. [3,4,31]). Each costs time and space (for
a reduction from the MQ problem in Fq case to F2 case, see [30]). Even with a
hardware implementation, an increase in resource consumption is inevitable.

A logical next step is to combine all these approaches but find polynomials that
are easier to evaluate. A natural candidate is sparsity in the chosen polynomials.
To our survey, however, there are no prior positive results for provable security
of specialized polynomial systems, and specifically sparse ones.

So the questions we are trying to answer are:

– Can we prove a similar result to [7] allowing for more efficiently evaluated
specialized systems?

– What do we know about how these specializations affect complexity of system-
solving?

1.1 Our New Ideas and Main Results

Instead of MQ, we investigate a class SMP(q, d, n, m, (η2, . . . , ηd)) of sparse
polynomials systems with arbitrary affine parts and terms at other degrees
with specified density. I.e., S = (P1(x), P2(x), · · · , Pm(x)) ∈ SMP(q, d, n,
m, (η2, . . . , ηd)) consists of m polynomials of degree d in the variables x =
(x1, x2, . . . , xn); each Pi is a degree-d polynomial such that exactly ηi = ηi(n)

Secure PRNGs from Specialized Polynomial Maps over Any Fq 183

nonzero degree-i terms are present for each i ≥ 2. The affine terms (coefficients)
are totally randomly chosen. Also all the operations and coefficients are in Fq.

To rephrase, the i-th polynomial we can be written as Pi(x) =
∑d

j=2 Q
(i)
j (x)+

∑
1≤j≤n aijxj + ci where each Q

(i)
j (x) can be written in the form∑

1≤σ(1)≤σ(2)≤···≤σ(j)≤n a(σ(1),σ(2),...,σ(j))xσ(1)xσ(2) . . . xσ(j), or the sum of ηj

monomials with degree j. “A random system from SMP(q, d, n, m, (η2, . . . , ηd))”
then has a probability distribution as follows: all aij , ci are uniformly chosen from
Fq. To determine each Q

(i)
j (x), we firstly uniformly choose ηj out of

(
n+j−1

j

)
co-

efficients to be nonzero, then uniformly choose each of these nonzero coefficients
from F

∗
q := Fq \ {0}. All the others coefficients wil be zero.

We now propose a probabilistic one-wayness assumption to base a security
theorem on.
Assumption SMP : For given q, d, and for n, m, η2, . . . , ηd such that m/n =

k + o(1) and ηi/n = ki + o(1) (where k, k2, k3, . . . are constants) there is
no probabilistic algorithm which can solve (in poly(n)-time) any fixed ε >
0 proportion of instances S(x) drawn from SMP((q, d, n, m, (η2, . . . , ηd)),
and a vector b = (b1, b2, . . . , bm) drawn from S(Un), where Un is uniform
distribution over (Fq)n such that S(x) = b.

In Secs. 2–3 Assumption SMP is shown to yield a secure PRNG (and hence a
probably secure stream cipher), for any q. The key to this extension to general
Fq involves a reconstruction over linear polynomials, which is a non-trivial gener-
alization of the Goldreich-Levin hard core bit by Goldreich-Rubinfeld-Sudan [21].

We then check that SMP instances are hard to solve on average (i.e., not
just worst case) via the known fastest generic (cf. Sec. 4 and Appendix B) and
special-purpose algorithms. Finally we discuss their practical use. Preliminary
implementations of our SPELT (Sparse Polynomials, Every Linear Term) can
achieve 5541 and 11744 cycles per byte for a SMP-based secure stream cipher
over F16 (quartic, 108 variables) and F2 (cubic, 208 variables) respectively. The
former is at least twice as fast as any other stream ciphers provably secure at
the same parameters (cf. Sec. 5.2).

There is another possible candidate for the one-wayness assumption, SRQ,
proposed by Prof. Jintai Ding, that is worth studying. We put a brief description
in the Appendix C, and address an interesting potential topic for the future work.

The authors would like to thank Prof. Jintai Ding for the proofreading,
suggestions, and discussions. The full version of this work can be found at
”http://eprint.iacr.org/2007/405.”

1.2 Previous Work

There had been “provably secure” PRNGs based on discrete log [20], or on
hardness of factorization (as in Blum, Blum, and Shub [10]) or a modification
thereof [29], or MQ [7]. But the security proofs always require impractically
high parameters for “provable security”, which limit their utility. For example:
– The BBS stream generator at commonly used parameters is not provably

secure [23, Sec. 6.1].

184 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

– With [29], the specified security level was 270, today’s cryptographers usually
aim for 280 (3DES units).

– Similarly with QUAD there is a gap between the “recommended” instances
and the provably secure instances (i.e., the tested instances were unprovable
or unproven [33]).

– PRNGs based on decisional Diffie-Hellman assumption have almost no gap
between the hardness of breaking the PRNG and solving the underlying in-
tractable problem, but known primitives based on DDH and exponentiation
in Zp [22,16] are generally slower than those based on other assumptions.

The generic types of methods for solving polynomial systems — Faugère’s F4-
F5 and XL-derivatives — are not affected drastically by sparsity. In the former,
sparsity is quickly lost and tests show that there is no substantial difference in
timing when solving SMP instances. Recent versions of XL [33] speeds up pro-
portionally to sparsity. We therefore surveyed the literature for recent results on
solving or attacking specialized systems in crypto, listed below. These results
do not contradict our hardness assumption.

– Aumasson-Meier (ICISC 2007) [1] shows that in some cases sparsity in pri-
marily underdefined — more variables than equations — systems leads to
improved attacks. Results are very intresting and takes more study but do
not apply to overdetermined systems in general.

– Bard-Courtois-Jefferson [2] tests SAT solvers on uniformly sparse F2 equa-
tions, and gives numbers.

– Raddum-Samaev [27,28] attacks “clumped” systems (even though the title
says “sparse”). Similarly the Courtois-Pieprzyk XSL attack [13] requires a
lot of structures (i.e., “clumping”).

2 PRNG Based on Specialized Polynomial Map in F2

This section both provides a recap of past results and extends them to specialized
maps over F2. We will start with definitions and models, then give the key results
on the provable security level.

Computational Distinguishability: ProbabilitydistributionsD1 andD2 over
a finite set Ω are computationally distinguishable with computing re-
sources R and advantage ε if there exist a probabilistic algorithm A which on
any input x ∈ Ω outputs answer 1 (accept) or 0 (reject) using computing re-
sources at most R and satisfies |Prx∈D1 (A(x) = 1) − Prx∈D2 (A(x) = 1)| >
ε. The above probabilities are not only taken over x values distributed ac-
cording to D1 or D2, but also over the random choices that are used by
algorithm A. Algorithm A is called a distinguisher with advantage ε.

If no such algorithm exists, then we say that D1 and D2 are computation-
ally indistinguishable with advantage ε. If R is not specified, we implicitly
mean feasible computing resources (e.g., < 280 simple operations, and rea-
sonable limits [usually polynomially many] in sampling from D1 and D2).

Secure PRNGs from Specialized Polynomial Maps over Any Fq 185

PRNG: Let n < L be two integers and K = Fq be a finite field. The function
G : Kn → KL is said to be a Pseudorandom Number Generator (PRNG) if
the probability distribution of the random variable G(x), where the vector
x is uniformly random in Kn, is computationally indistinguishable (with
distinguisher resource R) from a uniformly random vector in KL. Usually
q = 2 but it is not required.

Linear polynomial maps: A linear polynomial map R : (Fq)n → (Fq) means
R(x) =

∑n
i=1 aixi, where x = (x1, x2, . . . , xn), and x1, x2, . . . , xn are vari-

ables. If we give these variables values in Fq, by setting (x1, x2, . . . , xn) =
(b1, b2, . . . , bn) for bi ∈ Fq, denoted as b, then R(b) =

∑n
i=1 aibi is an element

in Fq.
In the following sections, a “random” linear polynomial map (or form)

has the coefficients ai’s randomly chosen from Fq. Also, when we mention
R or R(x) refers to the function but when we write R(b), that means the
value of the function R with input vector b.

Instance from SMP (or MQ): If S is an instance drawn from SMP(q, d, n,
m, (η2, . . . , ηd)), then S(x) = (P1(x), P2(x), . . . , Pm(x)) (x = (x1, x2, . . . , xn)
are variables) is a function that maps (Fq)n → (Fq)m and each Pi(x) has the
same probability distribution as that mentioned in section 1.2. For example,
if b=(b1, b2, . . . , bn) is a vector in(Fq)n, then S(b)=(P1(b), P2(b), . . . , Pm(b)),
a value in (Fq)m.

Note: Heretofore we will also say SMP(n, m) for short, if no confusion is
likely to ensue.

Given any PRNG, there is a standard way to stretch it into an old-fashioned
stream cipher (Prop. 1), i.e. stream cipher without IV and key setup. There are
ways to set up an initial state securely, such as in Sec. 3.1. Thus we concentrate
our efforts on building a PRNG from any MQ family of map from F

n
2 → F

m
2 ; in

order, we need to

1. Show that if an instance S drawn from MQ is not a PRNG, then for a
(secretly) given vector b we can predict, with the help of information from
the value of S, S(b), and any linear form R, the value of R(b) with strictly
larger than 1/2 + ε probability; then

2. Use Goldreich-Levin theorem, which states that the value of any linear func-
tion R, R(b) is a hardcore bit of any F

n
2 → F

m
2 one-way function S, S(b),

and R. I.e., being able to guess with strictly larger than 1/2 + ε probability
R(b) from S,S(b), and R means that we can invert S(b) with non-negligible
probability.

2.1 From Distinguisher to Predictor

In fact, the following two results are valid for any K = Fq. In [7], the proofs
were covered only in the F2 case. However, the generalization is nontrivial but
straitforward. Therefore, for simplicity, we put the generalized propositions here,
though this section is for the F2 case.

186 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

Proposition 1 ([7]). Take a stream cipher with Q : Kn → Kn and P : Kn →
Kr as the update and output filter functions and random initial state x0, that
is, starting from the initial state x0, at each step we update with xi+1 = Q(xi)
and output yi = P(xi).

x0 ��

��

x1 = Q(x0) ��

��

x2 = Q(x1) ��

��

x3 = Q(x2) ��

��

· · ·

y0 = P(x0) y1 = P(x1) y2 = P(x2) y3 = P(x3) · · ·

If we can distinguish between its first λ blocks of output (y0,y1, . . . ,yλ−1) and
a true random vector in Kλr with advantage ε in time T , then we can distinguish
between the output of a true random vector in Kn+r and the output of S = (P,Q)
in time T + λTS with advantage ε/λ. [Standard Proof is in Appendix A.]

Proposition 2 (an extention of [7]). Let K = Fq. Suppose there is an
algorithm A that given a system S(: Kn → Km) chosen from SMP(q, d, n,
m, (η2, . . . , ηd)) distinguishing S(Un) from a uniform random distribution Um,
(where Ur means uniform distribution over Kr for the r,) with advantage at least
ε in time T . Then there is an algorithm B that, given (1) a system S : Kn → Km

from SMP(n, m), (2) any Kn → K linear form R, and (3) y = S(b), where b
is an secret input value randomly chosen from Kn, predicts R(b) with success
probability at least (1 + ε/2)/q using at most T + 2TS operations.

Proof. Without loss of generality, we may suppose that A has probability at least
ε higher to return 1 on an input distribution (S,S(Un)) than on distribution
(S, Um). Define a recentered distinguisher

A′(S,w) :=
{

A(S,w), probability 1
2

1 − A(S,u), u ∈ Km uniform random, probabilty 1
2

then A′ returns 1 with probability 1+ε
2 on input (S,S(Un)) and with probability

1
2 on input (S, Um).

Now, given an input S and y ∈ Km, the algorithm B first randomly chooses
a value v ∈ K (representing a guess for R(b)), then randomly chooses a vector
u ∈ Km, and form S′ := S + Ru : Kn → Km. This is equal to S plus a random
linear polynomial (see above for the meaning of random linear form) and is hence
of SMP(n, m). Define algorithm B as following:

B(S,y, R) :=
{

v, if A′(S′,y + vu) = 1;
uniformly pick an element from K\{v}, if A′(S′,y + vu) = 0.

If v = R(b), y + vu = S′(b), else y + vu is equal to S′(b) plus a nonzero
multiple of the random vector u, hence is equivalent to being uniformly random.
The probability that B := B(S,S(b), R) is the correct guess is hence

Pr(B = R(b)) = Pr(B = v|v = R(b)) Pr(v = R(b)) + Pr(B = R(b)|v �= R(b)) Pr(v �= R(b))

=
1
q

(
1
2

+
ε

2

)

+
(

q − 1
q

)
1
2

(
1

q − 1

)

=
1
q

(
1 +

ε

2

)
.

Secure PRNGs from Specialized Polynomial Maps over Any Fq 187

Note: We see that the reasoning can work this way if and only if S′ = S + Ru
have the same distribution as S. Otherwise, we cannot guarentee the distinguisher
A′ will output the same distribution.

2.2 Constructing a PRNG from MQ (F2 Case)

Proposition 3 ([25], [7]). Suppose there is an algorithm B that given a system
S(: F

n
2 → F

m
2) from MQ(2, n, m), a random n-bit to one-bit linear form R and

the image S(b) of a randomly chosen unknown b, predicts R(b) with probability
at least 1

2 + ε over all possible inputs (S,S(b), R) using time T , then there is an
algorithm C that given S and the m-bit image S(b) of a randomly chosen n-bit
vector b produces a preimage of S(b) with probability (over all b and S) at least
ε/2 in time

T ′ =
8n2

ε2

(

T + log
(

8n

ε2

)

+
8n

ε2
TS

)

Note: This is really the Goldreich-Levin theorem of which we omit the proof
here. This essentially states that linear forms are hard-core of any one-way func-
tion. In fact, the tighter form [7, Proof of Theorem 3] (using a fast Walsh trans-
form) can be simply followed word-for-word.

This above result (which only holds for F2) with Prop. 2 shows that any MQ
family of maps induces PRNGs over F2. To get a useful stream cipher, we can
combine Props. 1–3:

Proposition 4 ([25], [7]). If S = (P,Q) is an instance drawn from MQ(2, n,
n + r), where P : F

n
2 → F

r
2, Q : F

n
2 → F

n
2 are the stream cipher as in Prop. 1,

then if we can distinguish between λ output blocks of the stream cipher from truly
random distribution in T time, we can find b from S(b), where b is a randomly
chosen input, with probability at least ε

8λ in time

T ′ =
27n2λ2

ε2

(

T + (λ + 2)TS + log
(

27nλ2

ε2

)

+ 2
)

+
27nλ2

ε2
TS (1)

Note: Roughly this means that if we let r = n, want to establish a safety level
of 280 multiplications, want L = λr = 240 bits between key refreshes, and can
accept ε = 10−2, then T ′ � 2230/n. All we need now is to find a map from
F

n
2 → F

2n
2 which takes this amount of time to invert.

As we see below, unless equation-solving improves greatly for sparse systems,
this implies that a handful of cubic terms added to a QUAD system with n = r =
208, q = 2 can be deemed secure to 280. There is no sense in going any lower
than that, because solving a system with n bit-variables can never take much
more effort than 2n times whatever time it takes to evaluate one equation.

3 PRNG Based on SMP in Fq

In Proposition 3, [7] transformed the problem into a variation of Goldreich-Levin
theorem (in F2). The transformation still works in Fq; however, Goldreich-Levin

188 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

theorm gets stuck in this place. Here we show a way to extend the main results
to Fq, by using a generalization of the Goldreich-Levin hard-core bit theorem.

Proposition 5 ([25] and contribution of this paper). Let K = Fq. Suppose
there is an algorithm B that given a system S(: Kn → Km) from SMP(n, m),
a random Kn → K linear form R and the image S(b) of a randomly chosen
unknown b, predicts R(b) with probability at least 1

q + ε over all possible inputs
(S,S(b), R) using time T , then there is an algorithm C that given S and the
m-bit image S(b) of a randomly chosen vector b ∈ Kn produces a preimage of
S(b) with probability (over all b and S) at least ε/2 in time

T ′ ≤ 210
(nq

ε5

)
log2

(n

ε

)
T +

(

1 − 1
q

)2

ε−2 TS

Remark [intuition of why argument in F2 cannot be applied in Fq]: If we know
that one out of two exclusive possibilities takes place with probability strictly
larger than 50%, then the other one must happen strictly less often 50%. If
we know that one of q possibilities takes place with probability strictly greater
than 1/q, we cannot be sure that another possibility does not occur with even
higher possibility. Therefore, we can only treat this as a case of learning a linear
functional with queries to a highly noisy oracle. Due to this difference, the
order of ε in T ′/T is as high as ε−5 in Prop. 5, but only ε−2 in Prop. 3.

Proposition 6 ([25] and contribution or this paper). If S = (P,Q) is an
instance drawn from a SMP(n, n+r), where P : F

n
q → F

r
q, Q : F

n
q → F

n
q are the

stream cipher as in Prop. 1, then if we can distinguish between λ output blocks of
the stream cipher and uniform distribution in T time, we can invert S(b) with
probability at least ε

4qλ in time

T ′ = 215 nq6λ5

ε5
log2

(
2qnλ

ε

)

(T + (λ + 2)TS) +
(

1 − 1
q

)2 4q2λ2

ε2
TS (2)

This is a straightforward combination of Props. 1, 2, and 5. In the remainder
of this section, we give a proof to Prop. 5 by a variation of the procedure used
by Goldreich-Rubinfeld-Sudan [21, Secs. 2 and 4], to give it concrete values that
we can derive security proofs from.

3.1 Conversion to a Modern (IV-Dependent Stream) Cipher

This paper mostly deals with the security of PRNGs, which are essentially old-
fashioned stream ciphers. If we have a secure PRNG S′ = (s0, s1), where both
s0, s1 are maps from Kn → Kn — note that S′ can be identical to S — then
the following is a standard way to derive the initial state x0 ∈ Kn from the
bitstream (key) c = (c1, c2, . . . , cKL) ∈ {0, 1}KL and an initial u ∈ Kn, where
KL is the length of the key:

x0 := scKL(scKL−1(· · · (sc2(sc1(u))) · · ·)).

Secure PRNGs from Specialized Polynomial Maps over Any Fq 189

This is known as the tree-based construction. From an old-fashioned provably
secure stream cipher (i.e., the key is the initial state), the above construction
achieves security in the resulting IV-dependent stream cipher, at the cost of some
additional looseness in the security proof. A recent example of this is [6].

Thus, all our work really applies to the modern type of stream ciphers which
require an IV-dependent setup, except that the security parameters may be
slightly different.

3.2 Hardcore Predicate and Learning Polynomials

Let x = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn), and xi, bi are elements in a finite
field K = Fq. Given an arbitrary strong one way function h(x), then F (x,b) =
(h(x),b) is also a one way function. Claim x · b is the hard-core bit of F (x,b),
where x · b means their inner product.

Supposed we have a predictor P which predicts its hardcore x · b given
(h(x),b) with probability more than 1

q + ε, then we can write in the math
form:

Pr
b,x

[P (h(x),b) = x · b] >
1
q

+ ε.

By Markov inequality, we know there must be more than ε/2 fraction of x such
that Prb[P (h(x),b) = x · b] > 1

q + ε
2 . For this fraction of x, we are trying to

find the inverse of h(x) (F (x) as well) through the predictor. Also x · b can be
written as

∑
bixi, then

Pr
b

[
P (h(x),b) =

∑
bixi

]
>

1
q

+
ε

2
.

This means that, if we can find a polynomial which almost matches an ar-
bitrary function P , a predictor function, then we can eventually invert x from
F (x) a non-negligible portion of the time. Now we try to reconstruct such linear
polynomials through the access of the predictor, largely following the footsteps
of [21].

3.3 Intuition of Reconstructing Linear Polynomials

Now we are given some oracle accesses to a function f : Kn → K, where K is
a finite field and |K| = q. We need to find all linear polynomials which match
f with at least 1

q + ε fraction of inputs x. Let p(x1, x2, . . . , xn) =
∑n

1 pixi,

and i-th prefix of p is
∑i

1 pjxj . The algorithm runs n rounds, and in the i-
th round, it extends all possible candidates from the (i − 1)-th round with all
elements in K and screens them, filtering out most bad prefixes. The pseudocode
of the algorithm is presented in Algorithm 2. Since we want the algorithm to be
efficient, we must efficiently screen possible prefixes from all extensions. We now
introduce a screening algorithm to be called TestPrefix.

190 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

Algorithm 1. TestPrefix(f ,ε,n,(c1, c2 . . . , ci))[21]
Repeat poly1(

n
ε
) times:

Pick s = si+1, . . . , sn ∈R GF(q)
Let t = poly2 (n

ε
)

for k = 1 to t do
Pick r = r1, r2 . . . , ri ∈R GF(q)
σ(k) = f(r, s) −�i

j=1 cjrj

end for
If there is σ(k) = σ for at least 1

q
+ ε

3
fraction of the k’s then ouput accept and halt

endRepeat
If all iterations were completed without accepting, then reject

Algorithm 2. Find All Polynomials(f, ε)[21]
set a candidate queue Q[i] which stores all the candidates (c1, c2, c3, . . . , ci) in the
i-th round
for i = 1 to n do

Pick all elements in Q[i]
TestPrefix(f ,ε,n,(c1 , c2 . . . , ci, α)) for all α ∈ F
If TestPrefix accepts, then push (c1, c2 . . . , ci, α) into Q[i + 1] i.e. it is a candidate
in the (i + 1)-th round

end for

Supposed we are testing the i-th prefix (c1, c2, . . . , ci), we are going to evaluate
the quantity of:

Ps(σ) := Pr
r1,r2...,ri∈K

⎡

⎣f(r, s) =
i∑

j=1

cjrj + σ

⎤

⎦

where r = (r1, r2, . . . , ri). The value of σ can be thought as a guess of
∑n

i+1 pjsj .
For every s, we can estimate the probability by a sample of several r’s, and
the error rate can be controlled by the times of sampling. If such s makes the
probability significantly larger than 1/q, then we accept. If no such s exists, we
reject. The detailed algorithm is stated in the Algorithm 1: TestPrefix.

If a candidate (c1, c2, . . . , ci) passes through the Algorithm 1 for at least one
suffix s, there is a σ such that the estimate of Ps(σ) is greater than 1

q +
ε
3 . For a correct candidate (c1, c2, . . . , ci), i.e. (c1, c2, . . . , ci) is the prefix of
p = (p1, p2, . . . , pn) which matches f for at least 1

q + ε, and an arbitrary σ =
∑n

i+1 pjsj , it satisfies that Es[Ps(σ)] ≥ 1
q + ε. By Markov’s inequality, for at

least ε/2 fraction of s and some corresponding σ, it holds that Ps(σ) ≥ 1
q + ε

2 .
In Algorithm 1, we set 1

q + ε
3 as the passing criteria; thus the correct candidate

will pass though the Algorithm 1 with great probability. However, [21, Sec. 4]
shows that the total passing number of candidates in each round is limited. In
fact, only a small number of candidates will pass the test. This maximum (also
given by [21, Sec. 4]) number of prefixes that pass the test is ≤ (1 − 1

q)2ε−2.

Secure PRNGs from Specialized Polynomial Maps over Any Fq 191

3.4 Giving Concrete Values to “Order of Polynomially Many”

Since there are ε/2 fraction of suffix s such that Ps(σ) ≥ 1
q + ε

2 , we can randomly
choose the suffix polynomially many times (k1 times) to ensure that we would
select such s with high probability. Also, for such s, if we choose polynomially
many times (k2 times) of r, there would be high probability that we would find
some α for at least 1

q + ε
3 fraction. We are estimating how the polynomially many

should be as the following:

Pr [TestPrefix fails] ≤

Pr[no such s is chosen] + Pr

�
no single element exists more than

1

q
+

ε

3
fraction

�

Pr [no such s is chosen] ≤ (1 − ε/2)k1 ≤ e−
k1ε

2 ≤ 1
2

ε
(
1 − 1

q

)2

ε−2 nq

So, we take k1 as O(1
ε log(n

ε)) ≈ 3 1
ε log(n

ε). On the other hand, we want to
estimate the probability of there are no σ’s with fraction at least 1

q + ε
3 . For a

correct suffix s, we know for uniform r, we get that σ with probability more
than 1

q + ε
2 . Let Xi be the random variable with value 1 if the i-th trial of r gets

the correct σ, 0 otherwise. Then we have Pr[Xi = 1] ≥ 1
q + ε

2 . Suppose we do k2

trials:

Pr
[

no single element exists more than
1
q

+
ε

3
fraction

]

≤Pr

[
k2∑

1

Xi < (
1
q

+
ε

3
)k2

]

≤ Pr

[∣
∣
∣
∣
∣

∑k2
i=1 Xi

k2
−
(

1
q

+
ε

2

)∣∣
∣
∣
∣
≥ ε

6

]

,

since these Xi’s are independent, then by Chernoff’s bound we have

Pr

[∣
∣
∣
∣
∣

∑k2
i=1 Xi

t
− (

1
q

+
ε

2
)

∣
∣
∣
∣
∣
≥ ε

6

]

≤ 2e−
k2ε2

2×36 ≤ 1
2

ε
(
1 − 1

q

)2

ε−2 nq
,

k2 = O(log(n/ε)
ε2) ≈ 216 log(n/ε)

ε2 is sufficient to make the inequality hold. Thus,
we have

Pr [TestPrefix fails] ≤ ε
(
1 − 1

q

)2

ε−2 nq
.

Pr [] ≤ Pr [] ≤
∑

Pr []

≤
((

1 − 1
q

)2

ε−2 nq

)
ε

(
1 − 1

q

)2

ε−2 nq
= ε

192 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

Therefore, the algorithm will work with high probability. The worst case
running time of algorithm 2 should be: k1k2(1 − 1

q)2 1
ε2 nq = O(n

ε5 log2(n
ε)) �

210
(

nq
ε5

)
log2(n

ε).

Note:
(
1 − 1

q

)2

ε−2 is the maximum number of candidates which pass in each
round.

4 On SMP under Generic Solvers

To verify that SMP represent one way property, we need to show that

1. Generic system-solvers do not run substantially faster on them; and
2. There are no specialized solvers that can take advantage of the sparsity.

Here “generic” means the ability to handle any multivariate polynomial system
with n variables and m equations in Fq. There are two well-known types of
generic methods for solving polynomial systems, both related to the original
Buchberger’s algorithm. One is Faugère’s F4-F5 and the other is XL-derivatives.
In the former, sparsity is quickly lost and tests show that there are little difference
in timing when solving SMP instances. With recent versions of XL [33], the
sparsity results in a proportional decrease in complexity. The effect of sparsity
on such generic methods should be predictable and not very drastic, as shown
by some testing (cf. Sec. 4.1). We briefly describe what is known about XL and
F4-F5 in Appendix B.

4.1 Testing the One-Wayness with Generic Solvers

We conducted numerous tests on SMP maps at various degrees and sparsity
over the fields F2, F16, and F256. For example, Table 1 lists our tests in solving
random MQ(256, n, m) instances where each polynomial only has n quadratic
terms [we call these instances SMQ(256, n, m, n)] with F4 over GF(256). It
takes almost the same time as solving an MQ instance of the same size.

For XL variants that use sparse solvers as the last step [33] test results (one
of which is shown in Table 2) confirms the natural guess: For SMP instances
where the number of non-linear terms is not overly small, the solution degree of
XL is unchanged, and the speed naturally goes down as the number of terms,
nearly in direct proportion (in Tab. 2, should be close to n/4).

Table 1. SMQ(256, n, m, n) timing (sec): MAGMA 2.12, 2GB RAM, Athlon64x2
2.2GHz

m − n DXL Dreg n = 9 n = 10 n = 11 n = 12 n = 13

0 2m m 6.03 46.69 350.38 3322.21 sigmem

1 m �m+1
2

� 1.19 8.91 53.64 413.34 2535.32

2 �m+1
2

� �m+2−√
m+2

2
� 0.31 2.20 12.40 88.09 436.10

Secure PRNGs from Specialized Polynomial Maps over Any Fq 193

Table 2. XL/Wiedemann timing (sec) on Core2Quad 2.4GHz, icc, 4-thread OpenMP,
8GB RAM

n 7 8 9 10 11 12 13

D 5 6 6 7 7 8 8

SMQ(256, n, n + 2, n) 9.34 · 10−2 1.17 · 100 4.04 · 100 6.02 · 101 1.51 · 102 2.34 · 103 5.97 · 103

MQ(256, n, n + 2) 2.06 · 10−1 2.92 · 100 1.10 · 10 1.81 · 102 4.94 · 102 8.20 · 103 2, 22 · 104

ratio 2.20 2.49 2.73 3.00 3.27 3.50 3.72

For F2, there are many special optimizations made for F4 in MAGMA, so we
ran tests at various densities of quadratic terms in version 2.12-20 and 2.13-8.
Typical results are given in Fig. 1. Most of the time the data points are close to
each other. In some tests they overlap each other so closely that no difference in
the timing is seen in a diagram.

4.2 A Brief Discussion on Specialization and Security

Since generic system-solvers show no unexpected improvement on our special-
izations, it remains for us to check that there are no other big improvements in
solving specialized systems for. We list below what we know of recent new at-
tempts on solving or attacking specialized systems in crypto, and show that our
results are consistent with these new results and somewhat complements them.

– Aumasson-Meier [1] presented several ideas to attack primitives built on
sparse polynomials systems, which we sketch separately in Sec. 4.3 below.

– Raddum-Samaev [27,28] attacks what they term “sparse” systems, where
each equation depend on a small number of variables. Essentially, the authors
state that for systems of equations in n bit variables such that each equation
depends on only k variables, we can solve the system in time roughly pro-
portional to 2(1− 1

k)n using a relatively small memory footprint. Since XL for
cubics and higher degrees over F2 is more time-consuming than brute-force,
this is fairly impressive. However, the “sparsity” defined by the authors is
closer to “input locality” and very different from what people usually denote
with this term. The attack is hence not applicable to SMP-based stream
ciphers.

In a similar vein is the purported XSL attack on AES [13]. While the
S was supposed to stand for Sparse, it really requires Structure – i.e., each
equation depending on very few variables. So, whether that attack actually
works or not, it does not apply to SMP-based systems.

– Bard-Courtois-Jefferson [2] use SAT solvers on uniformly sparse F2 equations
and give experimental numbers. According to the authors, the methods takes
up much less memory than F4 or derivatives, but is slower than these tra-
ditional methods when they have enough memory.

Some numbers for very overdefined and very sparse systems shows that
converting to a conjunctive normal form and then running a SAT solver
can have good results. This seems to be a very intriguing approach, but

194 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

so far there are no theoretical analysis especially for when the number of
equations is a few times the number of variables, which is the case for SMP
constructions.

4.3 Solutions and Collisions in Sparse Polynomial Systems

Aumasson-Meier recent published [1] some quite interesting ideas on finding
solutions or collisions for primitives using sparse polynomial systems (e.g., hashes
proposed in [15]).

They showed that which implies that using sparse polynomials systems of
uniform density (in every degree) for Merkle-Damg̊ard compression will not be
universally collision-free. Some underdefined systems that are sparse in the higher
degrees can be solved with lower complexity. Their results do not apply to overde-
termined systems in general. We summarize relevant results below.

1. Overdetermined higher-degree maps that are sparse of uniform density, or at
least sparse in the linear terms, is shown to have high probability of trivial
collisions and near-collisions.

It seems that everyone agrees, that linear terms should be totally random
when constructing sparse polynomial systems for symmetric primitives.

2. Suppose we have an underdetermined higher-degree map sparse in the non-
affine part, i.e.,

P : F
n+r
2 → F

n
2 , P(x) = b + Mx + Q(x)

where Q has only quadratic or higher terms and is sparse. Aumasson-Meier
suggests that we can find P−1(y) as follows: find a basis for the kernel
space of the augmented matrix [M ;b + y]. Collect these basis vectors in a
(n + r + 1)× (r + 1) matrix M ′ as a linear code. For an arbitrary w ∈ F

r+1
2 ,

the codeword x̄ = M ′w will represent a solution to y = Mx + b if its last
component is 1. Use known methods to find relatively low-weight codewords
for the code M ′ and substitute into Q(x), expecting it to vanish with non-
negligible probability.

Aumasson-Meier proposes to apply this for collisions in Merkle-Damg̊ard
hashes with cubic compressor functions. It does not work for fields other
than F2 or overdetermined systems. Its exact complexity is unknown and
requires some further work.

3. Conversely, it has been suggested if we have an overdetermined higher-degree
map

P : F
n
2 → F

n+r
2 , P(x) = b + Mx + Q(x)

where Q has only quadratic or higher terms and is extremely sparse, we can
consider P(x) = y as Mx = (y+b)+ perturbation, and use known meth-
ods for decoding attacks, i.e., solving overdetermined linear equations with
perturbation. However, SMP maps with a moderate number of quadratic
terms will be intractible.

Secure PRNGs from Specialized Polynomial Maps over Any Fq 195

We note that other specialized polynomials can be constructed that are also
easier to evaluate such as the SRQ construction (cf. Appendix C) which also can
carry through the same arguments as SMP, so our process is more general than
it looks.

5 Summary of Uses for Specialized Polynomial Systems

All information seems to point to the conclusion that we always use totally
random linear terms, no matter what else we do. With that taken into account,
specialized random systems (such as SMP) represent improvements over generic
systems in terms of storage and (likely) speed.

5.1 The Secure Stream Ciphers SPELT

We build a stream cipher called SPELT(q, d, n, r, (η2, . . . , ηd)), which resembles
the construction in section 2:

We specify a prime power q (usually a power of 2), positive integers n and r, a
degree d. We have “update function” Qi = (Qi,1, Qi,2, . . . , Qi,n) : F

n
q → F

n
q and

“output filter” Pi = (Pi,1, Pi,2, . . . , Pi,r) : F
n
q → F

r
q, for i ∈ {0, 1}. We still do

yn = P(xn) [output]; xn+1 = Q(xn) [transition], iterated according to the initial
vector. To repeat, every polynomial here is of degree d. Affine (constant and
linear) term or coefficient are still uniformly random. But terms of each degree
are selected according to different densities of terms, such that the degree-i
terms are sparse to the point of having only ηi terms. The difference
between Eq. 1 and Eq. 2, which governs the maximum provable security levels
we can get, affects our parameter choices quite a bit, as seen below.

By Eq. 2, if L = λn lg q is the desired keystream length, the looseness factor
T ′/T is roughly

215q6(L/ε)5

n4 lg5 q
lg2

(
2qL

ε lg q

)

If we let q = 16, r = n, want a safety level of T = 280 multiplications, L = 240

bits between key refreshes, and can accept ε = 10−2, then T ′ � 2354/n4. We
propose the following instances:
– SPELT using q = 16, d = 3 (cubics), n = r = 160, 20 quadratic and 15 cubic

terms per equation. Projected XL degree is 54, storage requirement is 2184

bytes. T ′ is about 2346 multiplications, which guarantees � 288 multiplica-
tions security. This runs at 6875 cycles/byte.

– SPELT using d = 4 (quartics), n = r = 108, 20 quadratic, 15 cubic, and 10
quartic terms per equation. Projected XL degree is 65, storage requirement
is 2174 bytes. T ′ is about 2339 multiplications guaranteeing � 281 multipli-
cations security at a preliminary 5541 cycles/byte.

– SPELT using q = 2, n = r = 208, d = 3 (cubics), with 20 cubic terms
each equation. Preliminary tests achieve 11744 cycles/byte. The expected
complexity for solving 208 variables and 416 equations is ∼ 2224 (by brute-
force trials, which is much faster than XL here), which translates to a 282

proven security level.

196 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

5.2 Comparisons: A Case for SPELT

All modern-day microprocessor are capable of doing 64-bit arithmetic at least,
and there is a natural way to implement QUAD that runs very fast over F2, limited
only by the ability to stream data. However, as number of variables goes up, the
storage needed for QUAD goes up cubically, and for parameter choices that are
secure, the dataset overflows even the massive caches of an Intel Core 2. That
is what slows down QUAD(2, 320, 320) — tests on a borrowed ia64 server shows
that it is almost exactly the same speed as the SPELT(2, 3, 208, 208, [480, 20]).
Looking at the numbers, it seems that the idea of specializd polynomials is
a good complement to the approach of using polynomial maps for symmetric
primitives introduced by Berbain-Gilbert-Patarin.

Table 3. Point-by-Point, SPELT vs. QUAD on a K8 or C2

Stream Cipher Block Storage Cycles/Byte Security Level

SPELT (2,3,208,208,[480,20]) 208b 0.43 MB 11744 282 Proven

SPELT (16,4,108,108,[20,15,10]) 864b 48 kB 5541 280 Proven

QUAD (2,320,320) 320b 3.92 MB 13646 282 Proven

QUAD (2,160,160) 160b 0.98 MB 2081 2140 Best Attack

SPELT (16,4,32,32,[10,8,5]) 128b 8.6 kB 1244 2152 Best Attack

We hasten to add that our programming is quite primitive, and may not match
the more polished implementations (e.g., [5]). We are still working to improve
our programming and parameter choices. Also, in hardware implementations,
the power of sparsity should be even more pronounced.

5.3 For Possible Use in Hash Functions

In [8] Billet et al proposes to use two-staged constructions with a random 192-bit
to 464-bit expanding quadratic map followed by a 464-bit to 384-bit quadratic
contraction. They show that in general a PRNG followed by a one-way compres-
sion function is a one-way function.

In [15] the same construction is proposed but with SRQ quadratics (see Ap-
pendix C) and no proof. Now we see that the abovementioned results from [8]
and Prop. 6, which justify the design up to a point. This is an area that still takes
some study, and perhaps require extra ideas, such as having a hybrid construc-
tion with a sparse polynomial expansion stage and a different kind of contraction
stage.

References

1. Aumasson, J.-P., Meier, W.: Analysis of multivariate hash functions. In: Nam, K.-
H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 309–323. Springer, Heidelberg
(2007)

Secure PRNGs from Specialized Polynomial Maps over Any Fq 197

2. Bard, G.V., Courtois, N.T., Jefferson, C.: Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over gf(2) via
sat-solvers. Cryptology ePrint Archive, Report 2007/024 (2007),
http://eprint.iacr.org/

3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving, pp. 71–74 (2004) (Previ-
ously INRIA report RR-5049)

4. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.)
MEGA 2005 Sardinia (Italy) (2005)

5. Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate
quadratic systems. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356,
pp. 174–187. Springer, Heidelberg (2007)

6. Berbain, C., Gilbert, H.: On the security of IV dependent stream ciphers. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 254–273. Springer, Heidelberg
(2007)

7. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with prov-
able security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
109–128. Springer, Heidelberg (2006)

8. Billet, O., Robshaw, M.J.B., Peyrin, T.: On building hash functions from multivari-
ate quadratic equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

9. Biryukov, A. (ed.): FSE 2007. LNCS, vol. 4593. Springer, Heidelberg (2007)
10. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-

ators. In: Rivest, R.L., Sherman, A., Chaum, D. (eds.) CRYPTO 1982, pp. 61–78.
Plenum Press, New York (1983)

11. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck (1965)

12. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000),
http://www.minrank.org/xlfull.pdf

13. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

14. Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329. Springer, Heidelberg (2004)

15. Ding, J., Yang, B.-Y.: Multivariate polynomials for hashing. In: Inscrypt. LNCS.
Springer, Heidelberg (2007), http://eprint.iacr.org/2007/137

16. Farashahi, R.R., Schoenmakers, B., Sidorenko, A.: Efficient pseudorandom genera-
tors based on the ddh assumption. In: Public Key Cryptography, pp. 426–441 (2007)

17. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

18. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

19. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the The-
ory of NP-Completeness. W.H. Freeman and Company, New York (1979)

20. Gennaro, R.: An improved pseudo-random generator based on the discrete loga-
rithm problem. Journal of Cryptology 18, 91–110 (2000)

198 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

21. Goldreich, O., Rubinfeld, R., Sudan, M.: Learning polynomials with queries: The
highly noisy case. SIAM Journal on Discrete Mathematics 13(4), 535–570 (2000)

22. Jiang, S.: Efficient primitives from exponentiation in zp. In: Batten, L.M., Safavi-
Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 259–270. Springer, Heidelberg
(2006)

23. Koblitz, N., Menezes, A.: Another look at provable security (part 2). In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 148–175. Springer,
Heidelberg (2006)

24. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983.
LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

25. Levin, L., Goldreich, O.: A hard-core predicate for all one-way functions. In: John-
son, D.S. (ed.) 21st ACM Symposium on the Theory of Computing — STOC 1989,
pp. 25–32. ACM Press, New York (1989)

26. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–545. Springer, Heidelberg (1988)

27. Raddum, H., Semaev, I.: New technique for solving sparse equation systems. Cryp-
tology ePrint Archive, Report 2006/475 (2006), http://eprint.iacr.org/

28. Semaev, I.: On solving sparse algebraic equations over finite fields (part ii). Cryp-
tology ePrint Archive, Report 2007/280 (2007), http://eprint.iacr.org/

29. Steinfeld, R., Pieprzyk, J., Wang, H.: On the provable security of an efficient rsa-
based pseudorandom generator. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 194–209. Springer, Heidelberg (2006)

30. Wolf, C.: Multivariate Quadratic Polynomials in Public Key Cryptography. PhD
thesis, Katholieke Universiteit Leuven (2005), http://eprint.iacr.org/2005/393

31. Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-
s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

32. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288.
Springer, Heidelberg (2004)

33. Yang, B.-Y., Chen, O.C.-H., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD. In:
Biryukov [9], pp. 290–307

A Proof of Prop. 1

Proof. We introduce hybrid probability distributions Di(S) over KL (L := λr):
For 0 ≤ i ≤ λ respectively associate with the random variables

ti(S,x) :=
(
w1, w2, . . . ,wi, P(x), P(Q(x)), . . . , P(Qλ−i−1(x))

)

where the wj and x are random independent uniformly distributed vectors in Kn

and we use the notational conventions that (w1, w2, . . . , wi) is the null string
if i = 0, and that

(
P(x), P(Q(x)), . . . , P(Qλ−i−1(x))

)

is the null string if i = λ. Consequently D0(S) is the distribution of the L-unit
keystream and Dλ(S) is the uniform distribution over KL. We denote by pi(S)

Secure PRNGs from Specialized Polynomial Maps over Any Fq 199

the probability that A accepts a random L-long sequence distributed according
to Di(S), and pi the mean value of pi(S) over the space of sparse polynomial
systems S. We have supposed that algorithm A distinguishes between D0(S) and
Dλ(S) with advantage , in other words that |p0 − pλ| ≥ ε.

Algorithm B works thus: on input (x1,x2) ∈ Kn+r with x1 ∈ Kr, x2 ∈ Kn,
it selects randomly an i such that 0 ≤ i ≤ λ−1 and constructs the L-long vector

t(S,x1,x2) := (w1, w2, . . . , wi,x1,P(x2), P(Q(x2)), . . . , P(Qλ−i−1(x2))).

If (x1,x2) is distributed accordingly to the output distribution of S, i.e. (x1,x2)=
S(x) = (P(x),Q(x)) for a uniformly distributed value of x, then

t(S,x1,x2) :=
(
w1, w2, . . . ,wi, P(x), P(Q(x)), . . . , P(Qλ−i−1(x))

)

is distributed according to Di(S). Now if (x1,x2) is distributed according to the
uniform distribution, then

t(S,x1,x2) =
(
w1, w2, . . . ,wi, x1, P(x2), P(Q(x2)), . . . , P(Qλ−i−2(x2))

)

which is distributed according to Di+1(S). To distinguish between the output
of S from uniform, algorithm B calls A with inputs (S, t(S,x1,x2)) and returns
that same return value. Hence

∣
∣
∣
∣Pr
S,x

(B(S,S(x)) = 1 − Pr
S,x

(B(S,S(x1,x2)) = 1
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
λ

λ−1∑

i=0

pi −
1
λ

λ−1∑

i=0

pi

∣
∣
∣
∣
∣
=

1
λ
|p0 − pλ| ≥

ε

λ
.

B XL and F4-F5 Families for System-Solving

The XL and F4-F5 families of algorithms are spiritual descendants of Lazard’s
idea [24]: run an elimination on an extended Macaulay matrix (i.e., extending
the resultant concept to many variables) as an improvement to Buchberger’s
algorithm for computing Gröbner bases [11].

Since we cannot discuss these methods in detail, we try to describe them
briefly along with their projected complexities. Again, suppose we have the sys-
tem P1(x) = P2(x) = · · · = Pm(x) = 0, where Pi is a degree-di polynomial in
x = (x1, . . . , xn), coefficients and variables in K = Fq.

Method XL [12]: Fix a degree D(≥ maxPi). The set of degree-D-or-lower
monomials is denoted T = T (D). |T (D)| is the number of degree ≤ D monomials
and will be denoted T = T (D). We now take each equation Pi = 0 and multiply
it by every monomial up to D − di to get an equation that is at most degree
D. Collect all such equations in the set R = R(D) :=

⋃m
i=1{(uPi = 0) : u ∈

T (D−di)}. We treat every monomial in T as independent and try to solve R as
a linear system of equations.

The critical parameter is the difference between I = dim(spanR), the rank of the
space of equations R, and T . If T −I = 0, the original system cannot be satisfied;

200 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

if T − I = 1, then we should find a unique solution (with very high probability).
Also, if T − I < min(D, q − 1), we can reduce to a univariate equation [12]. We
would like to predict D0, the smallest D enabling resolution.
Note: For any pair of indices i, j ≤ m, among linear combinations of the multi-
ples of Pj = 0 will be PiPj = 0, and among linear combinations of the multiples
of Pi = 0 will be PiPj = 0 — i.e., one dependency in spanR. In Fq, (Pi)q = Pi

which generates a similar type of dependency.

Proposition 7 ([32]). Denote by [u]s the coefficient of the monomial u in the
expansion of s, then:

1. T = [tD]
(1 − tq)n

(1 − t)n+1
which reduces to

(
n+D

D

)
when q > D, and

∑D
j=0

(
n
j

)

when q = 2.
2. If the system is regular up to degree D, i.e., if the relations R(D) has no

other dependencies than the obvious ones generated by PiPj = PjPi

and P q
i = Pi, then

T −I=[tD] G(t), where G(t) :=G(t;n; d1, d2, . . . , dm)=
(1 − tq)n

(1− t)n+1

m�
j=1

�
1 − tdj

1 − tq dj

�
.

(3)

3. For overdefined systems, Eq. 3 cannot hold when D > DXL = min{D :
[tD]G(t) ≤ 0}. If Eq. 3 holds up for every D < DXL and resolves at DXL,
we say that the system is q-semiregular. It is generally believed [3,14] that
for random systems it is overwhelmingly likely that D0 = DXL, and
indeed the system is not q-semiregular with very small probability.

4. When it resolves, XL takes CXL � (c0 + c1 lg T) τ T 2 multiplications in Fq,
using a sparse solver like Wiedemann [31]. Here τ is the average number of
terms per equation.

We cannot describe methods F4-F5 [17,18], which are just too sophisticated
and complex to present here. Instead, we simply sketch a result that yields their
complexities:

Proposition 8. [3] For q-semiregular systems, F4 or F5 operates at the degree

D = Dreg := min

⎧
⎨

⎩
D : [tD]

⎛

⎝(1 − tq)n

(1 − t)n

m∏

j=1

(
1 − tdj

1 − tq dj

)
⎞

⎠ < 0

⎫
⎬

⎭
,

and take � (c′0+c′1 lg T̄)T̄ ω multiplications, where T̄=[tDreg] ((1 − tq)n(1 − t)−n)
counts the monomials of degree exactly Dreg, and 2 < ω ≤ 3 is the order of
matrix multiplication used.

We do not know what works best under various resource limitations. We take
the position of [33], e.g., XL with a sparse solver represents the best way to solve
large and more or less random overdetermined systems when the size of main
memory space is the critical restraint.

Secure PRNGs from Specialized Polynomial Maps over Any Fq 201

C SRQ, a Potential Candidate for One Way Function

An SRQ (Sparse Rotated Quadratics) instance is an MQ system specialized so
that it is non-sparse but can be computed with fewer computations than normal
quadratics.

Problem SRQ(q, n, m, h): In Fq, solve P1(x) = P2(x) = · · · = Pm(x) = 0. The
Pi are quadratics formed from “sequence of rotations”, that is Start with
P0 = x1x2 +x3x4 + · · ·+xn−1xn (where n is even), and obtain successive Pj

by performing sparse affine maps on x. I.e., x(0) := x, x(i) := M (i)x(i−1) +
b(i), yi := Pi(x) := P0(x(i)) + ci, ∀i. Matrices M (i) are randomly chosen,
invertible and sparse with h entries per row.

The idea behind SRQ is that any quadratic map can be written as f ◦L, where
f is a standard form and L is an invertible linear map. Now we will choose L to
be sparse. A standard form for characteristic 2 fields is the “rank form” which
for full-rank quadratics is

P0(x) = x1x2 + x3x4 + · · ·xn−1xn.

Clearly, by taking a random c and b, we can give P0(x + c) + b any random
affine part. Since each x(i) is related to x = x(0) by an invertible affine map, this
holds for every component Pi. This means that results pertaining to sparsity of
the linear terms such as [1] (cf. Sec. 4.3) never apply, and hence it is plausible
for SRQ to form a one way function class.

In Fig. 1, the samples labelled “sparse non-random” are SRQ tests. It seem
as if their behavior under MAGMA’s F4 is no different than normal quadratics.

In this SRQ construction, even if h = 3 (the rotation matrices M (i) have only
three entries per row), the number of cross-terms in each equations still quickly
increases to have as many terms as totally random ones, so point 2 in Sec. 4.3
does not apply here. Indeed, since a quadratic over F2 of rank 2k has bias 2−k−1,
the SRQ form acts exactly like a random quadratic under point 3 in Sec. 4.3.

 10

 100

 1000

 10000

 11 12 13 14 15

T
im

e
(S

ec
on

d)

n

Dense Random
Sparse Random (1/10)
Sparse Random (2/n)
Sparse Non-random

Best Fit of Dense Random

Fig. 1. “Sparsely 2n → 3n F2 quadratics” in MAGMA

202 F.-H. Liu, C.-J. Lu, and B.-Y. Yang

 0.1

 1

 10

 100

 1000

 10000

 21 22 23 24 25 26 27 28 29 30 31

T
im

e
(S

ec
on

d)

n

Dense Random
Sparse Random (1/50)
Sparse Random (1/n)

Best Fit of Dense Random

Fig. 2. “Sparsely n → 2n F2 quadratics” in MAGMA

	Secure PRNGs from Specialized Polynomial Maps over Any \GF{q}
	Introduction
	Our New Ideas and Main Results
	Previous Work

	PRNG Based on Specialized Polynomial Map in F2
	From Distinguisher to Predictor
	Constructing a PRNG from \MQ (\GF{2} Case)

	PRNG Based on SMP in \GF{q}
	Conversion to a Modern (IV-Dependent Stream) Cipher
	Hardcore Predicate and Learning Polynomials
	Intuition of Reconstructing Linear Polynomials
	Giving Concrete Values to ``Order of Polynomially Many''

	On SMP under Generic Solvers
	Testing the One-Wayness with Generic Solvers
	A Brief Discussion on Specialization and Security
	Solutions and Collisions in Sparse Polynomial Systems

	Summary of Uses for Specialized Polynomial Systems
	The Secure Stream Ciphers SPELT
	Comparisons: A Case for SPELT
	For Possible Use in Hash Functions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

