Addressing of Self-Assembled Nanoarrays via Randomized-Contact Decoders*

Eric Rachlin and John E. Savage
Brown University Department of Computer Science

^{*} Supported in part by NSF Grant CCF-0403674

Working with Crossbars

- Crossbars can serve as a basis for both memories and circuits.
- Nanowires (NWs) can be assembled into crossbars, but assembly is stochastic.
- Nanowire crossbars must interface with lithographically produced technology.
- Randomized-contact decoders (RCDs)
 provide an efficient defect-tolerant interface

Uniform Silicon NWs

- Uniform NWs can be produced using a stamping process.
- They can also be grown off-chip with chemical vapor deposition.
- In both cases these NWs can be assembled into crossbars.
- To use these crossbar many NWs must be individually controllable.

(Heath, Caltech)

CVD NWs (Lieber, Harvard)

Controlling NW Crossbars

How much lithographic circuitry is required?

- Ohmic contacts (OCs)
 place a voltage across
 consecutive NWs.
- Mesoscale address
 wires (MWs) turn off
 NWs within each group.
- Lightly doped regions couple MWs to NWs.

Read/Write Operations

- Perpendicular NWs provide control over molecular devices.
- Larger voltages set the conductivity of crosspoints.
- Smaller voltages measure conductivity.

Nanowire Decoders

- The interface between NWs and MWs is called a NW decoder.
- In a decoder each of M MW provides control over a subset of NWs.
- We associate an M-bit **codeword**, c_i with each NW. Let $c_{i,j}$ be the jth bit of c_i .
 - $c_{i,j}$ = 1 if the jth MW <u>controls</u> the ith NW.
 - $c_{i,j} = 0$ if the jth MW <u>has no effect on</u> the ith NW.
 - $c_{i,j} = e$ if the jth MW partially controls the ith NW.

Nanowire Decoder Assembly

- Several types of decoder have been proposed.
 They varies in how MWs are coupled to NWs.
- In a mask-based decoder, randomly shifted regions of high-K dielectric focus each MW's electric field on only certain NWs.
- In an encoded-NW decoder, NWs are grown with a sequence of lightly and heavily doped regions.
- In all cases, decoder assembly is stochastic.

Codeword Assignment

- NW codewords can model each of the proposed NW decoders.
- When a decoder is manufactured, codewords are randomly assigned to NWs according to some distribution.
- An RCD is any decoder where c_{i,j} are independent identically distributed random variables.

Decoder Requirements

- Many NWs connected to each OC should be individually addressable.
- A NW is individually addressable if no other codeword implies it.
- One codeword implies another if
- If the number of MWs is sufficiently large, many NWs will be individually addressable with high probability.

To Review...

- Core-shell nanowires generate codewords which are never misaligned!
- Linear decoding creates high density memories with only two shells!
- More sophisticated decoding permits efficient fault tolerance!