Crossbar Addressing Using Core-Shell Nanowires*

Eric Rachlin, John Savage

Department of Computer Science

Brown University

^{*} Supported in part by NSF Grant CCF-0403674

Working with Crossbars

- Crossbars can serve as a basis for both memories and circuits.
- Nanowires can be assembled into crossbars, but assembly is stochastic.
- Nanowire crossbars must interface with lithographically produced technology.
- Core-shell nanowires provide a reliable interface by avoiding misalignment.

Making Nanowires with CVD

- Chemical vapor deposition grows silicon nanowires axially, then radially.
- Modulation-doped nanowires have a pattern of heavily and lightly doped regions grown along their axis.
- Core-shell nanowires have a sequence of insulating shells grown around their doped core.

Forming Nanoarrays

- Nanowires can be aligned fluidically then deposited in parallel.
- A layer of molecular devices is placed between two sets of perpendicular wires.
- Axial alignment is poor.

Controlling Nanoarrays

How can lithographic circuitry be used?

- Ohmic contacts apply voltages to groups of consecutive NWs.
- Mesoscale address wires turn off NWs within each group.
- NWs act as FETs.

Read/Write Operations

- Pairs of nanowires provide control over molecular devices.
- Larger voltages set the conductivity of crosspoints.
- Smaller voltages measure conductivity.

Nanowire Codewords

- An address wire turns off a NW if it is adjacent to a lightly doped region.
- A set of address wires that turn off a nanowire are called its codeword.
- Codewords are randomly deposited.
- We must produce enough NW types so that many codewords are present at each contact with high probability.

Misalignment

- Modulation-doped nanowires shift axially to produce codewords.
- Shifting may cause doped regions to misalign with address wires.
- Core-shell nanowires can produce similar codewords, but without misalignment.

Core-Shell Nanowires

- Instead of modulation-doped NWs with many doping patterns use core-shell NWs with many shell sequences.
- Create shells from independently etchable materials.
- If we use n materials and k shells: N = n $(n 1)^{(k-1)}$ sequences are possible.

Selective Etching

- Consider NWs with the shell sequence $s_1, ..., s_k$. Here s_1 is the outer shell.
- Let $E(s_i)$ be the etching process that removes only material s_i .
- The etching sequence $E(s_1)$, ..., $E(s_k)$ exposes only the cores of these NWs.

Linear Decoding

- Apply a different k step etching sequence under each address wire.
- $N = n(n 1)^{(k-1)}$ types of nanowire are controlled using N address wires.
- 12 codewords will do!

Logarithmic Decoder

Can codewords be shorter?

- When k = 1, each type of nanowire can be etched with an arbitrary codeword.
- We can accommodate larger k if NWs are manufactured with different sets of materials in consecutive layers.
- This limits N to at most $(n/2)^k$.

Additional Possibilities

- Fault Tolerance: If codewords have sufficiently large Hamming distance, errors in etching will be tolerated.
- Two-Stage Etching: Codewords reveal which sequences are present.
 From known sequences, a second etching process can produce new codewords deterministically.

To Review...

- Core-shell nanowires generate codewords which are never misaligned!
- Linear decoding creates high density memories with only two shells!
- More sophisticated decoding permits efficient fault tolerance!