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Abstract

In January of 2007, researchers from Caltech and UCLA
demonstrated a nanoscale memory with 1011 storage devices
per cm [9]. This memory used a grid of nanoscale wires
(NWs) to control bistable rotaxane molecules located at NW
crosspoints. Similar crossbar-based storage technology, us-
ing larger feature sizes, was demonstrated by researchers at
HP in 2004 [11]. In both cases the limiting factor on storage
density was not wire pitch or device size, it was an inability to
efficiently control individual NWs using lithographically pro-
duced mesoscale wires (MWs). To solve this, several types of
NW decoders have been proposed. We model one type, the
randomized-contact decoder, and provide strong bounds on
its area overhead and defect tolerance.

1 Introduction

NW crossbars are a potential basis for both memories and
circuits [5, 6]. Crossbar-based architectures would have den-
sities a hundred times greater than today’s CMOS. Unlike
current VLSI, however, they would be assembled stochasti-
cally. This results in three fundamental challenges:

1. NWs are randomly assigned physical addresses

2. Testing is needed to configure crossbar control circuitry

3. Both permanent and transient faults must be tolerated.

As a means of addressing these challenges, we consider
the randomized-contact decoder (RCD). A nanowire de-
coder is any device capable of addressing many individual
NWs using MWs. The term RCD applies to any NW de-
coder in which MWs are coupled to NWs independently at
random during decoder assembly. Like other proposed NW
decoders, RCDs are assembled stochastically.

Our analysis shows that RCDs are efficient and robust.
They reliably control a large number of NWs using many
fewer MWs, even when NW/MW contacts fail. Our work
also looks at the overhead of using an RCD. NWs in an RCD
are randomly assigned physical addresses that must be dis-
covered and stored. We compare two strategies for storing
addresses and discuss a simple discovery procedure.
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Figure 1: A crossbar-based memory in which OCs and MWs
read and write data to PMs. In a read operation an OC at
each end of a NW is disconnected from ground. Individual
NWs are addressed by MWs causing current to flow only if
the NWs’ crosspoints conduct. In a write operation, OCs
along each dimension apply a larger electric field, setting the
conductivity of any crosspoint being addressed.

2 Crossbar-based Memories

Grids of long straight NWs can be produced using a va-
riety of methods. Undifferentiated (i.e. identical) NWs can
be stamped onto a chip, [3, 12]. Alternatively, many types
of differentiated NWs can be grown off chip, collected in a
large ensemble, then deposited fluidically [18]. Using either
approach, a molecular layer can be deposited between two
orthogonal layers of parallel NWs. This layer can consist of
programmable molecular diodes (PMs) that switch between
low and high resistances in a large electric field [2, 4]. A
layer of amorphous silicon has also been proposed [8].

2.1 Nanowire Decoders

Once assembled, NW crossbars are controlled using a NW
decoder along each dimension (see Figure 1). In the de-
coders, ohmic contacts (OCs) place voltages across groups
of consecutive NWs while lithographically produced MWs
gate (i.e. make nonconducting) subsets of NWs. The subset
of MWs that gate a NW is called its codeword. Codewords
are chosen randomly during decoder assembly.
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A NW is addressed by activating one or both of its OCs
along with all MWs that do not gate it. If the number of MWs
is sufficiently large, the probability all other NWs get turned
off is high. When NWs along each dimension of a crossbar
are addressed, a large voltage can be used to set the conduc-
tivity of the PMs at their crosspoint. A smaller voltage can
also be used to measure the conductivity of the crosspoint.
These actions act as write and read operations, respectively.

For crossbar memories to access many individual cross-
points, NW decoders must control many individual NWs.
The probability a decoder individually addresses many NWs
depends on how it is manufactured and the number of MWs
it employs.

To control undifferentiated NWs with MWs, two related
decoders have been proposed. The first, a masked-based
decoder, relies on randomly shifted lithographically-defined
high-K dielectric regions interposed between NWs and MWs
[1, 15] The second, an RCD, is analyzed here. One proposed
method for making RCDs is to randomly deposit impurities,
such as gold, between NWs and MWs [19]. Another option
is to randomly place nanoscale high-K dielectric regions.

To control differentiated NWs, an encoded NW decoder
has also been proposed. These decoders can be produced
using modulation-doped NWs [6, 20] (NWs grown with pat-
terns of lightly and heavily doped regions along their axis),
or radially encoded NWs [17] (NWs with layers of remov-
able shells). In both cases NWs with different encodings are
grown separately, collected in a large ensemble, then ran-
domly deposited on a chip. When connected to OCs NWs
with each encoding can be separately addressed.

2.2 Modeling NW Decoders

To analyze the RCD we use a model introduced in [14].
Let M and g be the number of MWs and OCs, respectively,
along each dimension of a crossbar. Let w be the number of
NWs connected to each OC and N = gw.

Definition 2.1 For α � 1, a set, S, of NWs is addressed if
and only if a subset of MWs is activated such that:

1. Every NW not in S has a resistance that is at least α
times that of every NW in S

2. The resistance of all NWs not in S, when combined in
parallel, is at least α times that of the combined resis-
tance of all NWs in S.

A NW, ni, is individually addressable if and only if the set
{ni} can be addressed by some subset of MWs.

For each NW ni, we represent its codeword with an M -
bit vector, ci. When activating the jth MW, let ri

j denote
the increase in ni’s resistance. Define the jth bit of ci as
follows:

• ci
j = 0 if ri

j ≤ rlow

• ci
j = 1 if rhigh ≤ ri

j

• ci
j = e if rlow < ri

j < rhigh, meaning ci
j is in error.

where rlow = crbase, rhigh = α(N − 1)(cM − c + 1)rbase,
rbase is the maximum resistance of any NW when all MWs
are off, and c is any positive integer.

Multiple types of NW decoder can be modeled using
codewords. The distribution with which codewords are as-
signed to NWs depends on how a decoder is manufactured.
In an RCD each bit of each codeword is an identically dis-
tributed independent random variable. For all ci

j , let p =
Prob(ci

j = 1), q = Prob(ci
j = 0) and r = 1− p− q.

Before bounding the number of MWs required by an
RCD, we must provide criteria that a decoder can satisfy to
address many individual NWs. To build intuition, consider
two NWs, na and nb, connected to a single OC. Suppose
there is a k such that ca

k = 0 and cb
k = 1. By activating the

kth MW, nb can be turned off while na remains on. If there
is no such k, however, this may not be possible, in which
case na may not be individually addressable. This line of
reasoning is formalized as follows [14]:

Definition 2.2 If for all k ca
k = 1 when cb

k = 1, cb implies
ca. If for all k ca

k 6= 0 when cb
k = 1, cb possibly implies ca.

Lemma 2.1 In a NW decoder, NW na is individually ad-
dressable if no other NW possibly implies it. In an idealized
error-free decoder, NW na is individually addressable if and
only if no other NW implies it.

To bound the number of MWs required by an RCD we can
bound the number of MWs required for all or most NWs to
have codewords not possibly implied by any other codeword.

3 Bounds on MWs

Let Na be the number of individually addressable NWs
in an RCD. Through simulation, Hogg et al [10] explore the
conditions under which Na is close to N . They demonstrate
that as M passes a threshold near 4.8 log2 N , the probability
most NWs are addressable grows rapidly. Their empirical
study, however, does not give bounds on M in terms of ε, the
probability Na is less than a desired value. It also fails to
capture the impact of manufacturing errors.

We give tight bounds for both purposes using two differ-
ent approaches. First we bound the expected value of Na,
E[Na], and use Hoeffding’s Inequality [13] to choose M
such that Na is close to E[Na]. Second we use the princi-
ple of inclusion-exclusion to choose M such that all NWs
connected to an OC are individually addressable with high
probability.
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3.1 Bounds Using Expectation

From [16] we have the following bound on E[Na]:

Lemma 3.1 Let N = gw be the total number of NWs con-
tained in an RCD with g OCs, w NWs per OC, and M MWs.
If Na is the total number of individually addressable NWs,

N(1− (N − 1)(1− pq)M ) ≤ E[Na] ≤ N(1− (1− pq)M )

where p = P (ci
j = 1), q = P (ci

j = 0) and p + q ≤ 1.

Let N i
a be the number of individually addressable NWs

connected to the ith OC. Na =
∑g

i=1 N i
a, and since N i

a are
independent random variables ranging from 1 to w we apply
Hoeffding’s Inequality [13]. (We use 1 as the lower bound
since even if no NW is individually addressable, all NWs can
be addressed at once.) The inequality gives P (E[Na]−Na ≥
k) ≤ e−2k2/g(w−1)2 and leads to the following theorem [16].

Theorem 3.1 Let Na be the total number of individually ad-
dressable NWs in an RCD with N = gw NWs, g OCs, w
NWs per OC and M MWs.

P (Na > κN) ≥ 1− ε

if κ ≤ 1−
√
− ln ε/(2g∗)− (w − 1)(1− pq)M where g∗ =

g(w/(w − 1))2.

The following example uses this theorem to show 13
MWs address at least 1027 NWs with probability .99 when
g = 175, w = 8, N = 1400 and p = q = .5.

Example 3.1 Let p = q = .5, g = 175, w = 8, N = 1400,
ε = .01, and κ = .733. When M = 13, κ = .733 ≤ 1 −√
− ln .01/(2 ∗ 175 ∗ (8/7)2)−7∗(3/4)13. By Theorem 3.1

P (Na > 1026.2) = .99

When manufacturing defects cause codeword errors, r =
1−p−q > 0. If r grows as g stays fixed, M must increase to
keep κ constant. If pq = .2 (rather than pq = .25 in our error-
free example) M must grow by a factor of ln(.75)/ ln(.8) =
1.29. If pq = .1, the factor is ln(.75)/ ln(.9) = 2.73. Even
for relatively high defect rates M is not prohibitively large.

3.2 Bounds Using Inclusion/Exclusion

Again we use a bound from [16]:

Theorem 3.2 In an RCD with M MWs, the minimum value
of M such that all w NWs connected to an OC are individu-
ally addressable with probability 1−ε satisfies the following:

ln(w(w − 1)/2ε)
− ln(1− pq)

≤ M ≤ ln(w(w − 1)/ε)
− ln(1− pq)

where the lower bound only holds if M ≥ (1 −
pq)/(pq min(p, q)) when ε ≤ .05.

Consider an RCD with w = 8, g = 133, p = q = .5 and
M = 30. We now show that with probability .99 at least 128
OCs are connected to all individually addressable NWs.

Example 3.2 An OC is said to “fail” if it is not connected to
all individually addressable NWs. When w = 8, p = q = .5
and M = 30, Theorem 3.2 states that OCs fail with proba-
bility at most ε = .01 (since 30 > − ln(5400)/ ln(.75)).

Since OCs fail independently, the probability that f or
fewer OCs fail is bounded by the tail of a binomial distribu-
tion. The probability is at least

∑f
i=0

(
g
i

)
εi(1− ε)g−i. When

g = 133 and f = 5, this sum is greater than .99.

As discussed in at the end of Section 3.1, manufacturing
defects only increase M by a small amount.

3.3 Comparison with Other Decoders

In an encoded NW decoder each NW is randomly selected
from one of C types. All w NWs connected to an OC are
independently addressable if they all have different types. If
C ≥ w(w−1)/(−2 ln(1−ε)), all NWs have a different type
with probability at least 1− ε [7].

Depending on how MWs are encoded, the number of
MWs required is between log2(C) and C [17]. Since ln(1−
ε) ≈ −ε when ε is small, the lower bound M ≥ log2(C) ≈
ln(w(w−1)/2ε)/ ln 2 is within a small constant factor of the
bound in Theorem 3.2. Furthermore, RCDs may be easier to
manufacture since they do not require producing many types
of differently encoded NWs.

In a masked-based decoder, randomly shifted lithograph-
ically defined regions determine which MWs control which
NWs. Unless regions can be placed with sub-NW pitch ac-
curacy, close to M = 2(w− 1) ln(2(w− 1)/ε) MWs are re-
quired to individually address all w NWs connected to an OC
with probability 1 − ε [15]. This is significantly more MWs
than required by either RCDs or encoded NW decoders.

4 Address Translation Circuitry

Each binary address in a crossbar memory corresponds to
a different pair of orthogonal NWs. During operation, binary
addresses are split into high and low order bits, then each set
of bits is used to address a NW along one dimension of the
crossbar. Address translation circuitry (ATC) along each
dimension maps these bits to an OC and subset of MWs to
activate. Since NW decoders are assembled stochastically,
this mapping varies from decoder to decoder. The ATC needs
programmable storage for the codeword of each NW it ad-
dresses. It must also associate an OC with each codewords.

The way in which binary addresses are mapped to code-
words and OCs is called an addressing strategy. We use
examples 3.1 and 3.2 to compare two different addressing
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strategies. In the first strategy, Take What You Get, each
binary address is mapped to any arbitrary addressable NW.
For each address, the ATC stores an M -bit codeword and
log(g)-bit OC address. In the second strategy, All Wires Al-
most Always Addressable, w consecutive binary addresses
are all mapped to the same OC. An M -bit codeword is still
stored for each address, but now the address’ high order bits
(along with knowledge of which OCs fail to have w address-
able NWs) are used to associate OCs with codewords.

4.1 Area Estimates

For each addressing strategy we estimate the total area,
AT , required to produce a memory with approximately 220

bits of storage. We use the approach of [7] and write:

AT ≈ 2χβ + 2λ2
mesog log2 g + (λmesoM + λnanoN)2

where λmeso and λnano are MW and NW pitch respectively,
χ is the area of a mesoscale memory cell, and β is the
number of bits stored in each ATC. In our formula for AT ,
(λmesoM + λnanoN)2 is the area of the crossbar and MWs,
χβ estimates the area of each ATC, and λ2

mesog log2 g esti-
mates the area of each demultiplexer used to activate OCs.

Since χ will be many times λ2
meso and we expect λmeso ≥

10λnano, “Take What You Get” appears superior.

Take What You Get: In Example 3.1, g = 175, w = 8,
N = 1400, M = 13, and Na ≥ 1027 with probability a
least .99. If ATC stores a codeword and OC for each address,
β = Na(dlog ge+M) = 21, 567 bits are needed. This gives:

AT ≈ 43, 134χ + 2608λ2
meso + (λmeso13 + λnano1400)2.

All Wires Almost Always Addressable: In Example 3.2,
g = 133, w = 8, N = 1064, M = 30 and Na ≥ 1024 with
probability at least .99. Again the ATC stores a codeword
for each address. Rather then also store an OC, we store an
“offset” to add to each address’ high order bits. Since at most
5 OCs fail, the offsets require at most 3 bits per 8 addresses.
The ATC uses β = NAM + 3 ∗ 128 = 31, 658 bits, giving:

AT ≈ 62, 208χ + 1877λ2
meso + (λmeso30 + λnano1064)2

4.2 Codeword Discovery

To program the ATC, codewords must be discovered. An
efficient discovery algorithms for encoded NW decoders is
in [7]. An algorithm for RCDs appears in [10] with a slightly
flawed analysis. A modified version works well in simulation
[16], although the impact of codeword errors is unknown.

A simpler approach to codeword discovery is exhaustive
search. Here the current between two OCs connecting w
NWs is measured for all 2M combinations of activated MWs.

The 2M measurements reveal the codewords of individually
addressable NWs [16]. If measurements can be taken from
g OCs simultaneously, the algorithm becomes very efficient
for small values of M (such as 13 from Example 3.1) [10].
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