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Abstract— Methods for assembling crossbars from nanowires
(NWs) have been designed and implemented. Methods for con-
trolling individual NWs within a crossbar have also been pro-
posed, but implementation remains a challenge. A NW decoder
is a device that controls many NWs with a much smaller
number of lithographically produced mesoscale wires (MWs).
Unlike traditional demultiplexers, all proposed NW decoders are
assembled stochastically. In a randomized-contact decoder (RCD)
[11], for example, field-effect transistors are randomly created at
about half of the NW/MW junctions.

In this paper, we tightly bound the number of MWs required
to produce a correctly functioning RCD with high probabilit y.
We show that the number of MWs is logarithmic in the number
of NWs, even when errors occur. We also analyze the overhead
associated with controlling a stochastically assembled decoder.
As we explain, lithographically-produced control circuitry must
store information regarding which MWs control which NWs. Th is
requires more area than the MWs themselves, but has received
little attention elsewhere.

I. I NTRODUCTION

Nanotechnology offers the promise of constructing mem-
ories and programmed logic arrays with very high densities
[7], [6]. The approach is to form crossbars (see Figure 1)
by stamping or imprinting uniform nanowires (NWs) on a
chip [3], [2], [14] or by growing differentiated nanowires off
chip and then assembling them fluidically on a chip [17],
[19]. A crossbar with switchable crosspoints is grown by
placing a supramolecular layer between two orthogonal sets
of NWs. The molecules in this layer act either as diodes and
carry current or they form open circuits [4], [5], [13]. The
application of a high positive or negative electric field by the
NWs that form a crosspoint drive the molecules into one of
these two states. With small modifications, such memories can
function as (non-restoring) programmed logic arrays.

To store data at crosspoints requires that NWs in each
dimension of a crossbar be addressable. That is, it must be pos-
sible to cause one (or a few identical) NWs in each dimension
to have a low resistance while the others have high resistance.
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The state of the molecules at a crosspoint defined by the low
resistance NWs can then be read or written. Control over NW
resistances is achieved through the application of electric fields
to NWs using orthogonal lithographically defined mesoscale
wires (MWs), as suggested in Figure 1. A small number of
MWs can be used to address a large number of NWs.

The device which controls NW resistances is called a
nanowire decoder. Three types of NW decoder are described
in Section II, the “encoded NW decoder,” the “mask-based
decoder,” and the “randomized-contact decoder.” NWs are
organized intosimple decodersconsisting of a set of NWs
(a contact group) between a pair ofohmic contacts (OCs).
The entire decoder consists of multiple contact groups (a
compound decoder). Two orthogonal sets ofN/w contact
groups, each containingw NWs, can be used to form anN×N
crossbar, as suggested in Figure 1.

To use the crossbar as a memory, a voltage is applied to
a single contact group of NWs along each dimension of the
crossbar. Subsets of MWs along each dimension are then used
to address NWs within each of the two groups. This operation
can either read or write a single bit to the crosspoints of the
NWs being addressed (See Figure 2).

In a write operation, the diodes at crosspoints are turned
on or off by applying a large potential between one or more
pairs of orthogonal NWs by addressing (giving low resistance
to) one or more NWs in each dimension. Both ends of the
NWs are maintained at the same potential. The polarity of the
potential determines the state of a crosspoint and the value
written.

In a read operation, a smaller voltage is used, allowing the
decoder todetect the stateof crosspoints. In a read operation
each NW is disconnected from one of its ohmic contacts.
Current will either flow or not flow through a crosspoint,
depending on its state. The amount of current reveals the
resistive state of the crosspoints, and thus the value being
stored.

Both read and write operations require that the NWs being
addressed have a significantly lower resistance than the other
NWs in the same contact group. This requirement is formal-
ized at the beginning of Section III.

II. D ECODING TECHNOLOGIES

In this section we briefly review three types of NW decoder.
Each type of decoder can itself be manufactured in multiple
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Fig. 1. A crossbar formed from two orthogonal sets of NWs with
programmable molecules (PMs) at the crosspoints defined by intersecting
NWs. NWs are divided into contact groups connected to pairs of OCs. To
activate a NW in one dimension, a contact group is activated and MWs are
used to deactivate all but one NW in that group. Data is storedat a crosspoint
by applying a large electric field across it. Data is sensed with a smaller field.
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Fig. 2. A crossbar-based memory in which OCs and MWs read and write
data to programmable molecules at crosspoints. In a read operation an OC
at each end of a NW is disconnected from ground. Current flows through
any conducting NW crosspoints that are addressed by MWs. Theamount of
current reveals the value stored at the crosspoints. In a write operation, NWs
along each dimension apply a larger electric field across their crosspoints.
The direction of the field determines the value stored at the crosspoints.

ways. As shown in Section III, however, all three decoders can
be model in a unified way. Using this model, in Section IV
we analyze the RCD. In Section V we estimate the amount of
area the RCD requires.

A. The Encoded NW Decoder

The encoded NW decoderworks with two kinds of NWs,
modulation-doped NWs [8], [10], NWs with sequences of
lightly and heavily doped regions, and radially encoded NWs
[16], NWs with removable shells. In both cases NWs are
prepared externally and then deposited onto a chip using
fluidic methods that align the NWs in parallel. These methods,
however, do not guarantee end-to-end registration of NWs.

To explain the behavior of the encoded NW decoder on
modulation-doped NWs, assume that lightly doped regions

are aligned with MWs. The junction formed by a lightly
doped region and a MW forms a field effect transistor (FET).
The application of an immobilizing electric field to a MW
causes the resistance of the junction to become high. A NW
is addressed by applying fields to all MWs that do not signifi-
cantly increase its resistance. If doping sequences are properly
chosen,only one NW typewill become nonconducting. (See
Figures 1 and 2.) In practice, lightly doped NW regions will
not align perfectly with MWs. Consequently, MW control of
NW junctions can be ambiguous. Several strategies to relate
external binary addresses to doping patterns have been studied
[9].

The encoded NW decoder also works with radially encoded
NWs, that is, NWs that have shells composed of differentially
etchable NWs [16]. There are several ways to control these
NWs with MWs. The simplest method uses one MW for each
type of NW. If NWs haves shells, a sequence ofs materials
can etched away in the space reserved for a MW. This process
exposes the core of NWs of the given type but leaves at least
one shell on NWs of different type. If all cores are lightly
doped and shells are sufficiently thick, the MW controls only
NWs with exposed cores. To address these NWs, all other
MWs are activated. Radially encoded NWs do not suffer from
misalignment but may require larger radii than modulation-
doped NWs.

B. The Masked-Based Decoder

The mask-based decoder[1] works with uniform NWs
[14], [12], [3]. It assumes that lithograpically-defined high-K
dielectric rectangles are deposited between NWs and MWs.
These rectangles focus the field strength of MWs, thereby
causing the lightly doped NWs sitting under them to have high
resistance when an electric field is applied to the corresponding
MW. If rectanglescan be as small as the pitch of NWs,
they can be used withM = 2 log2 N MWs to cause all but
one NW to have high resistance, as suggested in Figure 3a.
Unfortunately,rectanglescannot be made as small as the pitch
of NWs. Thus, it is proposed that many copies of the smallest
lithographically-defined rectangles be deposited on a chipand
that the natural randomness in their location that arises with
their placement be used to provide control over NWs with
high probability [1] (see Figure 3b). The number of MWs,M,
needed to controlN NWs is estimatedto be at least six times
the number required with an encoded NW decoder [15].

C. The Randomized-Contact Decoder

Williams and Kuekes introduced the randomized-contact
decoder (RCD) [18], [11] for the addressing of undifferentiated
nanowires (NWs). In an RCD random contacts are made
between NWs and mesoscale wires (MWs) independently with
some fixed probability. (See Figure 4.) If a contact is made
between a NW and a MW, the junction acts as like a FET,
that is, the application of an electric field to the MW causes
a large increase in the resistance of the NW. If the number
of MWs, M, is sufficiently large, the decoder will be able to
address many individual NWs high probability.
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Fig. 3. A masked-based NW decoder in which regions of high-K dielectric
allow each MW to control a different subset of NW. If arbitrarily small high-K
dielectric regions could be manufactured and placed with nanoscale precision,
2 log(N) MWs could be used to address each ofN NWs. (See a).) Since this
is not the case, many randomly shifted copies of the smallestmanufacturable
region can be used to gain control over individual NWs (See b).)

Fig. 4. A randomized-contact decoder in which random particle depostion
causes each MW to control certain NWs.

A randomized-contact decoder is any decoder in which
NW/MW connections can be modeled as independent random
variables. In an RCD, a MW provides strong control over
a NW with probability p, weak control with probabilityq
and ambiguous control with probability 1− (p + q). Because
this third case is considered a manufacturing error, we do not
assume thatp+ q = 1. In Section IV we bound the number of
MWs M required to tolerate a given error rate.

There are a number of ways an RCD might be produced.
One method would randomly deposit impurities (such as gold
particles) onto undifferentiated NWs [18]. Another approach
is to randomly deposit small regions of high-K dielectric, or
alternatively, randomly etch holes in a low-K dielectric. An
RCD can also be constructed from axially encoded NWs.
If many sets of axially encoded NWs are produced with
randomly placed lightly doped regions, each NW/MW junction
can be treated as an independent random variable. As a result,
analysis of RCDs provides bounds that apply to axial (and
similarly radial) decoders.

Hogg et al [11] have explored the conditions under which
most of theN NWs in an RCD can be controlled by a set of
M MWs. They demonstrate through simulation that whenM

passes a threshold, which is around 4. 8 log2 N, the probability
that most NWs are addressable grows rapidly asM increases.
Their empirical study doesn’t make explicit the dependenceof
M on N and the probabilityǫ of failing to having all NWs be
addressable. Such a dependence is useful to both theory and
design. We develop tight bounds for this purpose in Section IV.

D. Stochastic Assembly and Address Translation Circuitry

Because NW decoders are assembled stochastically, there is
a large amount of uncertainty regarding which MWs control
which NWs. When assembled into a crossbar-based memory,
external binary memory addresses must be mapped to NW
crosspoints, that is, to pairs of orthogonal NWs.

Let each binary addressE be split into high and low order
bits, EL and EH, that separately address NWs in the two
dimensions of the crossbar. Anaddress translation circuit
(ATC) is responsible for mappingEL and EH to a contact
group and a subset of MWs within a group. Because the map-
ping of addresses to NWs varies from decoder to decoder, an
ATC must contain some form of programmable storage. The
greater the uncertainly regarding a decoder’s configuration, the
larger the storage space needed.

Most previous work on NW decoders has focused on the
number of MWs required to control NWs. Although MWs are
much wider than NWs, they are still relatively small. In an
RCD, however, each NW/MW junction, corresponds to a bit
of storage in address translation circuitry. As a result, these
bits, which would be stored in mesoscale devices, collectively
take up far more area than the NW/MW junctions.

As we show in Section V, it isnot efficientto require that
all NWs be individually addressable with high probability.The
size of an ATCwill vary based on theNW addressing strat-
egyused. For example, we can require that a) all NWs in each
simple decoder have a distinct address, or b) all NWs in almost
all simple decoders have distinct addresses, or c) the total
number of NWs with distinct addresses is sufficiently large.
These are only a few of the possible addressing strategies.

III. M EMORY DECODERREQUIREMENTS

In Section IV, we bound the number of MWs required by
RCDs to control crossbar-based memories. To derive these
bounds, we first define the requirements that decoders must
meet. The conditions we obtain in this section apply to other
types of decoders as well.

A. Nanowire Addressing

As explained in Section I, read/write operations are per-
formed in a NW crossbar-based memory byemploying an
address decoder in each dimension of the memory. If each
decoder addresses at leastD disjoint sets of NWs, they
collectively controlD2 disjoint sets of NW crosspoints each
of which can store a bit.

Since each of the two decoders is comprised ofg contact
groups,D =

∑g
i=1 Di , whereDi is the number of disjoint sets

of NWs that can be addressed within theith contact group.
Let Ri be the resistance ofNW ni. When a decoder

addresses a setS of NWs within a single contact group, each



Fig. 5. On the left, the crosspoint being read has a high resistance, but all
other crosspoints have a low resistance. On the right, however, the crosspoint
being read has a low resistance, but all other crosspoints have a high resistance.
To correctly determine the state of the crosspoint, the amount of current
flowing from one dimension of the crossbar to the other must begreater
on the the right than the left.

NW in S has a low resistance, while the NWs not inS have
a high resistance. In awrite operation, every NW inS must
have a much lower resistance than every NW not inS, that
is, max(Ri | ni ∈ S) ≪ min(Ri | ni 6∈ S). This ensures
that the bits associated with NWs inS are written whereas
those not inS are not written. Aread operation requires
that the combined resistance of all NWs inS, RIN , be much
less than the combined resistance of NWs not inS, ROUT,
that is 1/ROUT ≪ 1/RIN. The two extremes are illustrated
in Figure 5. Since the resistance R of a set ofn resistances,
R1, . . . , Rn, placed in parallel satisfies 1/R = 1/R1+ · · ·+1/Rn,
this is equivalent to

∑

ni 6∈S 1/Ri ≪
∑

ni∈S 1/Ri.

Definition III.1 A set,S, of NWs isaddressedif and only
if a) every NW not inS has a resistance that is at leastα
times that of every NW inS and b) the combined resistance
of all NWs not inS is at leastα times that of the combined
resistance of all NWs inS, whereα ≫ 1.

Following the above analysis, ifRi ≤ RL whenni ∈ S and
Ri ≥ RH when ni 6∈ S, the condition on writing is satisfied
whenRH ≥ αRL and that on reading is satisfied whenRH/(N−
|S|) ≥ αRL/|S|. This read condition is hardest to meet when
|S| = 1 in which caseRH ≥ α(N − 1)RL. This is clearly
stronger than the write conditionRH ≥ αRL.

B. Resistive and Ideal Models of Control

A NW decoder addresses a set of NWs by applying an
electric field to a subset of the MWs. These MWs are said to
beactivated. The set of activated MWs is called anactivation
pattern. A particular activation pattern,a, is represented as
a binary vector whereaj = 1 if and only if the jth MW is
activated. Each activated MW increases each NW’s resistance
by some amount (possibly 0). More formally, NWs behave as
follows.

Definition III.2 In the resistive model of NW control, each
NW ni has initial resistanceηi when no MWs are activated.
Associated with each NW is a length-M vector of reals, or a
real-valued nanowire codeword, ri. The jth entry ofri, r i

j , is
the amount by which the jth MW increases the resistance of

ni when activated. When the decoder is supplied witha, the
resistance of NWni is ηi +a ·ri wherea ·ri is the inner product
of activation patterna and codewordri.

When thejth MW provides strong control over NWni, r i
j is

large.r i
j is small when thejth MW provides weak control over

ni. In the ideal case eachr i
j is either 0 or∞ and a codeword is

associated with each NW. Note that multiple NWs may have
the same codeword.

Definition III.3 In the ideal model of NW control, each NW,
ni is assigned abinary codeword, ci, where cij = 1 if and only
if r i

j = ∞. For a particular activation pattern,a, a · ci > 0 if
and only if a · ri = ∞. A set S of NWs is addressedwhen
a · ci = 0 for NWs inS and a · cj = ∞ for NWs not inS.

In either model of control, a set,S, of NWs is considered
addressableif there is some activation pattern such thatS
is addressed. Similarly, a particular NWni is individually
addressableif there is an activation pattern such that{ni} is
addressed. A set of NWs is individually addressable if each
of the NW codewords (there may be many copies of one
codeword) is individually addressable.

Notice that in the ideal model of NW control, if a binary
codeword is addressable, the NWs with that codeword are
addressed by activation patterna = ci. Furthermore, ifci is
not addressable, there is some other codewordck such that
for each j it is not true thatci

j = 0 andck
j = 1. This is the

mathematical definition of implication; that is,ck
j implies ci

j .
When this condition must hold for all values ofj, we say that
ck implies ci, and writeck ⇒ ci. The following is immediate.

Lemma III.1 In a simple NW decoder in the ideal model of
control, a NW codewordci is addressable if and only if no
other codeword that is present impliesci. The decoder can
address D disjoint sets of NWs if and only if D distinct NW
codewords are addressable.

C. Modeling Errors

As we have seen, if eachr i
j takes valuer low = 0 or rhigh =

∞, each real-valued codeword can be mapped to a binary
codeword, which are simple to work with. Whenr low andrhigh

don’t hold these extreme values we mapri to ci such that:

• ci
j = 0 if r i

j ≤ r low

• ci
j = 1 if rhigh ≤ r i

j

• ci
j = e if r low ≤ r i

j ≤ rhigh, meaning thatci
j is in error.

Our goal is to choose values forr low andrhigh so that a setS of
NWs is addressed by an activation patterna if the following
conditions hold:

• for ni ∈ S, ci
j = 0 whenaj = 1,

• for nk 6∈ S, there existsj such thatck
j = 1 andaj = 1.

Consider an activation patterna that meets these two condi-
tions. Let rbase = maxi ηi . Observe that every NW inS has
resistance at mostRL = rbase+ (M − 1)r low because at most
M − 1 MWs are activated. Also, note that every NW not in
S has resistance at leastRH = rhigh. From Definition III.1 and
the discussion that follows it is clear thatS is addressed if
RH ≥ α(N − 1)RL or rhigh ≥ α(N − 1)(rbase+ (M − 1)r low).



To simplify the discussion, letr low = crbase for some constant
c > 0. Then,S is addressed if

rhigh ≥ α(N − 1)(cM− c + 1)rbase

Hereα is chosen to ensure that difference in current flowing
in the presence of resistancesrhigh and r low is measurable.

In the above model with errors we say that NWni is
addressable if for each NWnk there is at least one index
(MW) j such thatci

j = 0 andck
j = 1. The ensures thatci has low

resistance whileck has high resistance. When this condition
fails, ci may still be addressable but this cannot be guaranteed.
We say that acodeword ci fails to be addressableif there
exists a codewordck such that the conditionsci

j = 0 andck
j = 1

fail to be satisfiedfor somej. In this case, and by analogy with
the ideal model, we say that codewordck possibly impliesci,
denotedck ?⇒ ci. If ck ?⇒ ci, there is no guarantee thatni can
be addressed separately fromnk.

Lemma III.2 In a simple decoder in the model with errors, a
codeword,ci, is addressable if for no other codewordck does
ck ?⇒ ci. The decoder can address D disjoint sets of NWs if
and only if D distinct NW codewords are addressable.

If rhigh is too low or r low is too high to be realized using a
particular decoding technology, NWs can still be addressedif
we setr low = crbase and rhigh = (α/d)(N − 1)(cM − c + 1)rbase

and require that each NW is addressed by activationsa that
have a minimum ofd > 1 1s.

It is possible that the RCD is realizedwith diodes instead
of FETs. The decoder model with errors can also be used in
this case to capture diodeswith imperfect behavior.

IV. A NALYSIS OF THE RCD

In an RCD, consider asimple decoder consisting of single
contact group withN NWs andM MWs. As mentioned, we
assume that NW/MW junctions are controlling (i.e.ci

j = 1)
with probabilityp, noncontrolling (i.e.ci

j = 0) with probability
q, and ambiguous (i.e.ci

j is in error) with probabilityr =
1 − p− q. We also assume that these events are statistically
independent and identically distributed.

We now boundNa, the number of individually addressable
NWs in each contact group in terms ofM, the number of MWs.
Recall that for a NW with codewordci to be individually
addressable there must be no other codewordck such that
ck ?⇒ ci (see Lemma III.2).

We take two approaches to deriving bounds onM. First,
in Theorem IV.1 we bound the expected value ofNa, E[Na],
and its variance,Var[Na]. We then use Chebyshev’s Inequality
to derive a lower bound onM such that the total number of
individually addressable wires across allg contact groups is
close togN with probability 1− ǫ. Second, in Theorem IV.2,
we use the principle of inclusion-exclusion to derive upperand
lower bounds onM such that all NWs in all (or almost all)
contact groups are independently addressable.

A. Bounds Using Expectation and Variance

We develop bounds on the mean and variance in the number
of individually addressable NWs. We use these to bound the

probability that NWs in a compound RCD will be addressable
with high probability. Proofs are in the Appendix.

Theorem IV.1 In an RCD, let Na be the number of indepen-
dently addressable NWs in a contact group with N NWs and
M MWs. N(1−N(1−pq)M) ≤ E[Na] ≤ N(1− (1−pq)M) and
Var[Na] < E[Na](N − E[Na]) ≤ N3(1− (1− pq)M)(1− pq)M.

Corollary IV.1 Let N′ = Ng be the total number of NWs
contained in the g contact groups of a RCD, and let N′

a be the
number of those NWs that are individually addressable. Then,
N′(1 − (N′/g)(1− pq)M) ≤ E[N′

a] ≤ N′(1− (1 − pq)M) and
Var[N′

a] < g(N′/g)3(1− (1− pq)M)(1− pq)M.
Proof: Since the numbers of individually addressable

NW codewords in each contact group(which hasN NWs)
are independently and identically distributed,E[N′

a] = gE[Na]
and Var[N′

a] = gVar[Na]. Substituting the bounds from Theo-
rem IV.1 yields the desired result.

Chebyshev’s Inequality is given below

P
(

|x− E[x]| ≥ k
√

Var[x]
)

≤ 1/k2

where x is a random variable with meanE[x] and variance
Var[x]. We use it to bound the probability thatN′

a individually
addressable NWs occur overg contact groups.

Lemma IV.1 Let α = 16ǫ−1/g. Then, an RCD with g contact
groups and a total of N′ NWs has at least(3N′/4)(1+α)/(2+
α)) individually addressable NWs with probability at least1−ǫ
if M ≥ ln

(

N′(2 +α)/g
)

/(− ln(1− pq)).
Consider the case ofN′ = 1, 600,g = 200 (there are 8 NWs

per contact group),ǫ =. 01, andp = q = 1/2, all practical
parameters. Then, the RCD has at least 1,080 individually
addressable NWs, a very significant fraction of the NWs, when
M ≥ 16, a very modest number of MWs.

If errors occur, that is, whenp + q < 1, the effect on the
bound onM is to increase it. For example, ifpq =. 2 rather
than pq =. 25 in the error-free case, thenM is larger by a
factor of ln(4/3)/ ln(5/4) = 1. 29. If pq =. 1, the factor is
ln(4/3)/ ln(10/9) = 2. 73.

B. Bounds Using Inclusion/Exclusion

We now derive bounds on the probability that a simple RCD
fails to address all NWs.They are used to derive bounds on
the number of MWs needed to establish an upper bound on
the failure probability. Proofs are in the Appendix.

Theorem IV.2 LetΓ be the probability of failing to control all
N NWs using M MWs ina simple randomized-contact decoder
when controlling and non-controlling contacts occur between
NWs and MWs with probability p and q, respectively. An error
occurs in a NW/MW junction with probability r= 1− (p+ q).
Then,Γ satisfies the following bounds

Q(1− Q/2)− ∆ ≤ Γ ≤ Q (1)

where Q = N(N − 1)µM
1 and ∆ = 2N(N − 1)(N − 2)

(

µM
3 + µM

5 − 2µ2M
1

)

and µ1 = (1− pq), µ3 = (1− pq(p + 2q)),
and µ5 = (1− pq(2p + q)).



This theorem implies upper and lower bounds onM in terms
of N andΓ. For the cases examined below whenp = q andΓ

is small, these bounds are exact. Slightly weaker but simple
bounds are given below.

Corollary IV.2 Consider a simple RCD that has N NWs and
M MWs in which NW/MW intersections are controlling and
non-controlling with probability p and q, respectively. The
minimum value of M such that all NWs are addressable with
probability 1− ǫ satisfies the following.

ln(N(N − 1)/2ǫ)
− ln(1− pq)

≤ M ≤ ln(N(N − 1)/ǫ)
− ln(1− pq)

Here the lower bound holds only when M ≥
max(min(p2q, pq2)−1, ln(10N(N − 1))/(− ln(1− pq)).

Proof: The upper bound follows from (1). For the lower
bound, assumeQ ≤ 0. 1, which implies thatM ≥ ln(10N(N−
1))/(− lnµ1). In ∆ drop the last term and replaceµM

3 + µM
5

by 2 max(µ3,µ5)M. Sinceµ3 = µ1 − pq2 and µ5 = µ1 − p2q,
max(µ3,µ5) = µ1(1− min(pq2, p2q)/µ1). The lower bound on
Γ becomesΓ ≥ Q(. 95− 4N(1− min(pq2, p2q)/µ1)M. Using
the inequality (1− x)n ≤ 1− nx, the lower bound is at least
Q/2 if M ≥ (1−. 45/4N)(1− pq)/ min(p2q, pq2). A stronger
but more succinct condition isM ≥ 1/ min(p2q, pq2).

Corollary IV.3 In a compound randomized-contact decoder
with N′ NWs divided into g contact groups, all N′ are
independently addressable with probability(1 − ǫ) if M ≥
ln(N′((N′/g) − 1)/ǫ)/(− ln(1− pq)).

Proof: Let δ be the probability of failure of all NWs
in a contact group to be individually addressable. Then, the
probability that one or more contact groups fails to have allits
NWs be individually addressable is at mostgδ. If gδ ≤ ǫ, the
probability that allN′ NWs are addressable is at least 1− ǫ.
We use the lower onM given in Corollary IV.2 whenN is
replaced byN′/g andǫ by ǫ/g.

When N′ = 1, 600,g = 200 andM ≥ 49, all N′ NWs will
be individually addressable with probability 0. 99 or better. In
fact, evaluating Theorem IV.2 numerically shows this threshold
value ofM to be exact.

This result can be improved if we don’t require that in each
contact group all NWs be individually addressable. We illus-
trate this with an example. Corollary IV.2 says that a failure
rate of at mostǫ =. 01 can be achieved with a simple RCD
whenp = q =. 5 andN = 8 if M ≥ 30. (As above, this threshold
value of M is exact.) If all N NWs in a particular contact
group are individually addressable with probability 1−ǫ, since
each simple RCD is formed with statistical independence, the
probability thatf or fewer contact groups fail to have all NWs
addressable isφ(ǫ, f , g) =

∑f
i=0

(g
i

)

ǫi(1 − ǫ)g−i. Let ǫ =. 01,
g = 133 andf = 5. Becauseφ(. 01, 5, 133)≥. 99, at least 128
of g = 133 contact groups have all NWs addressable with
probability 0. 99.

In summary, whenM = 30,g = 133, andN = 8∗133 = 1064,
N′

a = 8 ∗ 128 = 1, 024 NWs will be individually addressable
with probability 0. 99.

As explained at the end of Section IV-A, when errors can
occur, that is, whenp+q ≤ 1, the effect on the number of MWs
needed to achieve a desired level of performance is small.

V. A DDRESSINGSTRATEGIES

We now use the bounds onM to estimate the total amount of
area required for a crossbar-based memorythat uses RCDs. As
explained at the end of Section II, this area estimate depends
not just on thenumber of MWs usedbut also on the size of an
ATC. In this section we consider three addressing strategies,
that is, ways of using an ATC to map an external binary
addressE of b = |E| bits to an internal NW address consisting
of a contact groupσ and an activation patterna on M MWs.

All Wires Addressable: Here we chooseM so that, with
probability (1− ǫ), all NWs in every contact group are
individually addressable. If we assume that the number of
NWs in each contact group is 2k, we can simply use the first
b−k bits of E to selectσ. This fixed mapping does not depend
on the particular NW codewords that are present, although the
mapping ofE to a does. To execute the second mapping, the
ATC can store each NW codeword that is present in a lookup
table. This requiresN′

AM bits of storage.
All Wires Almost Always Addressable: Here we choose

M so that with probability (1− ǫ), all NWs in nearly all
contact groups are addressable. Contact groups in which notall
NWs are addressable are not used. Since the particular contact
groups that are not used will vary from decoder to decoder,
the ATC cannot use a fixed mapping fromE to contact groups
σ. Instead, a lookup table can be used to map the firstb− k
bits of E to one ofg∗ ≤ g contact groups. Since we expect
to utilize nearly all contact groups, we assume thatg∗ ≈ g.
We also use a lookup table to mapE to a. The two tables
combined require approximatelyg logg + N′

AM bits.
Take What You Get: Here we chooseM so that almost all

NWs are individually addressable. In this case, some contact
groups may have all NWs addressable, but some will not.
Since the number of addressable NWs per contact group
varies, we can no longer map fixed blocks of binary memory
addresses to a particular contact group. Instead, we store a
value of σ and a for each addressable NW. This requires
N′

A(logg + M) bits.

A. Area Estimate

To estimate the total area,AT, required to produce a crossbar
memory using each of the three strategies, we use approach
of [9] and write:

AT ≈ 2χβ + 2λ2
mesog log2 g + (λmesoM + λnanoN

′)2

Here λmeso and λnano denote the pitch of MWs and NWs
respectively,χ denotes the area of a mesoscale memory cell,
andβ denotes the number bits stored in an ATC for each of
the two decoders. Thus, 2χβ is approximates the amount of
space required to store the 2β bits required by the ATCs in
the dimensions of the crossbar, 2λ2

mesog log2 g approximates
the area required to implement a standard demultiplexer used
by an ATC to activate contact groups, and (λmesoM +λnanoN′)2

approximates the area used by the NW crossbar itself along
with the M MWs along its periphery in each dimension.



B. Comparison of Strategies

To compare the three addressing strategies, we estimate their
area when used to produce a memory with a given storage
capacity. In our comparison, we fixǫ, their probability of
failure, andN′/g, the number of NWs per contact group. Given
these values, we would ideally like to also fixN′

a, the number
of addressable NWs along each dimension of the crossbar,
then estimateAT for all three strategies. Unfortunately, for a
given strategy, it is difficult to chooseM and N′ to yield an
exact value forN′

a, but in all three cases we show that about
1, 000 NWs are addressable on each dimension of a crossbar.

To compare the strategies, we consider the case whenp =
q = 1/2 and use the numerical results given above.

• All Wires Addressable:
Here M = 47, g = 128, andN′ = N′

a = 1024 with
probability at least .99. The ATC requiresβ = N′

aM =
47, 990 bits. This gives

AT ≈ 95, 982χ + λ2
meso1, 792 + (λmeso49 +λnano1, 600)2

• All Wires Almost Always Addressable:
Here M = 30, g = 133, andN′ = 1, 064 yieldsN′

a =
1, 024 with probability at least .99. The ATC requires
β = g logg + N′

AM = 31, 658 bits. This gives

AT ≈ 63, 316χ + 1, 877λ2
meso+ +(λmeso30 +λnano1, 024)2

• Take What You Get:
Here M = 16, g = 200 andN′ = 1, 600, yieldsN′

a of
1,080 with probability at least .99. The ATC requiresβ =
N′

a(logg + M) = 25, 535bits. This gives

AT ≈ 51, 070χ + 3, 058λ2
meso+ (λmeso16 +λnano1, 600)2

Since the parameterχ, the area of a mesoscale memory
unit, is many times the other parameters, in particularλ2

meso,
the last strategy is the best.

VI. CONCLUSION

As we have demonstrated, a stochastically assembled NW
decoder can be used to control a large number of NWs using
a small number of MWs. When NW/MW control is resistive,
we have provided a general decoder model that explains the
requirements a decoder must meet, as well as how the decoder
can function in the presence of errors.

We have applied our model to the randomized-contact
decoder and given tight (in some cases exact) bounds on the
number of MWs required to control a large number of NWs
under various addressing strategies. We have also explained
the significance of ATCs when estimating the area required
for a crossbar based memory. By using multiple bounds on
the number of MWs, we have illustrated that the size of the
ATC for a memory is significantly reduced when we relax the
requirement that all NWs be addressable.

APPENDIX

Theorem IV.1 In an RCD, let Na be the number of indepen-
dently addressable NWs in a contact group with N NWs and
M MWs. N(1−N(1−pq)M) ≤ E[Na] ≤ N(1− (1−pq)M) and
Var[Na] < E[Na](N − E[Na]) ≤ N3(1− (1− pq)M)(1− pq)M.

Proof: Let xi = 1 if NW ni is independently addressable
and 0 otherwise. SinceNa =

∑N
i=1 xi , E[Na] =

∑N
i=1 E[xi]. Also,

since the{xi} are identically distributed 0-1 random variables,
E[Na] = NE[x1] = NP(x1 = 1).

Let Ek,i be the event thatck 6 ?⇒ ci. P(x1 = 1) = 1− P(x1 =
0) = 1−P(E2,1∪E3,1∪ . . .∪EN,1). SinceP(E2,1∪E3,1∪ . . .∪
EN,1) ≤ ∑N

k=2 P(Ek,1) and P(E2,1) = P(E3,1) = . . . = P(EN,1),
P(x1 = 1)≥ 1− NP(E2,1).

c2 6 ?⇒ c1 if there is no 1≤ j ≤ M such thatci
j = 0 andck

j = 1,
thusP(E2,1) = (1− pq)M andP(x1 = 1) ≥ 1− N(1− pq)M.

Let E[NL
a ] = N − N2(1− pq)M. Then,E[Na] ≥ E[NL

a ] . Let
E[NH

a ] = N(1−(1−pq)M). BecauseP(E2,1∪E3,1∪. . .∪EN,1) ≥
P(E2,1), E[Na] ≤ E[NH

a ].
To boundVar[Na] = E[N2

a] −E[Na]2, we first boundE[N2
a].

N2
a = (

∑N
i=1 xi)2 =

∑N
i=1

∑

k6=i xixk +
∑N

i=1 x2
i , and since all pairs

(xi , xk) are identically distributed, andx2
i = xi , E[N2

a] = N(N−
1)P(x1 = x2 = 1) +E[Na].

P(x1 = x2 = 1) < P(x1 = 1), soE[N2
a] < N(N − 1)P(x1 =

1)+E[Na], andNP(x1 = 1) = E[Na], which givesE[N2
a] < (N−

1)E[Na] + E[Na] = NE[Na]. Substituting back in toVar[Na] =
E[N2

a]−E[Na]2 givesVar[Na] < NE[Na]−E[Na]2 = E[Na](N−
E[Na]). Applying the bounds onE[Na], Var[Na] < E[NH

a ](N−
E[NL

a ]) = N3(1− (1− pq)M)(1− pq)M.

Lemma IV.1 Let α = 16ǫ−1/g. Then, an RCD with g contact
groups and a total of N′ NWs has at least(3N′/4)(1+α)/(2+
α)) individually addressable NWs with probability at least1−ǫ
if M ≥ ln

(

N′(2 +α)/g
)

/(− ln(1− pq)).
Proof: We use Chebyshev’s Inequality and Corol-

lary IV.1. The probability P
(

N′
a ≤ E[N′

a] − k
√

Var[N′
a]

)

is
bounded above byP

(

|N′
a − E[N′

a]| ≥ k
√

Var[x]
)

≤ 1/k2.
Thus,N′

a ≥ E[N′
a] − k

√

Var[N′
a] with probability at least 1−

1/k2. If we replaceE[N′
a] by its lower bound andVar[N′

a] by its
upper bound, the probability is at least as large. The combined
lower bound isNL = N′(1 − (N′/g)β) − (k/g1/2)N′3/2(1 −
β)1/2β1/2 whereβ = (1− pq)M andk = ǫ−1/2.

We chooseβ so thatNL be at least (3N′/4)(1− (N′/g)β).
Then, β satisfies1 + bβ + aβ2 ≥ 0 where α = 16ǫ−1/g,
b = −(N′/g)(2 + α) and a = (N′/g)((N′/g) + α). Because
β is positive, it satisfies the inequalityβ ≥ −(b/(2a))(1−
√

1− (4a/b2)). Sinceβ = (1− pq)M is a decreasing function
of M, if we replace its lower bound by a smaller quantity
this increases the value ofM needed to achieve the indicated
reliability bound. Using the inequality

√
1− x ≤ 1 − x/2,

provides the boundβ ≥ 1/b = 1/
(

(N′/g)(2 +α)
)

and implies
that M ≥ ln

(

N′(2 + α)/g
)

/(− ln(1− pq)).
Under these conditions the lower bound on the number

of addressable NWs is (3N′/4)(1 − (N′/g)(1 − pq)M) ≥
(3N′/4)(1 +α)/(2 + α)).

Theorem IV.2 Let Γ be the probability of failing to control
all N NWs using M MWs in the RCD when controlling and
non-controlling contacts occur between NWs and MWs with
probability p and q, respectively. An error occurs in a NW/MW
junction with probability r= 1− (p + q). Then,Γ satisfies the
following bounds

Q(1− Q/2)− ∆ ≤ Γ ≤ Q



where Q = N(N − 1)µM
1 and ∆ = 2N(N − 1)(N − 2)

(

µM
3 + µM

5 − 2µ2M
1

)

and µ1 = (1− pq), µ3 = (1− pq(p + 2q)),
and µ5 = (1− pq(2p + q)).

Proof: The principle of inclusion-exclusion states that
P(E1 ∪ E0 ∪ . . . ∪ En) ≤ ∑n

i=1 P(Ei) and
∑n

i=1 P(Ei) −
1/2

∑

i 6=j P(Ei ∩ Ej) ≤ P(E1 ∪ E0 ∪ . . . ∪ En).

Let Ea,b (where a 6= b) be the event thatca ?⇒ cb. By
Lemma III.2, we know that all NWs are independently
addressable if no eventEa,b occurs. The probability that
not all NWs are individually addressable,Γ, satisfiesΓ =
P(∪(a,b)Ea,b). We use inclusion-exclusion to boundΓ.

As established in the proof of Theorem IV.1,P(Ea,b) = µM
1

whereµ1 = (1 − pq). Let Q =
∑

a6=b P(Ea,b). Sincea and b
can both take values from 1 toN, Q = N(N− 1)µM

1 . We must
now bound

∑

(a,b)6=(c,d) P(Ea,b ∩ Ec,d). Here 1≤ a, b, c, d ≤ N
provided that (a, b) 6= (c, d), i.e., eithera 6= b or c 6= d or both.

To computeP(Ea,b ∩ Ec,d), we consider 3 cases:
In case (1),a, b, c andd are all different. There areN(N−

1)(N − 2)(N − 3) ways of selecting them. SinceEa,b andEc,d

are independent,P(Ea,b ∩ Ec,d) = P(Ea,b)P(Ec,d) = µ2M
1 .

In case (2), two of the four variables are equal. Here either
a = c, a = d, b = c or b = d. As stated earlier, we do not allow
a = b or c = d. There areN(N − 1)(N − 2) ways to choose
indices in each case. These cases are considered below.

In case (3),there are only two different values fora, b, c,
andd. Since (a, b) 6= (c, d), a = d andb = c, which can occur
in N(N − 1) ways. HereP(Ea,b ∩ Ec,d) = P(Ea,b ∩ Eb,a), which
is the probability that, for noj is ca

j = 0 andcb
j = 1, or ca

j =
1 andcb

j = 0. SoP(Ea,b ∩ Eb,a) = µM
2 whereµ2 = (1− 2pq).

Returning to case 2, we have four subcases to consider.
Let Fa,b(m) be the event thatca

m = 0 and cb
m = 1. Let

Ea,b(m) be the complement ofFa,b(m). Since the probability of
Fa,b(m) is pq, it follows that the probability of eventEa,b(m)
is P(Ea,b(m)) = 1 − pq. Since the eventEa,b is

∏

m Ea,b(m),
P(Ea,b) = µM

1 .

1) na = nc. Fa,b(m)∪Fa,d(m) occurs only if(ca,m, cb,m, cd,m)
assumes the value (0, 1, 0), (0, 1, 1), or (0, 0, 1). Thus,
P(Fa,b(m)∪Fa,d(m)) = pq(p+2q) andP(Ea,b∩Ec,d) = µM

3
whereµ3 = (1− pq(p + 2q)).

2) na = nd. Thus,Fa,b(m)∪Fc,a(m) occurs if(ca,m, cb,m, cc,m)
assumes the value (0, 1, 0), (0, 1, 1), (1, 1, 0), or (1, 0, 0).
Thus, P(Fa,b(m) ∪ Fc,a(m)) = 2pq(p + q) and P(Ea,b) ∩
Ec,a) = µM

4 whereµ4 = (1− 2pq(p + q)).
3) nb = nc. Thus,Fa,b(m)∪Fb,d(m) occurs if(ca,m, cb,m, cd,m)

assumes the value (0, 1, 0), (0, 1, 1), (0, 0, 1), or (1, 0, 1).
Thus, P(Fa,b(m) ∪ Fc,b(m)) = 2pq(p + q) and P(Ea,b) ∩
Eb,d) = µM

4 .
4) nb = nd. Thus,Fa,b(m)∪Fc,b(m) occurs if(ca,m, cb,m, cc,m)

assumes the value (0, 1, 0), (0, 1, 1), or (1, 1, 0). Thus,
P(Fa,b(m)∪Fc,b(m)) = pq(2p+q) andP(Ea,b)∩Ec,a) = µM

5
whereµ5 = (1− pq(2p + q)).

Let D =
∑

(a,b)6=(c,d) P(Ea,b ∩ Ec,d). Then,

D/(N(N − 1)) = (N − 2)(N − 3)µ2M
1 + µM

2

+ (N − 2)
(

µM
3 + 2µM

4 + µM
5

)

whereµ1 = (1− pq), µ2 = (1− 2pq), µ3 = (1− pq(p + 2q)),
µ4 = (1−2pq(p+q)), andµ5 = (1−pq(2p+q)). The behavior of
D is dominated by the largest termµM

i . Note thatµ2 ≤ µ2
1 and

µ4 ≤ min(µ3,µ5) ≤ (µ3 + µ5)/2. It follows that (N − 2)(N −
3)µ2M

1 +µM
2 ≤ N(N−1)µ2M

1 and (µM
3 +2µM

4 +µM
5 ) ≤ 2(µM

3 +µM
5 ).

Thus,D satisfies the following bound.

D ≤ Q2 + 2N(N − 1)(N − 2)
(

µM
3 + µM

5 − 2µ2M
1

)

The lower bound toΓ follows directly from the above.
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