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Abstract—In this paper we explore the area overhead associ-
ated with the stochastic assembly of nanoscale logic. In nanoscale
architectures, stochastically assembled nanowire decoders have
been proposed as a way of addressing many individual nanowires
using as few photolithographically produced mesoscale wires as
possible. Previous work has bounded the area of stochastically
assembled nanowire decoders for controlling nanowire crossbar-
based memories. We extend this analysis to nanowire crossbar-
based logic and bound the area required to supply inputs to
a nanoscale circuit via mesoscale wires. We also relate our
analysis to the area required for stochastically assembled signal-
restoration layers within nanowire crossbar-based logic.

I. INTRODUCTION

Before computer chips can be assembled with nanowires
(NWs) (i.e < 5nm feature sizes), a number of key manufac-
turing and design challenges must be addressed. These include
developing area-efficient methods for controlling NWs using a
limited number of photolithographically produced mesoscale
wires (MWs). The interface between NWs and MWs is called a
NW decoder. NW decoders for memories have been proposed
for nanoscale memories consisting of NW crossbars. The goal
is to address one (or a few) NW(s) in each of the crossbar’s two
dimensions. This allows a bit of data to be written by altering
the physical state of the nanowires’ point(s) of intersection
(see Figure 1). A range of technologies have been presented to
realize decoders for memories including using masks [1], [2],
axial NW encoding [3], [4], radial NW encoding [5], random
particle deposition [6], rotational offsets of intersecting sets of
wires [7], [8], and micro-to-nano addressing blocks [9].

Each of these memory decoder technologies introduces
randomness into the assembly process. Each MW controls (i.e.
“turns off”) some subset of the NWs in one dimension of a
crossbar, but whether a given NW is controlled by a given
MW is probabilistic, not deterministic. The probabilities in
question are a function of the decoders’ method of assembly.
We have analyzed the area occupied by memory decoders and
crossbars for a variety of stochastic assembly methods to de-
termine the conditions under which the area is minimized. We
have studied encoded NW decoders [10], randomized-contact
decoders [6], masked-based decoders [11], and decoders for
radially encoded NWs [5]. In all cases tight bounds have been
derived on M , the number of MWs required to address Na

out of N NWs with high probability. From M , Na and N , the
area of a decoder and crossbar-based memory can be bounded.

In this paper we treat a related problem, namely, bounding
the area of decoders for logic circuits. Let such a decoder
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Fig. 1. A crossbar formed from two orthogonal sets of NWs in which
programmable molecules (PMs) are located at the NW crosspoints. The NWs
along each dimension are divided into groups by connecting them to ohmic
contacts (OCs). To address a NW in one dimension, an OC is activated and
mesoscale wires (MWs) are used to turn off all but NW address within that
group. Each MW provides control over a subset of NWs, but these subsets
are determined by a stochastic assembly process. The stochastically assembled
coupling of MWs to NWs is referred to as a NW decoder. By addressing NWs
along each dimension of the crossbar, the NW decoders provide control over
NW crosspoints. Data is stored to an addressed crosspoint by application of
a sufficiently large electric field. Data is sensed with a smaller field. In this
figure, the same bit of information is stored at two crosspoints.

have M MWs and N NWs. For a given method of stochastic
decoder assembly, the goal is to choose M and N so there
exists Na NWs such that each of the 2Na subsets of the Na

NWs can be addressed by activating some subset of the MWs.
If this holds, the Na NWs can serve as inputs to a circuit.

If the N input NWs form a crossbar with a second orthog-
onal set of NWs, the junctions between these two sets can
be programmed. Each NW in the second set forms a WIRED-
OR with the NWs to which it is connected (see Figure 2)
[12]. When these “gates” are combined with inverters, a
complete basis for nanoscale logic circuits is achieved. Also,
the configuration of the WIRED-OR gates allows the N −NA

unused input NWs to be disconnected from the logic circuit.

A. Paper Overview

In this paper we explore the overhead associated with
stochastic assembly of crossbar-based logic decoders. We also
examine the impact of manufacturing errors, in which some
MWs only partially control some NWs. Sections II and III
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Fig. 2. A level of reconfigurable crossbar-based logic in which a WIRED-OR
operation is followed by a signal restoration operation that also implements
negation. Light NWs indicate that a boolean value of “1” is being applied, dark
NWs indicate a “0”. The two operations collectively implement a WIRED-
NOR, and thus form a complete basis for boolean logic. The WIRED-OR
operation is implemented like a read operation, except that multiple vertical
NWs, and all horizontal NWs, are addressed. Any horizontal NW which is
connected to an addressed input NW carries a current. The current carrying
horizontal NWs then gate (i.e. make nonconducting) a subset of the output
NWs using field-effect transistors (FETs). The diode connections used to
perform the WIRED-OR operation can be configured via write operations
using a NW decoder (not shown), which is disconnected during normal
operation. The FETs used to implement the restoration operation may be
placed stochastically.

model several types of NW decoder, highlighting the stochastic
aspects of their assembly process, and explicitly defining
requirements the decoders must meet to control memories and
circuits. Section IV demonstrates that stochastically assembled
NW decoders can supply inputs to crossbar-based logic using
only small constant factor overhead. Section V presents an
information-theoretic lower bound on this overhead. Finally,
Section VI relates the analysis of the previous two sections
to proposed stochastically-assembled inversion (and buffering)
layers within nanoscale logic.

II. MODELING NANOWIRE DECODERS

In a NW memory decoder in which M MWs are used to
address NA out of N NWs, each MW provides control over
a random subset of NWs. Which NWs a given MW con-
trols (makes nonconducting) is determined by the decoder’s
stochastic assembly process. A range of proposed decoders
can be modeled using a binary model with errors [6].

For each NW, ni, we describe the subset of MWs that
control it using a binary M -tuple, ci, called its codeword.
A 1 in the jth position, ci

j , indicates that the jth MW, mj ,
controls ni. A 0 indicates that mj is noncontrolling. An e in
the jth position indicates an error. In this case the jth MW
provides only partial control over a NW. Even in the presence
of errors, we can conservatively assert that NW ni is reliably
off if some MW, mj , for which ci

j = 1, is turned on. Similarly,
ni is reliably on if only MWs for which ci

j = 0 are on.

The value of this binary decoder model with errors is that it
allows us to succinctly establish criteria that NWs must satisfy
to be addressable, while still accounting for the possibility of
manufacturing errors. If a NW is reliably on while all other
NWs are reliably off, it is individually addressed even when
some MW/NW junctions contain errors. This model also lets
us describe a decoder’s assembly processes in terms of the
probability distribution with which codewords are assigned.

A randomized-contact decoder (RCD) is any decoder that
is assembled such that each bit of each codeword can be
modeled as an independent random variable [13], [6]. Here
ci

j = 1 with probability p, ci
j = 0 with probability q, and

ci
j = e with probability r = 1 − (p + q). In an error-

free encoded NW decoder, codewords are all drawn from
some set, C ⊂ {0, 1}M [10]. During decoder assembly each
NW codeword, ci, is modeled as a uniformly distributed
independent random variable. One possible choice for C is an
(h, M)-hot code in which codewords contains exactly h 1’s
and M−h 0’s. This ensures that a NW with a unique codeword
is individually addressable. In an encoded NW decoder, errors
may occur within a NW’s codeword due to axial misalignment
[5]. Rather than modeling the distribution of errors within
codewords, we use pf to denote the probability that a NW
is misaligned, then assume that misaligned NWs are not used.

III. REQUIREMENTS FOR MEMORY AND LOGIC DECODERS

We now consider the requirements memory and logic de-
coders must satisfy. Consider first memory decoders. Given
N NWs along each dimension of a crossbar memory, we wish
to construct a decoder such that NA disjoint sets of NWs are
individually addressable with probability 1 − ε. This ensures
that data in a crossbar can be stored at N2

A distinct memory
locations. A similar, but slightly stricter requirement is for NA

NWs along each dimension to be individually addressable. In
either case, the NW decoder can be considered efficient if the
number of MWs, M , is close to log2 NA and NA is close to
N . Both encoded NW decoders and RCDs have been shown
to be efficient [10] [6] in that log2 NA/ε < M < 3 log2 NA/ε
when NA is a large fraction of N .

Now consider logic decoders that have N input NWs to a
crossbar-based logic circuit. We desire a logic decoder with
a set of NA < N NWs such that all 2NA subsets of these
NWs can be addressed by applying inputs to M MWs. This
ensures that all 2NA possible binary inputs can be supplied
to the circuit. A seemingly alternative condition is that some
set of NA MWs exists such that these MWs are capable
of addressing 2NA different subsets of NWs. The following
lemma shows that these conditions are identical.

If a decoder is able to address all 2NA subsets of a set of
NA NW, the set of NWs is said to be fully addressable. Given
a set of NA NWs and a set of NA MWs, we say the sets are
uniquely coupled if each of the NA NWs is controlled by a
unique MW. In other words, each of the NA MWs provides
individual control over a distinct NW. This provides us with
the criteria a logic decoder must satisfy.



Lemma III.1 In a simple NW decoder, a set of NA NWs is
fully addressable if and only if their exists a set of NA MWs
to which it is uniquely coupled.

Proof: Let S be the fully addressable set of NA NWs.
For each NW ni, consider the set Si = S − ni. Since Si is
addressable, there must be a MW that uniquely controls ni.
For the other direction, simply note that any set of NWs can
be addressed by activating the MWs that uniquely control the
NWs not in the set.

In order to bound the area required for stochastically as-
sembled NW logic decoders, we wish to bound the number of
MWs, M , and NWs, N , such that there exists a set of NA fully
addressable NWs with probability at least 1− ε. By the above
lemma, the probability that such a set exists is equal to the
probability that there exists NA NWs and NA MWs such that
each of the NWs is controlled by a unique MW. Furthermore,
this condition is sufficient even for decoders that contain errors
(i.e. MWs that only partially control certain NWs).

For a logic decoder to be considered efficient, M should be
proportional to NA. We note also note that it is possible to
supply NA inputs to a circuit without having a fully address-
able set of NA NWs if inputs are fed in sequentially, using
a nanoscale memory as a buffer. This would be significantly
slower, as NA write operations would be required per input,
but it would replace the need for a logic decoder. Instead a
memory decoder would suffice.

A. Simple Versus Compound Decoders

Before proceeding with our area analysis, we consider the
use of simple versus compound NW decoders. For memory
decoders, compound decoders have been shown to greatly
reduce the required number of MWs. Memory decoders are
far more efficient if g groups of N NWs are each connected to
separate OCs [10], [6]. This is not the case for logic decoders.

First notice that if a set of NA NWs are uniquely coupled
to NA MWs, the NA NWs are fully addressable whether or
not they are all connected to a single OC. Now consider a
compound NW decoder with g OCs, N = gw total NWs and
a set, S, of NA fully addressable NWs. If NWs ni,nj ∈ S
are both connected to the same OC, then for the decoder to
address the set Si = S − ni there must be a MW that is
uniquely coupled to ni. If most NWs in S share an OC with
at least one other NW in S, there must exist close to NA

uniquely coupled NWs and MWs. Thus, if the g OCs were
replaced with a single larger OC, the resulting simple decoder
would still have close to NA fully addressable NWs.

Finally, notice that by replacing g OCs with a single OC,
the added space between the g OCs can be eliminated. If
additional NWs are then added such that NA (as opposed to
close to NA) fully addressable NWs exist with probability at
least 1 − ε, we can expect the resulting simple decoder to
have close to the same area as the compound NW decoder
it replaced. For this reason, the remainder of this paper is
focused on bounding the area of simple NW decoders.

B. Post Assembly Configuration

In a NW decoder for logic with a set of NA fully ad-
dressable NWs, the remaining N −NA NWs can be discon-
nected from all perpendicular NWs, and thus safely ignored.
This post-assembly configuration is accomplished by using a
memory decoder to program the WIRED-OR portion of the
nanoscale circuit (see Figure 2) [12]. Arguably, one might
consider decoding technologies by which the logic decoder
itself could be constructed via similar post-assembly configu-
ration [14]. In this scenario, stochastically assembled memory
decoders would be constructed to individually address NA

input NWs, then write operations would permanently couple
each of the NWs to a different MW. If this approach proves
feasible, it would be quite efficient. The resulting logic decoder
would consist of exactly NA NWs and NA MWs. The only
additional overhead required is that of the the memory decoder.
In the remainder of this paper, we assume that connections
between MWs and NWs are not programmable.

IV. STOCHASTIC ASSEMBLY OF NW LOGIC DECODERS

One approach for producing a set of NA fully addressable
NWs is to connect NA OCs to groups of w NWs, then select
only one NW from each group. This is the deterministic
decoder proposed by DeHon in [12], in which each of M
MWs is coupled to a block of w NWs. The M = NA MWs
fully address NA out of N = 2wNA NWs. Here the factor
of 2 approximates the space between the groups of w NWs.
Depending on what is attainable through photolithography, the
factor may be closer to 1. Assuming MWs are perpendicular
to NWs, this decoder uses area

A ≈ (2wMλ)(Nwλ) ≈ 4w2N2
Aλ2

where λ and 2wλ is the pitch of MWs and NWs, respectively.
We show that stochastically assembled decoders use less area.

A. Area Bounds

2wMNλ2 is the area of a NW decoder with N NWs and M
perpendicular MWs. To minimize this area, we must minimize
MN while choosing M and N such that their exists a set of
NA fully addressable NWs with probability at least 1− ε. To
outperform the deterministic construction above we must have
MN < wN2

A (or 2wN2
A assuming w NWs between each OC).

To bound MN , one option is to consider the two extreme
cases in which either N = NA, or M = NA. As shown in
[15] however, these do not represent efficient solutions. For
both encoded NW decoders and RCDs, when N = NA, M =
O(NA lnNA/ε), and when M = NA, N = O(NA lnNA/ε).
Since MN = O(N2

A lnNA/ε), setting N = NA or M = NA

can only outperform the deterministic construction when NA

is small, i.e. lnNA/ε < w.
For intuition behind this result, consider an encoded NW

decoder in which (1,M)-hot codes are used. When M = NA,
in the absence of misalignment errors, each NW is controlled
by exactly one MW. Furthermore, each NW is equally likely
to be controlled by any given NW, so we must ask how many
NWs are needed such that, with probability 1− ε, each MW



controls at least one NW. This is analogous to the classic
Coupon Collectors Problem in which one of C coupons is
selected with equal probability during each of T trials. The
number of trials before all C coupons have been collected
with probability 1 − ε is T ≈ C lnC/ε. Thus in the error-
free encoded NW decoder, N ≈ NA lnNA/ε. Furthermore, if
misalignment errors cause trials (NWs) to fail to collect any
coupon with probability pf , N ≈ (NA/(1−pf )) lnNA/ε [11].

In order to obtain a more area efficient decoder, we can set
N = M = βNA for some relatively small value of β. First,
consider an encoded NW decoder in which (1,M)-hot codes
are used. In the absence of misalignment errors, each NW
is controlled by exactly one MW. Here we can again view
MWs as coupons and NWs as trials. We require that C/β
of the C = M = βNA coupons be collected over T = C
trials. Now let ti be the number of trials required to collect
the ith coupon after the (i − 1)th coupon has been collected
(so t1 = 1). When i − 1 coupons have been collected, the
probability that a trial collects a new coupon is (C− i+1)/C,
so E[ti] = C/(C − i + 1).

The number of trials required to collect κC coupons is
Tκ =

∑κC
i=1 ti, and the expected number of trials is E[Tκ] =∑κC

i=1 C/(C − i + 1) which then gives E[Tκ] = C(1/C +
. . . + C/(C − κC + 1)) = C(H(C) − H(C − κC)) where
H(N) = 1 + 1/2 + . . . + 1/N .

It is well-known that lnn ≤ H(n) ≤ lnn + 1 [16] and
H(n)−H(αn) approaches lnn− lnαn = − lnα as n grows.
This gives E[Tκ] ≈ −C ln(1−κ). Thus for fixed κ < 1, only
O(C) trials, on average, are needed to collect κC coupons. In
the case of error-free encoded NW logic decoders this bounds
the expected number of NWs required. We now bound the
number of NWs required with probability 1− ε.

Lemma IV.1 Consider the classic coupon collector problem
in which one of C coupons is collected independently at
random during each of T trials, and each coupon is collected
with equal probability. Let SC denote the number of distinct
coupons collected after T = C trials. For 0 > κ > 1

P [SC < κC] ≤ (e−δ/(1− δ)1−δ)C(1−κ+κ2/2)

where δ = (1− κ/(1− κ + κ2/2)).

Proof: Let xi be a 0-1 random variable that denotes
whether a new coupon is collected during the ith trial. Notice
that p(xi = 1) ≥ (C − i + 1)/C, since by the ith trial at
most i− 1 coupons have already been collected. Furthermore,
if fewer than κC coupons have been collected by the ith trial,
p(xi = 1) > 1− κ.

We wish to bound the probability that SC =
∑C

i=1 xi <
κC. To do this, we instead consider the sum of C independent
0-1 random variables, yi. Here p(yi = 1) = (C − i + 1)/C
for i ≤ κC and p(yi = 1) = 1 − κ for i > κC. Let S′

C =∑C
i=1 yi. By the logic of the previous paragraph, P [SC <

κC] ≤ P [S′
C < κC].

Since S′
C is the sum of independent random variables,

P [S′
C < κC] can be bounded using a Chernov bound,

Pr(S′
C ≤ (1 − δ)E[S′

C ]) ≤ (e−δ/(1 − δ)1−δ)E[S′
C ], where

δ = 1−κC/E[S′
C ]. Here E[S′

C ] =
∑C

i=1 E[yi] =
∑κC

i=1(C−
i+1)/C+

∑C
i=κC+1 1−κ > C(1−κ/2)κ+C(1−κ)(1−κ) =

C(1− κ + κ2/2). This gives δ = 1− κ/(1− κ + κ2/2), the
desired result.

As an example, we can use the above lemma to consider
an error-free encoded NW decoder in which M = N =
(5/2)NA, in which case κ = 2/5, 1 − κ + κ2/2 = 17/25
and (1 − κ/(1 − κ + κ2/2)) = 7/17. This gives P [SC <
2/5C] ≤ (e−7/17/(10/17)10/17)17C/25 which is less than
0.0131 when C = NA ≥ 64. As NA increases further, a
larger value of κ can be used. When κ = 1/2, we have
1 − κ + κ2/2 = 5/8 and (1 − κ/(1 − κ + κ2/2)) = 1/5.
This gives P [SC < 1/2C] ≤ (e−1/5/(4/5)4/5)5C/8 which is
less than .01 when C ≥ 343.

Thus if we consider an error-free encoded NW decoder
where M = N = βNA, and choose β such that a set of
at least NA MWs exists with probability 1 − 0.0131, then
MN < (5/2)2N2

A when NA ≥ 64, and MN < 22N2
A when

NA ≥ 343. This outperforms the deterministic construction,
for which MN > w2N2

A, if w > (2.5)2 = 6.25 in the first
case and w > 4 in the second case. Lemma IV.1 also yields
the following asymptotic result.

Theorem IV.1 Consider an error-free encoded NW decoder
with M MWs and N NWs using (1,M)-hot encodings. For
any ε > 0 and β > 1/(2−

√
2) there exists a threshold Nε,β ,

such that if NA ≥ Nε,β and M = N = βNA, then there
exists uniquely coupled sets of NA MWs and NA NWs with
probability at least 1− ε.

Proof: In the encoded NW decoder, each NW is con-
trolled by exactly one randomly selected MW. As such, each
NW can be thought of as collecting one of C = M = βNA

coupons independently at random and with equal probability.
We wish to guarantee that at least C/β distinct coupons are
collected among the N = C independent trials, given that
each trial collects each coupon with probability 1/C.

Let SC denote the number of distinct coupons collected after
C trials, and let κ = 1/β. In the proof of Lemma IV.1, it is
shown that Pr(SC ≤ (1−δ)E[S′

C ]) ≤ (e−δ/(1−δ)1−δ)E[S′
C ],

where E[S′
C ] = C(1−κ+κ2/2) and δ = 1−κC/E[S′

C ]. This
implies that for fixed δ > 0, Pr(SC ≤ (1− δ)E[S′

C ]) → 0 as
C increases.

Requiring that δ > 0 is equivalent to requiring that 1 −
κ/(1−κ+κ2/2) > 0, or 1 > κ/(1−κ+κ2/2). This becomes
κ2 − 4κ + 2 > 0, which holds when κ < 2−

√
2.

The bounds on β given in the above Theorem apply to
an encoded NW decoder that is error free. If misalignment
errors occur with probability pf , then for any particular value
of NA, the corresponding bound on β scales by a factor of
at most 1/(1 − pf ). To see why, notice that in the proof of
Lemma IV.1, E[xi] and E[yi] are scaled by a factor of 1/(1−
pf ), as are E[SC ] and E[S′

C ]. This same scaling bound on β
applies to RCDs, for which pf ≈ 1 − αe−1 when p = α/N .
In this case pf denotes the probability that a particular NW’s
codeword fails to be (1,M)-hot. This overly strict condition
on codewords is acceptable since we are upper bounding β.



V. LOWER BOUNDING β

The previous section demonstrated that setting M = N =
βNA, where β > 1/((1 − pf )(2 −

√
2)), allows for a logic

decoder with NA outputs and area O(MN) = O(β2N2
A).

This section gives an information theoretic lower bound on β
as NA grows. Our general approach can potentially be applied
to other stochastically assembled structures as well.

To begin, let the configuration, C, of a decoder denote
the state of its MN MW/NW junctions (i.e. codewords
c1 . . . cN ). A configuration is successful if it contains sets of
NA NWs and NA MWs, N and M, that are uniquely coupled.
When a NW decoder is stochastically assembled, let 1− ε be
the probability that the resulting configuration is successful.

The basic approach used to lower bound β is relatively
straightforward. Before a NW decoder is assembled, there is
a probability distribution associated with C. Depending on the
parameters of the assembly process, there is a certain amount
of entropy (i.e. uncertainty), denoted h(C), associated with C.
For RCDs and encoded NW decoders h(C) is easy to compute.
Given β, it is possible to upper bound the entropy of C given
that C is successful. This bound implies a lower bound on β.
Specifically, β must be large enough so any upper bound on the
entropy of all successful configurations is at least (1− ε)h(C).

More formally, imagine the repeated assembly of a stochas-
tically assembled NW decoder with M MWs and N NWs.
Here h(C) represents the minimum number of bits, on average,
required to specify C after each assembly process, among all
possible configurations. In other words, suppose that after each
decoder is assembled its configuration, C, is recorded in binary
using a predetermined encoding scheme. For any such scheme,
the average number of bits required per decoder is at most
h(C). Also, the bound is asymptotically achievable [17].

If C is successful with probability 1− ε, Shannon’s source
coding theorem implies that as ε shrinks and MN = βN2

A

increases, the entropy of C, when restricted to only successful
configurations, approaches (1 − ε)h(C) [17]. This in turn
implies that for arbitrarily large values of NA, the average
number of bits required by an encoding scheme that describes
only successful configurations is at least (1− ε)h(C).

In a successful decoder, let S denote the set of the N2
A

junctions of the uniquely coupled sets M and N . Also let
C − S denote the set of the remaining MN −N2

A junctions.
To obtain a lower bound on β, we observe that the average
number of bits required to specify a successful configuration
is at most the average number of bits required to specify S,
denoted h(S), plus the average number of bits required to
specify C − S given S, denoted h(C − S|S). As explained
above, the average number of bits required to specify a
successful configuration is at least (1− ε)h(C). Thus

(1− ε)h(C) ≤ h(S) + h(C − S|S) (1)

which we now apply to both RCDs and encoded NW decoders.
For simplicity we consider the bound (which holds for all
ε > 0) as ε → 0. This gives:

h(C) ≤ h(S) + h(C − S|S) (2)

A. A Lower Bound for RCDs

To lower bound β for RCDs we can assume decoders are
error-free. Here ci

j = 1 with probability p and ci
j = 0 with

probability 1−p. The ci
j are independent random variables, so

h(C) = MNh(p), where h(p) = −p log p− (1−p) log(1−p)
is the binary entropy function [17] (log is base 2).

h(S) is upper bounded below. h(C − S|S) ≤ (MN −
N2

A)h(p∗), where p∗ is the probability that a given junction
in C − S is controlling. From inequality 2, this gives

MNh(p) ≤ h(S) + (MN −N2
A)h(p∗) (3)

which implies a bound on β in terms of ε and NA, since h(S)
and p∗ are both functions of β, NA and ε.

To compute p∗, note that in C − S exactly NA control-
ling junctions are removed from C. Thus p∗ = (MNp −
NA)/(MN − N2

A). Since MN = β2N2
A this gives p∗ =

(β2N2
Ap − NA)/(N2

A(β2 − 1)) = (β2p − 1/NA)/(β2 − 1).
Thus for fixed p, p∗ approaches pβ2/(β2−1) as NA increases.
Also p ≤ p∗ ≤ pβ2/(β2 − 1) when p ≥ 1/NA.

The average number of bits required to specify S, h(S), is
at most the number of bits required to specify N and M plus
the number required to give an ordering of one of the sets (this
specifies which MW is coupled to each NW). This requires
log

(
M
NA

)
+ log

(
N

NA

)
+ log NA! bits. Inequality 3 becomes

MNh(p) ≤ log
(

M

NA

)
+log

(
N

NA

)
+log NA!+(MN−N2

A)h(p∗)

Stirling’s approximation tells us log NA! rapidly approaches
NA log NA − NA log e + 1

2 log(2πNA). This implies that
log

(
βNA

NA

)
= log(βNA)! − log(βNA − NA)! − log NA! <

βNAh(1/β). From this we get MNh(p) − MNh(p∗) +
N2

Ah(p∗) ≤ 2βNAh(1/β) + NA log NA − NA log e +
1
2 log(2πNA). Since MN = β2N2

A we have

NA

(
β2h(p)− (β2 − 1)h(p∗)

)
≤ 2βh(1/β) + γ(NA) (4)

where γ(NA) = log NA − log e + 1
2NA

log(2πNA). This
implies a lower bound β given NA and p. To obtain an explicit
bound, we show the implied bound is weakest when p is small.

Observe that as NA increases, p → 0 if β remains constant
(i.e. it is not possible for MN = O(N2

A) unless p → 0).
To see why, notice that for fixed β the right-hand side of
the above inequality increases logarithmically in NA. The
left-hand side, however, increases linearly in NA unless the
coefficient β2h(p)− (β2− 1)h(p∗) goes to zero. This implies
that as NA increases, β2h(p)− (β2 − 1)h(p∗) must approach
0 for the inequality to hold. Since p∗ → p as NA increases,
h(p∗) → h(p) and β2h(p)− (β2 − 1)h(p∗) → h(p). Thus as
NA increases h(p), and hence p, must go to 0.

Having established that p goes to zero as NA increases,
we now consider two cases: p ≥ 1/NA and p ≤ 1/NA. The
second case is considered below. In the first case p ≤ p∗ ≤
pβ2/(β2 − 1) and as we now show, the expression C(p) =
β2h(p)− (β2 − 1)h(p∗) is smallest when p = 1/NA.

When p = 1/NA we have p∗ = p and C(p) = h(1/NA).
Since p∗ = (β2p−1/NA)/(β2−1), dp∗

dp = β2/(β2−1). Now



consider the derivative of C(p). C ′(p) = β2h′(p)− dp∗

dp (β2−
1)h′(p∗) = β2h′(p) − β2h′(p∗) = β2(h′(p) − h′(p∗)). Here
h(p) = −p log p − (1 − p) log(1 − p) and h′(p) = log((1 −
p)/p), so h′(p) > h′(p∗) when p < p∗ < 1/2. Thus for
p > 1/NA, C ′(p) > 0 and when p ≥ 1/NA, C(p) is smallest
when p = 1/NA. Inequality 4 now becomes

NAh(1/NA) ≤ 2βh(1/β)+log NA−log e+(1/2NA) log(2πNA)

Since log(1 − 1/NA) ≤ −1/NA, we have h(1/NA) ≥
1/NA log NA + 1/NA − 1/N2

A and thus

1 + log e ≤ 2βh(1/β)

which reveals that β > 1.25 if p ≥ 1/NA and NA increases.
Finally, we return to the case when p ≤ 1/NA = β/N .

The probability that a NW isn’t controlled by any MW is
(1−β/N)N , which rapidly approaches e−β as NA, and hence
N , increases. Since on average e−β NWs are not controlled by
any MW, (1−e−β)N ≥ NA for a unique coupling to exist with
high probability. Since N = βNA we have (1 − e−β)β ≥ 1,
which implies that β > 1.349. For an RCD with M = N =
βNA, we have demonstrated that β > 1.25 as ε → 0.

B. A Lower Bound for Encoded NW Decoders

Now consider error-free encoded NW decoders using
(h, M )-hot codes. Since each codeword is equally likely,
h(C) = N log

(
M
h

)
. As for RCDs, h(S) ≤ log

(
M
NA

)
+

log
(

N
NA

)
+ log NA!. Finally h(C −S) ≤ (N −NA) log

(
M
h

)
+

NA log
(

M
h−1

)
. As ε → 0, inequality 2 yields

NA log
(

M

h

)
−NA log

(
M

h− 1

)
≤ h(S) (5)

From this we have log
(
M
h

)
− log

(
M

h−1

)
≤ 2βh(1/β) +

log NA−log e+ 1
2NA

log(2πNA). Since log
(
M
h

)
−log

(
M

h−1

)
=

log
(
M
h

)
/
(

M
h−1

)
= log(M−h+1)/h, we have log(βNA−h+

1)/h−log NA+log e ≤ 2βh(1/β)+ 1
2NA

log(2πNA). Finally,
since log(βNA − h + 1)/h − log NA = log(β/h − 1/NA +
1/hNA), as NA increases we have

log(β/h) + log e ≤ 2βh(1/β) (6)

If h = 1, this becomes log e ≤ 2βh(1/β) − log β, which
implies that β > 1.24. When h = 2 or more, log(β/h) changes
sign and the bound becomes quite weak. Still, as NA increases,
we would not expect h ≥ 2 to outperform h = 1.

VI. CONCLUSION

In this paper we have extended the type of modeling and
analysis applied previously to stochastically assembled NW
memory decoders. This has enabled us to bound the area of
stochastically assembled NW logic decoders. The analysis of
Section IV shows that the overhead associated with stochastic
assembly of logic decoders is at most a small constant factor.
This is encouraging, since similar results have been obtained
for memory decoders. These results collectively suggest that
the overhead associated with stochastic assembly of functional
nanoscale devices is generally modest. Additionally, Section V

introduces a novel information theoretic approach to lower
bounding this overhead. This same approach is potentially
applicable to other stochastically assembled structures.

Our analysis of NW logic decoders is based on the condition
that a decoder must contain uniquely coupled sets of NA NWs
and NA MWs, with high probability. Interestingly, this is the
same condition required for stochastically assembled inversion
and buffering layers within NW crossbar logic. Here two
sets of NWs are placed at right angles, and randomly placed
FETs cause each input NW in one dimension to gate one or
more randomly chosen output NWs in the second dimension
(see Figure 2). As described by DeHon in [12], this type of
stochastically assembled structure provides signal restoration,
and (optionally) logical negation. If we wish to be able to
restore at least NA inputs, we once again wish to identify NA

input wires that are uniquely coupled to NA output wires. As
such, the analysis of the previous sections applies.
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