A Framework for Coded Computation

ISIT 2008

Eric Rachlin and John E. Savage

Department of Computer Science
Brown University
Providence, RI

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Fault-Tolerant Computing

@ For 60 years the overwhelming success of digital computing has been
facilitated by ever-shrinking, highly reliable hardware.

If a 3GHz, 10° gates/processor, 1,024-processor computer runs for 1 year
with a 1% chance of failure, the gate failure rate satisfies pr < 10301

@ As feature sizes shrink and the number of cores per chip increase, it
becomes increasingly burdensome to maintain such an astronomically
high level of reliability.

@ Nanoscale devices, multicore architectures, and distributed computing
all suggest an impending need for fault-tolerant computation.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Computation vs. Communication

@ Beginning with von Neumann in 1956, many theorists have studied
how to implement an arbitrary circuit, C, with unreliable gates.

o If gates fail independently at random with probability ps, von Neumann
asked whether we can construct a circuit C’ such that for any input, x,
Prob(C(x) # C'(x)) = ¢, for some 6 < 1/2.

e His main idea: Repeat each gate in C many times and periodically
suppressed errors by applying constant-size majority gates to random
subsets of repeated outputs.

o Subsequent analysis showed that |C’'|/|C| = Q(log | C]).

@ This result contrasts sharply with digital communication.

e Repetition is a very inefficient error control mechanism.
o We use a reliable encoder and decoder to control errors.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Differential Reliability

@ How can we use ideas from coding theory to compute reliably?
o Build circuits using both reliable and unreliable gates.

o Differential reliability allows expensive, large, power-hungry,
highly-reliable gates to “supervise” less reliable technology. This
allows us to:

o Encode the input (and decode the output) of a lengthy computation.
This is called Coded Computation.

o Exploit the fact that many algorithms have relatively simple checks.
This is used in Algorithm-Based Fault Tolerance.

@ In this talk we investigate coded computation, since the latter
approach is highly algorithm specific.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Some Previous Work

@ The earliest work on coded computation considered only bitwise
operations performed on pairs of codewords. This is overly restrictive.
@ Later certain algorithm specific encodings were considered
o Arithmetic codes for addition and multiplication
o Check-sums for Matrix operations.

@ More recent work by Spielman has suggested that a more general
approach is worth pursuing.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Our Model of Unencoded Computation

@ Our goal is to “encode” the computation performed by a circuit, C.

@ We organize C into levels (slices) and consider a single level of C.

Computation on Circuit Slices

o Consider binary inputs x,y € {0,1} and “instructions” w € Z. The
computation performed in a slice of k 2-input gates is

zZ= K'(k)(xa y, W) = (K’(leylv Wl)a BERE) "i(xkayk, Wk))
o More generally, if z; is the output of level t, the computation performed by
the next level can be expressed as,
Zy 1 = K/(k)(ﬂ-l,t+1(zt)77T2,t+1(zt)7wt+1)

o Here each 7 41 is a permutation describing which outputs from level t
correspond to which inputs at level ¢ + 1.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

A Naive Approach

For simplicity, consider x(x, y, w) = NAND(x, y). In otherwords, all
gates are NAND gates. Let z = NAND(K)(x,y).

To provide fault-tolerance, we would like to identify an encoding
function, E : {0, 1}k — A", and a function F such that:

E(z) = F(E(x), E(y))

Easy! Just decode E(x) and E(y), compute z, then encode z.
But this doesn’t guarantee fault-tolerance and the overhead is large.

F should be simple, fault-tolerant, errors musn't propagate too much.

Ideally each output would only depend on a small number of inputs.
e For example, can F be of the form F = f(5) for some function ?

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

A Lower Bound

Let C be an [n, k, d] 4 code with encoding function E : {0,1}* — A" and
minimum distance d, and let F be a function such that

F(E(x), E(y)) = E(nand¥(x,y)).

If each output symbol of F is a function of at most ¢ inputs of E(x) and
E(y), the following inequality must hold:

n> kd/(clog,|A|)

@ When ¢ =1, this bound implies that we cannot do better than using
a repetition code.

@ NAND can be replaced with any other function whose output only
sometimes depends on a given input (e.g. OR, but not XOR).

@ This theorem is a substantial generalization of several old results.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

A More General Approach

@ Our lower bound shows that it is not generally possible to select a
code, C, with large minimum distance, and identify a very simple F
such that F(E(x), E(y), E(w)) = E(,®(x,y,w))

@ Instead we can consider a second (larger) code, C*, with encoding
function E*, and identify a function ® such that

o(E(x), E(y), E(w)) = E*(x®(x,y,w))

where ®™(u, v, t) = (¢(u1, vi, t1), ..., ¢(Un, Va, tn)).
@ To obtain F from ®, we must then “transcode”, meaning project
oM (E(x), E(y), E(w)) back to C.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

A More General Approach (cont.)

o(E(x), E(y), E(w)) = E* (k™) (x,y, w)).

Since C* is larger than C, a given output can have multiple encodings.
@ To ensure that ® performs the desired computation, we choose C and
C* to be systematic. Then we have ® = k on the information

symbols. As shown on next slide, this is obtained using interpolation.

@ Fault-tolerance relies on the error correcting capability of C*, as well
as the structure of the transcoding operation.

@ To transcode from C* back to C in a fault-tolerant manner, Spielman
suggested using 2D codes. This requires that C and C* be linear.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Extension Polynomials

@ In a linear code C, x € FX is encoded as E(x) € G", where F C G
are both finite fields.

@ If E is chosen such that C is systematic, then we can define using
interpolation over the values of F3 on which x is defined.

o This ensures that ™ (E(x), E(y), E(w)) computes k) (x,y, z),
along with n — k check symbols in G.

Let F = {0,1} and F C G. If k(x,y,1) = NAND(x, y) and k(x,y,0) = x,
then we have:
d(x,y,w) =w(l—xy)+(1—w)x.

If x had a larger domain (for example, more than two instructions), we
could chose a larger F, or use more than three variables.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Selection of C and C*

o In order to select C and C* such that ®(™(E(x), E(y), E(w)) € C*,
Spielman suggested Reed-Solomon codes.

@ We observe that Reed-Muller codes are also viable, as well as other
codes based on bounded-degree polynomials.

Linear Codes Based on Polynomials

o Let Cg(m,r) denote a code in which each codeword is value of r-degree,
m-variable polynomial p(vi, ..., vi,) evaluated at n points in P C G™.

e For Cg(m,r) to be systematic, p(v, ..., Vi), which encodes E(x), is an
interpolation polynomial, that is, the first k values of p(v, ..., v,) for
(Vi ..., Vm) € S is x where S C P, |S| = k.

o In a Reed-Muller Code, G = {0,1}, n =27, and k =%/_o(7). In a
Reed-Solomon Code, m=1, n < |G|, and k =r + 1.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Application of ®™ and Transcoding

o If E(x), E(y), E(w) € Cg(m,r), and ®(x,y,w) has degree s, then:

o"(E(x), E(y), E(w)) € Cg(m, rs)

o If rsisn't too large, we still have the ability to correct for errors.
o In the case of Reed-Muller codes, d =2m~",
o For arbitrary Cg(m, r), we if S C G and P = S™, then
d = (1—(rs/[S]))
e To transcode, we can treat Cg(m,r) and Cg(m, rs) as a 2D code, and
transcode first by rows, then by columns.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Data Movement

@ Using polynomial codes, we can encode x and y, the inputs to a level
of a circuit, and apply ®(, then transcode the result.

@ Before the encoded output, E(z), can be supplied as input to the
next level of the circuit, it must be copied, and each copy must be
permuted. Recall our model:

ze11 = K0 (11 e41(2e), mo,e41(2e), We1)

@ Which when encoded should become:

E(ze1) = T(®O (m 111(E(2t)), m,041(E(2t)), E(We41)))
where T denotes the transcoding operation.

@ If 1 ¢+41 and 7 +41 are arbitrary, they cannot necessarily be applied
them directly. Instead they can be decomposed into permutations
that can be applied.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Permuting Codewords

@ Polynomial codes are closed under a number of permutations. For
example, both Reed-Solomon and Reed-Muller codes can both be
permuted along the dimensions of a hypercube.

@ Additional permutations can be applied during 2D transcoding.

o If needed, an arbitrary permutation can be realized as a series of

allowed permutations.

e Hypercube-style data movement is enough to implement arbitrary
permutations via a switching network formed from back-to-back

butterfly graphs.
e This network can in turn be implemented using only cyclic shifts via a

shuffle-exchange protocol.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Putting it all together

@ Given an arbitrary circuit C, it can be converted to a leveled circuit
Cr such that all gates have fan-in and fan-out 2.

@ Using the techniques we have presented, the input to Cg can be
encoded, and the computation performed by each level can be made
fault-tolerant.

@ Between each step of coded computation, transcoding is required.
This constitutes the major overhead of this approach.

@ Still, this approach can still potentially outperform basic reputation if
C is sufficiently deep. The overhead required is a logarithmic (or
polylogarithmic) in the width of C, where as with repetition it is
logarithmic in |C]|.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

Conclusions and Future Work

o Coded-computation appears to have the potential to outperform
repetition, but currently the overhead is still high.

@ Reed-Muller codes allow us to implement the binary operations of a
circuit using binary codes. This is a significant improvement over
Spielman’s Reed-Solomon based-approach.

@ The structure of specific computations may allow them to be encoded
with lower overhead.

Eric Rachlin and John E. Savage (Departme A Framework for Coded Computation

	Fault-Tolerant Computation

