
A Framework for Coded Computation
ISIT 2008

Eric Rachlin and John E. Savage

Department of Computer Science
Brown University
Providence, RI

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 1 / 17

Fault-Tolerant Computing

For 60 years the overwhelming success of digital computing has been
facilitated by ever-shrinking, highly reliable hardware.

Example

If a 3GHz, 109 gates/processor, 1,024-processor computer runs for 1 year
with a 1% chance of failure, the gate failure rate satisfies pf ≤ 10−30!

As feature sizes shrink and the number of cores per chip increase, it
becomes increasingly burdensome to maintain such an astronomically
high level of reliability.

Nanoscale devices, multicore architectures, and distributed computing
all suggest an impending need for fault-tolerant computation.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 2 / 17

Computation vs. Communication

Beginning with von Neumann in 1956, many theorists have studied
how to implement an arbitrary circuit, C , with unreliable gates.

If gates fail independently at random with probability pf , von Neumann
asked whether we can construct a circuit C ′ such that for any input, x,
Prob(C (x) 6= C ′(x)) = δ, for some δ < 1/2.
His main idea: Repeat each gate in C many times and periodically
suppressed errors by applying constant-size majority gates to random
subsets of repeated outputs.
Subsequent analysis showed that |C ′|/|C | = Ω(log |C |).

This result contrasts sharply with digital communication.

Repetition is a very inefficient error control mechanism.
We use a reliable encoder and decoder to control errors.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 3 / 17

Differential Reliability

How can we use ideas from coding theory to compute reliably?

Build circuits using both reliable and unreliable gates.

Differential reliability allows expensive, large, power-hungry,
highly-reliable gates to “supervise” less reliable technology. This
allows us to:

Encode the input (and decode the output) of a lengthy computation.
This is called Coded Computation.
Exploit the fact that many algorithms have relatively simple checks.
This is used in Algorithm-Based Fault Tolerance.

In this talk we investigate coded computation, since the latter
approach is highly algorithm specific.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 4 / 17

Some Previous Work

The earliest work on coded computation considered only bitwise
operations performed on pairs of codewords. This is overly restrictive.

Later certain algorithm specific encodings were considered

Arithmetic codes for addition and multiplication
Check-sums for Matrix operations.

More recent work by Spielman has suggested that a more general
approach is worth pursuing.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 5 / 17

Our Model of Unencoded Computation

Our goal is to “encode” the computation performed by a circuit, C .

We organize C into levels (slices) and consider a single level of C .

Computation on Circuit Slices

Consider binary inputs x, y ∈ {0, 1}k and “instructions” w ∈ I. The
computation performed in a slice of k 2-input gates is

z = κ(k)(x, y,w) = (κ(x1, y1,w1), . . . , κ(xk , yk ,wk))

More generally, if zt is the output of level t, the computation performed by
the next level can be expressed as,

zt+1 = κ(k)(π1,t+1(zt), π2,t+1(zt),wt+1)

Here each πi,t+1 is a permutation describing which outputs from level t
correspond to which inputs at level t + 1.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 6 / 17

A Naive Approach

For simplicity, consider κ(x , y ,w) = nand(x , y). In otherwords, all
gates are nand gates. Let z = nand(k)(x, y).

To provide fault-tolerance, we would like to identify an encoding
function, E : {0, 1}k 7→ An, and a function F such that:

E (z) = F (E (x),E (y))

Easy! Just decode E (x) and E (y), compute z, then encode z.
But this doesn’t guarantee fault-tolerance and the overhead is large.

F should be simple, fault-tolerant, errors musn’t propagate too much.

Ideally each output would only depend on a small number of inputs.

For example, can F be of the form F = f(k) for some function f ?

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 7 / 17

A Lower Bound

Theorem

Let C be an [n, k , d]A code with encoding function E : {0, 1}k 7→ An and
minimum distance d , and let F be a function such that

F (E (x),E (y)) = E (nand(k)(x, y)).

If each output symbol of F is a function of at most c inputs of E (x) and
E (y), the following inequality must hold:

n ≥ kd/(c log2 |A|)

When c = 1, this bound implies that we cannot do better than using
a repetition code.

nand can be replaced with any other function whose output only
sometimes depends on a given input (e.g. or, but not xor).

This theorem is a substantial generalization of several old results.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 8 / 17

A More General Approach

Our lower bound shows that it is not generally possible to select a
code, C , with large minimum distance, and identify a very simple F
such that F (E (x),E (y),E (w)) = E (κ(k)(x, y,w))

Instead we can consider a second (larger) code, C ∗, with encoding
function E ∗, and identify a function Φ such that

Φ(n)(E (x),E (y),E (w)) = E ∗(κ(k)(x, y,w))

where Φ(n)(u, v, t) = (φ(u1, v1, t1), . . . , φ(un, vn, tn)).

To obtain F from Φ, we must then “transcode”, meaning project
Φ(n)(E (x),E (y),E (w)) back to C .

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 9 / 17

A More General Approach (cont.)

Φ(n)(E (x),E (y),E (w)) = E ∗(κ(k)(x, y,w)).

Since C ∗ is larger than C , a given output can have multiple encodings.

To ensure that Φ performs the desired computation, we choose C and
C ∗ to be systematic. Then we have Φ = κ on the information
symbols. As shown on next slide, this is obtained using interpolation.

Fault-tolerance relies on the error correcting capability of C ∗, as well
as the structure of the transcoding operation.

To transcode from C ∗ back to C in a fault-tolerant manner, Spielman
suggested using 2D codes. This requires that C and C ∗ be linear.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 10 / 17

Extension Polynomials

In a linear code C , x ∈ Fk is encoded as E (x) ∈ Gn, where F ⊆ G
are both finite fields.

If E is chosen such that C is systematic, then we can define Φ using
interpolation over the values of F3 on which κ is defined.

This ensures that Φ(n)(E (x),E (y),E (w)) computes κ(k)(x, y, z),
along with n − k check symbols in G.

Example

Let F = {0, 1} and F ⊆ G. If κ(x , y , 1) = nand(x , y) and κ(x , y , 0) = x ,
then we have:

Φ(x , y ,w) = w(1− xy) + (1− w)x .

If κ had a larger domain (for example, more than two instructions), we
could chose a larger F , or use more than three variables.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 11 / 17

Selection of C and C ∗

In order to select C and C ∗ such that Φ(n)(E (x),E (y),E (w)) ∈ C ∗,
Spielman suggested Reed-Solomon codes.

We observe that Reed-Muller codes are also viable, as well as other
codes based on bounded-degree polynomials.

Linear Codes Based on Polynomials

Let CG(m, r) denote a code in which each codeword is value of r -degree,
m-variable polynomial p(v1, ..., vm) evaluated at n points in P ⊆ Gm.

For CG(m, r) to be systematic, p(v1, ..., vm), which encodes E (x), is an
interpolation polynomial, that is, the first k values of p(v1, ..., vm) for
(v1, ..., vm) ∈ S is x where S ⊂ P, |S | = k .

In a Reed-Muller Code, G = {0, 1}, n = 2m, and k = Σr
i=0

(
m
i

)
. In a

Reed-Solomon Code, m = 1, n ≤ |G|, and k = r + 1.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 12 / 17

Application of Φ(n) and Transcoding

If E (x),E (y),E (w) ∈ CG(m, r), and Φ(x , y ,w) has degree s, then:

Φ(n)(E (x),E (y),E (w)) ∈ CG(m, rs)

If rs isn’t too large, we still have the ability to correct for errors.

In the case of Reed-Muller codes, d = 2m−rs .
For arbitrary CG(m, r), we if S ⊆ G and P = Sm, then
d ≥ (1− (rs/|S |))

To transcode, we can treat CG(m, r) and CG(m, rs) as a 2D code, and
transcode first by rows, then by columns.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 13 / 17

Data Movement

Using polynomial codes, we can encode x and y, the inputs to a level
of a circuit, and apply Φ(n), then transcode the result.

Before the encoded output, E (z), can be supplied as input to the
next level of the circuit, it must be copied, and each copy must be
permuted. Recall our model:

zt+1 = κ(k)(π1,t+1(zt), π2,t+1(zt),wt+1)

Which when encoded should become:

E (zt+1) = T (Φ(k)(π1,t+1(E (zt)), π2,t+1(E (zt)),E (wt+1)))

where T denotes the transcoding operation.

If π1,t+1 and π2,t+1 are arbitrary, they cannot necessarily be applied
them directly. Instead they can be decomposed into permutations
that can be applied.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 14 / 17

Permuting Codewords

Polynomial codes are closed under a number of permutations. For
example, both Reed-Solomon and Reed-Muller codes can both be
permuted along the dimensions of a hypercube.

Additional permutations can be applied during 2D transcoding.

If needed, an arbitrary permutation can be realized as a series of
allowed permutations.

Hypercube-style data movement is enough to implement arbitrary
permutations via a switching network formed from back-to-back
butterfly graphs.
This network can in turn be implemented using only cyclic shifts via a
shuffle-exchange protocol.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 15 / 17

Putting it all together

Given an arbitrary circuit C , it can be converted to a leveled circuit
CR such that all gates have fan-in and fan-out 2.

Using the techniques we have presented, the input to CR can be
encoded, and the computation performed by each level can be made
fault-tolerant.

Between each step of coded computation, transcoding is required.
This constitutes the major overhead of this approach.

Still, this approach can still potentially outperform basic reputation if
C is sufficiently deep. The overhead required is a logarithmic (or
polylogarithmic) in the width of C , where as with repetition it is
logarithmic in |C |.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 16 / 17

Conclusions and Future Work

Coded-computation appears to have the potential to outperform
repetition, but currently the overhead is still high.

Reed-Muller codes allow us to implement the binary operations of a
circuit using binary codes. This is a significant improvement over
Spielman’s Reed-Solomon based-approach.

The structure of specific computations may allow them to be encoded
with lower overhead.

Eric Rachlin and John E. Savage (Department of Computer Science Brown University Providence, RI)A Framework for Coded Computation 17 / 17

	Fault-Tolerant Computation

