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Abstract

A key challenge that will face nanotechnologies will be
controlling the uncertainty introduced by stochastic self-
assembly. In this paper we explore architectural and man-
ufacturing strategies to cope with this uncertainty when as-
sembling nanoarrays, crossbars composed of two orthogo-
nal sets of coded parallel nanowires. Because the encodings
of nanowires that are assembled into a nanoarray cannot
be predicted in advance, a discovery process is needed and
specialized decoding circuitry must be employed. We have
developed a probabilistic method of analysis so that various
design strategies can be evaluated.

1 Introduction to Stochastic Assembly and
Nanoarrays

The forty-year exponential growth in the density of in-
tegrated circuits, codified as “Moore’s Law”, is the result
of remarkable advances in top-down manufacturing tech-
nologies, notably photolithography. Unfortunately, physi-
cal constraints and the exponential growth in manufacturing
costs are expected to end the exponential growth based on
these technologies within about a decade [1].

Anticipating these problems, the physical sciences com-
munity is developing new materials and devices with
nanometer-sized features as well as new bottom-up (non-
lithographic) technologies to manufacture chips with these
materials. The new materials include carbon nanotubes
(CNT) [9] and semiconducting nanowires (NW) [6, 16]
with diameters measured in nanometers as well as thin
molecular layers capable of forming non-volatile switches.
Sets of NWs can be arranged in parallel with nanometer
spacing using a form of directed self-assembly [13, 14].

One of the most promising nanotechnology architectures
currently under investigation is the the nanoarray, a cross-
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bar [15] (see Figure 1 (a)) formed by placing one set of par-
allel NWs above another at right angles and implementing
switches at the crosspoints of the NWs. Materials to imple-
ment these switches have been developed and several meth-
ods to place them at crosspoints have been demonstrated
[17, 5, 10]. Such crossbars can be used as programmable
nanoscale logic arrays [7].

In order to provide a microsized interface to the nanoar-
rays, several proposals have been put forth. Each involves
a parallel set of microsized address wires (AWs) being laid
down perpendicular to the NWs, which have been treated
with materials that will allow them to act as decoders. This
allows for individual nanowires to be activated by subsets of
AWs. Kuekes and Williams [18] describe a decoder based
on the random deposition of gold nanoparticles over the re-
gion in which AWs and NWs intersect to make contacts
between them. DeHon, Lincoln and Savage [8] describe
a decoder based on modulation-doped NWs (Section 2.1)
in which the AWs determine if a NW is conducting or not
(see Figure 1 (b)). (Over doped regions, the intersection of
a NW and an AW forms a field-effect transistor (FET).)

In the following section we provide a detailed introduc-
tion to nanoarray-based memories. In Section 3 we intro-
duce binary reflected codes, present four strategies for ex-
ploiting the self-assembly of nanoarray crossbars, and ex-
amine tradeoffs between wasted NWs and micro-sized de-
coding circuitry. These tradeoffs are supported with de-
tailed analysis of relevant probability distributions.

2 Overview of the Crossbar and Modulation-
Doped Nanowires

This section describes modulation-doped nanowires and
their role in stochastically assembled nanoarrays.

2.1 Modulation-Doped Nanowires

Crystalline semiconducting wires with nanometer di-
mensions [6, 16] have been grown by a vapor-liquid-solid
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Figure 1. (a) A crossbar in which sites holding 1s are marked by dots and (b) (2,4)-hot addressing of
six nanowires {nw1, . . . , nw6} with four micro-level address wires {aw1, . . . , aw4}.

growth process that controls the diameter of the NWs.
When the vapor level of reactants in this process is mod-
ulated over time, the semiconducting wires can be doped
along the axial dimension [12, 19, 2]. The length of a doped
region can be precisely controlled by the length of time dur-
ing which doping reactants are in the vapor (modulation-
doping); the transition between differently doped regions
occurs over an axial length that has been shown to be as
small as fractions of a nanometer. (See [8] for a discussion
of the importance of this transition length.) The doped re-
gions act as field-effect transistors (FETs). A NW can be
gated by a high electric field provided by a microwire at
right angles to the NW, as suggested in Figure 1 (b).

A practical method of controlling NWs is (h, b)-hot ad-
dressing. Each NW has b addressable regions exactly h of
which are doped. Subsets of this set of codes C may also
be used. It follows that a NW is conducting unless one of
its doped regions is adjacent to an address wire carrying an
electric field of sufficient magnitude to reduce its conduc-
tance to near zero. Thus, exactly one NW in the set (h, b)-
hot addressable NWs will be conducting if h of the address
wires carry a large electric field. In order to create a func-
tioning memory, external binary addresses must be mapped
to the internal addresses of the individual nanowires.

2.2 Stochastic Self-Assembly of NWs

Since NWs are too small to be manufactured lithograph-
ically and will be too numerous to manipulate at the atomic
level, some others means of assembling them is necessary.
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Figure 2. Three shifted copies of a nanowire
with doping along its length.

Directed self-assembly of undifferentiated NWs into sets of
parallel wires has been demonstrated [13, 14]. The assem-
bly process mixes a set of modulation-doped NWs in a so-
lution and flows the mixture into a trough. This process
aligns the NWs in parallel just as twigs line up as they flow
downstream in a river [20]. NWs are then transferred to a
chip. We assume that NW codes form a subset the (h, b)-hot
addresses, and that each address is chosen at random with
equal probability.

2.3 Stochastic Alignment of NWs

The self-assembly process cannot guarantee the length-
wise alignment of the doped regions on individual NWs
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Figure 3. Nanoarray interfaced with address
modulation-doped NWs.

with microscale address wires, a fact that must be taken into
account when assigning codes to NWs. We cope with this
problem in the manner proposed in [8], namely, by assign-
ing more potentially-doped regions to NWs than there are
address wires. As a NW shifts relative to the address wires,
different coded regions line up with the address wires, as
suggested in Figure 2, and generally results in one of many
different doping patterns being associated with each NW.
For example, if multiple copies of some (h, b)-hot address
are placed on a nanowire in a repeating pattern, then when
the nanowire is shifted, a new (h, b)-hot address is pro-
duced.

2.4 Forming Crossbars

A crossbar is formed by applying the self-assembly pro-
cess twice, a second set of NWs is placed above and at right
angles to a first set (see Figure 3). This two-step process
will require trimming of NWs that extend beyond the array,
which can be done lithographically.

Switches are defined at the crosspoints of NWs by either
depositing a thin film of a supramolecule between the two
parallel sets of wires [15, 3] or by coating one set of NWs
with such a material (a form of radial doping) [10]. In both
cases when a large field is applied across the switcheable
material it becomes conducting (represented by 1) or non-
conducting (represented by 0) depending on the polarity of
the field. The conductance of the material at each crosspoint
can be sensed by applying a field large enough to detect

current flow but not large enough to change the state of the
material.

This memory technology will also support writing
blocks of 1s (stores) or 0s (restores) at the intersection of
rows and columns of a crossbar. To execute such an oper-
ation, the rows and columns are selected and either a large
positive or negative voltage is applied. The complexity of
programming nanoarrays has been studied [11].

Observe that two NWs with the same encoding attached
to a common ohmic region behave as a single NW with that
encoding. When this happens the effective number of NWs
will be less than the actual number.

2.5 Crossbar Connection Architectures

To use a standard crossbar, an ohmic contact is needed at
both ends of each set of parallel NWs, as shown in Figure 3,
so that it is possible for current to flow through an individ-
ually addressed NW. It is also necessary to disconnect one
of these two ohmic contacts so that current can flow from
a NW in one parallel set to an orthogonal NW in the other
parallel set and be sensed. This can be achieved by doping
the ends of each NW just inside the “ground” ohmic con-
tacts (associated with Vgc and Vgr) so that each NW can
be logically disconnected from its ohmic contact by a FET
controllable region.

Hybrid crossbars [8] use multiple ohmic regions, that
is, the NWs in each parallel set are divided into sets of equal
size and one ohmic region is attached to one end of each set
and a common ohmic region to the other ends. (See Fig-
ure 4.) To address a single NW, an ohmic region is acti-
vated and a NW address for a NW connected to the ohmic
region is chosen. As shown in [8] and discussed below, hy-
brid crossbars provide several ways in which the size of the
code space needed to realize memories can be greatly re-
duced.

3 Designing Nanoarray Memories

A nanoarray-based memory, NanoMem, is an N × N
nanoarray that has an external circuit, LithoMem, to map
external binary addresses to internal addresses that are gen-
erally unknown in advance. Each nanoarray has two sets of
b address wires and two sets of m ohmic region.

NanoMems will have to be constructed by a stochastic
process. We must deal with the uncertainty that this process
brings. Architectural choices must be made to ensure that
with high probability all nanowire configurations result in
functioning memories. In the following section we explore
tradeoffs between C, m, w, and the size of LithoMem.
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3.1 Binary Reflected Code

Section 2 introduces (h, b)-hot encoding. Recall that if
an (h, b)-hot encoding is repeated multiple times, then a
shift of a NW length-wise produces another valid encoding.
Mapping external binary addresses to (h, b)-hot encodings
is difficult. For this reason we prefer binary reflected codes
defined as follows.

A standard binary n-tuple x = (xk−1, . . . , x1, x0) is
encoded in the binary reflected code as z = xx =
(xk−1, . . . , x1, x0, xk−1, . . . , x1, x0). A 1 in a codeword z

corresponds to a doped region in a NW. Codewords gener-
ated this way form a subset of the set of (k, 2k)-hot encod-
ings. Translating an external binary address to such code-
words is trivial.

The set of binary reflected codewords is closed under
shifts when an encoding is repeated along the length of a
NW. For example, when k = 6, multiple cyclic shifts of
the codewords 110001001110 and 110011001100 produce
other codewords. Under shifts the first codeword maps into
12 distinct codewords whereas the second maps into four
distinct codewords. The periods of codewords under cyclic
shift are given below. Since each codeword is equally likely
to undergo each cyclic shift, any one of the codewords re-
sulting from the cyclic shift of a codeword (its equivalence
class) can be used as a seed to generate all other codewords
in the class.

Lemma 3.1 Let d2(n) be the largest power of 2 dividing n.
The period of z, a codeword in the binary reflected code,
divides 2k but not k. The set P(k) of periods of codewords
satisfies

P(k) = 2 d2(k) ∗ D(k/d2(k))

where D(n) is the set of the divisors of n, and ∗ denotes

multiplication by an integer of every element of a set of in-
tegers.

There are 2k codewords of length 2k. The number of
equivalence classes that have period p for p ∈ P(k) is given
below. Clearly, the smallest period is 2d2(k). One seed is
needed for each equivalence class. The number νk(p) of
equivalence classes of codewords of period p is given below.

Theorem 3.1 The number of equivalence classes of code-
words of length 2k that have period p but no smaller period,
νk(p), satisfies the following relation where the sum is over
p in Q(p) = {q | q ∈ P(k) such that q strictly divides p}.

νk(p) =

{

2p/2/p p = 2d2(k)
(

2p/2 −
∑

qνk(q)
)

/p otherwise

The number of equivalence classes is
∑

p∈P(k) νk(p).

Example 3.1 Consider codewords z = xx of length
2k = 36. Since d2(18) = 2, P(18) = 4 ∗ D(9) =
4 ∗ {1, 3, 9} = {4, 12, 36}. The number of different
equivalence classes with these periods is ν18(4) = 1,
ν18(12) =

(

26 − 4 ν18(4)
)

/12 = 5, and ν18(36) =
(

218 − 4 ν18(4) − 12 ν18(12)
)

/36 = 7, 280. It follows that
an ensemble of ν18(4) + ν18(12) + ν18(36) = 7, 286 code-
word seeds will generate all 262, 144 codewords.

In general approximately 2k/2k seeds suffice to generate
all encodings of length 2k. This is an important considera-
tion in the manufacturing of encoded NWs.

3.2 External Address Decoding Strategies

From the previous section we see that the codes appear-
ing on the NWs can be thought of as random integers in
{1, . . . , C} each selected with equal probability. Listed be-
low are a few strategies for choosing values for C, m, the
number of ohmic regions, and w, the number of NWs per
ohmic region. (Other cases are also possible.) In all cases,
the goal is to have nA uniquely addressable wires (two wires
are uniquely addressable if they have different codes or lie
in different ohmic regions). The lower limit on the size of
w is determined by the lithographic technology in use.

Sa: Choose w and then choose C to be large enough so
that every region is very likely to contain no duplicate
NW encodings. With high probability there will be no
wasted nanowires and nA = N = mw.

Sb: Choose w and C such that all ohmic regions have at
least d ≤ w distinct NW encodings with high prob-
ability. In this case, nA = dm; (wm − nA) NWs
are wasted. This strategy weakens the requirement that



each NW attached to each ohmic region has a distinct
encoding, thereby reducing the value of C needed to
ensure that nA = dm NWs can be addressed.

Sc: Choose w and C so that with high probability every
NW encoding is present in each ohmic region (nA =
mC). This will waste many NWs but makes decoding
very simple, especially when binary reflected codes are
used. For large mw, the decoding process becomes ex-
ceptionally simple. nA = mC NWs can be addressed
by using log2 m external bits to choose an ohmic re-
gion and log2 C bits to activate a single NW address.

Sd: Choose w, C and m so that with high probability each
NW encoding appears at least once in at least p ohmic
regions. In other words, p complete sets of C en-
codings can be identified with high probability. This
strategy is intermediate between Sc and the other two
strategies.

3.3 Bounds on Probability Distributions

Before doing a quantitative analysis of the four design
strategies described above, we present bounds on probabil-
ities of events that arise in their use. These bounds have
been shown to be very tight. Thus, they can be used with
confidence to explore other design strategies. The first two
probabilities apply to the case when each NW is drawn with
replacement from an ensemble of size C according to the
uniform distribution. The third is a generic Chernoff bound
[4] on the tail of a binomial distribution.

Lemma 3.2 The probability that each of the w NWs in an
ohmic region has a distinct encoding satisfies the following
bound.

Pdistinct(w,C) ≤ e−w(w−1)/2C (1)

Consequently, Pdistinct(w,C) ≥ 1 − δ when C ≥ w(w −
1)/(−2 ln(1 − δ)).

This bound is very tight even for the smallest values of w
that we consider, that is, w ≥ 10.

Lemma 3.3 When d ≥ 3, the probability that fewer than
d distinct NW encodings will occur among w NWs satisfies
the following bound where φ(d,C) is the larger of d(d −
1)/2C and (C + 1 − d) ln(1 − (d − 1)/C) + d − 1} and
z = w + 1 − d.

Q(d,w,C) ≤































e−z[ln(C/d)+ln z/d]−φ(d,C)+z

when w ≤ 2d − 1

e−z(ln(C/d)+1/d)−φ(d,C)+d2/(d−1)

when w ≥ 2d

(2)

The second bound is valid for all values of w but is stronger
when w ≥ 2d. It is also valid for all values of w when
φ(d,C) is replaced by either d(d − 1)/2C or (C + 1 −
d) ln(1 − (d − 1)/C) + d − 1.

Comparison of these bounds with the exact values for
the probabilities shows that they provide values of w that
are at least 2/3 of the exact values when 20 ≤ C ≤ 200,
10 ≤ w ≤ 100, and Q(d,w,C) is near .01.

Lemma 3.4 Let x be the sum n 0-1 valued variables with
value 1 occurring with probability p. Then,

Pr[x ≤ θnp] ≤ e−np(1−θ+θ ln θ)

where 0 ≤ θ < 1 and np is the mean value of the sum.

3.4 Quantitative Assessment of Design Strategies

We now examine the performance of the four strategies
under the assumption that each strategy achieves its objec-
tive with probability of (1 − ε) or more.

The area AT of the NanoMem is approximated by the
area of the nanoarray, Anano, plus twice the area Aext of
LithoMem used along each dimension of the nanoarray.
That is, AT ≈ Anano + 2Aext.

In strategies Sa and Sb a memory is needed to convert
external addresses to the internal addresses that are present.
The memory requires one word for each of the nA address-
able NW. The number of bits needed per word is equal to
log2 C. In strategies Sc and Sd the entire set of internal NW
encodings is known and are not stored in memories but are
supplied directly. In this case, if every (h, b)-hot encoding
is allowed, a complex circuit is needed to make the transla-
tion. However, if binary reflected codes are used, the circuit
consists of a set of inverters. The binary reflected codes will
require 2 log2 C address wires. We believe that it is better
to use the latter codes in all cases. Case Sd is special in
that the assignment of external binary addresses to ohmic
regions is not known ahead of time and must be stored in a
memory.

Let λnano and λlitho be the pitch of NWs and litho-
graphic wires, respectively, and let σ be the area of a
lithographic-level memory cell. Then, if LithoMem con-
sists of just a memory with nA words, one for each ad-
dressable NW in each dimension, each of β bits, then
Aext ≈ (nAβ)σ. If it also contains a standard decoder
for the ohmic regions (as it will except for case Sd), we
add area 2λ2

lithom log2 m. The area of the nanoarray it-
self satisfies Anano = (2λlitho log2 C + Nλnano)

2. Thus,
AT ≈ Anano + 2Aext and

AT ≈ 2(nAβ)σ + 2λ2
lithom log2 m

+(2λlitho log2 C + λnanoN)2



3.4.1 Performance of Strategy Sa

In strategy Sa there are no wasted wires, that is, nA = N .
The NWs can be addressed with external binary addresses
by supplying log2 m bits to a standard decoder to acti-
vate one ohmic region and by supplying all the bits to a
programmable memory to activate individual NWs within
ohmic regions. In this case β = log2 C. The area AT re-
quired by strategy Sa is given below.

AT ≈ 2(nA log2 C)σ + 2λ2
lithom log2 m

+(2λlitho log2 C + λnanonA)2

To evaluate this formula we require a bound on C in terms
of the number of NWs.

Theorem 3.2 Strategy Sa succeeds with probability 1 − ε
when C satisfies the following.

C ≥ nA(w − 1)/(−2 ln(1 − ε))

Proof Under strategy Sa the values of w and C are cho-
sen so that with probability at least 1 − δ each of the w
NWs in each ohmic region is distinct. The probability
that this condition holds in all m ohmic regions is at least
(1 − δ)m = 1 − ε. Thus, ln(1 − δ) = ln(1 − ε)/m.
By Lemma 3.2 to achieve probability 1 − δ in each re-
gion requires that that C ≥ mw(w − 1)/(−2 ln(1 − ε)).
Since the number of addressable NWs is nA = mw and
N = nA, the result follows.

3.4.2 Performance of Strategy Sb

In strategy Sb we consider just the case of d = w/2, which
is indicative of the general requirement on d. Thus, half
of the NWs are addressed and nA = N/2. The formula
for the size of the external circuit is the same as in strategy
Sa although the size of C needed is much smaller, thereby
greatly reducing the size of the circuit.

AT ≈ 2(nA log2 C)σ + 2λ2
lithom log2 m

+(2λlitho log2 C + 2λnanonA)2

To evaluate this formula we require a bound on C in terms
of the number of NWs.

Theorem 3.3 Strategy Sb succeeds with probability 1 − ε
when C is chosen to satisfy the following bound where
ln(1 − δ) = ln(1 − ε)/m.

C ≥ (w + 1)/2e1−2 ln δ/(w+1)

Proof With strategy Sb let d, w and C be chosen so that
for (w+1)/2w ≤ α < 1 there are at least d = αw distinct
NWs in each ohmic region with probability at least 1− δ.
The probability that this is true for all ohmic regions is at

least (1− δ)m = 1− ε for ln(1− δ) = ln(1− ε)/m. We
find conditions on d, w and C that suffice to ensure that
strategy Sb works probability at least 1 − ε.

Because w ≤ 2d − 1 we use the first bound in
Lemma 3.3 but weaken it by dropping the term φ(d,C),
replacing ln(w + 1− d) ln(w− d), and requiring that the
resulting bound be less than δ. This sets conditions on d,
w and C that suffice to ensure that strategy Sb works with
the stated probability. Substituting d = αw gives

− ln(δ) < ((1 − α)w + 1)(ln(C) + ln((1 − α)w + 1)

− 2 ln(αw)) − ((1 − α)w + 1)

which is equivalent to the following.

C > (α2w2)/((1 − α)w + 1)e1−ln δ/((1−α)w+1)

and is the desired conclusion when α = (w + 1)/2w.

Comparison of the area bound for cases Sb with that
of Sa indicates that the requirement on C is substan-
tially reduced. In fact, using the lower bounds in The-
orems 3.2 and 3.3, C is reduced from about 50nAw to
(w + 1)/2e(100m)2/(w+1) for ε = .01 since δ is very
close to ε/m. If w ≥ 10 and m ≤ 5, 000, (w +
1)/2e(100m)2/(w+1) ≤ 3.14(w + 1)m.182 ≤ 17w. It fol-
lows that the size of C is reduced from 50nAw to at most
17w when m ≤ 5, 000 (or nA ≤ 27, 500), a reduction by a
factor of about 3nA. Thus, Sb is clearly superior to Sa.

In anticipation of the analysis of strategy Sc we iden-
tify the dominant terms in the expression for AT . The first
term in (2λlitho log2 C + λnanonA)2 is clearly dominated
by the second term and is ignored. Comparing the first term,
2(nA log2 C)σ against (λnanonA)2, the latter term domi-
nates when λ2

nanonA is much larger than 2σ log2 C.

3.4.3 Performance of Strategy Sc

Strategy Sc uses no external memory. The input bits are
split between the ohmic regions and the NWs. The ohmic
region bits are supplied to a standard decoder. If (h, b)-hot
encodings are used, the NW bits are supplied to a circuit
that translates them into (h, b)-addresses. A simpler solu-
tion uses the binary reflected code and only requires one
inverter for each of the external bits. Since C = nA/m, the
area required satisfies the following.

AT ≈ 2λ2
lithom log2 m + (2λlitho log2(nA/m)

+λnanoN)2

We compare the area of a nanoarray-based memory, AT ,
to that of a lithographic-level memory with the same stor-
age capacity, namely, n2

A, which uses area n2
Aσ and show

that the nanoarray-based memory is superior. We use the
following result.



Theorem 3.4 Strategy Sc is successful with probability 1−
ε when N is chosen to satisfy the following bound where
(1 − δ)m = 1 − ε.

N ≥ nA(ln(nA/m) − ln δ + 3.5)

Proof Under strategy Sc the values of w and C are cho-
sen so that with probability at least 1 − δ each of the C
different codewords appears at least once in each ohmic
region. The probability that this condition holds in all m
ohmic regions is at least (1 − δ)m = 1 − ε. This implies
that δ ≤ − ln(1 − ε)/m. The goal is to exhibit condi-
tions under which the upper bound to Q ≤ δ for Q given
by Lemma 3.3 when d = C. Since w ≥ 2d + 1 will be
required, we use the second bound. Also, since d = C,
φ(d,C) = − ln d+d−1 and the bound becomes the fol-
lowing when we replace 1/(d−1) by .5 when d = C ≥ 3.

e−(w+1)/C+ln C+3.5 ≤ δ

This implies that w + 1 ≥ C(ln C − ln δ + 3.5) ≥
C(ln C − ln(− ln(1− ε)/m) + 3.5). This result is weak-
ened by replacing w + 1 by w. Since N = mw and
nA = mC, the desired result follows.

Since the first term in the expression for AT is small by
comparison with n2

Aσ, the conclusion follows if the sec-
ond term (2λlitho log2(nA/m)+λnanoN)2 is significantly
smaller than n2

Aσ. Since we can expect λlitho/λnano ≤
20, we can expect that 2λlitho log2(nA/m) is significantly
smaller than λnanoN .

The nanoarray memory uses less area than a standard
memory if N ≤ nA

√

σ/λ2
nano. Given the above lower

bound on N , this is equivalent to ln(nA/m)− ln δ + 3.5 ≤
√

σ/λ2
nano. If ε = .01, δ is very close to .01/m. If our

standard memory is a DRAM memory, σ = λ2
DRAM . The

2001 ITRS roadmap [1] predicts λ = 200 for 2003. Thus, if
λnano = 10,

√

σ/λ2
nano = 20 and the condition becomes

nA ≤ 146, 507.
It follows that design strategy Sc will yield a nanoarray

memory that uses less area than a standard DRAM memory
if the memory has capacity less than about 2 1010, which
means this method may be practical.

We now compare strategies Sc and Sb. The former
uses area approximated by 2λ2

lithom log2 m + λ2
nanoN

2

where N = nA(ln(nA/m) − ln δ + 3.5). The latter uses
area approximated by 2(nA log2 C)σ + 2λ2

lithom log2 m +
4λ2

nanon
2
A. The former uses more area if λ2

nanoN
2 is larger

than 2(nA log2 C)σ + 4λ2
nanon

2
A. The first term in this

last expression is insignificant by comparison with the sec-
ond if nA is large by comparison with σ log2 C/(2λ2

nano),
which we assume is 400. As shown for Sb, we can set C to
3.14(w + 1)m.182 when w ≥ 10. When m ≤ 50, 000, C
is at most 25w. Thus, the second term dominates when nA

is large by comparison with 200 log2(25w), which is 1, 600

when w = 10. It follows that Sb uses more area than Sc

under this condition.

3.4.4 Performance of Strategy Sd

In strategy Sd the number of wasted wires is substantially
less than strategy Sc. However, programmable external de-
coding circuitry is needed. The external bits are separated
into two sets, one set identifying a NW and second iden-
tifying a group. The NW bits are used directly to activate
a NW. To simplify this addressing problem, we use binary
reflected codes. The group bits and the NW bits are used
to address the external memory and select the log2 m bits
needed to activate an ohmic region. (A more efficient de-
sign exists but space prevents our presenting it here.) The
area AT required by this strategy is given below.

AT ≈ 2(nA log2 m)σ + 2λ2
lithom log2 m

+(2λlitho log2 C + λnanoN)2

Theorem 3.5 Strategy Sd is successful with probability
1 − ε when C is no larger than bound given below where
.3N(1 − w/C) ≤ nA ≤ .3N .

nA ≥ .89C ln(C/ε)

Proof The ith codeword occurs in a given ohmic region
with probability 1 − (1 − 1/C)w and it occurs in r =
m(1 − (1 − 1/C)w) regions on average. As shown in
Lemma 3.4, the probability that it occurs in at most θr
regions, 0 ≤ θ < 1, is at most e−r(1−θ+θ ln θ). When θ =
.3, (1−θ+θ ln θ) = .3388. The probability that any of the
C codewords fails to occur in at least θr ohmic regions is
at most Ce−.3388r. Since strategy Sc is successful with
probability at least 1 − ε, it follows this condition will be
satisfied if w and C satisfy the following bound.

Ce−.3388r ≤ ε

When this bound holds, each of the C codewords exists
in at least θr ohmic regions. The number of addressable
wires, nA, satisfies nA = θrC. We use the above in-
equality to bound nA giving the following.

nA ≥ .89C ln(C/ε)

It follows that an upper limit on C is set once ε and nA

are given. Here nA = θmC(1 − (1 − 1/C)w), which
we approximate when C is large. It is easy to show by
induction that w(1−w/C) ≤ C(1− (1− 1/C)w) ≤ w.
It follows that when C is large relative to w, nA is close
to θN = θmw, that is, a fixed fraction of the NWs are
wasted.

Comparing this case to strategy Sb, we see that they dif-
fer in the area of the nanoarray itself and in the area of the



external memory. The last term in AT above, λnanoN , is
between 3.33λnanonA and about 5λnanonA if C ≥ 3w
whereas the same term for strategy Sb is 2nA. Thus, if
the area of the nanoarray dominates the area of the external
memory, strategy Sb is superior. On the other hand, if the
area of the external memories dominate, then Sd is superior
to Sb if log2 m ≤ log2 C. Otherwise Sb is superior.

4 Conclusions

We have analyzed four strategies for the self-assembly
of hybrid nanoarray memories. Strategy Sa sets conditions
under which it is highly likely that each NW within each
ohmic region has a unique encoding. Strategy Sb modifies
strategy Sa by asking that at least half of the NWs in each
ohmic region have unique encodings. Strategy Sc asks that
every one of the C encodings appears in each ohmic region
while strategy Sd asks that each encoding appear in at least
p regions.

Detailed analysis shows that strategy Sb is superior to
Sa; the area occupied by a nanomemory for Sb under rea-
sonable assumptions is expected to be 1/3 that of Sa.

When the area occupied under strategy Sc is compared
to that of a standard memory, the nanomemory is superior
as long as its storage capacity is limited. The limit de-
pends on the ratio of the area σ of a standard storage cell
to that of λ2

nano. When it is on the order of 400, a realistic
value, memories designed with Sc are more area efficient
than standard memories today. Nanoarray memories con-
structed using this strategy do not require decoding with an
external microsized memory. As a consequence, they may
be more readily manufacturable in the immediate future.
However, comparison with memories based on strategy Sb

shows them to be inferior of use of area.
The area occupied by a nanomemory designed using

strategy Sd is compared to that when strategy Sb is used. If
the area occupied by the nanoarray dominates that occupied
by the external memory, Sb is superior. If not, Sd is superior
to Sb if log2 m ≤ log2 C. Otherwise Sb is superior.
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