Unit 8: Recursion

Dave Abel

April 6th, 2016
Takeaway

Repeated self reference, or “recursion”, is everywhere, in the world and in computation! It’s simple, beautiful, and incredibly powerful.
Outline

› Definition
› Examples & Intuition
› Recursive Algorithms
› Recursive Searching and Sorting
› Recursion and Theory
Recursion

- **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference
Recursion

- **Definition:** A process, program, or object is said to be *recursive* if it involves repeated self-reference.

- Example one: A **Scratch block** is recursive if it calls itself:
Recursion

- **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference

- Example two: a tree!
Recursion

- **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference

- Example two: a tree!

 A tree is: a stick, with some number of trees coming off of it.
Recursion

- **Definition:** A process, program, or object is said to be *recursive* if it involves repeated self-reference.

- Example two: a tree!

A tree is: a stick, with some number of trees coming off of it.
Recursion

- **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference

- Example three: **Recursive Shapes!**
Recursion

- **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference

- Example three: **Recursive Shapes!**

A recursive triangle is: a triangle, with a recursive triangle inside of it.
Recursion

- **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference

- In general, *recursive entities can be described as:*
 - A simple step
 - A recursive step
Recursion

• **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference

• In general, *recursive entities can be described as:*

 - A simple step

 - A recursive step
Recursion

- **Definition:** A process, program, or object is said to be *recursive* if it involves repeated self-reference.

- Example one: **A Scratch block** is recursive if it *calls itself*.
Recursion

- **Definition**: a process, program, or object is said to be *recursive* if it involves repeated self-reference

- Example two: a tree!

 A tree is: a stick, with some number of trees coming off of it.
Recursion

- **Definition:** a process, program, or object is said to be *recursive* if it involves repeated self-reference

- Many algorithms are *recursive!*

- Let’s look at a few.
Recursive Algorithms

- Problem: Is a word a palindrome?
 - **INPUT**: a word
 - **OUTPUT**: True if the word is a palindrome, False otherwise.

- Recursive solution:
 - A word is a palindrome if: the outermost two letters are the same AND the remaining word is a palindrome.
Problem: Is a word a palindrome?

- **INPUT**: a word

- **OUTPUT**: True if the word is a palindrome, False otherwise.

Recursive solution:

- A word is a palindrome if: the outermost two letters are the same AND the remaining word is a palindrome.

Q: What’s the simple step? What’s the recursive step?
Recursive Algorithms

- Problem: Is a word a palindrome?
 - *INPUT*: a word
 - *OUTPUT*: True if the word is a palindrome, False otherwise.

- Recursive solution:
 - A word is a palindrome if: the outermost two letters are the same AND the remaining word is a palindrome.
Recursive Palindrome

- A word is a palindrome if: the outermost two letters are the same AND the remaining word is a palindrome.

 › This basically tells us a solution for solving the problem
Recursive Algorithms

- Problem: compute the length of a word
 - INPUT: A word
 - OUTPUT: The length of the word
Recursive Algorithms

- Problem: compute the length of a word
 - *INPUT*: A word
 - *OUTPUT*: The length of the word

Brainstorm a recursive solution with your neighbors!
Recursive Algorithms

- Problem: compute the length of a word
 - *INPUT*: A word
 - *OUTPUT*: The length of the word

- Here’s my solution:
 - The length of a word is just 1, plus the length the word you get if you remove one character.
Recursive Algorithms

- Problem: Factorial
 - *INPUT*: A number
 - *OUTPUT*: The factorial of that number
 - Example: factorial(4) is $4 \times 3 \times 2 \times 1$, factorial(6) is $6 \times 5 \times 4 \times 3 \times 2 \times 1$
Recursive Algorithms

- Problem: Factorial
 - INPUT: A number
 - OUTPUT: The factorial of that number
 - Example: factorial(4) is 4*3*2*1, factorial(6) is 6*5*4*3*2*1

Brainstorm a recursive solution with your neighbors!
Recursive Algorithms

- Problem: Factorial
 - INPUT: A number
 - OUTPUT: The factorial of that number

- Observation: $4! = 4 \times 3!$, $3! = 3 \times 2!$, $2! = 2 \times 1!$, $1! = 1$
Recursive Algorithms

- Problem: Factorial
 - *INPUT:* A number
 - *OUTPUT:* The *factorial* of that number

- Observation: 4! = 4*3!, 3! = 3*2!, 2! = 2*1!, 1! = 1

- Here’s my solution:
 - The factorial of a number is just *that number times* the factorial of one minus that number.
Infinite Recursion

- Define: infinite recursion!
- Turn: 1 degrees
- Infinite recursion!
Recursive Algorithms

- Problem: compute the length of a word
 - **INPUT:** A word
 - **OUTPUT:** The length of the word

- Here’s my solution:
 - The length of a word is just 1, plus the length the word you get if you remove one character.
 - Critically we *need* tell the program how to stop.
Recursion: Base Case

- Recursive Algorithms have a **base case**, which specifies when the algorithm should stop.
Recursion: Base Case

- Recursive Algorithms have a **base case**, which specifies when the algorithm should stop.
Recursion: Base Case

- Recursive Algorithms have a **base case**, which specifies when the algorithm should stop.

![Diagram showing a recursive algorithm with a base case, simple step, and recursive step.]

1. **Base Case**: If $N < 1$ then stop this script.
2. **Simple Step**: Else, say join Hello, N for 2 secs.
3. **Recursive Step**: Say hello $N - 1$ times.
Recursion: Base Case

- Recursive Algorithms have a **base case**, which specifies when the algorithm should stop.
Recursion: Base Case

- Recursive Algorithms have a base case, which specifies when the algorithm should stop.

```
define length of word

if length of word < 1 then
    say total word length for 2 secs
else
    remove first char word
    change total word length by 1
    length of shaved word
```

- base case
- simple step
- recursive step
Recursion: Base Case

- Recursive Algorithms have a **base case**, which specifies when the algorithm should stop.

Discuss with your neighbor(s): what is the simple step? what is the recursive step? what is the base case?
Recursion: Base Case

- Recursive Algorithms have a **base case**, which specifies when the algorithm should stop.

Discuss with your neighbor(s): what is the simple step? what is the recursive step? what is the base case?
Double Base Case

- Recursive Algorithms have a **base case**, which specifies when the algorithm should stop.

- Remember the **fibonacci** sequence?
 - Start with the sequence 1,1
 - To generate the next number in the sequence, add the two previous numbers!
 - So the next numbers are 2, then 3, then 5, etc.
Double Base Case

- Consider the problem of writing the first N items of the Fibonacci sequence.

- Q: What is the base case? Simple step? Recursive step?

- Remember the Fibonacci sequence?
 - Start with the sequence 1, 1
 - To generate the next number in the sequence, add the two previous numbers!
 - Generate the next N-1 numbers.
Consider the problem of writing the first N items of the fibonacci sequence.

Q: What is the base case? Simple step? Recursive step?

Remember the **fibonacci** sequence?

- Start with the sequence 1, 1
- To generate the next number in the sequence, add the two previous numbers!
- Generate the next N-1 Numbers
Problem Spec: Fibonacci

› INPUT: A number, N

› OUTPUT: The first N numbers of the Fibonacci Sequence.
Problem Spec: Fibonacci

- INPUT: A number, N

- OUTPUT: The first N numbers of the Fibonacci Sequence.

- Math form: \(f(n) = f(n-1) + f(n-2) \), plus our base cases. Otherwise \(n \) goes off to negative infinity!
Problem Spec: Fibonacci

- INPUT: A number, N
- OUTPUT: The first N numbers of the Fibonacci Sequence.
- Math form: \(f(n) = f(n-1) + f(n-2) \), plus our base cases. Otherwise n goes off to negative infinity!
- In Scratch
Recursion: Recap

- **Definition**: a process, program, or object is said to be *recursive* if it involves repeated self-reference

- In general, *recursive entities can be described as*:
 - A simple step
 - A recursive step
 - Recursion can be *infinite*
 - For recursion to be *finite*, we need a **base case**.