Unit 1:
 AND(Logic,Gates)

Dave Abel

February 3rd, 2016

Today’s Takeaway

- Monday's claim: Computers are doing logic!
- Today: how they do logic! (physically!)

Outline

- Logic review
- Boolean Sentences
- Logical Functions
- Truth Tables
- Gates

Still Need: Reasoning

Logic: A Formal Language

- Variables that stand for sentences: P, Q, R, S
- Example:

If the snozzberry is a berry, then it is a fruit.

- The snozzberry is a berry.

Therefore, the snozzberry is a fruit.

Logic: A Formal Language

- Variables that stand for sentences: P, Q, R, S
- Example:

If the snozzberry is a berry, then it is a fruit.
The snozzberry is a berry.
Therefore; the snozzberry is a fruit.

Logic: A Formal Language

- Variables that stand for sentences: P, Q, R, S
- Example:

Logic: A Formal Language

- Variables that stand for sentences: P, Q, R, S
- Example:

True for all sentences P,

All sentences Q !

Logic: A Formal Language

- Variables that stand for sentences: P, Q, R, S
- Example:

Premises: assume to be true.

Logic: A Formal Language

- Variables that stand for sentences: P, Q, R, S
- We call sentences that can be True or False "Boolean".
- So: P, Q, R, S, etc., will be called Boolean Sentences.

Logic: Boolean Functions

- We get three functions: AND, OR, NOT
- Each function takes as input one or more Boolean Sentences (P, Q, etc.)
- Outputs a Boolean value (True, False)

Logic: Boolean Functions

$A N D(P, Q)$
Outputs True if both P and Q are True.
$O R(P, Q)$
Outputs True if at least one of P or Q is True.
NOT(P)
Outputs True if P is False. (Just flips it!)

Truth Tables: NOT

Truth Tables: AND

P	Q	AND	P	$Q)$
T	T	\mathbf{T}	T	T
T	F	F	T	F
F	T	F	F	T
F	F	F	F	F

Truth Tables: OR

P	Q	$O R($	P	$Q)$
T	T	\mathbf{T}	T	T
T	F	\mathbf{T}	T	F
T	T	\mathbf{T}	F	T
F	T			
F	F	\mathbf{F}	F	F

Logic: Composition

- Boolean Sentences represented with a letter are called Atomic Sentences (e.g. P, Q, R, S, etc.)
- But since AND(-,-), OR(-,-), and NOT(-), also output Boolean Values, they are also Boolean Sentences.
- For example:
- $\operatorname{AND}(N O T(P), Q)$

OR(AND(P,Q),NOT(R))

Truth Tables: Composite

P	Q	$\operatorname{OR}($	$\operatorname{NOT}($	$Q)$,	$\mathrm{P})$
T	T				
T	F				
F	T				
F	F				

Truth Tables: Composite

P	Q	OR(NOT	$Q)$,	$\mathrm{P})$
T	T			T	T
T	F			F	T
F	T			T	F
F	F			F	F

Truth Tables: Composite

$\left.\left.\begin{array}{c:c|c:c:c} & \text { P } & Q & \text { OR(} & \text { NOT }\end{array} \mathrm{Q}\right), \mathrm{P}\right)$

Truth Tables: Composite

P	Q	OR(NOT	Q),	P)
T	T	\mathbf{T}	F	T	T
T	F	\mathbf{T}	T	F	T
F	T	\mathbf{F}	F	T	F
F	F	\mathbf{T}	T	F	F

Logical Rules!

RESTRIGTED

$((8))$
UNDER 17 REQUIRES ACCOMPANYING PARENT OR ADULT GUARDIAN

Logical Rules!

 PARENT OR ADULT GUARDIANWhen is it okay to attend a rated R movie?

Logical Rules!

When is it okay to attend a rated R movie?
P : person X is 17 or older
Q: person X is accompanied by a parent/adult guardian

Logical Rules!

When is it okay to attend a rated R movie?
P : person X is 17 or older
Q: person X is accompanied by a parent/adult guardian

$$
O R(P, Q)
$$

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above $\$ 60$.
2. You receive free shipping if you do not order any premium items.

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above \$60.
2. You receive free shipping if you do not order any premium items.
$P=$ order is above $\$ 60$
$Q=$ ordered a premium item

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above \$60.
2. You receive free shipping if you do not order any premium items.
$P=$ order is above $\$ 60$
$Q=$ ordered a premium item

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above $\$ 60$.
2. You receive free shipping if you do not order any premium items.
3. You receive free shipping if you're shipping to Alabama and your order is less than $\$ 60$.

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above $\$ 60$.
2. You receive free shipping if you do not order any premium items.
3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.
$P=$ order is above $\$ 60$
$Q=$ ordered a premium item
$R=$ shipped to alabama

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

\author{

1. You receive free shipping on orders above $\$ 60$.
 2. You receive free shipping if you do not order any premium items.
 3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.
}

Previous example: $O R(P, N O T(Q))$

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above $\$ 60$.
2. You receive free shipping if you do not order any premium items.
3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.
$P=$ order is above $\$ 60$
$Q=$ ordered a premium item
$R=$ shipped to alabama

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above \$60.
2. You receive free shipping if you do not order any premium items.
3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.
$P=$ order is above $\$ 60$
$Q=$ ordered a premium item
$R=$ shipped to alabama

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

$P=$ order is above $\$ 60$
$Q=$ ordered a premium item
= shipped to alabama
OR(P,NOT(Q))

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above $\$ 60$: $P=$ order is above $\$ 60$
2. You receive free shipping if you do not order
any premium items.
3. You receive free shipping if you're shipping to
Alabama and your order is less than $\$ 60$.
$\operatorname{AND}(R, N O T(P))$

Logical Rules! You Try It

Exercise: write a rule for a person being eligible to receive free shipping from "Alabamazon", which provides free shipping according to the following rules:

1. You receive free shipping on orders above \$60.
2. You receive free shipping if you do not order any premium items.
3. You receive free shipping if you're shipping to Alabama and your order is less than \$60.
$P=$ order is above $\$ 60$
$Q=$ ordered a premium item
$R=$ shipped to alabama

$$
O R(O R(P, N O T(Q)), A N D(R, N O T(P))
$$

Logical Rules!

$O R(P, Q)$
Por Q
$A N D(P, Q)$
P and Q

NOT(P)
not P
not

Logical Rules!

Why shouldn't we do this:

P or Q and R

Logical Rules!

Why shouldn't we do this:

P or Q and R

(P or Q) and R
P or (Q and R)

Logical Rules!

Why shouldn't we do this:

Por Qand R

(P or Q) and R
P or (Q and R)
$A N D(R, O R(P, Q))$
$O R(P, A N D(R, Q))$

Truth Table to Formula

Truth Table to Formula

Q: What rule goes in the ???

Truth Table to Formula

Q: What rule goes in the ???

Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: What rule goes in the ???

Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: What rule goes in the ???

Strategy:

1. Make a rule for each "True"
2. OR them together
$N O T(P)$ or P

Truth Table to Formula

Q: What rule goes in the ???

Strategy:

1. Make a rule for each "True"
2. OR them together

OR(NOT(P), P)

Truth Table to Formula

P	Q	$? ? ?$
T	T	\mathbf{F}
T	F	\mathbf{T}
F	T	\mathbf{F}
F	F	\mathbf{T}

Q: What rule goes in the ???

Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: What rule goes in the ???

Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: What rule goes in the ???

Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: What rule goes in the ???

OR(AND(P,NOT(Q)),
AND(NOT(P),NOT(Q)))

Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: What rule goes in the ???

OR(AND(P,NOT(Q)),
AND(NOT(P),NOT(Q)))

Also: NOT(Q)
Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: Can we write down every possible logical formula in this way?

Truth Table to Formula

Q: Can we write down every possible logical formula in this way?

A: YES!

Truth Table to Formula

Q: Can we write down every possible logical formula in this way?

A: YES!

Strategy:

1. Make a rule for each "True"
2. OR them together

Truth Table to Formula

Q: Can we write down every possible logical formula in this way?

A: YES!

Strategy:

1. Make a rule for each "True"
2. OR them together

Q: What if we only had AND?

Truth Table to Formula

Q: What if we only had AND?

A: No! Can't do this one:

All Logical Formulas!

Idea: with a certain set of logical functions, we can represent all possible logical formulas!

All Logical Formulas!

If P, then Q

All Logical Formulas!

If P, then Q

$$
P \longrightarrow Q
$$

Q: Can we represent this as a logical formula?

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

P	Q	P	\rightarrow	Q
T	T	T		T
T	F	T		F
F	T	F		T
F	F	F		F

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

P	Q	P	\rightarrow	Q
T	T	T		T
T	F	T		F
F	T	F		T
F	F	F		F

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

P	Q	P	\rightarrow	Q
T	T	T	T	T
T	F	T		F
F	T	F		T
F	F	F		F

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

P	Q	P	\rightarrow	Q
T	T	T	T	T
T	F	T	F	F
F	T	F	T	T
F	F	F		F

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

All Logical Formulas!

$Q:$ Can we represent "If P, then Q " as a logical formula?

P	Q	P	\rightarrow	Q
T	T	T	T	T
T	F	T	F	F
F	T	F	T	T
F	F	F	T	F

Truth Table to Formula

Strategy:

1. Make a rule for each "True
2. OR them together

P	Q	P	\rightarrow	Q
T	T	T	T	T
T	F	T	F	F
F	T	F	T	T
F	F	F	T	F

Truth Table to Formula

Strategy:

1. Make a rule for each "True
2. OR them together

AND (P, Q)
AND (NOT(P), Q)
AND(NOT(P),NOT(Q))

P	Q	P	\rightarrow	Q
T	T	T	\mathbf{T}	T
T	F	T	F	F
F	T	F	\mathbf{T}	T
F	F	F	\mathbf{T}	F

Truth Table to Formula

Strategy:

1. Make a rule for each "True
2. OR them together

AND (P, Q)
or
AND(NOT(P), Q)
or
AND(NOT(P),NOT(Q))

Logic

Onward! Gates

Gates: NOT

Gates: NOT

Gates: NOT

Gates: NOT

Q: What is this, physically?

Gates: NOT

Q: What is this, physically?

Now: The Transistor

- Takes in electric current:

Amplifies it! (ON, 1)
Or not... (OFF, 0)

Low voltage pulse of electricity $=0$ High voltage pulse of electricity $=1$

Gates: NOT

Gates: NOT

Gates: NOT

Gates: AND

P	Q	AND	P	$Q)$
1	1	$\mathbf{1}$	1	1
1	0	$\mathbf{0}$	1	0
0	1	$\mathbf{0}$	0	1
0	0	$\mathbf{0}$	0	0

Gates: AND

P	Q	$A N D($	P	$Q)$
1	1	$\mathbf{1}$	1	1
1	0	$\mathbf{0}$	1	0
0	1	$\mathbf{0}$	0	1
0	0	$\mathbf{0}$	0	0

Gates: AND

P	Q	AND $($	P	$Q)$
1	1	$\mathbf{1}$	1	1
1	0	$\mathbf{0}$	1	0
0	1	$\mathbf{0}$	0	1
0	0	$\mathbf{0}$	0	0

Gates: OR

Gates: OR

P	Q	OR(P	Q)	
1	1	1	1	1	$0 \quad O R(P, Q)=1$
1	0	1	1	0	$O R>$
0	1	1	0	1	1
0	0	0	0	0	

Gates: Composition

Try writing down the gate structure for the following Boolean sentence:

OR(P,NOT(Q))

Gates: Composition

Try writing down the gate structure for the following Boolean sentence:

OR(P,NOT(Q))

Gates: Composition

Try writing down the gate structure for the following Boolean sentence:

> OR(P,NOT(Q))

A:

Gates: Composition

Try writing down the gate structure for the following Boolean sentence:

> OR(P,NOT(Q))

A:

Gates: Composition

Try writing down the gate structure for the following Boolean sentence:

OR(P,NOT(Q))

A:

Gates: Composition

	P	Q	$O R($	P	$\operatorname{NOT}($	$\mathrm{Q})$
	T	T	T	$\mathrm{T}, \mathrm{NOT}(Q))$	T	F
	T	\mathbf{T}	T	F	T	
F	T	F	F	F	T	
F	F	\mathbf{T}	F	T	F	

Gates: Composition

OR(P,NOT(Q))	P	Q	OR(P	NOT(Q)
	T	T	T	T	F	T
	T	F	T	T	T	F
	F	T	F	F	F	T
	F	F	T	F	T	F

Gates: Composition

OR(P,NOT(Q))	P	Q	OR(P	NOT,	Q)
	T	T	T	T	F	T
	T	F	T	T	T	F
	F	T	F	F	F	T
	F	F	T	F	T	F

Gates: Composition

OR(P,NOT(Q))	P	Q	OR(P	NOT(Q)
	T	T	T	T	F	T
	T	F	T	T	T	F
	F	T	F	F	F	T
	F	F	T	F	T	F

Gates: Composition

OR(P,NOT(Q))	P	Q	OR(P	NOT(Q)
	T	T	T	T	F	T
	T	F	T	T	T	F
	F	T	F	F	F	T
	F	F	T	F	T	F

Gates: Composition

Truth Table to Formula

Idea: with a certain set of logical functions, we can represent all possible logical formulas!

Truth Table to Gate

Idea: with a certain set of logical functions gates, we can represent all possible logical formulas!

What Else Could be a Gate?

Could It Work?

- Michael's domino OR gate: 24 dominoes
- The first pentium processor had 3.3 Mill transistors, or roughly 800k gates.
- So we need around 20 Mill dominoes
- World record for domino topple: 4.5 Mill
- Pentium: computes 60 Mill times a second
- Dominoes? Takes awhile to set up...

Abstraction!

Abstraction!

RESTRIGTED

UNDER 17 REQUIRES ACCOMPANYING PARENT OR ADULT GUARDIAN

$O R(P, Q)$

Abstraction!

©

Abstraction:

all possible logical formulas!

Abstraction:

Low level programs

Abstraction:

Abstraction:

$=$
Your ideas!

Reflection

- Logic review
- Gates
- AND, OR, NOT gates
- Composition of gates
- Can represent all possible logical formulas as gates

Transistors and friends are just gates

- Up Next: Turning gates into simple programs!

