Gradient Boosting for RL in Complex Domains

David Abel2, Alekh Agarwal1, Fernando Diaz1, Akshay Krishnamurthy1, Robert Schapire1

1Microsoft Research
2Brown University

ICML RL and Abstraction Workshop 2016
Goal

Develop simple and scalable Reinforcement Learning (RL) techniques that can solve high dimensional problems.
Minecraft
MALMO: Minecraft AI Testbed

MALMO: an API for developing agents in Minecraft

Gridworld

MALMO: Minecraft AI Testbed

Gridworld

Goal

difficulty

Build 32 bit ALU
Key Components

Developed an RL agent for Minecraft-scale problems:
Key Components

Developed an RL agent for Minecraft-scale problems:

1) A *vision system* capable of real-time RL in Minecraft.
Developed an RL agent for Minecraft-scale problems:

1) A vision system capable of real-time RL in Minecraft.

2) A new lightweight function approximator for RL.

Gradient Boosting [Friedman 2001, Mason 1999]
Developed an RL agent for Minecraft-scale problems:

1) A *vision system* capable of real-time RL in Minecraft.

2) A *new lightweight function approximator* for RL.

3) An *exploration* technique for model-free RL (but: preliminary experiments are inconclusive).
Gradient Boosting for RL

Treat RL as a Regression problem for the Q-function
Gradient Boosting for RL

1) Fix an ϵ-greedy policy with respect to \hat{Q}
Gradient Boosting for RL

1) Fix an ϵ-greedy policy with respect to \hat{Q}

2) Run an episode —> receive a dataset:

Treat RL as a Regression problem for the Q-function
Gradient Boosting for RL

1) Fix an ε-greedy policy with respect to \hat{Q}

2) Run an episode \rightarrow receive a dataset:

$$D = \langle (s_1, a_1, r_1), \ldots, (s_N, a_N, r_N) \rangle$$

state reward action

Treat RL as a Regression problem for the Q-function
Gradient Boosting for RL

1) Fix an ϵ-greedy policy with respect to \hat{Q}

2) Run an episode \rightarrow receive a dataset:

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D}:

Treat RL as a Regression problem for the Q-function
Gradient Boosting for RL

1) Fix an ε-greedy policy with respect to \hat{Q}

2) Run an episode \rightarrow receive a dataset:

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D}:

$$\min_h \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - (r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')) \right]^2$$

Treat RL as a Regression problem for the Q-function
Gradient Boosting for RL

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D}:

$$\min_h \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - (r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')) \right]^2$$

- new weak learner
- previous estimate
- Bellman residual
Gradient Boosting for RL

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D}:

$$\min_h \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - (r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')) \right]^2$$

Where:

$$\hat{Q}(s, a) = \sum_{e=1}^{E} h_e(s, a)$$

Treat RL as a Regression problem for the Q-function
Gradient Boosting for RL

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D}:

$$\min_h \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - (r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')) \right]^2$$

Where:

$$\hat{Q}(s, a) = \sum_{e=1}^{E} h_e(s, a)$$

Treat RL as a Regression problem for the Q-function
Gradient Boosting for RL

3) Fit a new estimate of \hat{Q} by minimizing the Bellman Residual on the data set, \mathcal{D}:

$$
\min_h \sum_{i=1}^{N} \left[h(s_i, a_i) + \hat{Q}(s_i, a_i) - (r_i + \gamma \max_{a'} \hat{Q}(s_{i+1}, a')) \right]^2
$$

We solve this using regression trees as the weak learner.

Treat RL as a Regression problem for the Q-function
High Level

episode 1

observation:
reward: a number

agent

world

action
High Level

Episode 1

Observation:

Reward: a number

\[\hat{Q} = \sum (\text{agent}) \]
Observation: a number

Reward: a number

\[\hat{Q} = \sum \left(\langle s_1, a_1, r_1, s_2, a_2, \ldots \rangle \right) \]
High Level

episode 1

observation:

reward: a number

world

action

agent

\[\mathcal{D}_1 \]

\[\langle s_1, a_1, r_1, s_2, a_2, \ldots \rangle \]

\[\hat{Q} = \sum () \]
High Level

\[\hat{Q} = \sum (h_1(s, a)) \]

episode 1

observation: world

reward: a number

agent

\[\mathcal{D}_1 \]

\[\langle s_1, a_1, r_1, s_2, a_2, \ldots \rangle \]

Loss

Tree

\[= h_1(s, a) \]
High Level

episode 1

world

observation:

reward: a number

agent

action

\(\langle s_1, a_1, r_1, s_2, a_2, \ldots \rangle \)

\(\mathcal{D}_1 \)

Loss

\[\hat{Q} = \sum_{\mathcal{D}_1} (h_1) \]
episode 1

observation:

reward: a number

world

tagent

\(\hat{Q} = \sum_{D_1} h_1 \)
episode 1

observation: a picture

reward: a number

agent

world

episode 2

\hat{Q} = \sum_{D_1} \left(h_1 \right)

\mathcal{D}_2

\langle s_1, a_1, r_1, s_2, a_2, \ldots \rangle

\text{Loss}

Tree

\mathcal{D}_2

h_2(s, a)
High Level

\[\hat{Q} = \sum \left(\begin{array}{c} h_1 \\ h_2 \end{array} \right) \]
High Level

observation:

reward: a number

\[\hat{Q} = \sum (h_1, h_2, h_3, h_4, h_5, h_6, h_7, h_8) \]

\[D_1 \quad D_2 \quad \ldots \quad \ldots \quad \ldots \quad D_8 \]
Intuitively Nice Properties

• Non-parametric

• Simple, easy to implement, minimal hand-engineering

• Interleaved data collection

• Rich theoretical literature, room for analysis.

• Only need to store one episode’s worth of data.
Experiments: Baselines

• Baseline 1 (Linear Approximator)
• Baseline 2 (Random Forest Approximator)
• Baseline 3 (Batch Boost Approximator)
Experiments: Baselines

- Baseline 1
 - (Linear Approximator)

- Baseline 2
 - (Random Forest Approximator)

- Baseline 3
 - (Batch Boost Approximator)

Similar to Fitted Q-iteration [Ernst et al. 2005]
Experiments: Visual Grid
Visual Grid: Results

Key

Gradient Booster Batch Booster Linear Forest
Experiments: Hillclimbing
Visual Hill Climb: Results

Key

Gradient Booster Batch Booster Linear Forest
Next Steps

• Investigate relevant exploration techniques inspired by Gradient Boosting.

• Use rich foundation of theory on gradient boosting to inspire analysis of this approach.

• Further experimentation.
Acknowledgments

A big thank you to The MALMO team!

David Bignell, Katja Hofmann, Tim Hutton, Matthew Johnson, Pushmeet Kohli, Nate Kushman, Ewa Luger, Bhaskar Mitra, Jamie Shotton, Evelyne Viegas.