
Online Ranking for Tournament Graphs

Claire Mathieu1 and Adrian Vladu1

1Brown University, Department of Computer Science, Providence RI, USA
{claire, avladu}@cs.brown.edu

Abstract. We study the problem of producing a global ranking of items
given pairwise ranking information, when the items to be ranked arrive in
an online fashion. We study both the maximization and the minimization
versions of the problem on tournaments (max acyclic subgraph, feedback
arc set). We also study the case when the items arrive in random order.

1 Introduction

Context. Given complete pairwise ranking information between data items, of
the form “player i beats player j”, one seeks to provide a global ranking of the
players (or items) that aims to be consistent with the pairwise information, as
far as possible. Motivated by scheduling, graph layout, and rank aggregation,
this NP-hard problem was extensively studied [20, 23, 21, 10, 3, 15].

Here, we study the online version on tournaments. How should we insert
a newly arrived player without upsetting the current ranking? A new player
arrives, along with pairwise information about which players he beats, and the
algorithm must extend the current ranking by incorporating the new player.
Over time, the algorithm should hedge against the risk that the ranking may
gradually drift from the optimal.

In the maximum acyclic subgraph problem, the objective is to maximize
consistency, i.e. the number of pairs uv whose ordering in the output ranking
agrees with the input information. This measure can be too coarse in cases where
the input is almost perfect, since getting 99% of the pairs ordered consistently
with the input is not really a good outcome when there exists a perfect ordering
(or, say, an ordering with one single upset pair); in the more difficult feedback arc
set problem, the objective is to minimize inconsistencies, i.e. the number of pairs
uv whose ordering in the output ranking disagree with the input information.

For the feedback arc set problem on tournaments, we show that there is a
wide gap between the offline and the online performance of algorithms. Indeed,
the offline problem has an approximation scheme [19], yet we prove that no online
algorithm, even with randomization, can be better than the greedy algorithm,
which we prove is (n−2)-competitive. For the easier maximum acyclic subgraph
problem on tournament, the gap is smaller. Still, the offline problem has an
approximation scheme [4, 16, 19], yet we prove that no online algorithm, even

This work was partially funded by NSF grant CCF-0728816

2 C. Mathieu and A. Vladu

with randomization, can be 1 − ε competitive; the greedy algorithm is 1/2-
competitive.

For both problems the worst case can only happen if the adversary controls
both the input graph and the order of arrival of the graph vertices. The situation
is very different when the input graph is arbitrary but the arrivals are a ran-
dom permutation of the vertices. This online computation model with random
order has been the focus of increased attention in recent years. It is particu-
larly relevant to situations where data items arrive from different, independent
sources. Although the model was already suggested in the 1990s in the context
of best fit bin packing [17], it is increasingly the focus of active research ([5, 13]
for example).

This paper presents an instance where the random order model is much more
powerful than the standard online model: it almost enables a reduction to the
offline model! More precisely, for online feedback arc set with random order,
we observe the existence of a 3-competitive algorithm, and for online maximum
acyclic subgraph with random order, we observe the existence of an asymptotic
approximation scheme. Moreover, the results follow easily from prior work on
the offline model. This is a striking example where random order resolves most
of the difficulties inherent to online computation.

Definitions and results. At each time t, a new item v arrives, along with a relative
ranking with respect to each previously arrived item u (pairwise comparisons).
Thus the input after t steps is a tournament over t data items – a directed graph
such that for every pair {u, v}, exactly one of the two arcs (u, v) and (v, u) is
in the edge set. Here (u, v) ∈ E means that u is ranked higher than v. The
algorithm maintains a total ordering of the items: a newly arrived item v must
be inserted in the existing ranking. The final ranking is evaluated as follows: in
the maximum acyclic subgraph problem, the value of the output is the number of
pairs uv whose ordering in the output ranking agrees with the input information;
in the feedback arc set problem, the cost of the output is the number of pairs
uv whose ordering in the output ranking disagree with the input information.

Techniques. The most interesting proofs are the analysis of the greedy algorithm
for minimum feedback arc set and the randomized lower bound for maximum
acyclic subgraph. Every time a vertex arrives, Greedy adds it to the current
ranking at a position that minimizes the number of induced inconsistent pairs,
breaking ties in favor of the position of lowest index.

To analyze Greedy, we argue that if the greedy permutation and the offline
optimum are very different, then there must be some combinatorial structures
that we call c-entanglements (see Figure 1); in turn, c-entanglement implies a
lower bound on the cost of the optimal ranking. To prove a lower bound on the
randomized complexity of maximum acyclic subgraph, we provide a distribution
supported by two inputs and show that any algorithm that works well on the
first input must be far from optimal on the second input; that is done by a
delicate modification of the algorithm’s output, that can be analyzed in terms of
L1 distance; fortunately it is well-known that the inversion and the L1 distances

Online Ranking for Tournament Graphs 3

between permutations are within a factor of 2 of each other (Theorem 3), an
essential tool in our proof.

Theorem 1. Consider online feedback arc set on tournaments.

1. The greedy algorithm has competitive ratio n− 2.
2. Every (deterministic or randomized) algorithm has competitive ratio at least

n− 2.
3. If vertices arrive in random order then there is a 3-competitive algorithm.
4. Even if vertices arrive in random order, every (deterministic or randomized)

algorithm has competitive ratio at least 1.25.

Theorem 2. Consider online maximum acyclic subgraph on tournaments.

1. (Folklore) The greedy algorithm has competitive ratio (1/2); this is tight.
2. Every deterministic (resp. randomized) algorithm has competitive ratio at

least (1/2) (resp. (1− 1/77)).
3. When vertices arrive in random order, there is a (1− ε) asymptotic approx-

imation.

Theorem 1 is proved in section 2 (with subsections 2.1, 2.3, 2.3 and 2.4
respectively proving parts 1,2,3 and 4 of the Theorem). Theorem 2 is proved in
section 3 (with subsections 3.1,3.2 and 3.3 respectively proving parts 1, 2 and 3
of the Theorem).

Background results. The following results are known for the offline problems.
The maximum acyclic subgraph problem on tournaments and the feedback arc
set problem on tournaments are NP-hard [2, 1, 8, 11] . The “Quicksort” ranking
algorithm is a randomized 3-approximation for the feedback arc set on tourna-
ments [2]. Moreover, there is a polynomial-time approximation scheme (PTAS)
for the feedback arc set on tournaments [19]. There is a PTAS for the maximum
acyclic subgraph on tournaments [4, 16, 19]. Moreover the seeded randomized
greedy algorithm is a PTAS for the problem [19].

2 Online feedback arc set on tournaments

2.1 Analysis of Greedy

Throughout this section, let π denote the ranking obtained by Greedy. Let
G(V, E) be a tournament graph and let k denote the kth arriving vertex in
the online order (k ≤ n). Greedy maintains a ranking π of vertices where π(u)
denotes the position of vertex u in the ranking at the current time. Let σ denote
the optimal ranking. A back edge of a ranking ρ is a pair of vertices {u, v} such
that (u, v) ∈ E but ρ(v) < ρ(u). Let Bρ(v) denote the number of back edges of ρ
induced by the arrival of a vertex v. Theorem 1 can be proved from the following
two propositions.

For two rankings ρ and τ , let Kv(ρ, τ) denote the number of inversions be-
tween τ and ρ induced by the arrival of v, i.e. the number of vertices u arrived

4 C. Mathieu and A. Vladu

before v and such that {u, v} is ordered differently in ρ and in τ . Let ρ[v → p]
denote the ranking of vertices obtained from a ranking ρ by removing v and
putting it back in so that its resulting rank is p + 1.

Definition 1. Given two rankings ρ and τ , two sets of vertices A and B of size
c are c-entangled if:

– maxa∈A ρ(a) < minb∈B ρ(b).
– For every i < c there is a subset A′ of A of size at least c− i+1 and a subset

B′ of B of size at least i such that maxb∈B′ τ (b) < mina∈A′ τ (a).

Proposition 1. Given two rankings ρ and τ , let c = minpKk(ρ, τ [k → p]).
Then there are two subsets A and B of {1, 2, . . .k − 1} that are c-entangled.

���� ��
���� ��

�� �� ���� �� ��

���������	

��������	

Fig. 1. Two sets of vertices that are 3-entangled. The upper row represents the ranking
in ρ, the lower row gives the ranking in τ

Proposition 2. Let G be an arbitrary tournament, with arbitrary arrival order,
π be the greedy ranking, and ρ be an arbitrary ranking. If there are two sets of
vertices A and B that are c-entangled with respect to ρ and π, then ρ has cost
at least c.

Proof. (of part 1 of Theorem 1). The cost of Greedy is
∑n

k=3 Bπ(k). By definition
of Greedy,

Bπ(k) = min
p

Bπ[k→p](k).

Since a back edge in π[k → p] is either a back edge in σ or a pair ordered
differently in σ and in π[k → p], we have: Bπ[k→p](k) ≤ Bσ(k)+Kk(σ, π[k→ p]).
Combining, we obtain:

Bπ(k) ≤ Bσ(k) + min
p
Kk(σ, π[k→ p]).

Let c = minpKk(σ, π[k→ p]). From Proposition 1, there are two subsets A and B
of [1, k−1] that are c-entangled with respect to σ and π. From Proposition 2, the

restriction of σ to [1, k− 1] has cost at least c. In other words, c ≤
∑k−1

i=1 Bσ(i).
Summing over k and inverting summations concludes the proof.

Online Ranking for Tournament Graphs 5

Proof. (of Proposition 1.) Among vertices {1, 2, . . .k − 1}, let L = {i : ρ(i) <
ρ(k)} and R = {i : ρ(i) > ρ(k)}. First we claim that L and R both have cardi-
nality at least c. Indeed, inserting k in first position in τ yields c ≤ Kk(ρ, τ [k→
0]) = |L|, and similarly inserting k in the last position yields c ≤ |R|.

Now, let A denote the c vertices i of L such that τ (i) is maximum, and B
denote the c vertices i of R such that τ (i) is minimum. This defines A and B.

Clearly maxa∈A ρ(a) < minb∈B ρ(b). Now, fix i < c and consider the element
a∗ of A such that τ (a∗) is the ith largest among elements of A. In τ (k−1), consider
inserting k immediately to the right of a∗. Then there are only c− i vertices v of
L such that {k, v} is an inversion, yet for that value of p, by definition of c we
know that Kk(ρ, τ [k → p]) ≥ c, so there must be at least i vertices v of R such
that {k, v} is an inversion, hence such that τ (v) < τ (a∗). Therefore there must
be at least i vertices v of B such that τ (v) < τ (a∗), proving the lemma.

Proof. (of Proposition 2.) Among all instances of (G, ρ) such that ρ has minimum
cost, we claim that we can choose one such that the following property (P) holds:
let L = {u : ρ(u) ≤ maxa∈A ρ(a)} and R = V \ L. Then π|L = ρ|L and both
have cost 0; similarly, π|R = ρ|R and both have cost 0.

The proof is by contradiction. Among all instances such that the cost of ρ is
minimum, pick the one such that the inversion distance between ρ|L and π|L is
minimum. We claim that it is 0: assuming ρ|L 6= π|L, pick u, v ∈ L such that
ρ(u) = i, ρ(v) = i + 1, and π(u) > π(v). Then let ρ′ be equal to ρ except for
transposing u and v, and let G′ be equal to G with the possible exception of
pair {u, v}: in G′, (v, u) ∈ G′. By definition, ρ′ is closer to π than ρ in inversion
distance. Our definition of G′ ensures that the cost of ρ′ is at most the cost of
ρ. Moreover, it is easy to see that π(G′) = π(G). Therefore this provides a new
min cost instance with smaller inversion distance, a contradiction.

Similarly we can argue that ρ|R = π|R.
Finally, among all instances such that the cost of ρ is minimum, ρ|L = π|L

and ρ|R = π|R, we choose one such that the cost of π is minimum. We claim
that π|L and πR have cost 0: if not, modify G into G′ by inverting a back edge
(u, v), and argue as above that π(G′) = π(G), hence a contradiction.

From now on we assume that Property (P) holds. Our next step is to find a
lower bound for cost(ρ). Define a right-left matching to be a matching between
pairs (u, v) ∈ R× L such that π(u) < π(v).

Consider the right-left matching ν =
⋃m

i=1(ri, li) given by the following
greedy algorithm. Go through the vertices r from R in increasing order of π(r).
For each such r find the vertex l = arg min{l∈L:π(r)<π(l),l unmatched} π(l). If such
a vertex exists, match it with r. Matching ν is maximum. Indeed, consider a

maximum right-left matching ν ′ =
⋃m′

i=1(r
′
i, l

′
i). First, in ν ′ we exchange the ver-

tices r′i, in increasing order of π(r′i), with those vertices from R that have the
lowest positions in π: this does not affect feasibility since each vertex r′i gets
replaced by a vertex ri” such that π(ri”) ≤ π(r′i). Then we exchange each vertex
l′i, in increasing order of π(r′i), with the one that has the smallest position in π|L
such that feasibility is maintained; one can prove that the maximum matching
obtained is exactly ν .

6 C. Mathieu and A. Vladu

We claim that cost(ρ) ≥ |ν | and |ν | ≥ c, from which the proposition follows.

To prove the first claim, we argue that if the arrival of a vertex v causes the
size of the maximum matching to increase (necessarily by 1), then we must have
Bρ(v) ≥ 1.

Suppose, for a contradiction, that when inserting some vertex t the size of the
maximum right-left matching increases while Bρ(t) = 0. Assume that t ∈ L (the
case t ∈ R is similar). Since Bρ(t) = 0, we must have (t, r) ∈ E for every r ∈ R.
By definition of Greedy, for every position z < π(t) we have Bπ[t→π(t)](t) ≤
Bπ[t→z](t). Since (t, r) ∈ E for every r, this implies that |{r ∈ R : r < t and z ≤
π(r) < π(t)}| ≤ |{l ∈ L : l < t and z ≤ π(l) < π(t)}|. It is not hard to see that
this implies that all vertices r ∈ R such that π(r) < π(t) can be matched to a
vertex ` ∈ L that also has π(`) < π(t). So all vertices of R such that π(r) < π(t)
are matched by the greedy algorithm M. So M will not match t to anything
because all its potential pairs are already matched, so the size of the maximum
matching given by M does not increase: contradiction.

To prove the second claim, take the c-entangled sets A and B. By definition
of c-entanglement (first property) and by definition of L and R, it follows that
A ⊆ L and B ⊆ R. By definition of c-entanglement (second property), we can
get a partition of A ∪ B into c disjoint pairs (bi, ai) such that π(bi) < π(ai) ,
bi ∈ B, ai ∈ A. These pairs form a right-left matching of size c. So the maximum
right-left matching ν has size |ν | ≥ c.

2.2 Deterministic and randomized lower bounds

To prove the deterministic lower bound, consider the following two inputs. I1

has n vertices, labeled 1, 2, . . . , n in order of the optimal ranking, and the only
back edge of the optimal ranking is edge (n, 1). The optimal cost is 1. The arrival
order is n, 1, 2, . . . , n − 1. Input I2 has two vertices, labeled 1, 2 in order of the
optimal ranking, and there are no back edges. The optimal cost is 0 and the
arrival order is 1,2. In order to be competitive for I2, the algorithm must place
the first two vertices so that the cost is 0. Then, for I1, any extension of that
ranking has at least one back edge from each of the other n − 2 vertices, hence
the lower bound.

To prove the randomized lower bound, we use Yao’s minmax theorem [7,
22], and consider the input distribution that is I1 and I2 with equal probability.
Input I1 has n vertices labeled 1, 2, . . . , n in order of the optimal ranking, and
the only back edge of the optimal ranking is edge (n, 1). The optimal cost is 1.
The arrival order is n, 1, 2, . . . , n−1. Input I2 has n vertices labeled 1, 2, . . . , n in
order of the optimal ranking, and there are no back edges in the optimal ranking.
The optimal cost is 0. The arrival order is 1, n, 2, . . . , n− 1. The average cost of
the optimal output is 1/2. Let A be any deterministic algorithm. We will prove
that the average cost of the output is at least (n− 2)/2.

First, consider the case whenA places the first edge forward. With probability
1/2 the input is I1 and then the output ranking has cost at least n − 2; with
the remaining probability 31/2, the input is I2 and then the output ranking has

Online Ranking for Tournament Graphs 7

cost 0. The average cost of the output is at least (n− 2)/2. The analysis in the
other case is similar (and yields (n− 1)/2 > (n− 2)/2).

2.3 Random order arrivals: a better algorithm

Algorithm 1 Insert a new vertex into the current ranking

Input: a newly arrived vertex t, the current set of vertices S1, the current
ranking ρ, a set A consisting of all the edges between t and the vertices in ρ
Output: the updated ranking ρ′

p← 1, lo← 0, hi← |S1|
while Sp 6= ∅ do

Let ip the vertex in Sp that arrived first
if (t, ip) ∈ A then

Let Sp+1 = {v ∈ Sp : (v, ip) ∈ A}, hi← ρ(ip)− 1
else

Let Sp+1 = {v ∈ Sp : (ip, v) ∈ A}, lo← ρ(ip)
p← p + 1

ρ′ ← ρ[t→ lo]

Here is an online algorithm. Upon arrival of vertex t, we place it in the current
ranking ρ as follows. Let S1 the set of all vertices in ρ and i1 the vertex from
S1 that arrived first. t is before vertex i1 if there is an edge from t to i1, and is
after vertex i1 if there is an edge from i1 to t. Let S2 the set of vertices in S1

that are in ρ on the same side of i1 where we place t. We continue in the same
manner as before until Sp = ∅ and the position of t is entirely determined. So
we place t there. This procedure is presented in Algorithm 1.

Since vertices arrive in random order, vertex i1 is like the first pivot used by
the Quicksort ranking algorithm of Ailon, Charikar and Newman ([2]), and in
fact the above algorithm is an equivalent description. Hence the 3-approximation
result carries over to yield a proof that the algorithm is 3-competitive.

2.4 Random order lower bounds

Consider the following input. There are 4 vertices, labeled 1,2,3,4 in order of
the optimal ranking. The only back edge of the optimal ranking is edge (4, 1).
The optimal cost is 1. The arrival order is random. Let A be any deterministic
algorithm. We will prove that the average cost of the output is at least 5/4.

First, consider the case whenA places the first edge forward. With probability
(

4
2

)

/4! = 1/4 the first two arriving vertices are 1 and 4 and then the output
ranking has cost at least 2; with the remaining probability 3/4, the output
ranking has cost at least 1. The average cost of the output is at least 5/4. The
analysis in the other case is similar (and yields 7/4 > 5/4).

8 C. Mathieu and A. Vladu

3 Maximum Acyclic Subgraph

3.1 Analysis of Greedy

The upper bound is folklore. To prove tightness, we exhibit an input I on which
Greedy’s performance is asymptotically OPT/2 . Consider the following input.
There are n vertices labeled 1, 2, . . . , n in order of the optimal ranking. Here we
assume n is even. The back edges of the optimal ranking are edges (n− i+1, i),
1 ≤ i ≤ n/2. (It’s easy to verify that this ranking is optimal, since all the
back edges belong to edge disjoint triangles.) The optimal profit is

(

n
2

)

− n/2,
which is asymptotic to n2/2. The arrival order is 1, n, 2, n − 1, etc. Then it
is easy to see (using the tie-breaking rule) that Greedy produces the ranking
. . . (n− 2), 3, (n− 1), 2, n, 1, with total profit asymptotically n2/4.

������ ��� � ���

Fig. 2. Input showing that the performance of the greedy algorithm is asymptotically
OPT/2. Only back edges are depicted.

3.2 Deterministic and randomized lower bounds

To prove the deterministic lower bound, consider the family of inputs defined
as follows. Here, we label vertices by order of arrival. First, (1, 2) ∈ E. The rest
of the input depends on the algorithm. If the algorithm places 1 before 2, then
every future arrival u has an edge (2, u) and an edge (u, 1), else every future
arrival u has an edge (1, u) and an edge (u, 2). Then, (3, 4) ∈ E. If the algorithm
places 3 before 4, then every future arrival u has an edge (4, u) and an edge
(u, 3), else every future arrival u has an edge (3, u) and an edge (u, 4). This
guarantees that the output has profit at most (n/2) + (

(

n
2

)

− (n/2))/2, which is
asymptotically n2/4. On the other hand, there is a ranking with profit at least
(

n
2

)

− (n/2) which is asymptotically equivalent to n2/2, hence the lower bound.
Since the input is adaptive, this does not extend to the randomized setting.

To prove the randomized lower bound, we use Yao’s minmax theorem [7, 22],
and consider the input distribution that is I1 with probability p and I2 with
probability 1 − p (in the end we will set p = 0.967418.) Input I1 consists of n
red vertices R whose optimal ranking r1r2 . . . rn has no back edges. Its optimal
profit is

(

n
2

)

. Input I2 consisting of I1, followed (in arrival order) by g(n+1) blue
vertices B = {bij : 1 ≤ i ≤ n + 1, 1 ≤ j ≤ g} (in the end we will set g = 8). The

Online Ranking for Tournament Graphs 9

� ����� ������������ ���� ��

Fig. 3. As soon as the algorithm determines whether to place vertex 2i before or after
2i − 1, the adversary makes all the subsequent vertices have outgoing edges to the
vertex with the lowest rank among 2i − 1 and 2i and incoming edges from the other
one.

ranking

b11 . . . b1grnb21 . . . b2grn−1 . . . r2bn1 . . . bngr1bn+1,1 . . . bn+1,g

has back edges exactly for vertex pairs in R× R. Let m = n + g(n + 1) denote
the total number of vertices in I2. The optimal profit of I2 is at least

(

m
2

)

−
(

n
2

)

.

The average optimal profit is at least p
(

n
2

)

+ (1 − p)(
(

m
2

)

−
(

n
2

)

). Let A be any
deterministic algorithm. We will analyze two cases.

First, consider the case when, in input I1, A has profit at most c1

(

n
2

)

(in the
end we will set c1 = 0.897637.) The algorithm trivially has profit at most at
most

(

m
2

)

on input I2. A short computation shows that

EI [profit(A(I))]

EI [profit(OPT (I))]
≤ 1−

(1− c1)
p

1−p
− 1

p
1−p

+
(m

2
)

(n

2
)
− 1

(1)

Second, consider the case when, in input I1, A has profit greater than c1

(

n
2

)

.
The analysis in that case rests on the following lemma, where K(σ, ρ) is the
Kendall-Tau distance (or inversion distance) between permutations, i.e. the num-
ber of pairs ordered differently in σ and in ρ.

Lemma 1. Let π2 be a maximum profit ranking of I2 extending A(I1) to an .Let
α2 be the ranking b11 . . . b1grnb21 . . . b2grn−1 . . . r2bn1 . . . bngr1bn+1,1 . . . bn+1,g of
I2 (Figure 3.2). Then:

K(π2, α2) ≥
1

2
(g + 1)c1

(

n

2

)

.

Let us defer its proof for a moment. On input I1, A(I1) = π1 has profit at most
(

n
2

)

. On input I2, the profit of A(I2) is at most the profit of π2. Every inversion
between two vertices in π2 and α2 that are not both red determines a back edge
in π2. Therefore, counting out the possible back edges induced by pairs of red
vertices, the number of back edges in π2 is at most K(π2, α2)−

(

n
2

)

. So

profit(π2) ≤

(

m

2

)

−K(π2, α2) +

(

n

2

)

.

10 C. Mathieu and A. Vladu

Using Lemma 1 and combining, a short calculation yields

EI [profit(A(I))]

EI [profit(OPT (I))]
≤ 1−

c1(g+1)
2 − 2

p
1−p

+
(m

2
)

(n

2
)
− 1

(2)

Finally,we numerically find the values for p, g and c1 that minimize the maximum
of (1) and (2). For p = 0.967418, g = 8, c1 = 0.897637, both of these are less
than 0.986822 ≈ 1− 1/77.

��� �� ��
����������� ����������� ����������� �	�������	�

Fig. 4. Input I2 for n = 3.

To prove Lemma 1, it is useful to relate two distances between permutations.

Theorem 3. ([14]) For any two permutations σ and ρ, we have K(σ, ρ) ≤
L1(σ, ρ) ≤ 2K(σ, ρ), where L1(σ, ρ) =

∑

i |σ(i)− ρ(i)|.

Proof. (of Lemma 1) By Theorem 3, K(π2, α2) ≥
1
2L1(π2, α2). Let π′

2 be the
ranking obtained from α2 by reordering the vertices of R according to π1 while
still leaving them in positions i(g + 1) for 1 ≤ i ≤ n: thus π′

2(r) = π1(r)(g + 1)
for all r ∈ R and all the edges in B × B are forward edges. Since π′

2(b) = α2(b)
for every b ∈ B, we can write

L1(π2, α2) =
∑

j∈B

|π2(j) − π′
2(j)|+

∑

i∈R

|π2(i) − α2(i)|.

First we need the following relation:

Claim.
∑

j∈B

|π2(j) − π′
2(j)| ≥

∑

i∈R

|π2(i) − π′
2(i)|

Proof. In order to minimize the left hand side, we can see that the blue vertices
have to appear in the same order in π2 as in π′

2. Indeed, if u, v ∈ B such that
π′

2(u) < π′
2(v) and π2(v) < π2(u), then swapping the positions of u and v in

π2 decreases |π2(u) − π′
2(u)| + |π2(v) − π′

2(v)|. For this particular ranking of
vertices in π2, we can show by a simple calculation that

∑

j∈B |π2(j)− π′
2(j)| =

∑

i∈R |π2(i) − π′
2(i)|. Therefore the claim holds.

Online Ranking for Tournament Graphs 11

Thus
L1(π2, α2) ≥

∑

i∈R

|π2(i) − π′
2(i)|+ |π2(i)− α2(i)|.

By the triangular inequality, this implies L1(π2, α2) ≥
∑

i∈R |π
′
2(i)−α2(i)|. Since

π′
2(b) = α2(b) for all b ∈ B, we deduce

L1(π2, α2) ≥ L1(π
′
2, α2).

Now, let α1 = α2|R. By definition of π′
2 and of α2, we see that L1(π

′
2, α2) = (g +

1)L1(π1, α1). From Theorem 3, L1(π1, α1) ≥ K(π1, α1). From our assumption, at
least c1

(

n
2

)

edges given by the ranking π1 are forward edges, and so, K(π1, α1) ≥

c1

(

n
2

)

. This concludes the proof.

3.3 Random order arrivals

Since the optimal ranking has value at least
(

n
2

)

/2, it is enough to provide an
online algorithm with additive error O(εn2). First, observe that it is enough to
provide an approximate ranking, identifying all ranks in [iε, (i + 1)ε) – up to an
additive error of O(εn2), thus we only have k = 1/ε essentially different labels.

Here is the algorithm. We place the first s = O(1/ε4) vertices arbitrarily,
producing a partial ranking π. At that point, we have a random sample S of the
entire set of vertices. The problem can be has one ranking constraint for each
pair of vertices i, j. The offline algorithm from [19] constructs a ranking of S,
then proceeds greedily to place the remaining vertices: we execute that part of
the algorithm and construct a virtual ranking σ of S, unrelated to the ranking
constructed so far. As in [19], we then insert the remaining vertices in a greedy
manner, pretending the original ranking was σ. As the vertices arrive in random
order, the analysis from [19] applies and the result, had we started with the
virtual ranking, would be a ranking with additive error O(εn2). The fact that
S is really ranked according to π instead of σ induces an additional error of
O(s2 + sn), which is O(εn2) assuming that n = Ω(1/ε5).

References

1. N. Alon, Ranking tournaments, SIAM J. Discrete Math, 2006, 20, 1, 137-142.
2. N. Ailon, M. Charikar, and A. Newman, Aggregating inconsistent information:

ranking and clustering, Journal of the ACM (JACM), vol. 55, 2008, p. 127.
3. N. Ailon, and M. Mohri, An efficient reduction of ranking to classification, In Procs.

21st COLT, 2008, 87-97.
4. S. Arora, A. Frieze, and H. Kaplan, A new rounding procedure for the assignment

problem with applications to dense graph arrangement problems, Mathematical Pro-
gramming, vol. 92, 2002, pp. 1-36.

5. M. Babaioff, N. Immorlica, and R. Kleinberg, Matroids, secretary problems, and
online mechanisms, Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, 2007, Pages: 434 - 443

6. B. Berger and P. Shor, Tight bounds for the maximum acyclic subgraph problem,
Journal of Algorithms, vol. 25, 1997, p. 118.

12 C. Mathieu and A. Vladu

7. A. Borodin and R. El-Yaniv, On-Line Computation and Competitive Analy-
sis,Cambridge University Press, 1998.

8. P. Charbit, S. Thomasse, and A. Yeo, The minimum feedback arc set problem is
NP-hard for tournaments, Combinatorics, Probability and Computing, 2007, 16,
1-4.

9. M. Charikar, K. Makarychev, and Y. Makarychev, On the advantage over random
for maximum acyclic subgraph, Foundations of Computer Science, 2007. FOCS’07.
48th Annual IEEE Symposium on, 2007, p. 625-633.

10. W. W. Cohen, R. E. Schapire, and Y. Singer, Learning to order things, J. Artificial
Intelligence Research, 2007, 10, 243-270.

11. V. Conitzer, Computer Slater rankings using similarities among candidates, In
Procs. 21st AAAI,2006, 613-619.

12. D. Coppersmith, L. Fleischer, and A. Rudra, Ordering by weighted number of wins
gives a good ranking for weighted tournaments, Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, ACM, 2006, p. 782.

13. N. Devanur, and T. Hayes, The Adwords Problem: Online Keyword Matching with
Budgeted Bidders under Random Permutations, In Proc. ACM EC, 2009.
[19] Moreover, there is a polynomial-time approximation scheme (PTAS) for the
feedback arc set on tournaments.

14. P. Diaconis, and R. Graham, Spearman’s footrule as a measure of disarray, Journal
of the Royal Statistical Society, 1977, Series B, 39(2):262-268.

15. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, Rank aggegation methods for
the web, In Procs. 10th WWW, 2001, 613-622. The NP-hardness proof is in the
online-only appendix available from http://www10.org/cdrom/papers/577/.

16. A. M. Frieze, and R. Kannan, Quick approximation to matrices and applications
Com- binatorica, 1999, 19, 2, 175-220.

17. C. Kenyon, Best-fit bin-packing with random order, Proceedings of the seventh
annual ACM-SIAM symposium on Discrete algorithms, 1996, Pages: 359 - 364.

18. C. Mathieu and W. Schudy, Yet another algorithm for dense max cut: Go greedy,
Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algo-
rithms, Society for Industrial and Applied Mathematics, 2008, p. 176-182.

19. C. Mathieu and W. Schudy, How to rank with few errors: a PTAS
for weighted feedback arc set on tournaments, In Procs. 39 th ACM
STOC, 2007, pp. 95-103. See rather the journal submission available from
http://cs.brown.edu/people/ws/papers/fast journal.pdf

20. S. Seshu, and M. B. Reed, Linear Graphs and Electrical Networks, Addison-Wesley,
Reading, MA, 1961.

21. P. Slater, Inconsistencies in a schedule of paired comparisons, Biometrika, 1961,
48, 303-312.

22. A. Yao, Probabilistic computations: Toward a unified measure of complexity, Pro-
ceedings of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS), 1977, pp. 222-227

23. D. H. Younger, Minimum feedback arc sets for a directed graph, IEEE Trans. Circuit
Theory, 1963, 10, 238-245.

