
Position Paper: Performance Evaluation for Gradual Typing

Asumu Takikawa Daniel Feltey Ben Greenman Max S. New
Jan Vitek Matthias Felleisen

PRL, Northeastern University
{asumu, dfeltey, types, maxsnew, j.vitek, matthias}@ccs.neu.edu

Abstract
Gradually typed programming languages aim to improve software
maintenance by allowing programmers to selectively add type an-
notations to untyped programs. Run-time checks ensure that these
typed portions interact soundly with unannotated parts of the pro-
gram. These checks, however, may introduce unacceptable perfor-
mance overhead. The extent of the overhead has not been systemat-
ically studied and no common methodology exists to diagnose such
problems. In this position paper, we propose an idea for a frame-
work for evaluating the performance of a gradual type system.

1. The Gradual Typing Promise
Gradually typed programming languages promise to improve soft-
ware maintenance for untyped scripting languages. Using such sys-
tems, programmers may selectively add type annotations to their
existing untyped programs. The annotated parts are checked, and
run-time contracts or casts ensure that they safely interact with the
remaining untyped portions.

Programmers use gradual type systems in order to realize soft-
ware engineering benefits from types such as enforcing documen-
tation, guiding refactoring, and catching regressions. In addition,
the gradual typing promise implies that as programmers add type
annotations, their program will continue to run. This part of the
promise is held up by allowing typed and untyped code to link to-
gether with inserted run-time checks. For a gradual type system to
be a net benefit, it should also allow gradually typed programs to
remain performant as they are incrementally converted. Therefore,
it is desirable for a gradual type system to promise low overhead
for interoperation.

In our experience, existing gradual type systems (including the
systems we maintain) fail to meet this criterion. Gradual type sys-
tems in the literature report slowdowns of 72x (Rastogi et al. 2015),
10x (Vitousek et al. 2014), and 4x (Takikawa et al. 2015) in pro-
grams due to the insertion of dynamic checks. Practical users of
gradual type systems have also reported 25-50x slowdowns.1

To make gradual type systems live up to their promises, we
must (1) diagnose what kinds of programs and what degree of
“typedness” leads to performance problems, and (2) identify the
tools, language features, or implementation techniques that will
help eliminate the overhead. This position paper focuses on the
diagnostic side, and outlines some potential solutions.

2. The State of Gradual Type System Evaluation
Despite a wealth of literature on gradual typing, there is a dire lack
of performance evaluation efforts. As mentioned, several projects
have reported slowdowns on example programs, and others have
explored the cost of the checking mechanism itself (Allende et al.

1 http://docs.racket-lang.org/math/array.html

3.22±0.09

3.02±0.05 3.79±0.12 3.08±0.13 4.33±0.03 1.9±0.03

3.8±0.08 3.18±0.06 4.12±0.06 1.87±0.14 3.75±0.11 2.82±0.11 2.19±0.04 4.18±0.09 1.85±0.06 2.9±0.02

3.66±0.07 2.76±0.05 2.16±0.05 4.22±0.05 1.83±0.06 2.85±0.03 2.78±0.11 2.15±0.05 1.06±0.01 2.87±0.02

2.69±0.12 2.07±0.03 1.05±0.03 2.82±0.03 1.06±0.01

1±0.01

Figure 1: Lattice example with five modules

2013b) but these results are difficult to compare and interpret in the
broader context of the software engineering benefits that gradual
type systems promise.

In part, this points to a lack of any accepted methodologies for
evaluating gradual type system performance. Such a methodology
should provide a systematic approach to evaluating interoperation
overhead. Here, we propose steps towards the development of an
evaluation setup that tries to discover the potential overhead.

3. Exploring the Program Space
To work towards a methodology, we need to first understand how
gradual type systems are used. The basic premise is that program-
mers do not add type annotations to an entire program at once. In-
stead, programmers can choose intermediate states in which some
parts of the program are typed and others are untyped. The gran-
ularity of the type-checked parts—by module, by block, or by
expression—depends on the gradual type system.

For our evaluation, we focus on Typed Racket—a gradually
typed sister language to Racket—because of its maturity as a grad-
ual type system; it has been in development since 2006. Typed
Racket is a macro-level gradual type system, which means that
types are added to the program at module granularity and dynamic
checks are installed at these boundaries between typed and untyped
modules. As a result, Typed Racket does not need to instrument
untyped modules at all, which enables separate compilation within
gradually typed programs.

This approach is in stark contrast with the micro-level approach,
in which typed and untyped code is mixed freely in a single module.
Variables without type annotations are assigned the type Dyn.

http://docs.racket-lang.org/math/array.html


These variables induce casts when typed portions of the program
expect more specific types.

Recognizing that programmers gradually add types to their pro-
gram, we propose to look at all possible ways in which a program-
mer could add types to a program in the context of the macro ap-
proach. Specifically, we take existing Racket programs, come up
with type annotations for all of the modules in the program, and
then consider the possible typed/untyped configurations of mod-
ules. We then benchmark all of these possible configurations to
determine the performance overhead of run-time checks by com-
paring against the original program.

Given n modules in the program, this produces 2n configura-
tions of the program. We can represent this space of configurations
as a lattice in which the nodes represent a particular configuration
of modules in a program—that is, whether each module is typed
or untyped. An edge between two nodes A and B indicates that
configuration A can be turned into configuration B by adding type
annotations to a single additional module. See figure 1 for an ex-
ample of a program lattice (for a program that traverses Racket
bytecode data structures). The bottom of the lattice represents the
original, fully untyped program and the top of the lattice represents
the program with types added to all modules.

The labels on the nodes represent the normalized runtimes
(mean and standard deviation) of benchmarks that we run on the
whole program. The black and white boxes represent whether a
module is typed (black) or untyped (white). Note that since a pro-
gram may call out to additional libraries, the top of the lattice (the
fully typed program) may still have run-time overhead.

Paths in the graph that start from the bottom correspond to
the timeline of a hypothetical programmer who is adding types to
the program. Ideally, most configurations of the program should
have reasonable overhead. In practice, however, large portions of
the lattice will contain regions of poor performance due to, for
example, tightly coupled modules with dynamic checks on the
boundary. Based on these lattices, we hope to understand to what
degree these regions of poor performance affect programs and what
kinds of typed-untyped boundaries are especially problematic.

As a first attempt, Takikawa et al. (2015)—including several
of the present authors—worked on a small-scale version of this
approach in the context of Typed Racket. Following up, we are
working on scaling this evaluation idea to programs with a larger
number of modules (and hence a much larger number of variations)
and are investigating both functional and object-oriented programs.

4. Request for Comments: Scaling the Idea
The large number of variations makes data visualization and anal-
ysis challenging. We are therefore considering alternatives to the
lattice form of visualization such as histograms over path metrics
and heatmaps.

Although our idea is straightforward for the macro style of grad-
ual typing, it is not obvious how to apply it to the micro approach
that is common in other systems such as Gradualtalk (Allende et
al. 2013a), Reticulated Python, and Safe TypeScript. Specifically,
it is not clear how to set up the space of variations. For example,
type annotations could be toggled by function, by module, or even
by binding site. Picking the latter would lead to a particularly large
configuration space since every variable multiplies the number of
variations by two.

5. Investigating Potential Solutions
After diagnosing the kinds of overhead found in gradually-typed
programs, we intend to investigate possible solutions. Solutions
may come in the form of mitigation, in which a tool or language

feature helps avoid problematic dynamic checks. Alternatively, the
solutions may instead seek to reduce the cost of the checks.

One form of mitigation we have identified is to guide the pro-
grammer to good paths through the state space using techniques
such as Feature-specific Profiling (St-Amour et al. 2015) with con-
tracts/casts as the target feature.

We also intend to investigate the use of tracing JIT compilation
based on the Pycket work by Bolz et al. (2014). The Pycket au-
thors report dramatic reductions in contract checking overhead in
untyped Racket programs (Bauman et al. 2015). We are interested
in seeing if tracing also benefits the kinds of contract usages that
we see in gradually typed programs.

6. Conclusion
Runtime overhead for gradually-typed programs is a pressing con-
cern. Industrial groups2 continue to adopt unsound interoperation
citing performance concerns with run-time checks. However, there
are open questions in both diagnosing where these overheads occur
and in solving them. Here we propose a framework for diagnosing
such overheads by visualizing the effect of adding types to exist-
ing programs on runtime performance along various gradual typing
paths. Using the diagnostic information, we hope to drive efforts in
both tooling and compilation for gradually typed languages.

Bibliography
E. Allende, O. Callaú, J. Fabry, É. Tanter, and M. Denker. Gradual typing

for Smalltalk. Science of Computer Programming, 2013a.

E. Allende, J. Fabry, and É. Tanter. Cast Insertion Strategies for Gradually-
Typed Objects. In Proc. DLS, 2013b.

S. Bauman, C. F. Bolz, R. Hirschfield, V. Kirilichev, T. Pape, J. G. Siek, and
S. Tobin-Hochstadt. Pycket: A Tracing JIT For a Functional Language.
In submission, 2015.

C. F. Bolz, T. Pape, J. G. Siek, and S. Tobin-Hochstadt. Meta-tracing makes
a fast Racket. In Proc. DYLA, 2014.

A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. Safe &
Efficient Gradual Typing for TypeScript. In Proc. POPL, 2015.

V. St-Amour, L. Andersen, and M. Felleisen. Feature-specific Profiling. In
Proc. CC, 2015.

A. Takikawa, D. Feltey, E. Dean, R. B. Findler, M. Flatt, S. Tobin-
Hochstadt, and M. Felleisen. Towards Practical Gradual Typing. In
Proc. ECOOP, 2015.

M. M. Vitousek, A. Kent, J. G. Siek, and J. Baker. Design and Evaluation
of Gradual Typing for Python. In Proc. DLS, 2014.

2 For example, Hack for PHP and Flow for JavaScript.


	1 The Gradual Typing Promise
	2 The State of Gradual Type System Evaluation
	3 Exploring the Program Space
	4 Request for Comments: Scaling the Idea
	5 Investigating Potential Solutions
	6 Conclusion
	Bibliography

