An Algorithm for the Penalized Multiple Choice Knapsack Problem

Elizabeth M. Hilliard1 and Amy Greenwald2 and Victor Naroditskiy3

Abstract.

We present an algorithm for the penalized multiple choice knapsack problem (PMCKP), a combination of the more common penalized knapsack problem (PKP) and multiple choice knapsack problem (MCKP). Our approach is to convert a PMCKP into a PKP using a previously known transformation between MCKP and KP, and then solve the PKP greedily. For PMCKPs with well-behaved penalty functions, our algorithm is optimal for the linear relaxation of the problem.

1 Introduction

The knapsack problem (KP) is a classic optimization problem. Due to the large number of real-world problems that can be modeled as KPs, the problem comes in many flavors. We focus on a problem variation that combines two previously studied variations: the penalized knapsack (PKP) and the multiple choice knapsack (MCKP) problem.

2 Knapsack Problems, Global Penalty Functions, and Greedy Algorithms

We begin by presenting various knapsack problems, together with greedy algorithms that solve their linear relaxations optimally.

In addition to a problem instance defined by a set of items, each with a weight and value, and a total capacity, our algorithms take as input a metric \(m \), that describes how to evaluate items (e.g., efficiency), a stopping rule \(f \), that indicates when the algorithm should stop taking items and an item-taking rule \(g \), which determines the fraction of the last item considered to take.

Knapsack Problem A KP is defined by a vector of item values, \(v \geq 0 \), a vector of weights, \(w \geq 0 \) and a hard total capacity, \(c \). A solution is a vector \(x \) indicating the amount of each item taken. Thus, the objective is \(\max _{x} v \cdot x \), subject to \(w \cdot x \leq c \) and each \(x_i \in \{0, 1\} \) (for the discrete problem, in which items are indivisible) or each \(x_i \in [0, 1] \) (for the relaxed problem, \(R(KP) \), in which items may be divisible). (The index \(i \) ranges over items.)

GreedyKP (Alg. 1) takes items in order of efficiency until the knapsack reaches capacity, or there are no more items with positive efficiencies.

Theorem [4]: GreedyKP, with efficiency as the metric \(m \), the hard capacity stopping rule (Alg. 2) as \(f \), and the soft taking rule (Alg. 3) as \(g \), solves \(R(KP) \) optimally.

Algorithm 1 GreedyKP

Input: \(v, w, c, m, f, g \)
Output: \(x \)
\[
\begin{align*}
 x &= 0 \\
 &\text{for all items } i, \text{ CALCMETRIC}(i, v, w, m) \\
 i &= \text{BESTUNTAKENITEMINDEX} \\
 &\text{while } !f(i, x, v, w, c) \text{ and MOREITEMSTOCONSIDER do} \\
 x_i &= 1 \\
 i &= \text{BESTUNTAKENITEMINDEX} \\
 x_i &= g(i, x, v, w, c) \\
 &\text{return } x
\end{align*}
\]

Algorithm 2 HardStoppingRule

Input: \(i, x, v, w, c \)
Output: \{boolean indicating whether to stop taking items or not\}
\[
\begin{align*}
 &\text{return } x \cdot w + w_i > c
\end{align*}
\]

Multiple Choice Knapsack Problem An MCKP is defined similarly to a KP, with an additional constraint over a set of types \(T \), which ensures that only one item \(s \) is taken from each type set, \(T \subset T \). Thus the objective is \(\max _{x} v \cdot x \), subject to \(w \cdot x \leq c \), \(\sum _{s \in T} x_s \leq 1 \), \(\forall T \in T \), and each \(x_i \in \{0, 1\} \), with \(R(MCKP) \) defined analogously.

Theorem [6]: GreedyMCKP, with efficiency as the metric \(m \), the hard capacity stopping rule as \(f \), the soft taking rule as \(g \), solves \(R(MCKP) \) optimally.

[6]’s algorithm (Alg. 5) proceeds in three steps: first it transforms the given instance of MCKP into a KP (Alg. 4); second it solves the ensuing KP optimally using GreedyKP; third it maps the resulting KP solution back into an optimal solution to the MCKP (Alg. 6).

Penalized Knapsack Problems A PKP is defined by \(v \) and \(w \), and a penalty function \(\kappa \). The objective is \(\max _{x} \pi(x) \), where \(\pi(x) \equiv v \cdot x - p(x, v, w) \) subject to each \(x_i \in \{0, 1\} \), with \(R(KP) \) defined analogously. We refer to the penalty functions studied in [2] as \textit{global} because their only input is the knapsack’s total weight \(\kappa \equiv w \cdot x \). In such cases, it suffices to search greedily with efficiency as the metric; however, for non-global penalty functions, other metrics may be more sensible.

Theorem [2]: If the penalty function is global and convex, then the GreedyPKP algorithm, which invokes GreedyKP with efficiency

Algorithm 3 SoftTakingRule

Input: \(i, x, v, c \)
Output: \{fraction of item \(i \) to take\}
\[
\begin{align*}
 &\text{return } (c - x \\
\end{align*}
\]
1. Let \(\max v \cdot x \) denote the total value of the penalty function \(p \) on \(x \). Output: \(\text{decreasing, then} \)

Input: \(v, w, T \)

Algorithm 4 REDUCEMCKPTOKP

Input: \(v, w, T \)
Output: \(v, w \)

SortByWeight(v, w) {Reindex vectors}
for \(T \in T \) do
\((v[T], w[T]) = \text{REMOVELPDOMINATED ITEMS}(v, w)\)
for \(i \in [1, |T| - 1] \) do
\((v[x_i], w[x_i]) = ((v[x_i] + 1) - (v[x_i]), (w[x_i] + 1) - (w[x_i]))\)
return \(v, w \)

Algorithm 5 GREEDYMCKP

Input: \(v, w, T, c, m, f, g \)
Output: \(x \)

\((v', w') = \text{REDUCEMCKPTOKP}(v, w, T)\)
\(x' = \text{GREEDYKPSOL}(v', w', c, m, f, g)\)

return \(\text{CONVERTKPSOLTO MCKPSOL}(x', v', w', v, w) \)

as the metric \(m \), the penalized stopping rule (Alg. 7) as \(f \), and the penalized taking rule (Alg. 8) as \(g \), solves (PKP) optimally.

Penalized Multiple Choice Knapsack Problem A PMCKP is defined by \(v, w, T, \) and a penalty function, \(p \). The objective is \(\max_x \pi(x) \) subject to \(\sum_{x \in T} x_s \leq 1, \forall T \in T \) and each \(x_i \in \{0, 1\} \), with R(PMCKP) defined analogously.

Theorem 1. If the penalty function is global, monotonic, non-increasing, and convex, then the GreedyPMCKP algorithm, which invokes GreedyMCKP with efficiency as the metric \(m \), the penalized stopping rule as \(f \), and the penalized taking rule as \(g \), solves R(PMCKP) optimally.

Lemma 1. Let \(x^* \) denote an optimal solution to R(PMCKP) with penalty function \(p \), and let \(\kappa^* \) and \(\pi^* \) denote the total weight and total value of \(x^* \), respectively. If \(p \) is global, monotonic, and non-decreasing, then \(x^* \) is also an optimal solution to the corresponding R(MCKP) with capacity \(\kappa^* \). Furthermore, \(v \cdot x^* = \pi^* + p(\kappa^*) \).

Proof. Suppose not: i.e., suppose \(x^* \) is not an optimal solution to the corresponding R(MCKP) with capacity \(\kappa^* \). Instead, suppose \(x \) is optimal, with total weight \(\kappa \) and total value \(\pi \). Then \(v \cdot x > v \cdot x^* \) and \(\kappa \leq \kappa^* \). Now, because the penalty function is global, monotonic, and non-decreasing, \(p(\kappa) \leq p(\kappa^*) \). But then \(\pi = v \cdot x - p(\kappa) \geq v \cdot x - p(\kappa^*) > v \cdot x^* - p(\kappa^*) = \pi^* \). But this is a contradiction, since \(x^* \) is optimal.

Proof of Theorem 1. The proof relies on two observations:

1. Let \(x \) denote an optimal solution to R(MCKP), and let \(\kappa^* \) and \(\pi^* \) denote the total weight and total value of \(x \). \(x \) is an optimal solution to R(MCKP) with capacity \(\kappa^* \).

Algorithm 6 CONVERTKPSOLTO MCKPSOL

Input: \(x', v', w', v, w \)
Output: \(x \)
\(x = 0 \)
for \(T \in T \) do
\((v'[T], w'[T]) = (v'[T], x'[T])\)
\(v'[T] = \text{CONVERTKPSOLTO MCKPSOL}(x', v', w', v, w) \)
return \(x \)

Algorithm 7 PENALIZEDSTOPPINGRULE

Input: \(i, x, v, w, p \)
Output: \(\text{\{boolean indicating whether or not to stop taking items\}} \)

\(x' = x + e^i \) \(\{e^i \text{ is a vector of 0s, except the i\text{th entry is a 1}\} \}

return \(\pi(x') < \pi(x) \)

Algorithm 8 PENALIZEDTAKINGRULE

Input: \(i, x, v, w \)
Output: \(\text{\{fraction of} \ x_i \text{\ to take\} \}

\(\text{return} \ \arg \max v \cdot (x + oe^i) - p(x + oe^i, v, w) \)

solution to R(MCKP) with capacity \(\kappa^* \). The value of the optimal solution to R(MCKP) is \(\pi^* + p(\kappa^*) \). (Lemma 1.)

2. Let \(y \) denote a feasible solution to R(KP), and let \(\kappa^y \) and \(\pi^y \) denote the total weight and total value of \(y \). \(y \) is a feasible solution to R(KP) with total value \(\pi^y - p(\kappa^y) \).

Consider an instance of R(PMCKP). Let \(x \) denote an optimal solution to this problem, with total weight \(\kappa^* \) and total value \(\pi^* \). Consider, as well, a corresponding instance of R(KP) constructed via Zemel’s transformation. Let \(y \) denote an optimal solution to this problem, with total value \(\pi^y \).

We claim that \(\pi^y \geq \pi^* \). Suppose not: i.e., suppose \(\pi^y < \pi^* \). By Fact 1, \(x \) is an optimal solution to R(MCKP) with total weight \(\kappa^* \) and total value \(\pi^* + p(\kappa^*) \). By Zemel’s theorem, \(x \) can be converted into a solution, \(y' \), to R(KP) with capacity \(\kappa^* \), such that the total value of \(y' \) is \(\pi^* + p(\kappa^*) \). Finally, by Fact 2, \(y' \) is also a feasible solution to R(KP) with total value \(\pi^y \). This is a contradiction, because \(y \) was assumed to be an optimal solution to R(KP).

3 Conclusions and Future Work

PMCKP was originally proposed as a model of bidding in ad auctions [1]—specifically, in the context of the annual Trading Agent Competition [3]. Indeed, one of the top-scoring TAC AA agents [5] solved PMCKP using GreedyPMCKP as a subroutine inside a search over capacities, but as the space of possible capacities is enormous, it is conceivable that GreedyPMCKP or a variant could perform better. In future work, we plan to investigate the performance of GreedyPMCKP in an ad auctions context.

4 Acknowledgments

This work was supported by NSF Grant #RI-1217761.

REFERENCES

