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ABSTRACT

A fundamental problem of distributed computing is that
of simulating a (secure) broadcast channel, within the set-
ting of a point-to-point network. This problem is known
as Byzantine Agreement and has been the focus of much
research. Lamport et al. showed that in order to achieve
Byzantine Agreement in the standard model, more than 2/3
of the participating parties must be honest. They further
showed that by augmenting the network with a public-key
infrastructure, it is possible to obtain secure protocols for
any number of faulty parties. This augmented problem is
called “authenticated Byzantine Agreement”.

In this paper we consider the question of concurrent, par-
allel and sequential composition of authenticated Byzantine
Agreement protocols. We present surprising impossibility

results showing that:
1. Authenticated Byzantine Agreement cannot be com-

posed in parallel or concurrently (even twice), if 1/3
or more of the parties are faulty.

2. Deterministic authenticated Byzantine Agreement pro-
tocols that run for r rounds and tolerate 1/3 or more
faulty parties, can only be composed sequentially less

than 2r times.
In contrast, we present randomized protocols for authen-

ticated Byzantine Agreement that compose sequentially for
any polynomial number of times. We exhibit two such proto-
cols: The first protocol tolerates corruptions of up to 1/2 of
the parties, while In the first protocol, the number of faulty
parties may be any number less than 1/2. On the other
hand, the second protocol can tolerate any number of faulty
parties, but is limited to the case that the overall number of
parties is O(log k), where k is a security parameter. Finally,
we show that when the model is further augmented so that
unique and common session identifiers are assigned to each
concurrent session, then any polynomial number of authen-
ticated Byzantine agreement protocols can be concurrently
executed, while tolerating any number of faulty parties.

*This work was carried out while the first and second au-
thors were visiting IBM Research.
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1. INTRODUCTION

The Byzantine Generals (Byzantine Agreement') problem
is one of the most researched areas in distributed computing.
Numerous variations of the problem have been considered
under different communication models, and both positive
results, i.e. protocols, and negative results, i.e. impossibil-
ity and lower bounds on efficiency and resources, have been
established. The reason for this vast interest is the fact that
the Byzantine Generals problem is the algorithmic imple-
mentation of a broadcast channel within a point-to-point
network. In addition to its importance as a stand-alone
primitive, broadcast is a key tool in the design of secure
protocols for multiparty computation.

Despite the importance of this basic functionality and the
vast amount of research that has been directed towards it,
our understanding of the algorithmic issues is far from com-
plete. As is evident from our results, there are still key
questions that have not yet been addressed. In this paper,
we provide solutions to some of these questions.

The problem of Byzantine Generals is (informally) defined
as follows: There are n parties, one of which is the General
who holds an input . In addition, there is an adversary who
controls up to t of the parties and can arbitrarily deviate
from the designated protocol specification. The (honest)
parties need to agree on a common value. Furthermore, if
the General is not faulty, then this common value must be
his original input z.

Pease et al. [15, 13] provided a solution to the Byzantine
Generals problem in the standard model, i.e. the information-
theoretic model with point-to-point communication lines (and
no setup assumptions). For their solution, the number of
faulty parties, ¢, must be less than n/3. Furthermore, they
complemented this result by showing that the requirement
for t < n/3 is in fact inherent. That is, no protocol which
solves the Byzantine Generals problem in the standard model
can tolerate a third or more faulty parties.

The above bound on the number of faulty parties in the
standard model is a severe limitation. It is therefore of great
importance to introduce a different (and realistic) model in
which it is possible to achieve higher fault tolerance. One
possibility involves augmenting the standard model such
that messages sent can be authenticated. By authentica-
tion, we mean the ability to ascertain that a message was
in fact sent by a specific party, even when not directly re-
ceived from that party. This can be achieved using a trusted
preprocessing phase in which a public-key infrastructure for
digital signatures (e.g. [18, 11]) is set up. (We note that this

1These two problems are essentially equivalent.



requires that the adversary be computationally bounded.
However, there exist preprocessing phases which do not re-
quire any computational assumptions; see [16].) Indeed,
Pease et al. [15, 13] use such an augmentation and obtain a
protocol for the Byzantine Generals problem which can tol-
erate any number of faulty parties (this is very dramatic con-
sidering the limitation to 1/3 faulty in the standard model).
The Byzantine Generals problem in this model is referred to
as authenticated Byzantine Generals.

A common use of Byzantine Generals is to substitute a
broadcast channel. Therefore, it is clear that the settings
in which we would want and need to run it, involve many
invocations of the Byzantine Generals protocol. The ques-
tion of whether these protocols remain secure when executed
concurrently, in parallel or sequentially is thus an important
one. However, existing work on this problem (in both the
standard and authenticated models) focused on the security
and correctness of protocols in a single execution only.

It is easy to see that the unauthenticated protocol of Pease
et al. [15], and other protocols in the standard model, do
compose concurrently (and hence in parallel and sequen-
tially). However, this is not the case with respect to authen-
ticated Byzantine Generals. The first to notice that compo-
sition in this model is problematic were Gong, Lincoln and
Rushby [12], who also suggest methods for overcoming the
problem. Our work shows that these suggestions and any
others are futile; in fact composition in this model is impos-
sible (as long as 1/3 or more of the parties are faulty). (We
note that by composition, we refer to stateless composition;
see Section 2.3 for a formal discussion.)

Our Results. Qur first theorem, stated below, shows that
authenticated Byzantine Generals protocols, both determin-
istic and randomized, cannot be composed in parallel (and
thus concurrently). This is a surprising and powerful state-
ment with respect to the issue of enhancing the standard
model by the addition of authentication. The theorem shows
that this enhancement does not provide the ability to over-
come the impossibility result when composition is required.
That is, if there is a need for parallel composition, then
the number of faulty players cannot be n/3 or more, and
hence the authenticated model provides no advantage over
the standard model.

THEOREM 1. No protocol for authenticated Byzantine
Agreement that composes in parallel (even twice) can tol-
erate n/3 or more faulty parties.

Regarding the question of sequential composition, we show
different results. We first prove another (weaker) lower bound
for deterministic protocols:

THEOREM 2. Let II be a deterministic protocol for au-
thenticated Byzantine Agreement that terminates within r
rounds of communication. Then, II can be sequentially com-
posed at most 2r—1 times.

In contrast, for randomized protocols we obtain positive re-
sults and present a protocol which can be composed sequen-
tially (any polynomial number of times), and which toler-
ates t < n/2 faulty parties. The protocol which we present
is based on a protocol of Fitzi and Maurer [8] that toler-
ates t < n/2 faulty parties, and is in the standard model
augmented with an ideal three-party broadcast primitive.

‘We show that this primitive can be replaced by an authen-
ticated protocol for three parties that can be composed se-
quentially (and the resulting protocol also composes sequen-
tially). Thus, we prove:

THEOREM 3. Assume that there exists a signature scheme
that is existentially secure against chosen message attacks.
Then, there exists a randomized protocol for authenticated
Byzantine Generals with a bounded number of rounds, that
tolerates t < mn/2 faulty parties and composes sequentially
any polynomial number of times.

We also present a randomized Byzantine Generals protocol
that tolerates any number of faulty parties, and composes
sequentially any polynomial number of times. However, the
number of messages sent in this protocol is exponential in
the number of parties. Therefore, it can only be used when
the overall number of parties is logarithmic in the security
parameter of the signature scheme.

On the Use of Unique Session Identifiers. As will be
apparent from the proofs of the lower bounds (Theorems 1
and 2), what prevents agreement in this setting is the fact
that honest parties cannot tell in which execution of the
protocol a given message was authenticated. This allows
the adversary to “borrow” messages from one execution to
another, and by that attack the system. In Section 5, we
show that if we further augment the authenticate model so
that unique and common indices are assigned to each exe-
cution, then security under many concurrent executions can
be achieved (for any number of faulty parties).

Thus, on the one hand, our results strengthen the com-
mon belief that session identifiers are necessary for achieving
authenticated Byzantine Generals. On the other hand, we
show that such identifiers cannot be generated within the sys-
tem. Typical suggestions for generating session identifiers in
practice include having the General choose one, or having
the parties exchange random strings and set the identifier
to be the concatenation of all these strings. However, The-
orem 1 rules out all such solutions (notice that just coming
up with a common identifier involves reaching agreement).
Rather, one must assume the existence of some trusted ez-
ternal means for coming up with unique and common in-
dices. This seems to be a very difficult, if not impossible,
assumption to realize in many natural settings.

A natural question to ask here relates to the fact that
unique and common session identifiers are anyway needed
in order to carry out concurrent executions. In particular,
parties need to be able to allocate messages to protocol exe-
cutions, and this requires a way of distinguishing executions
from each other. Indeed, global session identifiers solve this
problem. However, it also suffices for each party to allocate
local identifiers for itself. That is, when a party begins a new
execution, it chooses a unique identifier sid and informs all
parties to concatenate sid to any message they send him
within this execution. It is then guaranteed that any mes-
sage sent by an honest party to another honest party will be
directed to the execution it belongs to. We thus conclude
that for the purposes of carrying out concurrent executions,
global identifiers are not needed.

Implications for Secure Multiparty Computations.
As we have stated above, one important use for Byzantine
Generals protocols is to substitute the broadcast channel
in a multiparty protocol. In fact, most known solutions



for multiparty computations assume a broadcast channel,
claiming that it can be substituted by a Byzantine Generals
protocol without any complications. Our results therefore
imply that multiparty protocols that rely on authenticated
Byzantine Generals to replace the broadcast channel, cannot
be composed in parallel or concurrently.

Another important implication of our result is due to the
fact that any secure protocol for solving general multiparty
tasks can be used to solve Byzantine Generals. Therefore,
none of these protocols can be composed in parallel or con-
currently, unless more than 2/3 of the parties are honest or
a physical broadcast channel is available.

Our Work vs. Composition of Secure Multiparty
Protocols. There has been much work on the topic of
protocol composition in the context of multiparty computa-
tion [1, 14, 2, 5, 3]. Much of this work has focused on zero-
knowledge and concurrent zero-knowledge protocols [10, 6,
17, 4]. For example, Goldreich and Krawczyk [10] show that
there exist protocols that are zero-knowledge when executed
stand-alone, and yet do not compose in parallel (even twice).
However, protocols that compose do exist (see, for example,
Goldreich [9] and references therein). In contrast, we show
that it is impossible to obtain any protocol that will compose
twice in parallel.

2. DEFINITIONS
2.1 Computational Model

We consider a setting involving n parties, P, ... , P,, that
interact in a synchronous point-to-point network. In such
a network, each pair of parties is directly connected, and
it is assumed that the adversary cannot modify messages
sent between honest parties. In this setting, each party is
formally modeled by an interactive Turing machine with n—
1 pairs of communication tapes. The communication of the
network proceeds in synchronized rounds, where each round
consists of a send phase followed by a receive phase. In the
send phase of each round, the parties write messages onto
their output tapes, and in the receive phase, the parties read
the contents of their input tapes.

This paper refers to the authenticated model, where some
type of trusted preprocessing phase is assumed. This is mod-
eled by all parties also having an additional setup-tape that
is generated during the preprocessing phase. Typically, in
such a preprocessing phase, a public-key infrastructure of
signature keys is generated. That is, each party receives its
own secret signing key, and in addition, public verification
keys associated with all other parties. (‘This enables parties
to use the signature scheme to authenticate messages that
they receive, and is thus the source of the name “authen-
ticated”.) However, we stress that our lower bound holds
for all preprocessing phases (even those that cannot be effi-
ciently generated).

In this model, a t-adversary is a party that controls t < n
of the parties P,... , P,, where the corruption strategy de-
pends on the adversary’s view (i.e., the adversary is adap-
tive). Since the adversary controls these parties, it receives
their entire views and determines the messages that they
send. In particular, these messages need not be according
to the protocol execution, but rather can be computed by
the adversary as an arbitrary function of its view. We note
that our impossibility results hold even against a static ad-

versary (for whom the set of faulty parties is fixed before
the execution begins).

Note that our protocols for authenticated Byzantine Agree-
ment that compose sequentially rely on the security of sig-
nature schemes, and thus assume probabilistic polynomial-
time adversaries only. On the other hand, our impossibility
results hold for adversaries (and honest parties) whose run-
ning time is of any complexity. In fact, the adversary that
we construct to prove our lower bounds is of the same com-
plexity as the honest parties.

2.2 Byzantine Generals/Agreement

The existing literature defines two related problems: Byzan-
tine Generals and Byzantine Agreement. In the first prob-
lem, there is one designated party, the General, who wishes
to broadcast its value to all the other parties. In the second
problem, each party has an input and the parties wish to
agree on a value, with a validity condition that if a majority
of honest parties begin with the same value, then they must
terminate with that value. These problems are equivalent
in the sense that any protocol solving one can be used to
construct a protocol solving the other, while tolerating the
same number of faulty parties. We relax the standard re-
quirements on protocols for the above Byzantine problems
in that we allow a protocol to fail with probability that is
negligible in some security parameter. This relaxation is
needed for the case of authenticated Byzantine protocols
where signature schemes are used (and can always be forged
with some negligible probability). Formally,

DEFINITION 1. (Byzantine Generals): Let Pi,...,P,_1
and G = P, be n parties and let G be the designated party
with input x. In addition there is an adversary who may cor-
rupt up to t of the parties including the special party G. A
protocol solves the Byzantine Generals problem if the follow-
ing two properties hold (except with negligible probability):
1. Agreement: All honest parties output the same value.

2. Validity: If G is honest, then all honest parties output x.

We denote such a protocol by BGp+.

In the setting of Byzantine Agreement it is not straight-
forward to formulate the validity property. Intuitively, it
should capture that if enough honest parties begin with the
same input value then they will output that value. By “hon-
est,” we mean the parties that follow the prescribed proto-
col exactly, ignoring the issue that the first step of the party
might be to change its local input.

DEFINITION 2. (Byzantine Agreement): Let Pi,..., P,
be n parties, with associated inputs x1,... ,Zn. In addition
there is an adversary who may corrupt up to t of the parties.
Then, a protocol solves the Byzantine Agreement problem
if the following two properties hold (except with negligible
probability):

1. Agreement: All honest parties output the same value.

2. Validity: If max(n —t,|n/2] + 1) of the parties have the
same input value x and follow the protocol specification, then
all honest parties output x.

We note that for the information-theoretic setting, the valid-
ity requirement is usually stated so that it must hold only
when more than two thirds of the parties have the same



input value, because in the information-theoretic setting,
n—t>2n/3.

Authenticated Byzantine Protocols: In the model for
authenticated Byzantine Generals/Agreement, some trusted
preprocessing phase is run before any executions begin. In
this phase, a trusted party distributes keys to every partic-
ipating party. Formally,

DEFINITION 3. (Authenticated Byzantine Generals and
Agreement): A protocol for authenticated Byzantine Gener-
als/Agreement is a Byzantine Generals/Agreement protocol
with the following augmentation:

e Fach party has an additional setup-tape.

e Prior to any protocol execution, an ideal (trusted) party
chooses a series of strings si,... ,Sn according to some
distribution, and sets party P;’s setup-tape to equal s;
(for every i =1,...,n).

Following the above preprocessing stage, the protocol is run
in the standard communication model for Byzantine Gener-
als/Agreement protocols.

As we have mentioned, a natural example of such a prepro-
cessing phase is one where the strings si, ... , s, constitute a
public-key infrastructure. That is, the trusted party chooses
key-pairs (pki,sk1),... , (pkn,skn) from a secure signature
scheme, and sets the contents of party P;’s tape to equal
s; = (pka,...,pki-1, ski,pkit1,... ,pkn). That is, all par-
ties are given their own signing key and the verification keys
of all the other parties.

We remark that the above-defined preprocessing phase is
very strong. First, it is assumed that it is run completely
by a trusted party. Furthermore, there is no computational
bound on the power of the trusted party generating the keys.
Nevertheless, our impossibility results hold even for such a
preprocessing phase.

2.3 Composition of Protocols

This paper deals with the security of authenticated Byzan-
tine Agreement protocols, when the protocol is executed
many times (rather than just once). We define the composi-
tion of protocols to be stateless. This means that the honest
parties act upon their view in a single execution only. In par-
ticular, this means that the honest parties do not store in
memory their views from previous executions or coordinate
between different executions occurring at the current time.
Furthermore, in stateless composition, there is no unique
session identifier that is common to all participating par-
ties. (See the Introduction for a discussion on session iden-
tifiers and their role.) We note that although the parties are
stateless, the adversary is allowed to maliciously coordinate
between executions and record its view from previous exe-
cutions. Formally, composition is captured by the following
process:

DEFINITION 4. (sequential and parallel composition): Let
Py, ..., P, be parties for an authenticated Byzantine Gener-
als/Agreement protocol II. Let I C [n] be an index set such
that for every i € I, the adversary A controls the party P;.
Ower time, indices are added to I as the adversary chooses to
corrupt additional parties, with the restriction that |I| < t.
Then, the sequential (resp., parallel) composition of IT n-
volves the following process:

e Run the preprocessing phase associated with II and ob-
tain the strings si,...,sn. Then, for every j, set the
setup-tape of P; to equal s;.

o Repeat the following process a polynomial number of times
sequentially (resp., in parallel).

1. The adversary A chooses an input vector 1,... ,ZTn.

2. Fiz the input tape of every honest P; to be z; and
the random-tape to be a uniformly (and indepen-
dently) chosen random string.

3. Invoke all parties for an execution of II (using the
strings generated in the preprocessing phase above).
The ezecution is such that for i € I, the messages
sent by party P; are determined by A (who also sees
P;’s view). On the other hand, all other parties
follow the instructions as defined in II.

We stress that the preprocessing phase is executed only once
and all executions use the strings distributed in this phase.
Furthermore, we note that Definition 4 implies that all hon-
est parties are oblivious of the other executions that have
taken place (or that are taking place in parallel). This is
implicit in the fact that in each execution the parties are
invoked with no additional state information, beyond the
contents of their input, random and key tapes. On the
other hand, the adversary A can coordinate between the
executions, and its view at any given time includes all the
messages received in all other executions.?

Before proceeding, we show that any Byzantine Generals
(or Agreement) protocol in the standard model composes
concurrently.

PROPOSITION 2.1. Any protocol I1 for Byzantine Gener-
als (or Agreement) in the standard model, remains secure
under concurrent composition.

PRrROOF: We reduce the security of II under concurrent
composition to its security for a single execution. Assume
by contradiction that there exists an adversary .4 who runs
N concurrent executions of IT, such that with non-negligible
probability, in one of the executions the outputs of the par-
ties are not according to the requirements of the Byzantine
Generals. We construct an adversary A’ who internally in-
corporates A and attacks a single execution of II. Intuitively,
A’ simulates all executions apart from the one in which A
succeeds in its attack. Formally, A’ begins by choosing an
index i €r {1,...,N}. Then, for all but the i execution
of the protocol, A’ plays the roles of the honest parties in an
interaction with A (this simulation is internal to .A’). On
the other hand, for the i*" execution, A’ externally inter-
acts with the honest parties and passes messages between
them and A (which it runs internally). The key point in the
proof is that the honest parties hold no secret information
(and do not coordinate between executions). Therefore, the
simulation of the concurrent setting by A’ for A is perfect.
Thus, with probability 1/N, the i*™® execution is the one in
which A succeeds. However, this means that A’ succeeds
in breaking the protocol for a single execution (where A’’s
success probability equals 1/N times the success probability
of A.) This contradicts the stand-alone security of II.

2 The analogous definition for the composition of wunauthenticated
Byzantine Generals/Agreement is derived from Definition 4 by re-
moving the reference to the preprocessing stage and setup-tapes.



3. IMPOSSIBILITY RESULTS

In this section we present two impossibility results regard-
ing the composition of authenticated Byzantine Agreement
protocols. Recall that we are concerned with stateless com-
position. First, we show that it is impossible to construct an
authenticated Byzantine Agreement protocol that composes
in parallel (or concurrently), and is secure when n/3 or more
parties are faulty. This result is analogous to the Fischer et
al. [7] lower bound for Byzantine Agreement in the standard
model (i.e., without authentication). We stress that our
result does not merely show that authenticated Byzantine
Agreement protocols do not necessarily compose; rather, we
show that one cannot construct protocols that will compose.
Since there exist protocols for unauthenticated Byzantine
Agreement that are resilient for any ¢ < n/3 faulty parties
and compose concurrently, this shows that the advantage
gained by the preprocessing step in authenticated Byzantine
Agreement protocols is lost when composition is required.

Next, we show a lower bound on the number of rounds re-
quired for deterministic authenticated Byzantine Agreement
that composes sequentially. (Note that the impossibility of
parallel composition holds even for randomized protocols.)
We show that if an authenticated Byzantine Agreement pro-
tocol that tolerates n/3 or more faulty parties is to compose
sequentially r times, then there are executions in which it
runs for more than r/2 rounds. Thus, the number of rounds
in the protocol is linear in the number of times it is to com-
pose. This rules out any practical protocol that will compose
for a (large) polynomial number of times.

Intuition. Let us first provide some intuition into why
the added power of the preprocessing step in authenticated
Byzantine Agreement does not help when composition is re-
quired. (Recall that in the stand-alone setting, there exist
authenticated Byzantine Agreement protocols that tolerate
any number of faulty parties. On the other hand, under par-
allel composition, more than 2n/3 parties must be honest.)
An instructive step is to first see how authenticated Byzan-
tine Agreement protocols typically utilize the preprocess-
ing step, in order to increase fault tolerance. A public-key
infrastructure for signature schemes is used and this helps
in achieving agreement for the following reason. Consider
three parties A, B and C participating in a standard (unau-
thenticated) Byzantine Agreement protocol. Furthermore,
assume that during the execution A claims to B that C sent
it some message . Then, B cannot differentiate between
the case that C actually sent = to A, and the case that C
did not send this value and A is faulty. Thus, B cannot be
sure that A really received = from C. Indeed, such a model
has been called the “oral message” model, in contrast to the
“signed message” model of authenticated Byzantine Agree-
ment [13]. On the other hand, the use of signature schemes
helps to overcome this exact problem: If C had signed the
value = and sent this signature to A, then A could forward
the signature to B. Since A cannot forge C’s signature,
this would then constitute a proof that C indeed sent x to
A. Therefore, utilizing the unforgeability property of signa-
tures, it is possible to achieve Byzantine Agreement for any
number of faulty parties.

However, the above intuition holds only in a setting where
a single execution of the agreement protocol takes place.
Specifically, if a number of executions were to take place,
then A may send B a value z along with C’s signature on

z, yet B would still not know whether C signed z in this
execution, or in a different (concurrent or previous) execu-
tion. Thus, the mere fact that A produces C’s signature on
a value does not provide proof that C signed this value in
this execution. As we will see in the proof, this is enough
to render the public-key infrastructure useless under some
types of composition.

‘We remark that it is possible to achieve concurrent compo-
sition, using state in the form of unique and common session
identifiers. However, as we have mentioned, there are many
scenarios where this does not seem to be achievable (and
many others where it is undesirable).

THEOREM 1. No protocol for authenticated Byzantine
Agreement that composes in parallel (even twice) can tol-
erate n/3 or more faulty parties.

ProOF: The proof of Theorem 1 is based on some of the
ideas used by Fischer et al. [7] in their proof that no unau-
thenticated Byzantine Agreement protocol can tolerate n/3
or more faulty parties. We begin by proving the following
lemma:

LEMMA 3.1. There exists no protocol for authenticated
Byzantine Agreement for three parties, that composes in par-
allel (even twice) and can tolerate one faulty party.

PROOF: Assume, by contradiction, that there exists a
protocol II that solves the Byzantine Agreement problem
for three parties A, B and C, where one may be faulty. Fur-
thermore, IT remains secure even when composed in parallel
twice. Exactly as in the proof of Fischer et al. [7], we de-
fine a hexagonal system S that intertwines two independent
copies of II. That is, let A1, B1, C1 and A2, B> and C»
be independent copies of the three parties participating in
II. By independent copies, we mean that A; and A, are
the same party A with the same key tape, that runs in two
different parallel executions of II, as defined in Definition 4.
The system S is defined by connecting party A: to C> and
B; (rather than to Ci and B,); party B; to A; and Ch;
party C1 to By and A»; and so on, as in Figure 1.

Ay B,

2 Az
Figure 1: Combining two copies of II in a hexagonal
system S.

In the system S, parties A;, Bi, and C1 have input 0;
while parties Az, B2 and C> have input 1. Note that within
S, all parties follow the instructions of II exactly. We stress
that S is not a Byzantine Agreement setting (where the
parties are joined in a complete graph on three nodes),
and therefore the definitions of Byzantine Agreement tell
us nothing directly of what the parties’ outputs should be.
However, S is a well-defined system and this implies that the
parties have well-defined output distributions. The proof



proceeds by showing that if II is a correct Byzantine Agree-
ment protocol, then we arrive at a contradiction regarding
the output distribution in S. We begin by showing that B
and C: output 0 in S. We denote by rounds(II) the up-
per bound on the number of rounds of II (when run in a
Byzantine Agreement setting).

CrAM 3.2. Ezcept with negligible probability, parties B
and C1 halt within rounds(II) steps and output 0 in the sys-
tem S.

PRrROOF: We prove this claim by showing that there exists
a faulty party (or adversary) A who participates in two par-
allel copies of IT and simulates the system S, with respect to
B; and Cy’s view. The faulty party A (and the other honest
parties participating in the parallel execution) work within
a Byzantine Agreement setting where there are well-defined
requirements on their output distribution. Therefore, by an-
alyzing their output in this parallel execution setting, we are
able to make claims regarding their output in the system S.

Let Ai, B: and C: be parties running an execution of II,
denoted ITy, where By and Ci both have input 0. Further-
more, let A, B> and C5 be running a parallel execution of
II, denoted II,, where By and C» both have input 1. Recall
that B; and B, are independent copies of the party B with
the same key tape (as defined in Definition 4); likewise for
Cl and 02.

Now, let A be an adversary who controls both A; in II;
and A» in IIy (recall that the faulty party can coordinate
between the different executions). Party A’s strategy is to
maliciously generate an execution in which Bi’s and Ci’s
view in II; is identical to their view in S. A achieves this by
redirecting edges of the two parallel triangles (representing
the parallel execution), so that the overall system has the
same behavior as S; see Figure 2.

A
A, 1 B,

@

C2
[ oA c

Cy

B. A
2 2 B2 AZ

Figure 2: Redirecting edges of II; and II; to make a
hexagon.

Specifically, the (A1, C1) and (A, C2) edges of II; and II, re-
spectively are removed, and the (A1, C>) and (A2, C1) edges
of S are added in their place. A is able to make such a
modification because it only involves redirecting messages
to and from parties that it controls (i.e., A1 and A»).
Before proceeding, we present the following notation: let
msg; (A1, B1) denote the message sent from A; to Bj in the
i*" round of the protocol execution. We now formally show
how the adversary A works. A invokes parties A; and As,
upon inputs 0 and 1 respectively. We stress that A; and A,
follow the instructions of protocol II exactly. However, A
provides them with their incoming messages and sends their
outgoing messages for them. The only malicious behavior of
A is in the redirection of messages to and from A; and A>. A
full description of A’s code is as follows (we recommend the
reader to refer to Figure 2 in order to clarify the following):

1. Send outgoing messages of round i: A obtains mes-
sages msg,(A1,B1) and msg;(A1,C1) from A; in Iy,
and messages msg; (A2, B2) and msg; (A2, C2) from A,
in II5 (these are the round 7 messages sent by A1 and
A, to the other parties; as we have mentioned, A; and
A, compute these messages according to the protocol
definition and based on their view).

e In II;, A sends B; the message msg;(A1, Bi) and
sends C1 the message msg;(A2,C>) (and thus the
(A1, C1) directed edge is replaced by the directed
edge (A2, Ch)).

e In II, A sends By the message msg;(Az, B2) and
sends C> the message msg;(A1,C1) (and thus the
(A2, C2) directed edge is replaced by the directed
edge (A1, C2)).

2. Obtain incoming messages from round i: A receives
messages msg;(B1, A1) and msg;(C1, A1) from B; and
C; in round ¢ of II;, and messages msg, (B2, A2) and
msg;(Ca, Az) from B> and C in round i of IIs.

e A passes A; in II, the messages msg,(B1, A1) and
msg;(C2, A2) (and thus the (Ci, A1) directed edge
is replaced by the directed edge (Cs, A1)).

e A passes Az in II> the messages msg;(B2, A2) and
msg;(C1, A1) (and thus the (Cs, A2) directed edge
is replaced by the directed edge (Ch1, A2)).

We now claim that B: and Ci’s view in II; is identical to
B; and Cy’s view in S.® This holds because in the parallel
execution of ITy and II, all parties follow the protocol defini-
tion (including A; and As). The same is true in the system
S, except that party A; is connected to B; and C5 instead
of to By and C,. Likewise, Ay is connected to B2 and Ci
instead of to By and C3. However, by the definition of A,
the messages seen by all parties in the parallel execution of
II; and II, are exactly the same as the messages seen by the
parties in S (e.g., the messages seen by Ci in II; are those
sent by B1 and As, exactly as in S). Therefore, the views of
B; and C; in the parallel execution maliciously controlled
by A, are identical to their views in S.*

By the assumption that II is a correct Byzantine Agree-
ment protocol that composes twice in parallel, we have that,
except with negligible probability, in II; both B; and Ci
halt within rounds(II) steps and output 0. The fact that
they both output 0 is derived from the fact that B; and C;
are an honest majority with the same input value 0. There-
fore, they must output 0 in the face of any adversarial Ai;
in particular this holds with respect to the specific adver-
sary A described above. Since the views of By and C7 in S
are identical to their views in II;, we conclude that in the
system S, they also halt within rounds(II) steps and out-

3In fact, the views of all the parties in the parallel execution with
A are identical to their view in the system S. However, in order to
obtain Claim 3.2, we need only analyze the views of By and Cj.

We note the crucial difference between this proof and that of Fischer
et al. [7]: the faulty party A is able to simulate the entire A; —
Ca — Bas — As segment of the hexagon system S by itself. Thus, in
a single execution of Il with B; and Ci, party A can simulate the
hexagon. Here, due to the fact that the parties B2 and C2 have secret
information that A does not have access to, A is unable to simulate
their behavior itself. Rather, A needs to redirect messages from the
parallel execution of Il2 in order to complete the hexagon.



put 0 (except with negligible probability). This completes
the proof of the claim. |

Using analogous arguments, we obtain the following two
claims:

CramM 3.3. Ezcept with negligible probability, parties As
and Bs halt within rounds(II) steps and output 1 in the sys-
tem S.

In order to prove this claim, the faulty party is C and it works
in a similar way to A in the proof of Claim 3.2 above. (The
only difference is regarding the edges that are redirected.)

CrLAM 3.4. Ezcept with negligible probability, parties As
and C1 halt within rounds(I) steps and output the same
value in the system S.

Similarly, this claim is proven by taking the faulty party as B
who follows a similar strategy to A in the proof of Claim 3.2
above.

Combining Claims 3.2, 3.3 and 3.4 we obtain a contradic-
tion. This is because, on the one hand C1 must output 0 in
S (Claim 3.2), and A, must output 1 in S (Claim 3.3). On
the other hand, by Claim 3.4, parties A2 and C1 must out-
put the same value. This concludes the proof of the lemma.

Theorem 1 is derived from Lemma 3.1 in the standard way [15,
13] by showing that if there exists a protocol that is correct
for any n > 3 and n/3 faulty parties, then one can construct
a protocol for 3 parties that can tolerate one faulty party.
This is in contradiction to Lemma 3.1, and thus Theorem 1
is implied.

The following corollary, referring to concurrent composition,
is immediately derived from the fact that parallel composi-
tion (where the scheduling of the messages is fixed and syn-
chronized) is merely a special case of concurrent composition
(where the adversary controls the scheduling).

COROLLARY 1. No protocol for authenticated Byzantine
Agreement that composes concurrently (even twice) can tol-
erate n/3 or more faulty parties.

Sequential Composition of Deterministic Protocols.
We now show that there is a significant limitation on de-
terministic Byzantine Agreement protocols that compose
sequentially. Specifically, any protocol which terminates
within 7 rounds can only be composed sequentially for at
most 2r —1 times. The lower bound is derived by show-
ing that for any deterministic protocol II, r rounds of the
hexagonal system S (see Figure 1) can be simulated in 2r
sequential executions of II. As we have seen in the proof of
Theorem 1, the ability to simulate S results in a contradic-
tion to the correctness of the Byzantine Agreement protocol
II. However, a contradiction is only derived if the system
S halts. Nevertheless, since II terminates within r rounds,
the system S also halts within r rounds. We conclude that
the protocol II can be sequentially composed at most 2r—1
times.

We remark that in actuality, one can prove a more gen-
eral statement that says that for any deterministic proto-
col, r rounds of 2 parallel executions of the protocol can be
perfectly simulated in 2r sequential executions of the same

protocol. (More generally, r rounds of k parallel executions
of a protocol can be simulated in & -r sequential executions.)
Thus, essentially, the deterministic sequential lower bound
is derived by reducing it to the parallel composition case of
Theorem 1. That is,

THEOREM 2. Let II be a deterministic protocol for authen-
ticated Byzantine Agreement that concludes after r rounds
of communication. Then, II can be sequential composed at
most 2r—1 times.

4. SEQUENTIALLY COMPOSABLE RAN-
DOMIZED PROTOCOLS

In this section we present two results. The first one is a
protocol which tolerates any ¢t < n/2 faulty parties and has
polynomial communication complexity (i.e., bandwidth). The
second one is a protocol that can tolerate any number of
faulty parties but is exponential in the number of partici-
pating parties.

The building block for both of the above protocols will be
a randomized (sequentially composable) protocol, ABGs 1,
for authenticated Byzantine Generals between 3 parties and
tolerating one faulty party. Recall that ABG,, ; denotes an
authenticated Byzantine Generals protocol for n parties that
tolerates up to ¢ faults. We first present the protocol ABGs 1
and then show how it can be used to achieve the above-
described results.

4.1 Sequentially Composable ABGg3 4

For this protocol we assume three parties: the general, G,
and the recipients P;, P». The General has an input value z.
According to Definition 1, parties P; and P> need to output
the same value z’, and, if G is not faulty, then ' = z. As
is evident from the proofs of the impossibility, what hinders
a solution is that faulty parties can ¢mport messages from
previous executions, and there is no means to distinguish be-
tween those and the current messages. Thus, if some fresh-
ness could be introduced in the signatures, then this would
foil the adversary’s actions. Yet, agreeing on such freshness
would put us in a circular problem. Nevertheless, the case
of three parties is different: here there are only two parties
who need to receive each signature. Furthermore, it turns
out that it suffices if the parties who are receiving a signature
can jointly agree on a fresh string. Fortunately, two parties
can easily agree on a new fresh value: they simply exchange
messages and set the fresh string to equal the concatenation
of the exchanged values. Now, in the protocol which follows
for three parties, we require that whenever a party signs a
message, it uses freshness generated by the two remaining
parties. We note that in the protocol, only the General, G,
signs a message, and therefore only it needs a public key.
The protocol is described in Figure 3. For simplicity, we as-
sume that the signature scheme is defined such that opi(2)
also contains the value z.

As we will wish to incorporate Protocol 3 into a protocol
with n parties we state a broader claim for the composition
than for a simple three party setting.

LEMMA 4.1. Assume that the signature scheme o is ex-
istentially secure against adaptive chosen message attacks.
Then, Protocol 3 is a secure protocol for ABG3,1 that can be
composed sequentially within a system of n parties, in which
t may become faulty, for any t < n.



Protocol 3: Authenticated Byzantine Generals
for Three Parties

Security parameter 1%

Public key pk associated with G
Private Input of G: Secret key sk corresponding to pk
Value =

Public Input:

1. P; and P> agree on a random label ¢, as follows:
(a) P; chooses a random k-bit string u; and
sends it to P;
(b) Set £ = uy o u2, where o denotes concate-
nation.

2. P; and P5 both send £ to G.

3. Let ¢; denote the message that G received from
P; in the previous round. G forms m =
osk(z,€1,£2) and sends m to P; and P.

4. Denote by m; the message received by P; in the
previous step from G. P; checks whether the mes-
sage m; is a valid signature on the label ¢ (and
another, possibly different, label). If so, P; for-
wards m; to P;.

5. P; denotes by mg the message that it received
from P; in the previous step. P; outputs accord-
ing to the following rules based on the examina-
tion of m; and m;

If all valid signatures on messages containing the
label £ are for the same value x, then output x.
Otherwise, output a default value.

Figure 3: ABG3;;

PRrROOF: We prove the theorem by contradiction. Assume
that a series of ABGs,1 protocols are run sequentially, such
that in some (or all) of them, the adversary succeeded in
foiling agreement with non-negligible probability. We will
show that in such a case, we can construct a forger F for
the signature scheme who succeeds with non-negligible prob-
ability. This will then be in contradiction to the security of
the signature scheme.

As there are n parties and the adversary can control up
to t of them, there may be executions where two or three of
the parties are corrupted. However, in such a case, agree-
ment holds vacuously. On the other hand, any execution in
which all three parties are honest must be correct. There-
fore, agreement can only be foiled in the case that exactly
one participating party is corrupted.

We first claim that when A plays the General in an ex-
ecution, it cannot foil the agreement. This is because P;
and P»’s views of the messages sent by A (playing G) are
identical. Furthermore, their decision making process based
on their view is deterministic. Therefore, they must output
the same value. We stress that this is irrespective of how
many executions have passed (and is also not dependent at
all on the security of the signature scheme being used).

Thus, it must be the case that the foiled execution is one
where the general is an honest party. As we have mentioned,
we build a forger F for the signature scheme o who uses
A. The forger F receives as input a public verification-
key pk, and access to a signing oracle associated with this
key. F begins by choosing at random one of the parties, say
P;, and associating the verification-key pk with this party.

Intuitively, with probability 1/n, this is the party who plays
the general when A foils the agreement. For all other parties,
the forger F chooses a key pair, for which it knows both the
signing and verification keys. Then, F gives the adversary
A the key pairs for all the initially corrupted parties. F
now invokes A and simulates the roles of the honest parties
in the sequential executions of Protocol 3, with A4 as the
adversary. In particular, F works as follows:

e In all executions where the recipient/s P; and/or P»
are not corrupted, F plays their role, following the
protocol exactly as specified. This is straightforward
as the recipients do not use signing keys during such
an execution.

e In all executions where the general is some uncor-
rupted party P, # P;, the forger F plays the role of P,
following the protocol and using the signing-key which
it associated with P; initially.

e In all executions where the general is the uncorrupted
P;, the forger F plays the role of P; following the pro-
tocol. However, in this case, F does not have the as-
sociated signing-key. Nevertheless, it does have access
to the signing oracle associated with pk (which is P;’s
public verification-key). Therefore, F executes these
signatures by accessing its oracle. In particular, for
labels ¢1,¢> that it receives during the simulation, it
queries the signature oracle for o (z, €1, £2).

o Corruptions: If at any point, A corrupts a party P, #
Pj, then F hands A the signing-key that is associated
with P, (this is the only secret information that P
has). On the other hand, if at any point A corrupts
P;, then F aborts (and does not succeed in forging).

Throughout the above-described simulation, F monitors each
execution and waits for an execution in which exactly one
party is corrupt and the agreement is foiled. If no such ex-
ecution occurs, then F aborts. Otherwise, in the first foiled
execution, F checks if the uncorrupted P; is the general in
this execution. If not, then F aborts (without succeeding in
generating a forgery). Otherwise, we have an execution in
which P; is the general and agreement is foiled. In such a
case, F succeeds in generating a forgery as follows.

As we have mentioned, agreement can only be foiled if
exactly one party is faulty. Since by assumption P; is not
corrupted, we have that one of the recipients P; or P> are
corrupted; without loss of generality, let P; be the corrupted
party. (We note that F plays the roles of both honest parties
P; and P; in the simulation.) Now, since the agreement was
foiled, we know that P> does not output P;’s input value
x, which means that it defaulted in Step 5. This can only
happen if P> received two valid signatures on the label ¢
which it sent P; in this execution. Now, P» clearly received
a correct signature m on P;’s input using the label £ from P;
itself. (In fact, by the simulation, this signature is generated
by F accessing its signature oracle.) However, in addition,
P, must have received a valid signature m’ from P;, where
m' constitutes P;’s signature on a string that contains label
¢ and a different message . With overwhelming probabil-
ity the label ¢ did not appear in any previous execution,
because P, is honest and chooses its portion of the label
at random. Thus, previously in the simulation, the signing



oracle was never queried with a string containing £. Further-
more, by the assumption that =’ # z, the oracle query by
F in this execution was different to the string upon which
m’ is a signature. We conclude that m’ is a valid signature
on a message, and that F did not query the signing oracle
with this message. Therefore, F outputs m’ and this is a
successful forgery.

It remains to analyze the probability that J succeeds in
this forgery. First, it is easy to see that when F does not
abort, the simulation of the sequential executions is perfect,
and that A’s view in this simulation is identical to a real exe-
cution. Furthermore, the probability that P; is the identity
of the (uncorrupted) general in the first foiled agreement
equals 1/n exactly. The fact that P; is chosen ahead of
time makes no difference because the simulation is perfect.
Therefore, the choice of P; by F does not make any differ-
ence to the behavior of A. We conclude that F succeeds
in forging with probability 1/n times the probability that .A
succeeds in foiling agreement (which is non-negligible). This
contradicts the security of the signature scheme.

4.2 Sequentially Composable ABG,, ,, /2

Fitzi and Maurer [8] present a protocol for the Byzan-
tine Generals problem that tolerates any ¢t < n/2 faulty
parties. Their protocol is for the information-theoretic and
unauthenticated model. However, in addition to the point-
to-point network, they assume that every triplet of parties
is connected with an ideal (3-party) broadcast channel. As
we have shown in Section 4.1, given a public-key infrastruc-
ture for signature schemes, it is possible to implement secure
broadcast among three parties that composes sequentially.
Thus, a protocol for ABG,, ,,» is derived by substituting
the ideal 3-party broadcast primitive in the protocol of Fitzi
and Maurer [8] with Protocol 3. Since Protocol 3 and the
protocol of Fitzi and Maurer [8] both compose sequentially,
the resulting protocol also composes sequentially.

THEOREM 3 Assume that there exists a signature scheme
that is existentially secure against chosen message attacks.
Then, there exists a randomized protocol for authenticated
Byzantine Generals that tolerates t < n/2 faulty parties and
composes sequentially any polynomial number of times.

As we show in Section 5, it is possible to execute many
copies of an authenticated Byzantine Generals protocol con-
currently, by allocating each execution a unique identifier
that is common and known to all parties. Now, inside the
Fitzi-Maurer protocol we can allocate unique indices to each
invocation of the ABGs ; protocol. We can therefore run the
ABGs;,1 protocols in parallel (rather than sequentially), im-
proving the round complexity of the resulting protocol. In
particular, our protocol is of the same round complexity as
the underlying Fitzi-Maurer protocol. (We stress that the
fact that the ABGs ;1 subprotocols can be executed in par-
allel within the ABG,, /2 protocol does not imply that the
ABGy, /2 protocol itself can compose in parallel. Rather,
by our impossibility result, we know that it indeed cannot
be composed in parallel.)

4.3 Sequentially Composable ABG,, ; forany ¢

In this section we describe a protocol for the Byzantine
Generals problem for n parties, which can tolerate any num-
ber of faulty parties. However, this protocol is exponential
in the number of participating parties. Therefore, in our

setting, the protocol can only be carried out for n = logk
parties (where k is a security parameter). We stress that
the fact that the number of parties must be logarithmic in
the security parameter is due to two reasons. First, we wish
the protocol to run in polynomial time. Second, we use a
signature scheme and this is only secure for polynomial-time
adversaries, and a polynomial number of signatures.

Our protocol is constructed by presenting a transforma-
tion that takes a sequentially composable ABG protocol for
n—1 parties which tolerates n—3 faulty parties, ABGp_1,n,—3,
and produces a sequentially composable ABG protocol for
n parties which tolerates n — 2 faulty parties, ABG,, n—_».
Then, given our protocol for broadcast among three parties
which tolerates one faulty party, ABGs,1, we can apply our
transformation and obtain ABGy,,—2 for any n.

The idea for the transformation is closely related to the
ideas behind the protocol for Byzantine Generals for three
parties. The solution for the three-party broadcast assumes
two-party broadcast (which is trivial). Using two-party broad-
cast, agreement on a fresh label can be reached. Having
agreed on this label, the two point communications with
the General are sufficient. Each party sends its claimed
fresh label to the General, and the General includes the two
received labels inside any signature that it produces. Our
general transformation will work in the same manner. We
use the ABG,,_1,,—3 protocol to have all parties (apart from
the General) agree on a random label. Then, each party pri-
vately sends this label to the General, who then includes all
labels in its signatures. Thus, we prove:

THEOREM 4. Assume that there exists a signature scheme
that is existentially secure against chosen message attacks,
for adversaries running in time poly (k). Then, there ezists a
Byzantine Generals protocols for O(log k) parties, that toler-
ates any number of faulty parties and composes sequentially.

The formal description of the protocol and the proof of the
theorem are omitted due to lack of space in this abstract.

5. AUTHENTICATEDBYZANTINE AGREE-
MENT USING UNIQUE IDENTIFIERS

In this section we consider an augmentation to the authen-
ticated model in which each execution is assigned a unique
and common identifier. We show that in such a model, it
is possible to achieve Byzantine Agreement/Generals that
composes concurrently, for any number of faulty parties. We
stress that in the authenticated model itself, it is not possi-
ble for the parties to agree on unique and common identi-
fiers, without some external help. This is because agreeing
on a common identifier amounts to solving the Byzantine
Agreement problem, and we have proven that this cannot be
achieved for t > n/3 when composition is required. There-
fore, these identifiers must come from outside the system
(and as such, assuming their existence is an augmentation
to the authenticated model).

Intuitively, the existence of unique identifiers helps in the
authenticated model for the following reason. Recall that
our lower bound is based on the ability of the adversary
to borrow signed messages from one execution to another.
Now, if each signature also includes the session identifier,
then the honest parties can easily distinguish between mes-
sages signed in this execution and messages signed in a dif-
ferent execution. It turns out that this is enough. That is,



we give a transformation from almost any Byzantine Agree-
ment protocol based on signature schemes, to a protocol
that composes concurrently when unique identifiers exist.
By “almost any protocol,” we mean that this transforma-
tion applies for any protocol that uses the signature scheme
for signing and verifying messages only. This is the natural
use of the signature scheme and all known protocols indeed
work in this way.

More formally, our transformation works as follows. Let
IT be a protocol for authenticated Byzantine Agreement. We
define a modified protocol II(id) that works as follows:

e FEach party is given the identifier id as auxiliary input.

e If a party P; has an instruction in II to sign a given
message m with its secret key sk;, then P; signs upon
id o m instead (where o denotes concatenation).

e If a party P; has an instruction in IT to verify a given
signature ¢ on a message m with a public key pk;, then
P; verifies that o is a valid signature for the message
id om.

We now state our theorem:

THEOREM 5. Let I be a secure protocol for authenticated
Byzantine Agreement which uses an ezistentially unforge-
able signature scheme. Furthermore, this scheme s used
for generating and verifying signatures only. Let the pro-
tocol I1(id) be obtained from II as described above, and let
id1, ... ,id¢ be a series of £ unique strings. Then, the pro-
tocols I1(id1), . .. ,1I(id¢) all solve the Byzantine Agreement
problem, even when run concurrently.

We conclude by noting that it is not at all clear how such an
augmentation to the authenticated model can be achieved
in practice. In particular, requiring the on-line participation
of a trusted party who assigns identifiers to every execution
is clearly impractical. (Furthermore, such a party could just
be used to directly implement broadcast.) However, we do
note one important scenario where Theorem 5 can be ap-
plied. As we have mentioned, secure protocols often use
many invocations of a broadcast primitive. Furthermore, in
order to improve round efficiency, in any given round, many
broadcasts may be simultaneously executed. The key point
here is that within the secure protocol, unique identifiers can
be allocated to each broadcast (by the protocol designer).
Therefore, authenticated Byzantine Agreement can be used.
Of course, this does not change the fact that the secure
protocol itself will not compose in parallel or concurrently.
However, it does mean that its security is guaranteed in the
stand-alone setting, and a physical broadcast channel is not
necessary.

6. OPEN PROBLEMS

Our work leaves open a number of natural questions. First,
an unresolved question is whether or not it is possible to
construct randomized protocols for authenticated Byzantine
Generals that sequentially compose, for any n and any num-
ber of faulty parties. Second, it is unknown whether or not
it is possible to construct a deterministic protocol that ter-
minates in r rounds and sequentially composes ¢ times, for
some 2 < ¢ < 2r—1. Another question that arises from this
work is to find a realistic computational model for Byzantine
Agreement that does allow parallel and concurrent compo-
sition for n/3 or more faulty parties.
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